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                                     Abstract 

    In geophysical fluids like the ocean and atmosphere, the horizontal plane and vertical direction have 
much different properties from each other, partly because of a small aspect ratio and partly because of 
stable density stratification and rotation of the earth. A useful system of vector notations is proposed for 
describing geophysical fluid dynamics in a concise manner. We first introduce ", a vector operator to 
be called strophe or turn. It rotates a horizontal vector clockwise at right angle. Likewise "a 

(blana or alongent) is defined. When operated on a scalar field , blana yields a vector that is as large 
as 1I\01I, but parallel to the isoline of z// with higher ' on the left-hand side. A three-dimenSiOnal vector 
is written as u = u + w, where u in boldface indicates the horizontal components and w is the vertical 
component of three-dimenSiOnal vector u. Examples and applications are presented to show the utility 
of the present system of notations called GFDVN (Geophysical Fluid Dynamics Vector Notation), which 
not only simplifies the description, but also gives a clear geometrical image of vectors in oceanography or 
meteorology. We observe quite symmterical relations between the inner and outer product of two vectors, 
divergence and rotation of a vector field, through or o. As a focused application, an investigatios is made 
of the geometrical implication of Lagrange's formula, or the formula of triple vector product. By using 
GFDVN we find that the formula is none other than a representation of skew coordinates on a plane. Also 
that formula in two-dimenSiOn turned out to have a simple relation with the mixing ratio of three water 
types on a T-S diagram used in oceanography.

Key words : geophysical fluid dynamics, vector notation, horizontal two-dimenSiOnal plane, strophe op-
             erator, blana operator, Lagrange's foumula, skew coordinates, T-S diagram

1. Introduction 

   In ordinary three-dimenSiOnal vector analysis we 
deal with all the directions of space equally since the 

physical space is isotropic in principle. But, in geophys-
ical fluid dynamics, the vertical direction has a distinct 

characteristics different from the horizontal; vertical ve-
locity is far weaker than horizontal, because of a small 
aspect ratio of the ocean or atmosphere. The momen-
tum equation in the vertical direction therefore is ap-

proximated well by the hydrostatic equilibrium, as is 
usual in the primitive equations. Consequently most 
vector operations are made on the horizontal plane in 
oceanography and meteorology. 

  In geophysical fluid dynamics therefore the ordinary 
three-dimenSiOnal notation often becomes cumbersome 
than in the isotropic physical space. For instance, hor-
izontal Coriolis force F acting on horizontal current u

should be written as

where f is the vertical component of the planetary vor-

ticity and k is the upward unit vector. If we want to 

denote quasi-geostrophic horizontal current in terms of 

the geostrophic stream function , we need to write it 

as

by the ordinary vector notation. Also the vertical com-

ponent of the relative vorticity S is expressed in terms 
of the quasi-geostrophic stream function as

Of'course an alternative way is to write out all the com-

ponents of vectors, giving up vector notations. For in-
stance, (1) and (2) are written as
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where u (v) and  FF (Fy) are the eastward (northward) 
component of u and F, respectively. 

   These inconvenient notations have been traditional 

even in standard textbooks and monographs for geo-

physical fluid dynamics (Pedlosky 1987, say)') . In a 
recent paper of mine, I began to use slightly different no-

tations for two-dimenSiOnal vectors, which proved quite 
useful (Masuda 2008)2). This short note is intended to 

give a more comprehensive system of notations for two-
dimenSiOnal vector description that is suitable especially 
for geophysical fluid dynamics. Let us call it GFDVN 

(Geophysical Fluid Dynamics Vector Notation). This 
system allows us a much simpler description of geo-

physical fluid dynamics than traditional ones. It is not 
only convenient, but also provides vivid images of vector 

properties. 
   This short note therefore aims at presenting: (1) 

a comprehensive summary of GFDVN based on -, and 
< and extended to the three-dimenSiOnal space, (2) ex-
amples and applications illustrating the parallel or sym-
metric relations between V and < or between divergence 

and rotation, and (3) Lagrange's formula of triple vec-
tor product, which is given a simple meaning from a 
viewpoint of GFDVN. 

   Next section introduces two operators and 4 
- V and gives their fundamental properties and forumu-

las. In the third section, geophysical examples and ap-

plications are presented to show the utility of GFDVN. 
Then GFDVN is applied to argue the meaning of La-

grange's formula or triple vector product. We see that 
it is a representation of a vector in skew coordinates on a 

plane. The last section gives a summary and discusSiOn.

2. Geophysical fluid dynamics vector 

   notation 

   A horizontal vector is expressed in boldface as u, 
and the horizontal gradient operator by V. Such a hor-
izontal two-dimenSiOnal notation is convenient in dis-

cussing geophysical fluid dynamics, where the vertical 
direction is special in that it is parallel to the gravity of 

the earth. In many situations of oceanography, however, 
one may want to express three-dimenSiOnal vectors with 
these two-dimenSiOnal vector notations hold. For exten-

SiOn to such cases, we make it a rule to add an underline 
to show that the vector is a three-dimenSiOnal one. The 

ordinary three-dimenSiOnal velocity vector and gradient 
operator are written as u and V, respectively. 

   Let us denote the horizontal plane as R2 (real two-
dimenSiOnal vectors), and the three-dimenSiOnal space 

as R3, which is the direct product of R2, horizontal 

plane, and R, the vertical axis. For brevity "2-D" (2D) 
and "3-D" (3D) often stand for "two-dimenSiOn(al)" and 
"three -dimenSiOnal)", respectively.

   In R3, x, y and z denote the eastward, northward 

and upward coordinate, respectively, A vector in either 

two or three dimenSiOnal space, is understood as a col-

umn vector of corresponding components. For a vector 

or matrix denoted as A, A' means the transpose of A. 

   Then two-dimenSiOnal and three-dimenSiOna coordi-

nates or position vectors are expressed as

respectively. Likewise we define the gradient operator 

by

on the horizontal plane and in the three-dimenSiOnal 

space, respectively. In the three-dimenSiOnal context 

we should read symbolically two-dimenSiOnal vectors as

  This system of notations is called "GFDVN" or 
"two-dimenSiOnal vector notation (2DVN)", while the 

conventional notation is to be referred to as "3DVN". 
Unless stated otherwise we assume GFDVN henceforth. 

2.1 Unit tensors 

   On a plane, the unit tensor bi,; and antisymmetric 
unit tensor E{, j are defined by

respectively, where suffix i (j) is 1 or 2. In contrast to 
the three-dimenSiOnal case, E2,3 is expressed as the com-

ponents of an antisymmetric square matrix of order 2. 
Throughout the paper, we observe that bi,; and E,;,j play 

a symmetric role in the operation of two-dimenSiOnal 
vectors. 
   Properties of b,,, and Ei,j are listed up first. Ob-
viously b2,3 and E{,j are tensors. The unit tensor bz,; 

(Kronecker's delta) has the following identities:

where 15, - (61,p, b2,p)' E R2, and a • b is the inner 

product of a and b (inner product will be defined later).



   The antisymmetric unit tensor  E,,, has different 

properties from S,,,. If A is a matrix of (2,2)-order with 
components Ai,,, we have

where det(A) is the determinant of A. This formula is 
derived as follows. By definition the left-hand side of 

(7) is the determinant of a matrix whose first column 
is (A1,,, A2,i)' and second (A1,,, A2,3)'. It is det(A)Ei,,, 

just the right-hand side of (7). 
   From (7) we have the following identities combining 

ei,3 with Si,j

Here (c) is obtained by putting Ai,, = S,,, in (7), (d) 

from (c) with the use of (6) and a property of determi-
nants, (e) by putting p = i and q = k in (d) and (f) by 

putting k = j in (e). One will find formulas similar to 
(a)-(f) for Si,, and Ej,,,k (antisymmetric unit tensor 3-D 
space) in the three-dimenSiOnal case.

2.2 Operators strophe -, and blana a 

   The primary purpose of this short note is to intro-
duce two symbols or operators in a two-dimenSiOnal vec-

tor space. 
   First we define an operator "-,", which is related 

with E,,,. For (u, v)' = (ul, u2)' = u E R2, we may 
write as

where "A = B" means "A is a different representation 

of B or vice versa". In the above example, the left-hand 

side of the former denotes a two dimenSiOnal vector u, 

while the right-hand side indicates that it is expressed 

by or represented by its i-th component u2. This con-

vention is used as a general rule throughtout the paper.

Compare u with -II, in (12); the former is based on Si,, 
while the latter on ei,,. 

   As is obvious, -iu is obtained when u is rotated 
clockwise at right angle (Fig. 1). The form of the symbol 

 suggests its operation; a right-directed bar is twisted 
clockwise at right angle to yield a down-directed bar. 
One may thus call "-," as strophe or turn. 

   Let i and j be the eastward and northward unit 
vector, respectively. It is easy to see that 

~bp = Ep (p = 1, 2) 
            i = (51 = +C2,(13) 

3=52=-E1 

where c,,= (Ei,p, (2,p)i.

Fig. 1 Operator rotates a vector a clockwise at 
      right angle to yield -'a. This operator is 
      used conveniently in geophysical fluid dy-

      namics. For instance Coriolis force on hor-
      izontal current of velocity u is expressed 

      as f -~u, f being the vertical component of 

      planetary vorticity.

   For a scalar field the most basic differential oper-

ator V is represented in terms of Si,, as

In parallel with V related with Si,,, a differential oper-

ator related with E2,7 can be defined. That is, we have

   The operator V is called "nabla" or gradient as 
usual, which gives a vector that has a magnitude of the 

largest gradient of and is pointing toward higher value 
of'. On the other hand the operator .1 yields a vector 
that is parallel to the isolines of V) with higher on the 
left-hand side and has the same norm as V (Fig. 2).



Fig. 2 Operators nabla V and blana  a. For a 
     scalar field z/i = y)(x), VO gives a vector 

     pointing toward higher 0, while <IP gives 
     a vector along the isoline of z' with higher 

V.) the left-hand side, where II < 
            We may call < alongent, in anal-

      ogy to gradient.

We call it "blana" in analogy to "nabla", or alongent. 

operator. 

   An example of < is as follows. Let i be a stream 

function in geophysical fluid dynamics and u the hori-

zontal current velocity vector. Then we have

which is much shorter and easier to have an image than 

the traditional expresSiOn like u = —V x Ok. Moreover 

it directly shows that u is parallel to the contours of m/, 

with higher V) on the right-hand side. 

  The identity

means that the inverse of is --,, while

shows that -, converts V to < and vice versa. Note that 
the symbol < has a form obtained when V is turned 
clockwise at right angle, as is suggested by (17).

2.3 Inner and outer product 

   On a horizontal plane, inner and outer product are 

defined as

again, in a symmetric way in terms of ot,, and ez,; . 
We should note that outer product yields a scalar in 

GFDVN, whereas it gives a vector or an antisymmetric 
tensor in 3DVN. Also note that u x v means the area 
of the rhomboid of apexes o, a, b, and a + b; it is also 

double the area of the triangle of apexes o, a, and b. 
Of course, the sign may be opposite according as the 
configuration of a and b. 

  Combining the inner/outer product with nabla/blana 
operator on a vector field u, we have two scalar fields: 

divergence and rotation of u

respectively. We observe a symmetric relationship be-

tween < and V as

which yields an alternative expresSiOn of divergence or 

rotation in terms of o instead of V. 

2.4 3D-vector representation in GFDVN 

   Three-dimenSiOnal vectors should be written as 

(u, v, w)' = u = (u', 0)' + wk(21) 

in a legitimate way of 3DVN, where k expresses the unit 

upward vector. 
   That is quite cumbersome, however. So, if the situ-

ation is not confusing, we may write the vertical vector 
simply by a scalar corresponding to the vertical compo-

nent. By virtue of this convention of GFDVN, we may 
write

Since the left-hand side expresses a 3-D vector, one 

should interpret the right-hand side as



   Le us apply this convention to a formula in Intro-

duction. When is a scalar field in R3, V x is mean-

ingless in the ordinary three-dimenSiOnal notation. In 

GFDVN, however, we may interpret it as

If so, we find

which can be interpreted to be a horizontal vector ei-
ther on the horizontal plane or in the three-dimenSiOnal 

space. Thus we have V x  i,b = 40. 
   In order to avoid confuSiOn, in this convention of 

GFDVN, we have to distinguish scalar multiplication 
with inner/outer product. In scalar multiplication, one 
should not use "S" or "x" at all; "•" and "x" are pre-

served only for inner product and outer product, respec-
tively. When w is a scalar (or the vertical component 
of a vector) and p = (p, q)' a horizontal vector, we have 
three different scalar multiplication or product as 

    R2 D wp = (wp, wq)' = (pw, qw)' = pw, 

REiw•p-wk•p=0=p•w, 

     R3 Dwxp=wk xp=—w-ip=—pxw. 

   When dealing with three-dimenSiOnal vectors under 
this convention of GFDVN, we should pay attention to 
inner and outer product. For two 3-D vectors

inner product becomes

and outer product

where we have used

Likewise we have 3-D divergence as

where we have used

In the same way, the 3-D rotation becomes

   These notations simplify the description of vector 

operations even in the three-dimenSiOnal space. By 

GFDVN, the primitive eqaution of motion is written 

simply as

for inviscid flow on a ,Q-plane, where t denotes time, u 

3-D current vector with horizontal components of u and 
vertical component of w, p pressure, p density, and f the 
Coriolis paramter. 

2.5 Formulas for strophe --, and blana 4 

   Now useful formulas are listed up with respect to 

4, •, and x. Let A and it be constant scalars, a and b 
constant vectors, p = p(x) and q = q(x) saclar fields, 
and u = u(x) and v= v(x) vector fields. 

  It is obvious that

We have identities as

The first two formulas show that the inner or outer prod-

uct of a and b is equal to each of -'a and -'b. In other



words, we have the same scalar by operating  -i before 

operating "•" or " x". 

   Divergence and rotation are expressed in terms of 

either V or 4:

   Orthogonal and parallel relationships are expressed 

in terms of either inner or outer product as

Laplacian is expressed two ways as

By applying the formula, we have vorticity ( expressed 

two ways as

Jacobian J(p,q) becomes

In this expresSiOn it is easy to see that vanishing J(p, q) 
everywhere implies that the contours of p and q are par-
allel to each other and that q is a function of p. 

   The following identities are trivial.

the last of which is known as "rot grad p=0". 

   For three-dimenSiOnal vector notations in GFDVN, 

it suffices to list up the following formulas:

3. Examples and applications 

   A few examples and applications of and a are 

presented to show their utility in geophysical fluid dy-
namics. Adequate formulas in the preceding section are 
used in the argument of the following. 

3.1 Coriols force and geostrophic current 

   A good example of both --, and a is the representa-
tion of the Coriolis force and geostrophic current. The 

Coriolis force acting on the current with velocity u is ex-

pressed as f-'u, f being the Corilos parameter (Fig. 1). 
Then the geostrophic equilibrium becomes

where p is pressure and p density of water. Operating 
--, on (52) and using (16) and (17) , we obtain

This formula directly implies that the geostrophic cur-

rent u is parallel to the isoline of p with higher p on the 

right-hand side, if f > 0 as in the northern hemisphere. 

   Symmetry about - or a is found for steady currents 

by two mechanisms: one is that equilibrated by Rayleigh 

friction without Coriolis force and the other by Coriolis 

force without Rayleigh friction. The momentum balance 

becomes

respectively, where R is the coefficient of Rayleigh fric-

tion, its dimenSiOn being the same as the Coriolis pa-

rameter f . Then it follows that

u is along pressure gradient if equilibrated by Rayleigh 

friction and along pressure contours if equilibrated by 

Coriolis force, respectively. 

  When both kinds of force work, the momentum bal-

ance becomes



where the latter is obtained simply by operating on 

the former. From this expresSiOn follows a useful for-

mula of u expressed in terms of p as

which is reduced to (53) for the limiting cases of R2  > 

 f2 and  R2«f2. 
For a harmonic oscillation u oc t[e-Z"t] and p oc 

R[e-24t] of frequency w, (54) becomes

where i - ~/-1 is the imaginary unit and R[A] means 
the real part of A. The formula will be derived in a 

different way in section 3.4. 

3.2 Gauss' theorem and Stokes' theorem 

  Let S2 be a region in R2 and DS2 be its boundary. 
Guass' theorem and Stokes' theorem are written as

respectively, where dx - dx dy is the area element (not 
a vector, but a scalar), ds is the line element vector, 
ds is the length of the line element, the closed 
line integral goes around S2 counterclockwise, and n = 

dsis the outward normal unit vector on 8S2 (Fig. 3). 
The right-hand side of Gauss' theorem is rewritten as

Hence (56) becomes

which provides more symmetric expresSiOns of the two 

theorems via " • " and " x ". 
   Now if we replace u by - u in Gauss' theorem, the 

left-hand side of (57) becomes

while the right-hand of (57) becomes

Equating the right-hand side of (58) with that of (59) 
we obatin Stokes' theorem.

Fig. 3 Gauss' theorem and Stokes theorem for re-

     gion Cl C R2 bounded by (9Q. The line in-
     tegral goes along DS2 anticlockwise; ds is 

     a small line element vector along OC2 and 
      n is the unit vector outward normal to C2, 

     so that Iidsil n = -ds.

   In the same way, if we replace u by -- u in Stokes' 

theorem, the left-hand side becomes

whlie the right-hand becomes

The result means Gauss' theorem. 

   Thus Gauss' theorem and Stokes' theorem are con-
verted to each other easily through the operation of 
on the vector field u. 

3.3 Vorticity equation and divergence equa-
    tion 

  If fi = 0(x) is a scalar filed and u = u(x) is a vector 
field, then we have

When = I = fo +/3y is the Coriolis parameter on a 13-

plane and u denotes the horizontal current, the former 
and latter correspond to the divergence and rotation of 
the Coriolis force f -iu acting on the current u, respec-
tively. Neglecting forces other than the Coriolis force



we obtain symmetric expresSiOns as

where  (- V x u is vorticity. 

   Let us consider the meaning of each term, assuming 

f is positive. The term f ( means that Coriolis force 
acting on positive vorticitiy enhances (horizontal) di-
vergence, while )3u weakens horizontal divergence for 
eastward flow, as is obvious from the physics of Coriolis 

force. 
   On the other hand as regards vorticity, – f V • u 
shows that Coriolis force on convergin current (–©•u 

0) twists the fluid particle anticlockwise and enhances 
vorticity. If we rewrite it as

for a three-dimenSiOnal incompressible flow satisfying 

V • u + dz= 0, this term is interpreted to be vortic- 
ity enhancement by vortex stretching. Finally the term 
–/3v on the northward flow (v > 0) twists the fluid par-

ticle clockwise to decrease vorticity.

3.4 Poincare waves and deformation radius 

   Consider an infinitesimal amplitude of motion in a 
bartropic flat ocean on an f-plane, where density is ho-
mogeneous (p = 1). We start with

where u denotes the horizontal current velocity, p pres-

sure, g the gravitational acceleration and H depth of 

the ocean; p corresponds grt, rt being the displacement 

of the sea surface. 

   First let us express u through p. It follows from the 

momentum equation

which is no other than (55). This expresSiOn (61) yields 

geostrophic balance

In the opposite limit pressure gradient is balanced by 

acceleration

  Operating V• on (61) and eliminating V • u by use 
of continuity equation, we obtain

because V • •p = V x Vp = 0. Ignoring the trivial 

common operator at,we find the equation of Poincare 
waves.

In the limiting case of —a
t >> If I, (62) becomes the 

wave equation in two-dimenSiOnal space. In the opposite 

limit of at<< If I, (62) expresses the conservation of 
potential vorticity

whereiHis called the barotropic radius of deforma- 
tion.

3.5 Thermal wind and vertical sheer 

   The argument of a horizontal vector u, denoted by 

arg(u), is defined as the direction of u, which is mea-
sured anticlockwise from east. 

  For a Boussinesq fluid, buoyancy b is defined by

where g is gravity, po a (constant) reference density. 

Putting po = 1 we may write hydrostatic relation and 

geostrophic balance as

Eliminating p we have

which indicates the relation of thermal wind. Alterna-

tively it is written as

  The vertical sheer of u may be expressed alterna-
tively by vertical change of 'lull and arg(u). We have



and

Comparing (66) and (67), we again confirm symmetry 

between the vertical change of norm and argument of  u 
through the exchange of  "•" and "x". 

   If we further assume the conservation of b in the 
steady state

we may rewrite (67) as

Usually oceans are stably stratified and db > 0. The                                 dz 
argument of horizontal current vector u rotates with 
depth according as the sign of w. This veering of ocean 
current with depth in association with density field is 
called /3-spiral (Stommel and Schott 1977)3) . In sub-

tropic oceans, w < 0 in subsurface layers due to Ekman 

pumping, so that the horizontal current vector changes 
its direction with depth in the same way as the Ekmann 

spiral. The /3-spiral has been argued in the theory of 
ventilated thermocline (Luyten et al. 1983, Pedlosky 
1996) 4)5) •

4. Lagrange's formula 

  The subject of this section is an application of 
GFDVN to Lagrange's formula 

        ax (ti xc)=(d•c)b-(a•b)c (70) 

for three-dimenSiOnal vectors a, b, and c. The formula 

yields 

V(u•v) _ (u•V)v+(v•V)u 

+u x (V x v) + v x (V x u).(71) 

when extended to u, v, and V instead of a, b, and c. 

Equation (71) is used frequently in fluid dynamics to 
derive Bernoulli's theorem or vorticity equation (Batch-
elor 1967, e.g.)6). 

   So far as I know, however, Lagrange's formula is 

difficult to understand as it stands. This section aims 
at revealing its meaning. We first give a simple ge-
ometrical image in two-dimenSiOns and shows that it 
is extended to three-dimenSiOnal space or to higher-

dimenSiOnal ones. Also we refer to a somewhat unex-

pected fact that Lagrange's formula is related with the 
mixing ratio of three water types on a T-S diagram used 
in oceanography.

4.1 2-D Lagrange's formula 

   If all the three vectors a, b, and c lie on a plane. 
Lagrange's formula becomes 

(a • c)b — (a • b)c = (b x c)--~a, (72) 

which we call "2-D Lagrange's formula" for brevity. 
   It is derived by calculus for each component of the 

vector on the left-hand side. Also a direct tensor calcu-
lation gives its derivation as

where we have used formulas of sections 2.1 and 2.2. 

4.2 2-D Lagrange's formula and skew coor-

    dinates 

   Another view of 2-D Lagrange's formula is provided 

by skew coordinates. When b is not parallel to c, the 

two vectors make a basis of the plane R2. Then there 

are A E R and I E R such that

The numbers A and µ are called components of the skew 
coordinate system with the basis {b, c}. Taking the 
outer product with c from right, we have

which yields

The same augument gives µ, leadeing to

which is rewritten easily as (72). 
   This derivation is expressed in a somewhat different 

Way. First we define

so that



That is,  b1 is chosen so that it is perpendicular to the 
subspace spanned by c and b b1 = 1. The same is true 
for c1. 

  If we take {b1, c1} as another basis of R2, we have

Taking the inner product with b or c, we have

from which follows

Operating we obtain

  It is worth while to note that in the skew coordi-
nates with the basis {b, c}, the following reciprocal ex-

presSiOns do hold:

   An oceanographic application of skew coordinates 
are found in radar observation of surface current u (Ya-
mashita et al. 2004, Yoshikawa et al. 2006, Masuda

Fig. 4 Radar observes the radial componet of the 
      current vector. In the figure two compo-

      nents it = u•el and i = u•e2 are measured 
     by two radars in the direction of el and 

e2, respectively. Those components are 
      used to synthesize the current vector u = 

'del" + ue21 , where ell_ - —,e2/(ei x e2) 
      and e21 - --,e1/(e2 x el), as is explained 

      in the text.

2007, Yoshikawa and Masuda 2009) 9)10) 11)12) Figure 
4 shows the radar coordinates. Radar measures only the 
radial components of current u - u • el and v - u • e2, 
where el and e2 are unit vectors pointing the radial di-

rection of the first and second radar. In order to apply 
the former formula of (73) we replace a by u, and b (c) 

by el (e2). It then follows that

where

Note that IIeii 11 1, whereas Ile.; II = 1 (j = 1, 2). 
When el x e2 is close to 0 (i.e. when el and e2 is almost 

papallel to each other), vectors is so large that a 
smallest error of measured ua leads to an enormous error 

in the estimation of u.

4.3 Symmetric form of 2-D Lagrange's for-
    mula and T-S diagram 

   More symmetrically (72) is rewritten as 

(-'a x b)c + (b x + (c x —ia)b = O. (74) 

Replacing -'a by a yields a perfectly symmetric identity 

(a x b)c + (b x c)a + (c x a)b = O. (75) 

It is worth while to note that (75) is related with T-S 
analysis of sea water (Picard ad Emery 1985, Oceanog-

raphy course team of open university 1989 )7) 8) . 
   Figure 5 shows a T-S diagram, where T and S de-

note temperature and salinity, respectively. Let P3 be 
the j-th water type (1 < j < 3), whose coordinates on 
the diagram are their T and S values. Mixing of the 
three water types yields an intermediate type of water 

designated by point Q on the diagram. Then the posi-
tion vector of Q (Q = Q) is expressed as

where Pi = P; is the position vector of the j-th water 

type, and ri is the mixing ratio of the j-th water type 

satisfying

From geometry it follows easily that

where A ABC means the area of triangle ABC. Similar 

expresSiOns are obtained for r2 and r3 by cycling the



index. Putting the origin of the coordinates at Q (Q 
0) and defining

it is easy to see that (77) expresses the symmetric form 

of 2-D Lagrange's formula (75).

 Fig.  5 Temperature-Salinity dagram (T-S dia-
      gram) and Lagrange's formula. Three wa-
     ter types designated by points Pj (1 < 

j < 3) is mixed to produce an intermedi-
     ate water type designated by point Q. This 

     geometry of T-S diagram is related with a 
      symmetric form of Lagrnage's formula.

4.4 Derivation of the 3-D Lagrange's for-
    mula from the 2-D one 

   Lagrange's formula in the three-dimenSiOnal space 
is derived from the two-dimenSiOnal formula as follows. 

  When b is parallel to c, either side of (70) vanishes, 

so that the formula is valid. When b is independent of 
c, b and c span a plane, which is considered to be a 
horizontal plane without loss of generality. Then using 
the convention of GFDVN we may write

where az is the vertical component of a. 

  By GFDVN we may write as

where the two-dimenSiOnal result (72) has been used. 

The right-hand side above further becomes

because of trivial identities

and by virtue of the convention of GFDVN. Thus we 

have derived three-dimenSiOnal Lagrange's formula from 

2-D Lagrange's formula.

5. Summary and discusSiOn 

   Two-dimenSiOnal vectors on a plane R2 are visible 
and appeal to intuition. They are easy to handle with 
and help us understand vector properties in even higher 

dimenSiOns. This article presents a system of notations 
called GFDVN. That is adapted to two-dimenSiOnal vec-
tors and intended for use especially in geophysical fluid 
dynamics. 

   Of course we can do without <, or GFDVN; one 
may continue using traditional notations (3DVN). As 
has been fully exemplified and illustrated in the paper, 
however, GFDVN surely provides, I believe, an efficient 
way for describing geophysical fluid dynamics in a vivid 
and concise manner. 

   Although we have dealt with real vectors so far, op-
erators and < may be applied to complex vectors too, 
by the definition through i,j. We must keep it in mind 

that and < have a meaning only for two-dimenSiOnal 
vectors, whereas V applies to space of any dimenSiOns. 

   In the last application we have seen that Lagrange's 
formula is understandable as a representation of a vector 
in skew coordinates. Unexpectedly it is related with the 

mixing ratio of three water types on a T-S diagram in 
oceanography. 
   ExtenSiOn to higher dimenSiOn of Lagrange's formula 
is pot difficult, but it is omitted here. This short note 

has not referred to another subject that is intimately 
related with GFDVN. That is, complex representation 
of real two-dimenSiOnal vectors. Complex representa-

tion allows an arithmetic means for vector operation. 
For example, corresponds to the multiplication of 

--/-1 for complex numbers . Also we see that



2-D Lagrange's formula is derived quite easily by the 

complex arithmetic. 

  If there is an opportunity, I would like to revisit 

those subjects in future.

Acknowledgements 
   The author thanks Ms. Ikesue for preparing the 

manuscript. This work was supported partly by a 
Grant-in-Aid for Scientific Research (B), provided by 
the Ministry of Education, Culture, Sports, Science and 

Technology,  Japan.

            References 

1) Pedlosky, J. (1987): Geophysical Fulid Dynamics. 
   2-nd ed., Springer-Verlag, New York, 710 pp. 

2) Masuda, A. (2008): A note on some basic meth-
   ods of interpolation and estimation in particular for 

   monitoring ocean current by HF radar. Reports of 
   Research Institute for Applied Mechanics, No.134, 

   29-45 (in Japanese). 

3) Stornmel, H. and Schott, F. (1977): The beta spi-

   ral and the determination of the absolute velocity 
   field from hydrographic data. Deep-Sea Research, 

   24, 325-329. 

4) Luyten, J. R., Pedlosky, J. and Stommel H. (1983): 
   The ventilated thermocline. J. Phys. Oceanogr., 13, 

   292-309. 

5) Pedlosky, J. (1996): Ocean Circulation Theory. 
   Springer-Verlag, Berlin Hyderberg, 453 pp. 

6) Batchelor, G. K. (1967): An Introduction to Fluid 
   Dynamics. Cambridge University Press, 615 pp. 

7) Picard, G. L. and Emery W. J. (1985): Descriptive 
   Physical Oceanography. 4-th ed., Pergamon Press, 

   Oxford, 241 pp. 

8) The oceanography course team of Open University 

   (1989): Ocean Circulation. Pergamon Press, Ox-
   ford, 238 pp. 

9) Yamashita, Y., Masuda, A., Yosikawa, Y., 
   Marubayashi, K. and Ishibashi, M. (2004): Interpo-

   lation and estimation method of velocity field near 
   the baseline used in the ocean radar system. Re-

   ports of Research Institute for Applied Mechanics, 
   No.126, 47-56 (in Japanese). 

10) Yoshikawa, Y., Masuda, A., Marubayashi, K., 
   Ishibashi, M. and Okuno, A. (2006): On the ac-
   curacy of HF radar measurement in the Tsushima 

   Strait. J. Geophys. Res., 111, C04009, doi: 

10.1029/2005J0003232.

11) Masuda, A. (2007): A note on some aspects of sur-

   face currents and tides in relation to the measure-
   ment with the ocean radar. Reports of Research 
   Institute for Applied Mechanics, No.132, 55-74(in 

Japanese) . 

12) Yoshikawa, Y. and Masuda, A. (2009): Sea-
   sonal variation in the speed factor and deflec-

   tion angle of the wind-driven surface flow in the 
   Tsushima Strait. J. Geophys. Res., 114, C12022, 

  doi: 10.1029 /2009J 0005632.

           Appendix 

Al. supplement to 4.3 

   In section 4.3 we have seen that symmetric 2-D La-

grange's formual (75) is proved from the geometrical 
consideration of a triangle, when point Q is inside the 

triangle and a = Pi — Q, b = P2 - Q, c = P3 — Q. 
Is (75) still valid in different situatios such as a = Pi, 
b = P2, and c = P3? That is the subject here. 

  We start with putting

Provided Q Q is inside the triangle P1P2P3i (75) 
does hold, so that 

0 = (a x b)c + (b x c)a + (c x a)b. (A2) 

When a, b, and c are ordered clockwise (counter to the 
order in Fig. 5), the areas of small triangles become

Obviously (A2) still does hold in this case, too. 
  Direct calculus of the right-hand side of (A2) will 

yield (75), but an indirect approach will be simpler. The 
first term of (A2) is written as

The same is true for the second or third term. Con-

sequently the right-hand side of (A2) is considered 

quadratic polynomials of Q, Q. We note that (A2) 
holds for arbitrary Qt. Accordingly the sum of the terms 
of the zeroth order with respect to QZ must vanish. That 

sum of the zeroth order terms are no other than the 
right-hand side of (75). Therefore (75) does hold for 
any three vectors a, b, and c on a plane.


