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                                     Abstract 

    The neoclassical tearing mode (NTM), which is a possible candidate to drive magnetic island, is 
the tearing mode nonlinearly driven by the perturbed bootstrap current via neoclassical electron viscosity 
under the condition of 0' < 0, where classical tearing mode is stable. The diamagnetic drift stabilizes the 
tearing mode and gives rise to finite rotation frequency. Furthermore, the diamagnetic rotation frequency 
of magnetic island plays quite important role for the nonlinear stability of NTM. Therefore, effects of the 
neoclassical electron viscosity on the drift-tearing mode should be investigated. In this study, we examine 
effects of the neoclassical electron viscosity(the perturbed bootstrap current) on the drift-tearing mode 
numerically and analytically. 
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1. Introduction 

 Modern society has been developed by science and 
technology, which heavily depend on fossil fuels such as 

petroleum, coal, gas and so on. As the result, the world-
wide demand for energy has been increasing rapidly. It 
is expected that more energy will be consumed accord-
ing to an explosive increase of the world population in 
the near future. Environmental destruction and global 
warming are crucial issues to be resolved. 

 Nuclear fuSiOn energy is expected as one of alterna-
tives to fossil fuel. The most promising way is nuclear 
fuSiOn of Deuterium and Tritium, in which Alpha parti-
cle and neutron are produced°. In this process, there is 
no production of greenhouse gasses. High temperature 
heated plasmas of Deuterium and Tritium are neces-
sary to realize the nuclear fuSiOn, and this method is 
called the controlled thermonuclear fuSiOn. Magnetic 
Confinement FuSiOn (MCF) such as tokamaks is one of 
candidates for nuclear fuSiOn reactor. Over the past fifty 

years, main effort has been devoted to heat up the plas-
mas, where a target value of plasma temperature is one 
hundred million degrees Kelvin1 . In the International
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Thermonuclear Experimental Reactor (ITER) project, 

it is expected that the long time self-sustainment of nu-

clear fuSiOn will be achieved2) . 

 High temperature magnetized plasmas are potentially 
unstable, because of their various instabilities driven 

by gradients of plasma temperature, density and elec-

tric current. In the plasma core region, there ex-
ist micro-turbulence and macroscopic magnetohydrody-

namic (MHD) instability1 . Micro-turbulence enhances 

transports of energy and particles, which are attributed 
to the confinement degradation. Excitation of MHD in-

stability strongly modifies equilibrium fields, and some-

times it causes the disruption3' 4) . The simultaneous 

achievement of high temperature and dense plasmas 

suppressing instabilities is still a challenging problem. 
 Magnetic islands, which often appear at rational 

surface where parallel wave number is zero, are the 

typical example of the MHD instability in tokamaks. 

The degradation of plasma confinement has been ob-

served, when the magnetic island width becomes larger 
enough5) . The bootstrap current is a self-generated 

plasma current driven by the pressure gradient, which 
is an important factor for the design of economically ef-

ficient nuclear fuSiOn reactors2) . One of the destabiliza-

tion mechanism of magnetic islands is associated with 

the loss of bootstrap current, owing to the flattening of 

pressure gradient by magnetic islands. As the results, it 
enhances the transport of heat and particles. Besides,



the disruption, a sudden collapse of plasma discharge ac-
companying a large current flow in vacuum vessel, is oc-
caSiOnally triggered by the magnetic islands, and causes 
serious damages on  devices1'  6)  . It is desired to con-
trol the magnetic island dynamically and/or suppress 
their excitations. In the ITER project, the excitation of 
magnetic islands might be suppressed by using electron 
cyclotron current drive (ECCD)2' 7) . 

 Although much work has been done on magnetic is-
land problems, some important issues still remain unre-
solved. 
 The neoclassical tearing mode (NTM), which is a pos-
sible candidate to drive magnetic island, is the tear-
ing mode nonlinearly driven by the perturbed bootstrap 
current via neoclassical electron viscosity under the con-
dition of 0' < 0, where classical tearing mode is sta-
ble. The Rutherford type equation is derived to ana-
lyze NTM, and the sub-critical excitation of magnetic 
island is possible if the transport threshold is taken into 
account. The tearing mode combined with electron dia-
magnetic drift effect with A' > 0, where classical tearing 
mode is unstable, is known as the drift-tearing mode. 
The diamagnetic drift stabilizes the tearing mode and 

gives rise to finite rotation frequency. Furthermore, the 
diamagnetic rotation frequency of magnetic island plays 

quite important role for the nonlinear stability of NTM. 
Therefore, effects of the neoclassical electron viscosity 
on the drift-tearing mode should be investigated. In 
this study, we examine effects of the neoclassical elec-
tron viscosity(the perturbed bootstrap current) on the 
drift-tearing mode numerically and analytically. 

 The present thesis is organized as follows. In Chapter 
2, the fundamental basis of the present study is intro-
duced. Some of important physics issues in ITER and 
theory of magnetic islands are reviewed. In Chapter 3, 
model equations are introduced. A reduced set of two-
fluid equations are derived. In Chapter 4, the linear 
stability analysis of the drift-tearing mode is performed. 
The destabilization mechanism of the drift-tearing mode 
with the neoclassical electron viscosity is clarified. Fur-
thermore, the nonlinear simulations are performed and 
the saturation mechanism of the magnetic island is in-
vestigated. In Chapter 5 is devoted for summary and 
~ icrn cci nn

2. Review 

2.1 Important subjects in ITER 

 The purpose of the International Thermonuclear Ex-

perimental Reactor (ITER) project is to achieve the self-
ignition and the self-sustainment of the burning state 
by the a-particle heating power2) . The main goal of 
ITER project is to obtain the experimental data, which

is necessary to construct the subsequent demonstrative 
fuSiOn power plant. For the high performance of burn-
ing plasmas, high-/3 states and long confinement times 
are necessary efficiently utilizing H modes and inter-
nal transport barriers, which can be realized by avoid-
ing magneto-hydrodynamics (MHD) instabilities and by 
suppressing turbulent transport by means of magnetic 
shear and zonal flow10) for the suppresSiOn of turbulence 
transport. The parameter regime of ITER operation is 
determined both by economical reasons, and by some 
serious issues as discussed below. 

 Disruption is a sudden loss of magnetic confinement, 
followed by a rapid cooling (thermal quench) and cur-
rent loss (current quench) of plasmas. Rapid loss of 
thermal energy causes the plasma temperature to fall 
to as low as 3 eV, which is expected to occur on 1 ms 
in ITER2) . Subsequent loss of plasma current induces 
strong current flows in the vacuum vessel on the 50 ms. 
Consequent damages on devices are deposition of ther-
mal energy onto the divertor, melting of plasma facing 
materials and strong electromagnetic forces on devices 

(15, 000 t in the most sever cases). 
 It is generally accepted that the thermal quench is 

initiated by the growth of large amplitude magnetic is-
lands in many cases. It has been pointed out that mag-
netic island growth is triggered by the locking of poloidal 
rotation (zero rotation frequency) of magnetic island, 
which is caused by the interaction with resistive wall fol- 
lowing eddy current11'12) The locked magnetic island 
also degrades the confinement property by affecting the 
edge transport (H-mode) barrier. When the magnetic 
island width overcomes a threshold, the magnetic is-
lands with different mangetic helicities overlap on ratio-
nal surfaces. The overlap produces large scale ergodiza-
tion of the magnetic structure and enhances conductive 
transport of thermal energy along ergodized magnetic 
field lines13' 14) In other cases, the disruption is caused 
by the 3-limit or the density (Greenwald) limit. Ideal 
MHD instability such as the kink mode and the bal-
looning mode becomes unstable with sufficiently large 

/3 value. The physics mechanism of the density limit is 
presently not yet clear, however it is considered to be 
triggered by the radiative instabilities when the density 
at plasma edge becomes large enough. 

 Minor repetitive collapse events (partial disruptions) 
are known as the sawtooth oscillation and the edge local-
ized mode (ELM), for example, and they are essentially 
relaxation of equilibrium profiles accompanying inter-
mittent energy releases. The sawtooth oscillation occurs 
in the core region, therefore it does not affect the global 
energy confinement. However, the sawtooth oscillation 
often triggers the excitation of magnetic island15). Dy-
namics of ELM associated with H-mode confinement is



Fig. 1 Simulation of the worst case (maximal 
     size) for magnetic islands in ITER(quoted 

      from Ref.2)).

just beginning to be described theoretically. ELM ac-
tivity can be categorized into some types, and control of 
them is important for saving plasma facing components 
and steady operation of ITER. 

2.2 Magnetic islands in ITER 

 The scaling with the experimental data gives a thresh-
old width for the onset of magnetic islands such that 
2 — 7 cm in  ITER2)  . This is a few percent of the minor 
radius, and it is considered to be difficult to avoid the 
excitation of magnetic islands. Fig.1 shows estimated 
magnetic island structure in ITER with a contour of 
magnetic field in the poloidal cross section. 

 The important issues concerning magnetic islands for 
ITER and also future tokamak power plants are sum-
marized as follows. 

 • Trigger mechanism and threshold width: 
   The seeding process for excitation of magnetic 

   islands should be clarified. Moreover, the de-
   tailed physics mechanism which determines thresh-

   old width of magnetic island excitation is undergo-
   ing subject. In order to check two representative 

   mechanisms, i.e. the transport threshold mecha-
   nism (by Fitzpatrick)8) and the polarization cur-

   rent threshold mechanism (by Smolyakov)9), fur-
   ther investigations are necessary. Current experi-

   mental data implies that both models are plausible.

  • Saturated width: 
   Estimation of saturated magnetic island is quite im-

    portant to determine the influences on confinement. 
   A stable and stationary solution of the modified 

   Rutherford equation gives a saturated width16) 
  • Effects on confinements: 

   In connection with trigger of disruption, investi-

    gations are necessary on the locking of rotation 
   of magnetic island by resistive wall, on the conse-

    quent interaction between magnetic island and edge 
    transport barrier and on the overlap of magnetic is-

   lands. The limitation of achievable 0 value caused 
   by magnetic islands is also an important subject. 

  • Methods for avoiding onset and controlling 

    growth: 
    The electron cyclotron current drive, which replaces 

    the missing bootstrap current inside magnetic is-
   land is planned to be employed to stabilize mag-

    netic islands in ITER. Recently, current/safety fac-
   tor profile modifications have been used to improve 

    plasma confinement. Perturbed bootstrap current 
   can be changed to stabilizing contribution in the 

    reversed magnetic shear region. 

2.3 Tearing mode 

 The linear stability analysis of the tearing mode was 
originally given by Furth, Kleen and Rosenbluth17), 
which is based on the boundary layer theory around the 
rational surface. The growth rate of the linear tearing 
mode is obtained by matching the ideal MHD solution 
for the outer layer and the resistive MHD solution for 
the inner layer. The ideal MHD solution is characterized 
by the parameter A', which represents the logarithmic 

jump of the radial magnetic field perturbation across 
the rational surface:

where is fluctuating flux function (vector potential), 
rs is position of the rational surface. The tearing mode 
is unstable, when A' is positive. Assuming that the 

perturbation grows as e~t, the linear disperSiOn relation 
is given by

with

where k11 is the wave number along the magnetic field 

line and the prime indicates the radial derivative. TR 

is resistive time, where iii is parallel resistivity and c is



velocity of light.  Ro is major radius of plasmas. VA in-
dicates Alfven velocity. It has been recognized that the 
characteristics (disperSiOn relation) of the tearing mode 
is changed, according to the colliSiOnality of plasmas: 
the colliSiOnal tearing mode, the semi-colliSiOnal tearing 
mode and the colliSiOnless tearing mode18). The abOve 
disperSiOn relation Eq.(2) corresponds to the colliSiOnal 
tearing mode. 

 An important extenSiOn of the tearing mode is the 
drift-tearing mode, which includes the effect of the elec-
tron diamagnetic drift. The density gradient gives the 

(diamagnetic drift) rotation frequency to the tearing 
mode. The linear disperSiOn relation of the colliSiOnal 
drift-tearing mode is given by

where the w.n OpvAke /wiLn, indicates the electron 
diamagnetic drift frequency. ii3p is the poloidal plasma 
beta value, ko is poloidal wave number, wi is ion plasma 
frequency and Lri = —nos/nios is electron density gra-
dient length, where n,o, is equilibrium electron density 
at rational surface and the prime indicates the radial 
derivative. Real and imaginary parts of w correspond to 
the rotation frequency and the growth rate, respectively. 
Phase diagram for separating the tearing mode and the 
drift-tearing mode in the colliSiOnal and semi-colliSiOnal 
regime is shown in Fig.219) (diagram in Ref.18) is also 
available). C = 0.51(ve, )(me /mi)Lq /L,, and /3 = 
13,(Lql L,i) 2 represent a colliSiOnal parameter and a pres-
sure parameter, where fve,i, me/m21 are electron-ion 
colliSiOn frequency and a ratio of electron inertia to 
ion inertia, respectively. L, qs1qC is magnetic shear 
length, where q, is safety factor. In the colliSiOnless 
regime, the fluid model is not relevant to be used so 
that the drift kinetic model is used for analyzing the 
colliSiOnless tearing mode. It is predicted that the lin-
ear tearing mode of higher mode number is destabilized 
by the electron temperature18). These unstable modes 
are called the micro-tearing modes, in which the elec-
tron temperature gradient becomes an additional free 
energy source. 

 Analytical theory of the nonlinear evolution of the 
tearing mode was originally developed by Rutherford16), 
and the time evolution of the magnetic island width is 
described by the so-called Rutherford equation:

with

Fig. 2 Various regime of the tearing mode. In re-

     gions I and IV, the mode is purely grow-
     ing and in regions II and V becomes the 

     drift-tearing mode which is stable above 
     the dashed line. The tearing mode no 

     longer exists in region III and VI(quoted 
      form Ref.19)).

where I1 = 0.82, W is the width of the magnetic island. 

8, is the magnetic shear at the rational surface defined 

by s,, = and Bo indicates the ambient magnetic 
field. The saturation of the tearing mode is given by 

(W) 0, which is caused by the quasi-linear modifi-
cation of the equilibrium current profile inside magnetic 

island. By including this effect, the Rutherford equation 
is rewritten as

where So indicates the initial value of A' and a is a nu-
merical parameter20). Saturated magnetic island width 
is given by 147s,,,t = /a in the present model. 

2.4 Neoclassical tearing mode 

2.4.1 Classical and Neoclassical transports 

 The colliSiOnal transport in tokamak plasmas is 
mainly caused by the toroidal effect. Both particles 
and heat fluxes in the toroidal plasma are much lager 
than those in the cylinder one. In general, the transport 
in uniform and straight magnetic filed configurations is 
called as the classical transport, and that in the nonuni-
form and toroidal magnetic filed configurations is called 
the neoclassical transport. Firstly, we explain the clas-
sical transport.



 In the fluid approximation, the transport of the 

plasma is caluculated by the simplificated Ohm's law 

and the balance equation of the pressure:

Operating  (x  B) Eq.(8) and using Eq.(9), plasma flow 
across the magnetic filed line is given by

The first term corresponds to the transport and the sec-

ond term is E x B drift component. When the tempera-

ture is constant, the particle flux by the colliSiOn is given 

by

The diffuSiOn coefficient D is defined as m8/2µo, where 
  = P/(B2/2µo). According to the resistive MHD the-

ory, transports of particle and heat are enhanced by 
the E x B term of Eq.(10), and the flux of the particle 

given by Eq.(10) become (1 + 2q2) times larger where q 
is the safety factor. This enhancement is due to the dis-
tance across the magnetic surface, where larmor radius 
becomes larger in the toroidal coordinate. 

  Next, we discuss the so-called neoclassical transport. 
In the toroidal plasma, the colliSiOnal process is divided 
into three regions, the Pfirsch-Schliiter region, the ba-
nana region, the Plateau region, depending on the colli-

SiOnality. In tokmak plasmas, magnetic field B is given 
by 

B =-----------B0Bo(1 - Ecos6),(12) (1
+E+cos9) 

where E = a/Ro is the inverse aspect ratio. The particle 
is trapped in the weak magnetic field region, when the 
condition below is satisfied. 

          (V"2 Ro             vll)Ro + a(13)' 
where v11 and vi are the parallel velocity and the per-

pendicular velocity. Alternatively, we obtained 

        vi > 1(14) 
vllE1/2 • 

In order for the trapped particle to draw the banana 

orbit, the effective colliSiOn time re f f should be longer 

than Tb, a time for rounding in the banana orbit. Tb is 

estimated as

/       TbtiR(2-/ =v1R/212GI,(15) 
where t is the rotational transform angle. veff is ap-

proximately given by 

1 
veff = — ve2j(16) 

Et

where vei is the colliSiOn frequency of the electron and 
ion. Therefore, the condition Ve f f < 1/Tb becomes 

          ULEt/2fLl3/2 1rtl/CT1/2  vei<vb= Rl27rl-ERl27rl(me)• 
                           (17) 

This region is called banana region and the electron can 
draw the banana orbit. The width of the banana orbit 
Ob is estimated as 

  Ob _mvllN77/V1vllBNp~eE1/2 R 27r 
eBp eB vi Bp r L 

                  (27)E-1/2". (18) 
where Bp, p and Qe are the poroidal magnetic filed, the 

rotational radius, the the electron cyclotron frequency, 

respectively. If only the trapped electron is considered, 

the diffuSiOn caused by the trapped particle is given as 

                   /(2)2€_1/2(p)21V.12DS = E2vef.f= 
     LE 

                           (19) 

             12       E Ll-3/2(2~r—I(pee)2vei/(20)               1\ 

this is E-3/2 = (Ro/a)3/2 times lager than the diffu-
SiOn in the the large colliSiOnality regime. This factor 

is derived by Galeev-Sagdeev, and DG.S. is called the 
Galeev-Sagdeev diffuSiOn coefficient.

2.4.2 Bootstrap current 

 When the plasma is in the banana region, it is pre-
dicted theoretically that the current in the toroidal di-

rection is generated by the radial diffuSiOn. This is called 

the bootstrap current, which is confirmed by experi-

ments later. As described in the previous section, the 
electron draw the banana orbit for the case of Pci < ILb . 

When there is the density gradient, the number of the 

banana particle passing the certain point and that com-

ing close are different. The difference is (dnt/dr)Ob• 
Since the velocity parallel to the magnetic field line of 

the trapped electron is v11 = E1/2vT, where VT is the 

thermal velocity. The current density is given by 

dnt1 =                          3/21 dp jbs = -(evil)d rObJ—EBdr.(21) 
                      —

Bp                              —dr. 

 passing electron drifts in the same direction by the 
colliSiOn with the trapped electron, and it is balanced 

by ihe colliSiOn with the ion. Vpass, which is the drift 

velocity of the passing electron in the steady state is 

written as 

        7neVpassl/ei=µEeme(-~en------)'(22) 
                                                      e where Vee /E is the effective colliSiOn frequency. When 

the average velocity is taken into account, Eq(21) is



2.4.3 The excitation of the neoclassical tearing 

     mode 

 Time development of the nonlinear drift-tearing mode 

is described by the modified Rutherford equation com-

bined with rotation frequency of magnetic islands (Scott 
and Hassam  (1987))  21))  . In order to close the equation, 

time evolution equation of rotation frequency is neces-

sary. 
 In the high temperature plasmas, 0' is estimated to 

be negative, although the excitation of the magnetic is-

land is often observed in the high ,3 regime. A magnetic 
island driven by the perturbed bootstrap current (neo-

classical effect) is called the neoclassical tearing mode, 

where pressure gradient is an additional free energy 

source221. The modified Rutherford equation which in-
cludes effect of the perturbed bootstrap current is given 

as 

         I1rR-W='+Abs,(25) 
with 

                        1 
        Abs = I20prs Lq(26) 

RoLpW 

where 12 = 9.26. Abs indicates the perturbed boot-
strap current contribution. Lp = —pos /pos is pressure 

gradient length at rational surface. If the neoclassi-
cal electron viscosity is interpolated for all colliSiOnal-
ity regime, the model reduces to the Rutherford model 
in the Pfirsch-Schliiter regime. The effect of fluctuat-
ing bootstrap current is dominant in the colliSiOnless 
so-called banana regime. Since the bootstrap current 
effect is proportional to 1/W, a simple model predicts 
that the the neoclassical tearing mode is always unsta-
ble for small magnetic islands if 0' < 0. However, it was 

pointed out by Fitzpatrick8 that, considering the ther-
mal transport effect, the perturbed bootstrap current 
contribution is modified as 

            rs Lq W(27)          A
bs_120p ---L

p W 2 + 1473

modified as 

3bs —E1/2Bd~. (23) 

Using 13p =< p > /(Bp2/2,uo), which is the ratio of the 
average poloidal-beta, the ratio of the total bootstrap 
current I& to the plasma current Ip is given by 

       Ib (R)1/2()         —c           op,24 

where c N 0.3. If /3p is large (/3p ti R/a) and the pressure 

profile is precipitous, this value reaches a value close to 
unity.

Fig. 3 Neoclassical tearing mode growth 
     rate (dW/dt) versus magnetic island 
     width(quoted form Ref.2)) .

with

where{x i,x1 }are parallel and perpendicular thermal 
transport coefficients and n is toroidal mode number. 
Therefore, the neoclassical tearing mode is unstable, 
only when the magnetic island width exceeds the criti-
cal size where the relation 0' + Abs > 0 is satisfied. The 
excitation mechanism of the neoclassical tearing mode 
is shown in Fig.3. /3p,crit is the critical poloidal beta 
value for magnetic island excitation. {Wcrit, Wsat} in-
dicate the threshold width and the saturation width. It 
is clearly shown that a seed island with finite size is nec-
essary to excite large magnetic islands. This mechanism 
is called the transport threshold model. 

 Smolyakov has pointed out that the polarization cur-
rent is an important factor to determine the threshold9) . 
The polarization current is driven by the differential 
rotation between the magnetic island and the external 
flow. The effect of the polarization current is included 
such that

with

where 0'p1 indicates the polarization current contri-
bution. g is a geometrical factor of order unity, wr 
is rotation frequency, k is wave number and w*i = 
—c/3pvAko/wiLpi is ion diamagnetic drift frequency, 
where Lpi is ion pressure gradient length. The po-
larization current term gives rise to a new mechanism



of magnetic island excitation, i.e. polarization current 
threshold model, which modifies  {Wcrit, W8at,} in Fig.3. 
The contribution of polarization current depends on the 
rotation frequency of magnetic islands. However, the 
widely accepted theoretical model which describes the 
time evolution of rotation frequency has not been ob-
tained. Experiments show that the rotation frequency 
is in the range of co., < w,- < 0, therefore the polariza-
tion current has a stabilizing effect. 

 Two threshold models for the excitation of the neo-
classical tearing mode are still under discusSiOn. 

3. Model equations 

 In order to derive model equations for the analysis 
of magnetic island dynamics, we start from two fluid 
equations for electron and ion. In this study, so-called 
Braginskii's two fluid equations are used, which are de-
scribed in Appendix. The two-fluid equations include 
the fast frequency and small scale oscillation due to the 
compresSiOnal Alfven dynamics as well as the low fre-

quency and the large scale oscillation due to the shear-
Alfven dynamics. Therefore, it is convenient to con-
struct the reduced set of model equations where only 
the shear-Alfven dynamics is included in order to study 
the macroscopic low frequency shear-Alfven dynamics. 
The compresSiOnal Alfven dynamics can be excluded by 
the reduction scheme discussed in the following section. 

 Simplification 
 In order to avoid the complexity of the two-fluid sys-

tem, simplifications are made. The cold ion limit is 
assumed, then the ion pressure is not solved. The ion 
anisotropic stress tensor is taken into account, but that 
of electron is neglected due to the mass ratio ordering. 
Electron inertia and neoclassical effects are neglected. 
The quasi-neutral condition is imposed for the ion and 
electron density such as ne = ni = n, so that only elec-
tron density evolution equation is solved. The external 
electron heat source, as well as the electron Ohmic heat-
ing, is not taken into account, i.e. Qe = 0. 

 Then, simplified Braginskii's two-fluid equations are 

given such that:

where V Ve in the electron continuity equation is sub-

stituted into that in the electron temperature equation.

By introducing a vector potential A and an electric po-
tential T, the magnetic field and the electric field are 

given by B = Boi+V x A and E = —V 4 — (1/c)8A/at. 

 Shear Alfven law 
 Operating (B • Vx) to Eq.(31), the so-call shear-

Alfven law is derived. 

cB•(Vx f — 2K x f) =B2B • V ( +2cB 
x g VI Pe. (35) 

where f = min(dV/dt) + V . it and K = (b • V)b = 

(4ir/c)J x B/B2 + V1B/B. The detailed derivation is 
given in Appendix.

 Coordinate 
 In this thesis, a tokamak plasma with a major radius 

Ro and a minor radius a is considered. We assume that 
an inverse aspect ratio f = a/Ro is smaller than unity. 
In the reduction process, € is used as an ordering param-
eter. The toroidal plasma can be described in the coor-
dinate (R, (, Z), where R is the distance along major ra-
dius, (is the toroidal angle and Z is the vertical distance 
along the symmetry axis of toroidal coordinate. The 

(R, (, Z) coordinate is transformed into (x, y, z) coordi-
nate such that x = (R — Ro)/a, y = Z/a, z = —(. The 
ambient magnetic field is given by Bo(x) = B,1(1+ Ex), 
where B, indicates ambient magnetic field at the plasma 
center. The electron pressure is given by Pe = nTe . 
In these coordinates, the spatial derivative is given by 
©= R(a/aR)+0/R)a/a(+Za/aZ = (1/a){2a/ax+ 
z€/(1 + fx)a/az + 'a/ay}, where 1 + ex = R/Ro and 
unit vectors are x = R, y = Z and z = 

 Ordering and normalization 
 We order each parameter with the inverse aspect ratio 

E. Ordering is given by

where'the suffix c indicates values at the plasma center. 
In this ordering, the ratio of strength of poloidal mag-
netic field to that of toroidal magnetic field is assumed 
to be 0(f). In addition, compresSiOnal Alfven time is 
a/vA and shear Alfven time is Ro/vA, where the Alfven 
velocity is defined by v2A = Bc2 /47rncmi. The ratio of the 
resistive skin time 4ira2/r 11c2 to the shear-Alfven time is 
assumed to be 0(e). Then, we define or replace values



Even though  n/ne 0(1) and Te/TeC N 0(1), we as-
sume the fluctuation level of density and temperature is 
0(E). If we operate some derivatives to n/ne and Te/Tec, 
we expect that results are O(E). Therefore, we or-
der as di,e(nlEnc)/dt ti 0(1), di,e(Te/ETec)/dt ̂  0(1), 
V(n/enc) N 0(1) and V(Te/ETec) N 0(1). 

 It is also noted that we include the finite /3 effect in 
the reduced system to construct the energy conserving 
system. This procedure does not affect the dynamical 
contribution from VP,. The energy conservation origi-
nally holds in the Braginskii's two-fluid equations, how-
ever it is occaSiOnally lost in the reduced system during 
the reduction process. 

 Reduced two-fluid equations 
 The ordering and the derivation of the model equa-

tions are exactly the same as those in Ref.23) . The 
shear Alfven law is used to derive the vorticity equation. 
The parallel Ohm's law is derived by operating (B.) to 
Eq.(39). V • Ve in Eq.(40) is calculated by using the elec-
tron velocity perpendicular to the magnetic field, which 
is estimated by Eq.(39) operated (B x) . Substituting 
ordered variables into these equations, the reduced set 
of equations is derived. As shown in the normalization, 
the ordering parameter is E, and the reduced equations 
correspond to order-e2 components. In addition, our 
model equations including the neoclassical electron vis-
cosity are derived by assuming cold ion and neglecting 

parallel ion momentum. The detailed derivation is given 
in Appendix. 

 Four-field reduced two-fluid equations {q5,A,n,T} are 

given by 

         Dt~1~ = ~II~II + µViq,(38) 

a A=—V11(0—(5p)+aTSVIIT—n11 (1+~) 71I+nII7bs, 
                           (39)

 where (1, 6, z) indicate unit vectors. The plasma beta 
value is defined by /3 = (47//3,2)P„. The ion skin depth 
normalized by the minor radius is S = (1/a)(c/wi), 
where wi = /47rnce2/mi is the ion plasma frequency. 
Eq.(38)-(41) are the vorticity equation, the generalized 
Ohm's law, the continuity equation, and the electron 
heat balance equation, respectively. In this study, paral-
lel ion velocity is neglected. The variables {0, A, n, T, p} 
indicate the electrostatic potential, the vector poten-
tial parallel to the ambient magnetic field, the electron 
density, the electron temperature and the pressure re-
spectively. The electron pressure is approximated by 
p = n +T in this model. The perturbed quantity f is 
assumed to vary as f = fo + f. Before normalization, 
the original pressure is given by Pe = nTe, then the first 
order of the fluctuating part of pressure divided by PeC is 

given by Pe/Pec = (n/nc)(Te0/TeC) + (Te/Tec)(no/nc). 
In this formula, we approximate no/ne = 1 and To/7'c = 
1, therefore we simply define p = n + T after normal-
ization. It should be noted that these approximations 
are necessary not only for avoiding complicated terms 
caused by radial profiles, but also for constructing the 
energy conservation relation shown below. Let us note 
that this procedure qualitatively ensures the character-
istics of gradient driven instability. Transport coeffi-
cients {µ, , i1, X II , XL } are the ion viscosity, the par-
allel resistivity, the perpendicular resistivity 0113 im-

plies the particle diffusivity), the electron parallel ther-
mal conductivity, and the electron perpendicular ther-
mal conductivity, respectively. 
In our model equations, neoclassical effects are included 
in Eq.(39) and Eq.(40), and electron viscosity is defined 
as 

NC = ]II•(42) 

In our normalization, bootstrap current is defined by 

         jbs =—p• (43)                        ar 

which affects the stability of tearing mode by modifying 
the net electric current. 

 The energy conservation relation is written as 

 dtH= —µJ V2dV—(1+E)7)IIJ .11I2dV 
   /2/       —ii1JlvlpI2dV —EXIIJ vIIT 2 dv 

   _ XII fIV±T2dV,(44)

such that:



with

where the integral indicates the volume integral over 

plasmas, and H is the Hamiltonian. In the dissipation- 

less limit, this system conserves the energy23'24)

4. Effects of neoclassical electron vis-

   cosity on drift-tearing mode 

 In this chapter, the linear stability and the nonlinear 

dynamics of the drift-tearing mode including neoclassi-

cal electron viscosity are investigated using the reduced 
two-fluid equations. Firstly, the effect of the neoclassi-

cal electron viscosity on the linear growth rate of the 

drift-tearing mode is examined by surveying parame-

ter dependences. Analytical linear disperSiOn relation is 
derived to understand the physical mechanism. In the 

next step, the nonlinear evolution of magnetic island 

is simulated. The influence of the neoclassical electron 
viscosity on the saturated magnetic island width is ex-

amined.

4.1 Linear analysis 

4.1.1 Analytical approach 

  In order to analyze the linear drift-tearing mode, a 

perturbed quantity  f(x, t) is assumed to vary as: 

  fo(r) + fm,n(r) exp[ime + inz + (y — iwr)t], (46) 

in the cylindrical coordinates (Fourier expanSiOn in 0 
and z directions), where m is a poloidal mode num-
ber and n is a toroidal mode number. {-y, wr} are the 

growth rate and the frequency of the mode, respectively. 
f m,n (r) satisfies the boundary conditions; f-,,,,,(0) = 0 
and fm,n(1) = 0. 

 The four-field model is linearized using the 
relations23) : 

       Da 
         Dtf—'atfm,n — iko f0'c5m,n, 
V 11 f — ik11 fm,n + ik0 f01 Am,n, 

         V11f —kll fm,n — klIkofoiAm,n, 

    1 aa21        72_Lf—'[-r(rar) —k0fm,n, 
where the prime indicates the radial derivative and k11 = 
m/q(r) — n, ke = m/r are parallel and perpendicular 
wave numbers, respectively. q(r) is the safety factor 
defined by 1/q(r) = —(1/r)0Ao/0r. 

 The linearized verSiOn of Eqs.(38)-(41) are written as: 

      —2:0)71.0 = ik11311 + ike joA + P71-93, (47)

where w = wr + i-y and we assume the relations: p = 

n + T and poi(r) = no(r) + To(r). For simplicity, the 
suffixes of mode numbers are omitted. {w,kn, w.T} are 
the diamagnetic drift frequency by the density and tem-
perature gradient defined as:

The equilibrium quantities are chosen as follows:

where /3o = /3/(1 — r,2)2 is i3 value at plasma center, and 
we set 13 = 10-2, e = 0.2, µ = 10-5, ri1 = 2 x 10-5, x = 
1, 7111 = xi . = 10-5, rs = 0.6 as default values. 

4.1.2 Analytical disperSiOn relation 

 Firstly, we derive the disperSiOn relation of the drift-
tearing mode including the neoclassical effect. We em-

ploy the asymptotic matching method on the rational 
surface25'26)Far from the rational surface, solution is 

given by solving the ideal MHD equations. On the other 
hand, the resistivity (and other transport coefficients), 
the `diamagnetic effects (and other kinetic effects) be-
come important in the vicinity of the rational surface. 
In the following, these solutions are derived separately, 
and are matched in the overlapped region for deriving 
the disperSiOn relation. 

 Resistive MHD(Inner solution) 
 In order to derive inner layer equations, we assume 

72_1_ ti a2/ax2 and k11 ̂ , kill x, where x is defined as



x = r  -  r,, and rs is the position of the rational surface. 
In addition, jo' term is neglected (this term is important 
for the kink mode but not for the tearing mode) . Also, 
terms proportional to Q in Eq.(49) and Eq.(50) are ne- 

glected. The transport coefficients exceptandµNC 
are set to zero for simplicity. For the nonlinear stabil-
ity of the neoclassical tearing mode, the perturbation of 
temperature is important for the mode excitation. On 
the other hand, density and temperature play almost 
the same role for the mode, when the effect of thermal 
transport is not taken into account. For this reason, 
we use electron pressure p without distinguishing den-
sity and temperature, and diamagnetic drift frequency 
driven by electron pressure is defined by w. = -Skopo. 
Then, equations in the inner layer are given by

where the prime indicates the derivative a/ax, and 

tildes and suffixes are ignored for perturbed quantities, 

for simplicity. Substituting Eq.(58) into Eq.(57), equa-
tions are given by 

= -iklIxA,(59) 

-i(w - w*)A = - ZWII  x(w - w*)(/) + ijjI A„ - µNC Sw ax' 
                           (60) 

where  = (1 + Anil. Fourier transforms of Egs.(59)-

(60) give 
       2djk             iwkOk = —k11 dk ,(61) 

  ()~k=kllW- w. dOk-7)iI. -ik+z ,uw~Clak,  w-w*k2w dkSw 

                           (62) 
where 

           -f~            ~kOe-kxdx, 

Ak = f Ae-ksdx, 

r jk=A'                        e-kxdx = k2Ak. 

By using Eqs.(61)-(62), we obtain 

jk_1 d 1 djk2djk                            (63) k2b?dk(k2dkb,1JkCldk '63 
where 1/8n= -k~12/w2,S; =ir111/wand Ci = 
ikllµNCw*/6w2(w - w*). By setting a = Sinb,ik2, the 
equation becomes 

 ad~210C2—21~—4(0 +Q)ja = 0, (64)

 Ideal MHD((Outer solution)) 
 Equations in outer layer are given by 

             0 = -ikil A„ + ike j0A,(69) 
-iwA = -ikll(70) 

Considering Eq.(69), we model outer solution such that 

A = A(0) (1+xI) (71) 
where 

_A'(+0) - A'(-0)  
              A(0) 

Using Eq.(70), we obtain 

         _,A(0)(-1+~.(72) 
             II 

where we approximate k11 kll x. Fourier transform of 
Eq.(72) gives 

Ok,ovt (k) = -L,A(0){sn(k) +,(73) 

              

II 

where we use 17). dx(1/x)e-Zkx —i?rsgn(k) and 
f dx sgn(x)e-Zkx _ -2i/k. In order to match outer

with C2 = Cl /2 • bin/Sr, and Q = Sin/S77. Considering a 
transformation ja = eaa f and a = 07 with a = -C2 -
vC2+1/2,Y= erg, weget 

    ~22 +a- ('Y — 0 — a f = 0,(65) 
where -y = -1/2 , a = Q - C2 — VG?+1/(4\/C2+1). 
The solution of this equation is given by the confluent 

hypergeometric function such that 

           ja,in= ii ea'U (a,-y,1a) , 

with 

           17M (a,-y,0-1a)   U(a ,-y,~a)= sin 7ry{ F(1+a --y) 

  - (a_1a)M(1+a-'y,2-'Y,3-1a)}()      Q
r(a)r(2 - -y) 66 

where M (a,7, 13-1 a) is confluent hyper geometric func-
tion of first kind defined as 

(n M (a,,y, -1~)=(Y) n nl(67)                                 n-0 

Finally inner solution is given as 

         I'(3/2)F(3/2)1 Sin   j
a,in=j1F( a + 3/2)+F(a + 3/2) 2 S,, a 

+ r(-3/2)0-3/20-3/21  + 0(a2).(68)



solution Eq.(73) with inner solution Eq.(68), we assume 
that Fourier transform of current in the overlapped re-

gion is approximated by Eq.(73) transformed by Eq.(61) 
such that 

 2'                        ir  
                           jk,out = -,A(0)-3k3sgn(k) + k2 + Co, (74) 

         II 

where Co is integral constant. Substituting Eq.(73) in 
Eq.(70), we obtain a boundary condition of jk,out in the 
limit of k -p 0. 

jk,out = -A(0)A.(75) 

Therefore, we obtain Co = -A(0)A'. Finally inner so-
lution is given as 

            $a3/2a,out = A(0)3+-S,~Q- A' . (76) 
 Matching of solutions 

 Matching in Eq.(68) with Eq.(76) (comparing coeffi-
cients), we obtain 

A'A(0) +r(a(+----------3/2)j1 = 0, (77) 
       ir (w2A(0)-r(-3/2) /-3/2j1 = 0.(78) 3 b/2r(a) 

These equations have solutions (A(0), j1), when the fol-
lowing condition is satisfied. 

-A' F(-3/2)  p3/2- F(3/2)  7r (51,12n------ = 0. (79) F(a)F(a + 3/2) 3 53/2 

Using constant-0 approximation25) , i.e. a = Q - C2 — 
VC2 + 14vC2 +1 = Q/ VC2 + 1 - C2/ ̂ C2 + 1 -
1/4 N -C2/JC2 -I- 1 - 1/4, we obtain the disperSiOn 
relation as 

      r (-  1/2 
   A'_—~C+1\ b3/2~3/2.(80)          8 r(-~ C2-----+1-------+ 5/4I 

                            2 4.1.3 Analytical results 

 In the drift-tearing regime, wr >> -y, the linear growth 
rate derived from Eq.(80) is given such that 

  'YDT =1 4/3                       k
112/3w2/31IA'4/3,(81)  (i:;) 

                    2/3 
'YNDT =1 F(1)rNC W.k'1/3,.-4/3A'2/3 ,       27r F(1/2)Cµ8)1I 

                           (82) 
where -yDT corresponds to the growth rate of the pure 
drift-tearing mode case (C2 = 0), and -YNDT indicates 
the growth rate of the drift-tearing mode with the neo-
classical electron viscosity (C2 >> 1). Note that 'yNDT is

Fig. 4 Radial profiles of typical linear eigenfunc-
     tions of (m, n) = (2, 1) mode; (a) density, 

     (b) electron temperature, (c) scalar poten-
     tial and (d) vector potential, respectively.

proportional to w* /5, i.e. the pressure gradient, which 
is originally combined with the neoclassical electron vis-
cosity as shown in the R.H.S. of Eq.(60). A ratio of 
Eq.(82) and Eq.(81) is          

1  r(1) 2/3 7NDT_ (2n I(1/2)) /INC w* k'-1/3w-2/3A'-2/3  ')/DT(1 r(1/4)  
         r(3/4)4/3 nilII      2ir) 

  >> 1,(83) 

in our parameters of interest. Therefore, it is found 
that the neoclassical effect destabilizes the drift-tearing 
mode. Because the neoclassical electron viscosity com-
bines with the pressure gradient, this destabilization is 
originated by the free energy source of the pressure gra-
dient.

4.1.4 Numerical results 

 In the next step, we perform the linear stability anal-

ysis of the drift-tearing mode with the neoclassical elec-
tron viscosity, numerically. 

 Fig.4 shows the radial profiles of typical eigenfunc-
tions {~, A, n, T} of the (2,1) DTM. The vertical axis is 
arbitrary unit. The red and blue lines indicate the real 
and imaginary parts, respectively. In our model, A' can 
be controlled by changing the value of qo. 

 Fig.5 shows the qo dependence of A' using safety fac-
tor profile Eq.(53), where qr. = 2, r,8 = 0.6 are fixed. It 
is found that A' is a monotonic increasing function of 

qo• 
 Fig.6 shows the dependence of the growth rate on A' 

with 5 = 1.0 x 10-2. Two cases are plotted: cases with 
and without the neoclassical electron viscosity. In the 
former case, the growth rate monotonically increases 
in the positive A' region, and becomes negative in the 
negative A' region, which agrees with the conventional 
drift-tearing mode theory. It is found that the drift-



Fig. 5 Dependence of  A' on qo

Fig. 6 Dependence of growth rate on  A'

tearing mode is strongly destabilized by the neoclassi-
cal electron viscosity in the A' > 0 regime. This result 
can be understood by the analytical disperSiOn relation 
derived in the previous subsection. 

 Fig.7 shows the dependence of the growth rate on S 
with A' 5 (qo = 1), where electron diamagneic drift 
frequency is proportional to 8 as shown in the definitions 
Eqs.(51)-(52). It is found that the pure drift-tearing 
mode is stabilized by the electron diamagnetic drift in 
the large S region. The tendency of this result agree

Fig. 7 Dependence of growth rate on a

with analytical disperSiOn relation, which is monotonic 
decreasing functions of the electron diamagnetic drift 
frequency. The destabilizing in the small 8 region is 
caused by the transport coefficients and terms neglected 
in the derivation of the disperSiOn relation. Similar to 
Fig.6, it is found that the drift-tearing mode is strongly 
destabilized by the neoclassical effect. 

 Thus, the analytical results given in the previous sub-
section is also confirmed by the numerical calculation. 
In concluSiOn, the neoclassical electron viscosity has a 
destabilizing effect on the linear drift-tearing mode. 

4.2 Nonlinear analysis 

 In this section, nonlinear simulations of the drift-
tearing mode are performed with or without neoclas-
sical electron viscosity in the case with A' N 5, where 
the drift-tearing mode is linearly unstable and its growth 
rate is enhanced by the neoclassical electron viscosity as 
confirmed in the previous section. We focus on the time 
evolution of magnetic island in the nonlinear regime and 
its nonlinear saturation width are discussed. 

4.2.1 Analytical model of growth rate of mag-
      netic island 

 Firstly, we derive the analytical decomposition of 

growth rate 'y of vector potential which corresponds to 
the magnetic island so as to examine the saturation 
mechanism of the magnetic island, by using (m, n) = 

(2, 1) component of the Ohm's law and assuming A2,1 oc 
exp(—iwt). The (m, n) = (2, 1) component of the Ohm's 
law is given by

with

where the prime is the radial derivative and `N.L.' in-
dicates nonlinear terms. Nonlinear terms are neglected, 
and they are important only when higher modes are 
dominant or unstable. In general the radial average over 
magnetic islands, each term in Eq.(84) is not constant 
inside magnetic islands; therefore, we take into account



to evaluate growth rate. Dividing  Eq.(84) by A2,1, ra-
dially averaging inside magnetic islands, and taking the 
imaginary part of co, we obtain

with

where ( ) means the radial average inside magnetic is-
lands at each time step defined by

with

W, rin and ro,,,t are the width of magnetic island and 
radial positions of the inner and the outer separatrix, re-
spectively. It should be noted that this operator implic-
itly depends on time via the position of the separatrix. 
we neglect nonlinear terms in Eq.(84) in the derivation 
of Eq.(85). 

4.2.2 Numerical results 

 In the nonlinear simulation, S = 10-2 and qo = 1 

(A' ti 5) are used, and other transport coefficients and 
equilibrium profiles are the same as those in the linear 
analysis. Only (m, n) = (2, 1), (0, 0) are included for 
simplicity. We confirmed that the nonlinear evolution 
and saturation width of magnetic island is slightly af-
fected by higher modes. 

 Figs.8 and 9 show the time evolutions of energies de-
fined by Eq, = 1/2 • IO1gm,nl2, EA = 1/2 • IV-Am,n12, 
En = 1/2/3 • IV1nm,n12, ET = 3/4/IV1Tm,nl2, respec-
tively. The cases with (Fig.8) and without (Fig.9) the 
neoclassical electron viscosity are shown. In compari-
son with two cases, the linear growth of modes in the 
former case is much faster than the latter, due to the en-
hancement by neoclassical electron viscosity. Note that, 
in the former case, energy of (m, n) = (2, 1) decreases 
after the first peak, and saturates in the lower energy 
level. This kind of behavior is not observed in the latter 
case, therefore it is due to neoclassical electron viscosity. 

Figs.10 and 11 show the radial profiles of equilibrium 
density and temperature at t = 0 (initial profile) and 
25000 (nonlinear saturation state) in the case with or 
without neoclassical electron viscosity. It is found that 
the equilibrium density is modified in the range from

center to magnetic island region. While, the equilib-
rium temperature is slightly changed. This difference 
between equilibrium density and temperature is caused 
by the diffuSiOn via neoclassical electron viscosity, which 
is associated with the third and fourth terms in R.H.S. 
of Eq. (40) . The strong diffuSiOn in the center region is 
due to the factor (1/r) in these terms. In general, mag-
netic island tends to flatten equilibrium pressure gra-
dient inside magnetic island separatrix. However, this 
flattening is not strong as shown in Fig.11, when the 
width of magnetic island is small. In the case without 
neoclassical electron viscosity, the equilibrium density 
is not strongly affected by the magnetic island, but the 
equilibrium temperature is weakly affected. 

Fig.12 shows the time evolution of the magnetic is-

Fig. 8 The time evolutions of energy in the case 

      with the neoclassical electron viscosity

Fig. 9 The time evolutions of energy in the case 

      without the neoclassical electron viscosity



land width. Two cases are plotted; cases with (w-neo) 
and without (wo-neo) neoclassical electron viscosity, re-
spectively. In the early stage, the linear growth in the 
former case is faster than the latter, which is similar 
to those in Fig.8 and Fig.9. In contrast with the en-
hancement of the linear growth, the saturation level is 
weakly affected by neoclassical electron viscosity. In 
addition, it is remarkable that the saturation width of 
magnetic island in the former case temporally overcomes 
the latter(t = 5000), however final saturation width be-
comes lower. 

 Figs.13 and 14 show the time evolution of growth 
rate and rotation frequency of magnetic island. Two 
cases are plotted; cases with (w-neo) and without (wo-
neo) neoclassical electron viscosity, respectively. In the 
former case, corresponding to the Fig.12, the negative

growth rate is observed in the transient phase. The time 
evolution of rotation frequency is mainly dominated by 
E x B flow and electron diamagnetic flow, which are 
nonlinearly excited and modified by magnetic island. 
In this study, the influence of neoclassical electron vis-
cosity on the rotation frequency is not investigated in 
detail. It should be investigated as a future work. 

 The interpretation of behavior of magnetic island in 
Fig.12 is not straightforward from a view point of the 
standard modified Rutherford model, i.e. one expects 
that the saturation width of magnetic island might be 
enhanced by neoclassical electron viscosity. In order 
to clarify the saturation mechanism of magnetic island 
in the presence of neoclassical electron viscosity, the 

growth rate of magnetic island is decomposed into each 
component by using the analytical model of growth rate 
derived in the previous subsection, Eq.(85). 

 Figs.15 and 16 show time evolution of growth rate 
and components in Eq.(85) in cases with (w-neo) and 
without (wo-neo) neoclassical electron viscosity. `ry' in-
dicates the growth rate, and`LkII',`L,11 ' and `Lb,' cor- 
respond to the first, the second and the third terms 
in Eq.(85). The summation of them approximately re-
constructs the growth rate. In Fig.15, it is found that 
`Lk  ' is not effective in the saturation phase, and the

Fig. 10 The radial profiles of the density at t = 0,

Fig. 11 The radial profiles of the temperature at t 

      = 0, 25000

Fig. 12 The time evolutions of the magnetic island 

       width.

Fig. 13 The time evolutions of the growth rate ry.

Fig. 14 The time evolutions of the rotation fre-

        quency co, .



Fig. 15 The time evolution of each component of 

      growth rate in the case with the neoclas-

       sical electron viscosity.

Fig. 16 The time evolution of each component of 

      growth rate in the case without the neo-

       classical electron viscosity.

dynamics is mainly dominated by  '411' and `Lbs', in 

other words, the saturation width is mainly determined 

by the balance of `411' and 'Lips', where Lb, implies the 

contribution from neoclassical electron viscosity. The 
nonlinear term which is neglected in the analytic model 

might play a role for complete cancellation. Here 

is associated with nonlinearly modified 0' such that

where A' is nonlinearly modified one. Therefore, non-
linear evolution of A' should be examined in detail. 

 Fig.17 shows time evolution of A/ in cases with (w-
neo) and without (wo-neo) neoclassical electron viscos-

Fig. 17 The time evolutions of A'

ity, respectively. A' is estimated by

In the linear regime, rout and rir,, are given by width 
of linear boundary layer. In this study, the width of 
boundary layer is determined such as it can produce 
the initial A'. When magnetic island width overcomes 
the boundary layer width, rout and rin are replaced by 
the positions of outer and inner separatrixes. The small 

peak observed in the pure drift-tearing mode case, from 
t = 6000 to t= 12000, is caused by the error in the esti-
mation of A' in the transient phase from linear regime 
to nonlinear regime, and which is not essential. It is 
found that A' in the saturation regime in the pure drift-
tearing mode case is small but finite. On the other hand, 
`L

nII' in Fig.16 converges to zero. This implies that the 
approximation from the first line to the second line in 
Eq.(88) is not accurate, due to the failure of the so-
called constant z,G approximation. Thus, `411' could be 
negative even when A' is positive. In comparison with 
two cases in Fig.17, 0' becomes lower via neoclassical 
electron viscosity, which makes ̀ L,,II' negative. 

 In concluSiOn, the saturation width of magnetic is-
land is affected by neoclassical electron viscosity via two 
channels: one is the direct enhancement of growth by 
bootstrap current, and the other is the indirect effect 
on A', which is not taken into account in the standard 
modified Rutherford theory. In this thesis, the effects of 
neoclassical electron viscosity on the drift-tearing mode 
have been investigated by numerical simulations and an-
alytical calculations based on the reduced set of two-
fluid equations. 

 In Chapter 4, the linear and nonlinear analyses of the 
drift-tearing mode is performed. 

(1)The disperSiOn relation of the drift-tearing mode in-
cluding the neoclassical electron viscosity effect is de-
rived. The asymptotic matching method on the ratio-
nal surface is employed. As a result, it is found that the



neoclassical effect contributes to the destabilization of 
the drift-tearing mode. The pressure gradient becomes 
a free energy source of the instability through the neo-
classical electron viscosity. 

(2)The linear stability analysis of the drift-tearing mode 
with the neoclassical electron viscosity is done,  nuMer-
ically. The dependence of the growth rate on each pa-
rameter is investigated. It is found that the drift-tearing 
mode is strongly destabilized by the neoclassical elec-
tron viscosity for A' > 0. This result can be understood 
by the analytical disperSiOn relation. We confirm that 
the drift-tearing mode is stabilized by the drift param-
eter 6, which is reported by old DTM papers. 

(3)The nonlinear behavior of the drift-tearing mode 
with or without neoclassical electron viscosity is also 
examined for the case with A' 5, where the drift-
tearing mode is linearly unstable and its growth rate is 
enhanced by the neoclassical electron viscosity. We have 
derived the analytical decomposition of growth rate -y of 
vector potential which corresponds to the magnetic is-
land so as to examine the saturation mechanism of the 
magnetic island. In the nonlinear simulations, 5 = 10-2 
is used, and other transport coefficients and equilibrium 

profiles are the same as those in the linear analysis. Only 

(m,n,) = (2, 1), (0, 0) are included for simplicity. The 
time evolutions of energies with and without the neo-
classical electron viscosity are shown. For the former 
case, it is found that the energy of (m, n) = (2, 1) de-
creases after the first peak, and saturates in the lower 
energy level. This kind of behavior is not observed for 
the latter case, therefore it is concluded that it comes 
from the neoclassical electron viscosity. The radial pro-
files of equilibrium density and temperature are com-

pared in the initial and nonlinear saturation phases. It is 
found that the profile of the density is greatly modified. 
In the case without neoclassical electron viscosity, the 
equilibrium density is not strongly affected by the mag-
netic island, but the equilibrium temperature is weakly 
affected. In contrast with the enhancement of the linear 

growth, the saturation level of magnetic island is weakly 
affected by neoclassical electron viscosity. In addition, 
it is remarkable that the saturation width of magnetic 
island in the former case temporally overcomes the lat-
ter, however final saturation width becomes smaller. In 
the time evolution of the magnetic island width, the 
negative growth rate is observed in the transient phase. 
It is shown that Lkil is not effective in the saturation 

phase, and the dynamics is mainly dominated by Lini 
and Lbs, in other words, the saturation width is mainly 
determined by the balance of 411 and Lbs, where Lbs 
implies the contribution from neoclassical electron vis-
cosity. We also evaluated A' assuming constant ap-

proximation, it is found that A' in the saturation phase

is small but finite for the pure drift-tearing mode. On 
the other hand, L.,711 converges to zero. It is found that 
constant W approximation is broken and the sign of Lnii 

is not corresponding to that of Li'. 
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           Appendix 

Al. Derivation of equations 

A1.1 Kinetic equations 

 The fundamental equations describing dynamics of 

high temperature plasmas confined by magnetic fields 

are the Boltzmann equation (Vlasov equation with the

colliSiOn term, C(fs, fs)) and Maxwell equations: 

a fs1 Ft+ vs • Vfs +—qs(E + -vs x B)afsc( fs,fs)                                    Ovs 
                          (Al) 

V E = 47r E qs f fsd3v,(A2) 

V • B = 0(A3) 

      1 a 47r = - (Is f vs fsd3vs(A4) 
c at 

            1 a           -
c—at = -V x E(A5) 

where fs = fs(x, vs, t) is the number of particles at the 
point x with velocity vs at time t. cgs units are used 
and the suffix s denotes a species of the charged parti-
cle. qs and ms are the mass and the electric charge of 
species-s particles, respectively. c is the velocity of light. 
E(x, t) and B(x, t) are electric field and magnetic field, 
respectively. For inhomogeneous magnetically confined 
plasmas, it is not easy to apply the Boltzmann equation 
to them directly. When macroscopic behaviors or long 
wavelength fluctuations are important, fluid equations 
derived from the Boltzmann equation are used. 

A1.2 Braginskii's equations 

 By operating f dv83 vsn (n 0, 1, 2, ...) on Boltzmann 
equations, fluid equations are derived. Equations for 
n = 0, 1, 2 moments describe the time evolutions of den-
sity, momentum and pressure. This set of equations is 
called transport equations, where appropriate closures 
are necessary for applications. One of the most success-
ful model is the Braginskii's two-fluid equations, which 
consist of the continuity equation, the momentum equa-
tion and the heat balance equation for the electrons and 
for the ions: 

di           —ni +707 Vz = 0,(A6)            dt 

              de             —
dtrte + neV • V, = 0,(A7) 

 iVi( md  ,ni= - V • rri +enz E + -1Vi x B dt 

                          (A8) 
    deVe me ne= -VP,-V'€-ene (E + -1V, x B)+Rie, 

    dt 
                          (A9) 

 -3ni—diTz + PiV • Vi = V • qi - 7r, : + Q, , (A10)  2 dt 

3 de  -
2n, —dtTe + Pc V • V, = V • cie - 7re : VV, + Qe, (All)



with closures 
 1cur hi,      +V) T

, 
    en 

 =  —  Kilib  •  VT,  —  —  b  (b  V)) T, 

          +5cniT, b x VT,                            aT             2 eB 
= — kikb • VT, — kie (V — b (b • V)) Te 

          5 cneTe,DOeT           +2 eBX V e_1,2111,                  e' 
where V,,, is the fluid velocity, n is the density, 
Pe 12,,,T,,e is the isotropic pressure, 7,,, is the 
anisotropic stress tensor, Ti,e is the temperature, q,,, 
is the heat flux and C22,, is the heat source, where the 
suffix i, e indicates ions or electrons, respectively . In 
this study, Hydrogen plasmas are considered for sim-
plicity. e is the electric charge and a numerical fac-
tor aT = 0.71 for Hydrogen plasmas. Momentum ex-
change terms 11,1 and Rie satisfy Re, + Rie = 0. The 
time derivatives are defined d1/dt = alat + V, • V and 
deldt = aiat + V, • V. Magnetic field is B Bb, where 
b is an unit vector along the magnetic field line. Electric 
current is J = (47/c)V x B, and J11 and J1 are elec-
tric current parallel and perpendicular to magnetic field 
lines. Transport coefficients {nil , ice,  Kiel 
are parallel resistivity, perpendicular resistivity, parallel 
ion heat conductivity, perpendicular ion heat conduc-
tivity, parallel electron heat conductivity and perpen-
dicular electron heat conductivity, respectively. 

A1.3 Derivation of shear Alfvên law 

 Firstly, magnetic field curvature is introduced as 
= (b V)b. Then, the curvature is transformed 

such that —b x (V x b) = b x (V x B)/B 
V1B/B = (47r/c)J x B/B2+V±B/B, where (b•V)b = 
(1/2)Vb2 — b x (V x b) = —b x (V x b) and V1 
V — b(b • V) are used. If f = m,n(dVIdt) + V • 7r, is 
defined, we obtain (47r/c)J x B/B2 + V±B/B = 
(47r/B2)(f + VPe) + (V±B/B). By operating (B • V X ) 
to Eq.(31), cB -Vxf=B•Vx(JxB) is obtained. 
The right hand side of this equation is B • V x (J x B) = 
—V • (B2J1) = B2B • V(A/B)— (1/B2)B x (J x B) • 
V1B2 = B2B V PH (c/47)B x K • VI B2, where 

= JO), J _L=Bx (J x B)/B2, V•J=V•J 
B • V(Jil/B) = 0 and ,c = (47/c)J x B/B2 + V1B/B 
are used. Then, we get the shear Alfven law as 

                       J11   cB • V x f = B2BV—-LB xK,• V_LB2. 
                  \BJ47r 

                           (Al2) 

Substituting ic = (47/B2)(f + VPe) + V1B/B to elim-
inate V1B2, we get an alternative form as 

   cB • (V x f — 2K x f) =B2B • V ( + 2cB 
                   X • VIP,.(A13)

A1.4 Derivative of unit vectors 

 In our coordinate introduced in section 3., unit vectors 
satisfy the following relations: aicjaz = i, a-Z/8z = 
ai/ax = 0 and 8i/äy = 0, which are derived from 
aftba( = km( = --ft, 0c/0R = 0 and 8C/8Z = 0. 

A1.5 Derivation of reduced set 

 We apply approximations as n/ne = 1 and Te/Te, = 1 
in some steps during the following reduction process. 
This approximation may be inconsistent, because the 
radial profile effects of n and Te are not kept strictly, 
and it cannot be justified by the present ordering pro-
cess. However, it reduces the complexity of the system 

(especially avoiding the cubic nonlinearity) and provides 
the simple description for gradients of density and tem-

perature, which contribute to the dynamics of the in-
stability and the rotation. This procedure is similar to 
so-called Boussinesq approximation in the neutral fluid 
dynamics. 
 Firstly, the reduced shear-Alfven law is derived. Nor-

malized form of Eq.(31) is written as 

2 n diu ----= —eVp+ E2V • 71-, ± x B) x B (A14) 
n, dt 

Then normalized shear Alfven law Eq.(35) is given by 

                      n diu      E2B • (V — 2K,) x — + V • 7,) 
                    nc dt 

= B2B • V (j + 2EB X PC • Vip, (A15) 
where d2/dt = alat+u•V. We gather O(2) components 
in Eq.(A15), which describe the shear-Alfven dynamics. 
Components corresponding to the compresSiOnal Alfven 
dynamics are less than 0(e3). Magnetic field and cur-
rent are B = + e(—ix + iB11 — x VIA) + 0(e2) and 
J=VxB=.- f(ViBsi x i — ZVA) + 0(c2). Normal-
ized curvature is k = (47r/B2)(f + VP) + V1B/B 
EV-I- (p + B11 — x) + 0(e2) = —EV_L X + 0(E2) rs' 0(c), 
where f 0(e2) and B2 = 1 + 2E(—x + B11) + 0(c) and 
a relation e(V±Bli +V up) 0(e2) is used. The relation 

-F Vip) 0(e2) is derived from Eq.(A14), con-
sidering (V x B) x B = + 0(e2). Normalized 
closure of ion velocity is u x VIO + + 0(c). 
Because 0(c), the curvature is neglected in the in-
ertia terms, and inertia terms are €2B • V x (au/at) = 
avioiat + and c2B • V x (u • Vu) = • V1q x 
V1 V + 0(c), where Boussinesq approximation is ap-
plied. The term of anisotropic stress tensor is eval-
uated by e2i • V x V • 7, e2pV10, where ji is 
ion viscosity. The first term of RHS of Eq.(A15) is 
B2B•V(Ji1/B) = --f2(a/az—i•ViAxVI)V21A+0(e3), 
where B • V = e (a/az — • V j_ A x V1) + 0(e2) and 
Jii/B = + 0(e2) are used. The second term of



RHS of Eq.(A15) is  EB x ic • V1p = -E2Z • V1x x V1p+ 
O(E3). Therefore, O(E2) component of Eq.(A15) is given 
by 

 (—a+ z • Vi0 x V") V   at 

 = z•OIAxO1 VIA. -z•V12xxV1p 
az 

+ µviCb•(A16) 

  Secondly, the reduced parallel ion momentum equa-
tion is derived by operating (B.) to Eq.(A14). In this 
operation, the (V x B) x B term is eliminated. Consider-
ing Boussinesq-like approximation n/ne = 1, the inertia 
term is E2(n/nc)B • (diu/dt) = E2z • (diu/dt) + O(E3) = 
(a/at + z • V10 x V1)ull + O(E3), where NI = z • u, 
u • V = z x Vica • V +u1IZ • V = z x 01q • 01 +O(E) 
and z•(zx V10•O1)u=zx V1o•V1u11 are used. 
The pressure gradient term is -EB • Vp = -E2 (a/az - z • 
V" A x V 1)p + OW).  For the anisotropic stress terms, 
the electron component is dropped and we assume the 

ion component to -E2B • Viri = E2µ1Oiull + O(E3). 
Therefore, O(E2) component of Eq.(A14) operated (B.) 
is given by 

(+i.VixVi)uii(-•VIAXV1f
+ µ171u11.(A17) 

 Thirdly, reduced Ohm's law is derived. Normalized 

Ohm's law Eq.(39) is given by 

nc    E = - E-
nSOp - EV X B 

T 
     + Ei7IIJ11 + En1J1 - T6/3b (b . V)  T
ec 
                           (A18) 

where E = -EV - E2aA/at. Operating (B.), the par-
allel component of Ohm's law is given by 

 B (_EV_f2) _ -EncSB•Vp + EillB2B 

                              T 

                    -EaT6/3(B•V)e  
                                                ETec 

                           (A19) 

where the anisotropic stress is neglected, because of 
O(E3). Terms of LHS of Eq.(A19) are -EB • Vq = 
—E2aq/az + E2z • V1A x V10 + O(E3) and -E2B • 

(aAat) = -E2(0Aat) + O(E3). The first term of 
RHS of Eq.(A19) is -(nc/n)5B • Vp = —E26(a/az — 
z • Vi x O1)p + 0(E3), considering approximation 
n/nc = 1. The second term of RHS is Er)11 B2 (JII /B) = 
-E2r)IpOiA+O(E3). The last term of RHS is —EaTS,Q(B• 
O)(Te/ETcc) = —EaTb13(a/az—z•v1AXv1)(Te/ETec)+

O(E3), where it should be noted that ,Q ti O(E). There-
fore O(E2) component of Eq.(A19) is given by 

 atA=-I-z-z•O1AxVI) 
x (0 - Sp - aTS/ ())TVA. (A20)                               ETec 

  Fourthly, the reduced continuity equation is derived. 
Normalized continuity equation Eq.(40) is 

           E2de+EfV•V=O.(A21) 
           dtnc 

where de/dt = a/at+v • 0. Operating (B x) to the nor-
malized Ohm's law Eq.(A19), we get v1 = (B/B2) x 

{Vq —(nc/n)SVp}+E(B/B2) x (aA/at)—E171(B/B2) X 
J. Because v • V = (v1 + vll b) • V = z • V1 {c — 

(nc/n)p8} xV1+ O(E), the inertia term is given by 
E2de(n/Enc)/dt = E2(a/at+z•V1(0-8p) x o1)(n/Enc)• 
To evaluate V • v, we separate V • v = V • (bv1l) + V • v1. 
For the first term, considering SJ = E(n/nc)(u - v), 
we get V • (bvll) = V • (b(ull - E-i (nc/n)SJ11)) 
E(a/az - z • VIA  x O1)(nil + 8V2± A) + OW), where ap-

proximation n/nc = 1 is used. We evaluate the second 
term V •v1 below. V • {(B/B2) x (V0- (n/nc)SVp)} = 
2EZ • (V1(0 - Sp) x Vix) - EZ • V10 X V1p + O(e2), 
where approximation n/ne = 1 and V x (B/B2) = 
E(2Vix x z-ViB11 x z-zV1A)+OW) are considered. 
EV•{(B/B2) x (DAat)} = EaBll/at+O(E2) = -Eap/at+ 
O(E2), where Bll = -p + O(E) is assumed, considering 
the relation O1(Bll +p) ti O(E). CM_ V • {(B/B2) x J} = 
-E771O jB11 + O(E2) _ ?)1EO2ip + O(E2). Then we can 
evaluate V•v1 =2EZ•Vi(c-Sp) xV±x-E(a /at +z• 
V1~ x V1)p - Ei71 Vip + O(E2). Considering approxi-
mation n/nc = 1 for the second term of Eq.(A21), the 
reduced continuity equation is given by 

(+.Vix V1)(Enc)+ (at+Z•V11aX V1lfp 
=z•V12xxV1(q5—Sp) 

  - (az-z• V1A x V1/I(ull+ SV1A) + 711V1p• 
                           (A22) 

where Si • O1p x V1(n/Enc) by the time derivative of 
election density is neglected for the energy conservation. 

 Fifthly, the reduced electron temperature equation 
is derived. Normalized electron temperature equation 
Eq.(34) is given by 

23 n de Te 2Te den 1 1 E---E --V • q .  2 
nc dt ETec Tec dt en, ncTec VA 

                           (A23)



with

In heat flux term, we have V  • (b • V) (Te /ETec) _ 
E2(a/az — z • V1q x VL)2(Te/ETec) +O(E3) and V • (V — 
b(b•V))(Te/ETec) = V1 (Te /ETec)+O(E). Using approx-
imation Te/TeC = 1, we obtain V • {aTS(Te/Tec)JII } _ 
—E2aT6VIIVIA + O(E3). Considering approximation 

Te/T„ = n/nc = 1 on the LHS of Eq.(A23), we get 
the reduce electron temperature equation

where -E2 (3/2)8[p, Te/ET„]-1- €2 (5[p, n/Enc] +E2 (5/2)8V • 

{pb x V (Te /ETeC) } by convective derivatives and heat 
flux term is neglected for the energy conservation. 

 Finally, Te and n are normalized as OT, /ET„ ' T 
and On/Enc -p n. The reduced set derived above is 
summarized.

where D/Dt = a/at +[0,1,  V11 = a/az — [A, ], [f, g] = 
z • VII x V1g, j11 = —ViA aT = 0.71 and C2 = 2x 

(VS2 = —2(b • V)b).


