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                                     Abstract 

   To clarify the effect of turbulent flow structure on the neutral particle, the neutral particle distribution 

of LMD-U is evaluated by using Monte Carlo code. The simulation results are compared with the neural 

particle pressure obtained by experiments. 
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1. Introduction 

    In today's world, our life strongly depends on con-
sumption of energy. In 2005, total worldwise energy 
consumption was 5 x 1020 J with 86.5% derived from the 
combustion of fossil fuels. Since amount of fossil fuels 
on our earth are limited and they cause global warming, 
we should develop a new energy which is ecologically ac-
ceptable. Nuclear fuSiOn is one of the most promising 
candidates for new energy resources. Nuclear fuSiOn is 
the energy source of the sun and stars. On earth, fu-

SiOn research is aimed at demonstrating that this energy 
source can be used to produce electricity in a safe and 
environmentally benign way. Magnetic confinement fu-

SiOn is one of the approach to generating fuSiOn energy 
that uses magnetic fields to confine the fuSiOn fuel in 
the form of a plasma. There remains many issues to be 
resolved for the development of fuSiOn reactor. 

Turbulent transport in plasmas is one of the key 
issues to be clarified in fuSiOn research, thus has been 
investigated extensively[1-4]. It is known that the var-
ious scale fluctuations interact each other and generate 
the various scale structures in turbulent plasma. The 
Large Mirror Device Upgrade (LMD-U) is developed in 
Kyushu University to study structure formation and se-
lection rules in turbulent plasma. Neutral particles are 
one of the important parameters to control the turbu-
lent state of low temperature LMD-U plasmas. Neutrals 
contribute to plasma density and destabilize drift waves 
by impeding charge neutralization through ion-electron

and neutral-electron colliSiOns. On the other hand, neu-

trals stabilize drift waves through ion-neutral colliSiOns. 
Thus, the drift wave turbulence is influenced by neu-

trals. In fact, nonlinear dependence of turbulence state 

on neutral pressure (i.e. transition of turbulent state) 
is observed in the LMD-U. Moreover, analysis by nu-

merical code named numerical linear device ( NLD ) 

predicts that neutrals play a key role to control turbu-
lence structure. The turbulent structures of zonal-flows 
and streamers are predicted by NLD and in particu-

lar, streamer is observed under the low neutral pres-

sure operation in LMD-U. Hence clarification of role 

of neutrals in LMD-U is important to understand the 
turbulent structure (including zonal-flows and stream-

ers) formation mechanisms. In this thesis, we calculate 
neutral pressure in LMD-U using Monte carlo code and 

compared with experimental data to validate simulation 

model. 
   This thesis is organized as follows. In chapter 2, 

drift waves, zonal flow and roles of neutral particles on 

plasma turbulence are reviewed. The LMD-U device 
are also introduced. Chapter 3 is devoted to neutral 

pressure simulation. Model equation is introduced and 
simulation results are shown. In chapter 4, comparisons 

between simulation result and experimental observation 

in LMD-U are performed. In chapter 5, summary is 

given. 

2. ` Review 

   The drift wave turbulence is considered to play an 

important role on the turbulent transport in magnetized 

plasmas. Recent works on theory have indicated the im-
pact of zonal flows on the drift wave turbulence and the 
zonal flow has been observed in many devices. The drift 
wave instability and zonal flow formation are universal
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physics. In this section, thus, we explain drift-wave in-
stabilities and zonal flow, as typical example of structure 
formation through non-linear coupling of drift waves in 
turbulent plasmas. Another important keyword in this 
work is neutral particles. Any plasma in experimental 
device is affected by neutrals. The basic role of  neutrals 
in plasma is also explained in this section. 

2.1 Drift Waves 

    Even when there is no obvious driving force such 
as an electric or a gravitational field, a plasma is not 
in the perfect thermodynamic equilibrium as long as it 
is confined [5] . The plasma pressure tends to make the 

plasma expand, and the expanSiOn energy can drive an 
instability. This type of free energy is always present in 
any confined plasma, and the resulting waves are called 
"universal instabilities" . 

 The drift wave is a low frequency wave (co << 96: ion 
cyclotron frequency) that is driven by pressure gradient 
Vp of plasma [6] . When the plasma presides in limited 
area, the boundary of ne=0 (Tie: plasma density) exists, 
then, a pressure gradient exists. Thus, it is possible 
that the drift wave always exists in bounded magnetized 

plasma and is one of the universal instabilities. 
 Drift waves have a small but finite component of wave 

number, k along magnetic field, Bo. The shape of con-
stant density surfaces, resembles to the flute with a 
slight helical twist (Fig. 1). If we enlarge the cross 
section enclosed by the box in Fig . 1 and straighten 
it out into Cartesian geometry, it would be seen as in 
Fig. 2. The only driving force for the instability is the 

pressure gradient kBTVno (kB:Boltzmann constant, T: 
temperature, no: zeroth-order density), here we assume 
kBT = constant, for simplicity. If there is no zeroth-
order electric field, the zeroth-order drifts are written 
by

and drift waves have a phase velocity of the order of 

vim or vDef here n' = aay. We shall show that w/ky is 
approximately equal to VDe. 

 Since drift waves have finite k11, electrons can flow 
along Bo to establish a thermodynamic equilibrium 
among themselves. They will then obey the Boltzmann 
relation 

             ni/no = eci1/kBTe,(2.1) 

where ni is the first-order density, 01 is the first-order 
electrostatic potential. At point A in Fig. 2 the density 
is larger than in equilibrium, namely n1 is positive , and 
therefore ci is positive. Similarly, at point B, ni and

Fig. 1 Geometry of a drift instability in a cylin-

     der. The region in the rectangle is shown 

     in detail in Fig. 2.

01 are negative. The difference in potential means there 
is an electric field E1 between A and B. The E1 causes 
the drift v1 = E1 x Bo/Bo in the x direction. As the 
wave passes by, traveling in the y direction, an observer 
at point A will see ni and chi oscillating in time. The 
drift vi will also oscillate. Since there is a Vno in the 
x-direction, the drift vi will bring plasma of different 
density to a fixed observer at point A. A drift wave, 
therefore, has a motion such that the fluid moves back 
and forth in the x-direction although the wave travels 
in the y-direction.

Fig. 2 Physical mechanism of a drift wave

 To be more quantitative, the magnitude of vix is given 
by 

vix = Ey/Bo = —iky41/Bo. (2.2) 

We shall assume viz does not vary with x and that is 
much smaller than k5; that is, the fluid oscillates incom-

pressibly in the x direction. Consider now the number 
of guiding centers brought at a fixed point A; it is obvi-
ously 

ani/at = —vi,ano/ax.(2.3)



This is just the equation of continuity for guiding cen-
ters, which, of course, do not have the fluid drift  VD. 

                                               The term no V • vi vanishes because of our previous as-
sumption of incompressibility. The difference between 
the density of guiding centers and the density of par-
ticles ni gives a correction to Eq.(2.3) which is higher 
order and may be neglected here. Using Eqs.(2.2) and 

(2.1), we can write Eq.(2.3) as 

       —2W7L1 =2B~1no=—2wkBTe no, 
Thus we have 

W __kBTeno—
ky eBo no— vDe 

These waves, therefore, travel with the velocity in the y 

(or azimuthal) direction. In addition, they must satisfy 
the conditions 

kll << ky vthi << w/kll << Vthe 

where Vthi is ion thermal velocity and vthe is electron 
thermal velocity. 

  To see why drift waves are unstable, one must realize 
that vix is not quite Ey/Bo for the ions. There are 
corrections due to the polarization drift and the non-
uniform E drift. The result of these drifts is always to 
make the potential distribution cb1 phase lag behind the 
density distribution n] . This phase shift causes v1 to 
be outward where the plasma has already been shifted 
outward, and vice versa, hence the perturbation grows. 
When the resistivity comes in, the field E1 is not be 
short-circuited by electron flow along Bo. Electron-ion 
colliSiOns, together with a long distance 2 AZ (A: mean 
free path) between crest and trough of the wave, make 
it possible to have a resistive potential drop and a finite 
value of E1. The disperSiOn relation for resistive drift 
waves is approximately given by 

             w2+ia11(w—w*)=0,(2.4a) 

2 

             611 = 12ci(9cerei) , (2.4 b) 

where co* kyvDej S2ci is ion cyclotron frequency and 
° ii is the parallel conductivity. 
If all is large compared with co, Eq.(2.4 a) can be satisfied 
only if w ti co*. In that case, we may replace w by co* in 
the first term. Solving for co, we then obtain 

W w* + (i( * /ail) , 

where co* = k1T/BLT,,. This shows that Im(w) is always 

positive and is proportional to the resistivity 77 = 1/aII • 
Drift waves are unstable and will eventually occur in any 

plasma with a density gradient. Fortunately, the growth 
rate is rather small, and there are ways to stabilize it 
by making Bo be shaped.

2.2 Zonal Flow 

    Zonal flows are low frequency, azimuthal symmetric 
band-like sheared flows (potential perturbations) with 
small radial scale [7,8]. Because of the importance of 
shared flows to the reduction of the turbulent trans-

port, the importance of zonal flows is now well and 
widely appreciated. Zonal flows are intrinsically inca-

pable of driving transport, and thus represent a reservoir 
of benign fluctuation energy. Zonal flows are non-lineary 

generated by drift waves via modulations of the radial 
flux of vorticity (i.e. charge separation current) and 
are damped by ion-ion colliSiOns, by non-linear feedback 
on the underlying drift waves or (possibly) by Kelvin-
Helmholtz type instabilities which disrupt them. In this 
manner Zonal flows are generated by drift waves and 
also damped by drift waves, and thus the drift wave-
zonal flow co-exist system saturates. A predator-prey 
approach model indicates that multiple saturated states 
are possible. For the case of zonal flows, the method-
ology indicated in above section is not applicable since 
zonal flow field is stochastic and spatially complex. The 
mean shear decorrelation should be replaced by the ran-
dom shear decorrelation due to zonal flows. 

2.2.1 SuppresSiOn of Turbulent Transport 

     Mean shear flow and zonal flow can reduce or 

quench transport by altering either the turbulent fluctu-
ations amplitude or the wave-particle correlation time, 
which determines the 'cross-phase' between, say V. and 
n, in the particle flux Fr = (nV,.). Up till now, we have 
been primarily concerned with effects on the fluctuation 
intensity. However, both zonal and mean shears can al-
ter the correlation times and thus fluxes, even at fixed 
fluctuation amplitude. 

 The average cross-field flux is given in terms of cross 
correlations between various fluctuation fields. For in-
stance, the radial particle flux is given by: Fr = 

(1/B)(5,Eo). This flux, an averaged quantity, is deter-
mined by the amplitudes of density and electric field, 
and by the phase between them. In the case of electro-
static fluctuations, Fr can be written as: 

          Fr =BInlIto I sin a(2.5) 
where a is the phase difference between the density and 

potential fluctutions. The a is determined by the wave-
particle correlation time and by the response function. 
Obviously, shifting a can reduce (or increase) the flux. 
Here, we investigate the effect of mean shear on trans-

port by analysing the response of a passive, phase-space 
field f (i.e. a distribution function) to a given ensemble 
of turbulence. A model equation for the passive advec-



tion of f in the presence of prescribed fluctuating  i) (i.e. 
advecting  velocity field) is: 

 —af + v1b Vf (V) • Vf Vf D,V2 f = 0 . (2.6) at 

Here (V) = V(x) " is the mean sheared E x B flow, 14 is 
the parallel phase-space velocity and D, is the colliSiOnal 

diffuSiOn coefficient. We focus on strong turbulence, and 

consider the asymptotic limit where D, —> 0. A formal 

solution for the cross field flux, Ff f * v--x) (0 is a flux 
surface average), is then given by 

       ilx,    Ff = ReE 
            w - kiivii - k,xS,dxfo . (2.7) 

Note that equation (2.7) contains many time scales for 
irreversible dynamics, which must be considered. These 
are: 

(a)Lek-the mode self-correlation decay rate, or inverse 
lifetime, due to nonlinear scrambling; 

(b)Doppler spread (autocorrelation) rates: 
IkA.(0..//k)l-the spectral self-spreading (autocorre-

lation) rate, i.e. the inverse; lifetime of the spectral 

pattern (reflects the effect of disperSiOn-linear process); 
I km vii Ax I-the parallel Doppler spread (autocorrela-

tion) rate, i.e. the rate at which parallel Doppler shift 
klivii changes with radius; 

lky,S,Axl-the shearing Doppler spread (autocorre-
lation) rate, i.e. the rate at which the sheared E x B 
flow-induced Doppler shift k,VExB changes with radius; 

(c)Decorrelation rates 
idDx -particle decorrelation rate for radial scatter-

ing; 

(41)7,5)1/3-particle decorrelation rate for hybrid 
of radial scattering in sheared flow, i.e. due to random 
walk in shearing coordinates; 

(Iclii2vDx)1/3- particle decorrelation rate for radial 
scattering in a sheared magnetic field. 
Here Ax is the radial spectral width, Dx is the radial 
test diffuSiOn coefficient, k1 = k11/Ls and Ls is the shear 
length. Hereafter, parallel dynamics are ignored. Shear-
ing becomes important when 

                   Dx   lk
,S,Axl>> kx2Dxrs,2kSAxlAWk . (2.8)                  Ax 

In this case, the relevant decorrelation rate is set by 

                = (Icy2D,S)1/3 .(2.9) 
                  Tck 

For lk,S,Axl> klivii , lkyS,Ax or lAkc/cok/dkl greater 
than Auk and r, rj, can be simplified to Ff 

              - kvSvx)dfo/dx. (An analytic ex-

presSiOn (w - kyxS, -ir6(w - kyxS,) is 
used.)The cross-field flux then reduces to: 

                     If) 12 d Ff -7r ff dmdc.,)R11cY I s'kfo(2.10) 
Lsdx

Note that the flux depends on the spectral intensity at 
the resonance point x, = w/k,S,. The assumption that 
this point falls within the spectral envelope is valid if 
x, < Ax or equivalently, w < ikx,5,Axl. Since we are 
concerned with the regimes of strong shear, this is al-
most always the case. In such strong shear regimes, then 
Ff scales inversely with Si, i.e. 

Ff cx8;1 .(2.11) 

A detailed analysis established that the passive scalar 

amplitude perturbation scales as \ ((f / f /)2) 0( Sy-5/67 
so that 

                sin a cx S.,71/6.(2.12) 

Note that the effect of even strong shear on the flux is 
modest sn and its impact on the cross-phase is 

quite weak (rs, S,7-1/6). Thus, the theory predicts that 
suppresSiOn of the cross-phase is weaker than reduction 
in turbulence intensity. 

  It is interesting to examine the scaling of Dx in the 
strong turbulence regime, for weak and strong shear. 
Noting that Ff = -Dx(dIdx)fo, we have already es-
tablished that Dx S,;1- for strong shear and weak 
turbulence. In the case of strong shear and strong 
turbulence, rc—k1 > Ik1SvxI, so F1 is given by (from 
equation (2.7)): Ff=-ReEk,w7-cklvx,1,,,,12(d/dx)fo i.e. 
Dx = 7-,k(1)2. Taking equation (2.9) with Dx D, 
then gives 

                    (i)-2)3/4      Dx(2.13) (k
,S,)'/2 

which is consistent with the expected scaling Dx 
Lob(AxT)2 where wb is the particle bounce time in a 

poloidal wavelength, and AXT is the resonance width 
in radii. 

c 

   Next, for the strong turbulence, weak shear case 
lirk      = kx2Dx, Dx 02)2(kx2)-1/2, which is the 
familiar scaling for transport in strong two-dimenSiOnal 
turbulence, first derived by Taylor and McNamara. Fi-
nally, we also note that the regime of strong shear (i.e. 

lkyS,Axl > r1,,Awk, w) but with non-resonant re-
sponse has also been investigated. The predictions are 
Ff S;2 and sin a a Sy-2. The importance of this 
regime is dubious, though, since strong shear naturally 
favours a large shearing Doppler spread which in turn 
suggests the applicability of standard quasilinear theory 
and the occurrence of a resonant interaction. 

 In the previous subsection, we considered the effect of 
a mean shear flow on passive scalar flux and cross-phase. 
While understanding the case of a mean shear is neces-
sary, it is certainly not sufficient for an understanding of 
the effects of a spectrum of zonal flows upon transport. 
Two additional features must be considered in the case



of zonal flows. These are: 

(a) the flow pattern has a finite lifetime or self-
correlation time,  Tc,ZF; 

(b) shearing occurs as a spectrum of scales, each cor-
responding to a radial zonal flow wavenumber qr. The 
shearing pattern may be spatially complex. 
The implication of differences (a) and (b) are that the 
effectiveness of shearing will be reduced (relative to that 
for equal strength mean flow) for short Tc,ZF, and that 
one should expect to find Sv,rm.s (the rms value) replac-
ing St, n the quasilinear predictions given above, when 
Te,ZF -i oo. The details of these calculations have quite 
recently appeared in the literature. 

2.3 Role of Neutral Particles in Plasma 

2.3.1 ColliSiOn 

    In a plasma, colliSiOns between the different kinds 
of particles play an important role since they can change 
the momentum and energy of the interacting particles 

[6] . Even more fundamental particle properties can be 
changed. For instance, the loss of electric charge in the 
case of ionization of an atom. ColliSiOn frequencies also 
dictate the dynamics of the drift mode, therefore nu-
merical values of the colliSiOn frequencies are needed. 
Unfortunately, colliSiOn frequencies are difficult to de-
termine accurately. 
Besides elastic colliSiOns, for colliSiOns between ions 
and neutrals, the ion-atom charge transfer reaction 
A + A+ A+ + A is also an important process. It 
can be seen that cross-sections for both processes are of 
the same order of magnitude and increase towards low 
energies where not much data exists. A formula for the 
cross-section for resonant charge exchange between an 
argon ion an argon atom(both in the ground state) is 

given: 

 o-,,,[1712] = 4.8 x 10-19(1 + 0.14log(E[eVj ) . (2.14) 
Where E is the kinetic energy of the ion with respect 
to the atom. For the room temperature E=0.025eV, 
this yields ain = 1.1 x 10-18m2. This is also in good 
agreement with the value of the total ion-atom cross-
section at low temperatures of ti 10-18m2. Ionization 
due to ion-atom colliSiOns is significant only for energyies 
higher than 100eV and can therefore be neglected when 
discussing laboratory plasmas. 

2.3.2 Reynolds Number 

    Reynolds number (R - vL/v) of plasma is an 
important parameter for the excitation of the drift wave 
turbulence. Where, v is a fluid velocity, L is a typical 
scale length, v is a viscosity. The viscosity of plasma 
results from the colliSiOnal effect. By using mean-free

path, 1, and colliSiOn time, T, it can be written as 

12 
V —(2.14) 

A large Reynolds number (i.e. small viscosity) is effec-
tive for exciting the turbulence. The viscosity in LMD-
U plasma is controlled by varying of T and 1 through 
adjusting neutral gas pressure and the magnetic field 
strength.

2.4 Large Mirror Device-Upgrade 

     The drift wave excitation experiments were per-
formed in the Large Mirror Device Upgrade (LMD-U) 

[9-11]. The conception of the LMD-U aims at a flexible 
and versatile linear, magnetized plasma device that al-
lows for various experiments on the dynamics of plasma 
waves and instabilities. A schematic view of the LMD-U 
is given in Figure 3. 

 The LMD-U is made by a stainless chamber with 
diameter of about 445 mm and axial length of 3740 
mm. The coil system in the LMD-U produces a lin-
ear magnetic field configuration. A cylindrical helicon 

plasma with diameter of approximately 100 mm and 
axial length of 3740 mm is produced by a RF heating 
system (with a frequency 7MHz and the power of 3kW) 
and radially confined by the magnetic field. The typ-
ical operational condition and plasma parameters are 
shown in Fig 4. Langmuir probe systems are used to 
determine plasma parameters and observe density and 

potential fluctuations. A continuous argon gas is in-
jected from the end of the RF system by a mass flow 
controller. Four turbo-molecular pumps and two buf-
fle plates are installed to control the neutral pressure. 
Four pumps are used to exhaust the neutral particles 

generated at the device wall through the recombination 
process. The two buffle plates protect the back-flow 
of the neutral particles from end wall to plasma bulk 
region, and are located at z=720 and 3240 mm. Back-

ground vacuum pressure measured with two ionization 
gauges is a few times of 10-4Pa with the effective ex-
haust velocity of 1000 1/s. During discharge, neutral 

pressure is measured with two manometers located at 
z=0.5, 2.14m.

2.5 Numerical Linear Device 

 Three-dimenSiOnal numerical simulation code of the 
resistive drift wave turbulence in a linear device, called 
Numerical Linear Device (NLD) has been developed [3]. 
We review it for illastrating the plasma turbulence of 
concern. The three-field (density, potential, and paral-
lel velocity of electrons) reduced fluid model is adopted. 
The plasma has a simple cylindrical shape, and the mag-
netic field has only the component in the axial direction



Fig. 3 Equatorial mid-plane of LMD-U

Fig. 4 Typical operational condition and plasma 

      parameters for the LMD-U

with the uniform intensity. According to experiments, 
high density  (ne>1 x 1019m-3) and low temperature 

(Te < 5eV) plasmas in an argon discharge are ana-
lyzed. The density of neutral particles is high even in 
the plasma core region, so the effect of neutral particles 
is taken into consideration. The continuity equation, 
the vorticity equation, and Ohm's law can be used to 
obtain the fluctuating density, potential, and parallel 
velocity of electrons[20],

 where N = ln(n/no), V = vl/cs, = ecp/Tej n is 
the density, no is the density at r=0, v11 is the electron 
velocity parallel to magnetic field, cs is the ion sound ve-
locity, cp is the electrostatic potential, Te is the electron 
temperature, d/dt = a/at + [b] is the convective deriva-
tive, SN is a particle source term, M/me is mass ratio of 
the ion and electron, vira is the ion-neutral colliSiOn fre-

quency, ve = ye, ven, is the sum of the ion-electron and 
electron-neutral colliSiOn frequency, and [IN, pv and tiw 
are artificial viscosities. The ion cyclotron frequency S2ci

and Larmor radius measured by the electron tempera-
ture ps are used for the normalizations. The equations 
are solved in the cylindrical coordinate with spectral ex-

panSiOn in the azimuthal and axial directions assuming 
periodic boundary condition, where m and n are the 
azimuthal and axial mode number, respectively. The 
boundary condition in the radial direction are set to 

f=0 at r=0, a when m 0, and o f/ar=0 at r=0, f=0 
at r = a when m=0, where f implies {N, 0, V}, and 
r = a gives an outer boundary of the plasma column. 
Fig. 5-7 show time evolution of fluctuating potential(5), 
density(6), and parallel velocity(7) on a azimuthal cross-
section of LMD-U plasma.

Fig. 5 Time evolution of electrical potential fluc-

     tuation. Here t is normalized by ion cy-

      clotron frequency.

Fig. 6 Time evolution of density fluctuation. 

     Here t is normalized by ion cyclotron fre-

       quency.

3. Simulation 

3.1 Model Equations 

   Nonlinear two-dimenSiOnal code calculating steady 
state neutral density in a linear device was developed.



Fig. 7 Time evolution of parallel velocity fluctua-

      tion. Here t is normalized by ion cyclotron 

       frequency.

The code uses Monte Carlo algorithm and takes experi-

mental data in LMD-U as input parameters. Schematic 

view of the LMD-U are shown in Fig.3. Possible meth-

ods of controlling the number of neutrals in a LMD are 

investigated by numerical evaluation of the Boltzmann 

equation for various atomic processes. In the simula-

tion, the system is considered to be two-dimenSiOnal, 

since a LMD consists of a plasma productiontube and a 

cylindrical main chamber connected in series. Although 

some equipments like vacuum pumps break the axisym-

metry, their ports are small and the profile in the axial 

direction is of primary importance in studying neutral 

transport. In addition, the plasma is assumed to be 

uniform in the axial direction. In future, the simulation 

model will be upgraded to include the two- or three-

dimenSiOnal plasma profiles.

3.1.1 Governing Equations 

   In a steady state, a statistical distribution of neutral 

particles  fn  (r, v) is described by the Boltzmann equa-
SiO n: 

                CV-=C(fn) + S ,(3.1) 

where v is the particle velocity, C(fn) is the colliSiOn 
term and S is the source term. For the present calcula-
tion, balance between the distributions of incident f n,inc 
and reflected fn,r f 1 particles is fulfilled at the bound-
ary[12]: 

fn,rfl Ir=rb,,,d — [Rsfn(v1 —* —vl) +RdrincFd]I r=rbnd 

                                 (3.2) 
Here, the vector rbnd points to the boundary (chamber 
walls, baffle plate, end plate, source positions, or pump 
ducts), vi is the component of the incident particle ve-
locity toward the boundary, R, and Rd are the coeffi-
cients of specular and diffusive reflection, respectively,

rinc = f vi fn(vl > 0)dv is the flux of the neutrals 
towards the wall and the distribution of the diffusively 

emitted particles Fd is normalized by fo v1 Fddv = 1. 
At the pump duct position, the specular reflection co-
efficient Rs is replaced by 1 — -y where -y is the pump 
efficiency. In general, all parameters on the right-hand 
side are functions of the particle velocities and positions. 
In contrast to the conventional calculations of fuSiOn 

plasmas, in the case of the simulated linear device, the 
neutral self-colliSiOns Cn(fn, fn) are expected to play an 
important role due to the high neutral density, making 
the Boltzmann equation nonlinear. As well as the self-
colliSiOns, electron impact ionization Ce (f n , fe) signifi-
cantly affects the neutral profiles. To take into account 
the energy transport from ions to neutral particles, the 
elastic ion-neutral colliSiOns Ci (fn , fi) are also consid-
ered:

where Iels, 'mom, Icxr and Iion are the self-elastic, 
ion momentum transfer, resonance charge exchange and 
electron impact ionization differential cross sections, re-
spectively, fe and fi are the electron and ion distribu-
tion functions, respectively, u = 1v1 — v2I, vi and v2 
are the incident and the target particle velocities, re-
spectively, and S2 is the scattering solid angle. The dis-
tribution functions of the scattered particles are marked 
by primes[13]. 

   The linear colliSiOn term Ci and Ce can be re-
duced to simplified forms by assuming isotropic scatter-
ing: I (u, S2) = I (u). In this case, integration over the 
solid a,ngle is performed explicitly, and the differential 
cross sections I(u) are replaced by the corresponding 
total cross sections a(u) = f I (u)dS2 = 47rI(u). Next, 
note that the electron speed ve is clearly much larger 
than that of neutrals Ivn I . Therefore, in the case of im-

pact ionization, the relative speed is given by u = Ive I 
and ionization colliSiOn term reduces to



where <  aionu >= f Iveloion(Ivel)Fe(ve)d3ve is the ion-
ization rate coefficient, and the distribution function fe 
is assumed to be the product of the electron density ne 
and the electron velocity distribution Fe. 
In the case of the ion colliSiOn term, the products 
amom(u)u andQcxr (u)u are slowly varying function' of 
the relative velocity in the region of interest, and thus 
they can be placed outside the integrands[12][14]: 

C~i(fn~ •fi) = ni(< Qmom(u)u > + < a'cxr(u)u >) 

      x [FF(vVi) J fn(v')d3v' — fn(v)] , (3.8) 

where fi = niF2 with ni being the ion density and Fi 
being the ion velocity distribution; the mean ion veloc-
ity Vi is shown explicitly. 

  In contrast to the linear colliSiOn integrals, eq.( 3.5) 
and (3.6), the neutral self-colliSiOn term cannot be easily 
simplified because of its nonlinear nature. In this arti-
cle, a stationary state is searched for, and the nonlinear 
operator Cn(fn, fn) is treated by interations: 

             afn,k+1            v a
r=Cn(fn,k+1, fn,k) 

+Ci(fn,k+1, fi) + Ce(fn,k+1, In) + Sk+1 , (3.9) 

where k is the iteration number. In this case, the Cn 
term in each iteration step is calculated using the 
distribution of the previous step distribution and thus 
it becomes linear. Therefore, within each iteration step 
it can be written in a similar form to eq. (3.8) 

Cn(fn,k+1, fn,k) = nn,k < Crels(u)u > 

x [Fn,k (vVn) f fn,k+1(v )d3v' — fn,k+1(v)] , (3.10) 
where fn,k = nn,kFn,k and Nn,k and Fn,k are the neu-

tral density and velocity distribution obtained from the 

previous iteration step respectively, and Vn is the neu-
tral mean velocity. 
In the iteration scheme, the zeroth order test func-

tion fn,o = nn,oF'n,o can be chosen arbitrarily. In the 

present simulation, the zeroth-order neutral profile nn,o 
is taken to be uniform, nn,o = fin; F102d2r/P and the 
velocity distribution is F0,0 = 5(v — vth), where rinj 
is the injected particle flux, P is the pumping speed, 
with = /2kBTn/Mn is the most probable speed of neu-
trals, kB is Boltzmann's constant, Tn is the nertral 
temperature and Mn is the mass of a nertral particle. 
Here, the zeroth-order mean velocity is assumed to be 
zero. Rigorously speaking, the final converged solution 

(k —> oo) may depend on the choice of the initial con-
ditions at k=0. Such critical dependence on the initial 
conditions was not found. 

  To complete the definition of the problem, the source

term S has to be explained. The neutral particles are 
assumed to be originated from gas injection Sin j , from 
the recombination of ions at the end plate, Sep, and 
from the plasma itself, Sri: 

S = Sinj + Sep + Spi , (3.11) 

where Sinj is the prescribed term of the injected parti-
cles, and Sep can be obtained from the distribution of 
charged particles and the properties of the end plate. To 
determine Spi, a steady-state condition is used. Namely, 
the ionization rate is equal to the recombination rate: 

ffCed3vd3r = ff Sepd3vd3r + ff Spid3vd3r , 
                                (3.12) 

where the integrals are calculated over the plasma vol-
ume. The first term on the right-hand side of eq. (3.12) 
is the number of neutral particles originating on the end 

plate per second due to the recombination of ions: 

Jep = fniV±d2r,  (3.13) 
                          p where niV 1 = ri,ep is the ion particle flux at the end 

plate and the plasma flow is assumed to be made by 
only the ion drift. The integral is evaluated over the 

end plate surface. All ions at the end plate are assumed 

to be neutralized i.e., if Sepd3vd3r = Fn,ep = Fz,ep• 
   Finally, from eq. (3.12) and (3.13) the number of 

particles being originated in the plasma is due to re-
combination 41 

Jpl = J  f Ced3vd3r — JniVild2r.(3.14) 
                                   ep 

The latter expresSiOn does not provide information re-

garding the position of the originated particles. In the 
present analysis, for the sake of simplicity, recombina-
tion inside the plasma is replaced by that at the radial 

plasma boundary, and the particles are distributed uni-
formly in the axial and azimuthal directions. The direc-
tion and speed of the new particles can be chosen on the 
basis of physical reasons or assumptions. In the present 
verSiOn of the code, all source particles have a speed of 
with and are directed randomly. 

3.1.2 Monte Carlo Method 

    To obtain the neutral gas density distribution in 
the linear device, the Boltzmann equation [eq. (3.1)] is 
numerically evaluated by the Monte Carlo method. A 

general discusSiOn of the method and the applocation 
of the algorithm to the neutral profile calculations can 
be found elsewhere. Here, only a brief outline of the 
method is presented[14-18]. 
During the simulation, Nsrc test flights with an initial 
dimenSiOnless weight of co = 1 are generated for each



source. Here, the subscript "src" is given to terms re-

garding the injected neutrals  ("inn and particles re-
combining on the endplate ("ep") or in the plasma (" pl 
") . If the source produces Jsres-1, then each flight is 
represented by Jsrc/Nsres-1 at its start. 

   For the present calculation, the number of injected 

particles J3 is a prescribed value, chosen from the con-
ditions of the experiment. The number of particles orig-
inating at the endplate, Jep, is given by eq. (3.13) and 
that of particles originating at the plasma surface, Jpi , 
is defined by eq. (3.14), which is transformed into 

     J _Kinj,ionJinj—(1 — kep,ion)Jep (3.15)     pl1 —hpl,ion 

where Icsrc,ion = Ejw(src,ion),j/Nsrc is the fraction of 
ionized particles for each source type, w(src,ion), j is the 
weight of the ionized particle and a summation is taken 
over all ionized particles. The sign of Jpl can be used as 
a test parameter; a negative Jpl indicates that the input 

parameters are incorrect. 
   Each flight follows its trajectory with a prescribed 

short step dl. At each step, colliSiOn events are tested 
one after another. 

(1) First, the elastic self-colliSiOn event is checked: if 
rndi < dl/Aels holds, then the event has occurred and a 
new direction of propagation is randomly chosen. Here, 
rndi is uniformly distributed random number(URN), 
Aels = 1/(\nnoej8) is the self-colliSiOn mean free 

path(MFP), takes the relative motion of the neu-
trals into accout. 

(2) Next, if rnd2 < dl/Amom holds, where rnd2 is URN 
and Amom = vn/[uini(amom + achr)] is the ion-neutral 
colliSiOn MFP (vn is the speed of the test particle and 
ui is the average ion speed), then an ion elastic colliSiOn 
has occurred. In this case, the speed of the flight be-
comes equal to Vj,drift and a new direction is randomly 
chosen. 

(3) Finally, if rnd3 < dl/Awn where rnd3 is a URN and 
Awn = vn / (ne (aionu)) is the ionization MFP, then a 
ionization event has occurred and w = 0. 

(4) If there is no colliSiOn, then the flight makes the next 
step in the previous direction. All events are put in or-
der of importance. The self-elastic colliSiOn changes the 
direction of the flight but does not change the particle 
energy and weight, and it is tested first. The ion-elastic 
colliSiOn ffects the particle speed but does not change 
the particle weight. The ionization can significantly af-
fect the neutral profile, and therefore it is checked last. 
The proposed scheme allows us to accurately examine 
the ionization rate, even if the neutral density is high 
and the step dl is comparable to the total MFP. 

  The exhaust by the vacuum pump is simulated by 
reducing the weight of the test flight that hits the pump

duct area: 

      rwinc(1 — P/(Spmpv±)) PI (Sp'm,pV± < 1 
   _ wr ftI

L0 P/(Spmpvl) < 1 J ' 
                                (3.16) 

where wr fl and win, are the weights of the flight after 
and before hitting the pump, P is the pumping speed, 
Spm,p is the pump duct area and v1 is the component of 
the flight velocity normal to the pumping duct surface. 

  The flight is traced until its weight becomes smaller 
than a prescribed threshold. The calculation domain is 
divided into cells, and at each flight step various data 
are accumulated at the corresponding cell. At the end 
of each iteration, the accumulated data are transformed 
into physical quantities. For example, the average neu-
tral density can be obtained as 

dl Jsrcw(l)      fin _(l) V(1)`
TCNsrcflisI vn(l)I '(3.17) 

where 1 is the number of the cell, vn(l) is the velocity 
of the test flight at the cell location, V is the volume of 
the cell, and summation is taken over all flights passing 
through the cell. Similarly, the average component or 
absolute value of the neutral velocity is 

  vn,j (l) —dl 'Jsrc w(l)vn,, (l)            nrj(l)V(l), rcNN„,flisIv'n((1)I 
                                (3.18) 

Here, vn, j is the component or absolute value of the test 
flight velocity at the cell location. 

3.1.3 Validation of the Model 

     First, the iteration algorithm is validated. For 
this, the diffuSiOn of neutral gas in a cylindrical tube 
without plasma is considered. The length of the tube is 
L and the radius is rtube . At the rear side of the tube, 
a semipermeable membrane with reflection coefficient R 
is located. Every second, particles are injected into the 
tube uniformly. The front and radial walls are assumed 
to be perfect reflectors; hence, the particles can only 
leave the tube through the membrane. An analytical 
expresSiOn for the neutral density can be obtained from 
steady-state one-dimenSiOnal continuity equation: 

                d 
          dz'(3.19) 

whei e F is the constant stream flux, A neutral gas with 
a high density is considered, such that the MFP is much 
shorter than a characteristic system size. The semiper-
meable membrane is assumed to introduce a constant 
gas stream F.. In this case, the flux is given by the 
diffuSiOn and streaming terms:



where D =  1)n/(3vnnaels) is the diffuSiOn coefficient, 
and vn = \/8kbTn / (11-Mn) is the average speed of prop-
agation of the neutrals. Therefore, from eqs. (3.19) and 
(3.20), profile is determined as 

nn(z) = nn(0)e-z/Aeff ,(34.21) 

where Ae f f is the effective MFP, which is determined 
from boundary conditions, together with nn (0) 

  Indeed, at the boundary, the particle fluxes are pre-
scribed. From the steady-state condition, the total flux 
through any tube section is constant and is equal to the 
influx. Therefore, 

riz—o = ran, ,(3.22) 

where ranj = JZnj/(7rrtv.be) • 
   At the membrane position, the fluxes of the re-
flected and the incident particles how the relation to 
each other through the reflection coefficient, giving a 
total flux of[19] 

                      nnvn1 - R  ri
z=L = 2 1 + R.(3.23) 

Equations (3.20)-(3.23) allow us to obtain the neutral 
density for given ro . For the sake of the model valida-
tion, the definition of the particle flux through the mean 
flow speed of particles is more conveniently given as 

F = nnVd •(3.24) 

In this case, at the boundaries: 

nnVd lz=o = ran, , (3.25)              

l vn 1 - R    =(3.26)               Vdz_L2 1 -{-R' 

          l2Fzn31 + R(3.27)             nnz=L=471 -R' 

                             n Equations (3.21), and (3.25)-(3.27) form the analytical 
statement of the problem and can be solved. The set 
is not a closed one, since the boundary conditions de-

pend on the flow speed Vd, which is not determined. 
Therefore, the solution has a unknown parameter,

                       z/L     rZn'Vdlz=o(3 .28) nn =V
dlz_o Vdlz=L,

here, Vd 1 z=L is determined by eq. (3.26) and Vd l z=o is 
the parameter. Nevertheless, the analytically obtained 
solution can be compared with the numerical one. First 
of all, at the exhaust port, the flow speed and neutral 
density depend on the input parameters only, and thus 
they can be directly compared with the results of sim-
ulation. Then, from the numerical calculations, it is

possible to determine the parameter Vd l z=o and there-
fore the shapes of the analytical and numerical solutions 
can be also compared, as shown in Fig.8. Here, arrows 
indicate the neutral density obtained using eq. (3.27) . 
Symbols show the radially averaged numerical neutral 

profiles, and lines show the analytical solutions obtained 
from the mean speed of the particles in the simulation. 

   During the simulation, to ensure that Aels is much 
smaller than the dimenSiOns of the tube, the number of 
injected particles is chosen to be JZnj = 2.0 x 1021s-1, 
with tube length L=2m and radius rtube=0.5m. The 
relative error between the analytical and numerical so-
lutions in the main region is within 5%. Only close to 
the boundaries the error is large, since the solution [eq. 

(3.28)] is not valid here due to the lack of interparticle 
colliSiOns. The results demonstrate that the numerical 
algorithm is able to accurately calculate the shape and 
value of the profile for a wide range of reflection coeffi-
cients.

Fig. 8 (a) Racially averaged numerical (sym-
     bols) and analytical neutral profiles (lines) 

(nn) and (b) relative error of calculation. 
     The number of the injected particles is 

JZnj = 2.0 x 1021s-1, L = 2m, and 
rtu.be=0.5m. Arrows indicate values ob-

     tained using eq.(3.27)

3.2 Simulation Results 

    It is reported that neutral pressure profile is very 

sensitive to the electron density and the temperature



profile. The ne and  Te7 which are taken into account in 
the simulations, can be measured experimentally. Typi-
cal electron temperature and density of LMD-U plasmas 
are 3-5  eV and 0.5-1.0 x 1019m-3, respectively. Other 

parameters such as ion temperature and speed of plasma 
flow are difficult to be measured, thus, typical values of 
ion temperature Ti = 0.2 - 1.0 eV and plasma Mach 
number Mn = 0.01 - 0.3 are used. 

   Figure 9 shows radially averaged neutral pressure 
for injected argon flux of Tn=6.4x1019s-1, 9.7x 1019s-1 
and 12.9x1019s-1. Two baffle plates are installed in the 
LMD-U to control the neutral pressure. The simulation 
results show sharp changes of the neutral pressure at 
the baffle positions. The increase in the neutral pressure 
near the end plate (z=3.74m) is resulted from a neutral 

particle source due to the recombination of plasma. In 
the central region (Section B), the neutral pressure de-
creases with the increase of the Mach number. Thus the 
Mach number is known to be an important parameter to 
determine the Pn profile. The information about plasma 
flow is hardly obtained in LMD-U experiments, thus the 
dependence of neutral pressure on Mach number in the 
simulation is necessary and is investigated. To com-

pare the simulation results with experimental observa-
tions, neutral pressures at z=0.5m and z=2.14m, where 
manometers are installed, are calculated. The neutral 

pressures at above positions represent one in the sections 
A and B of LMD-U (see Fig.3), respectively. Figure 
10 shows Mach number dependence of neutral pressure 
for three different Te conditions. The Te and Mn de-

pendences of Pn are different at the section A and B. 
This fact suggests that if Pn in the sections A and B 
are measured, Te and Mn should be chosen to explain 
the Pn in both sections, simultaneously. The observed 
Pn level is shown in Figure 10 by the dashed horizon-
tal lines, for an exmple. A condition with Te=3 - 5eV, 
Mach number Mn - 0.2 - 0.3 and injected neutral flux 
rn=6.4x 1019s-1 can be consistent with the experimen-
tal results in both sections. In the Mach number region 
of 0.1<Mn<0.3, the Te dependence of Pn is very weak 
in both sections. The choice of Te and Mn from simula-
tions have large ambiguity and is impossible in reality. 
When the experimental observation of Te '3eV is em-

ployed, Mn can be obtained more precisely. For the 
case of En=9.7x 1019s-1 case, the Te dependence of Pn 
is stronger than that for rn=6.4X 1019s-1 case. Thus, 
Te and Mn can be obtained more precisely from sim-
ulation results in this case. The simulation results are 
insensitive to the density ne as shown in Figure 11 and 
12. The Mn dependense of Pn is also affected by Ti. Fig-
ure 13 shows that the increase in the Ti increases Pn, 
and this Ti dependence of Pn is affected by Te quantita-
tively. The density dose not affect this Ti dependence,

Fig. 9 (a) The schematic view of LMD-U and 
      typical simulated neutral pressure profile 

     for (b) En = 6.4 x 1019s-1 and (c) En 
      = 9.7 x 1019s-1. Here Te=3eV, ne=0.5 

x 1019s-1, Ti=0.5eV

as shown in Fig. 14. The Ti dependence of Pn is strong 
in the typical range of Ti (0.2<TZ<leV). Thus, there is a 

possibility to obtain Ti from Mach number, injected neu-
tral flux and Te. A condition of Mach number Mn=0.2, 
Te=3eV, injected neutral flux Tn=6.4x 1019s-1 yields 
Ti=0.5eV in the section A. This Ti value is considered 
to be reasonable compared to the value obtained from 
spectroscopy in similar linear plasmas.

4. Comparison with Experimental 

   Results 

    In this chapter, simulation results are compared 

with experiments. There are two experimental knobs to 

control the neutral pressure namely the injected neutral 

flux and pumping speed in LMD-U. To validate the sim-

ulation model, the qualitative comparison in the wide 
range of experimental condition is necessary. Thus ex-



Fig. 10 Mach number dependence of simulated 
       neutral pressure for three different  Te 

conditions.(Te=3eV, 4eV, 5eV) at dif-
       ferent values of rn=6.4x 1019s-1 and 

rn=9.7x 1019s-1, here Tz=0.5eV.

Fig. 11 Dependence of neutral pressure at 

       z=0.5m on Mach number for two different 

       ne conditions ne=0.5x1019m-3 and 

ne=1.0x 1019m-3 for Te=3eV and 4eV, 

        where I'n = 6.4 x 1019s-1.

periments changing the injected neutral flux and the 
pumping speed are performed. 

4.1 Experimental Setup 

    In this study, the two manometers are installed to 
measure the neutral pressures in the different sections 

(section A and B) of vacuum chamber, as shown in Fig-
ure 3. Section A and section B are separated by a baffle 

plate, and thus a comparison between two manometer 
signal is also useful to check the function of the baffle 

plate. Figure 14 shows a typical time evolution of neu-
tral pressures measured by manometers. The ion satu-
ration current is also indicated as an index of the time

Fig. 12 Dependence of neutral pressure at z=0.5m 

      and 2.14m on Mach number for three dif-

       ferent Ti conditions Tz=1.0eV, 0.5eV and 

       0.2eV, where I'n = 6.4 x1019s-1, T,=3eV 

        and 4eV, ne=0.5x1019m-3.

Fig. 13 Dependence of neutral pressure at z=0.5m 

      on Mach number for three different TZ 

       conditions T2=1.0eV, 0.5eV and 0.2eV 

      and for two different ne conditions 

ne=0.5x 1019m-3 and ne=1.0x 1019m-3, 

       where rn = 6.4 x1019s-1, Te=3eV.

evolution of plasma density. Manometer installed in the 

section A indicates that the neutral pressure tends to 

decreases in the latter period of discharge and then sat-

urated. On the other hand, one in the section B tends 

to increase during the discharge. In this study, we use 

the value of Pn at t=500ms to discuss the saturation 

level of the neutral pressure. The dynamics of neutral 

pressure is one of the most important subjects of future 
works.

4.2 Pumping Speed Dependense 

   Pumping speed of LMD-U was also changed. In this 

experiment, injected neutral flux, heating power and 

magnetic field are kept constant. Comparisons between



Fig. 14 (a) Typical time evolution of neutral pres-
       sure and (b) ion saturation current.

simulation and experimental results are shown in Fig-
ure 15 and 16. The observed neutral pressure decreases 
monotonically with increase in the pumping speed  vpm,p  . 
The qualitative features obtained from simulation and 
experiment are slightly different. Experimental results 
can be consistent with simulation results quantitatively 
under the assumption of Te=3eV and Mn = 0.1 - 0.3. 
This assumption is also consistent with neutral pressure 
behavior not only in the section A but also in the section 
B. The simultaneous two-point measurement of neutral 

pressure may not deny a validity of this assumption. 
The simulation of Mn=0.3 can fit the experimental re-
sult in the pumping speed vp,np=1000 1/s case. And 
simulation of Mn=0.1 can fit the experimental result 
in the vp,n;p=600 1/s case. This result suggests that an 
increase in the pumping speed can increase the Mach 
number. For more precise comparison between simula-
tion and experiment, the direct measurement of Mn is 
neccesary.

4.3 Injected Neutral Flux Dependense 

     Next, the injected neural gas flux is changed, 
here the pumping speed is kept to 1000 1/s. Figures 
17 and 18 show the value of neutral pressure Pr„, as a 
function of the injected neutral flux Fn. In the large 
neutral flux case (Pn >14 x 1019s-1) , the convergence 
of numerical calculation is not sufficient thus they are 
not shown. In the smaller neutral flux cases, the sim-
ulational results are consistent with experimental ones 
not only qualitatively but also quantitatively except for

Fig. 15 Neutral pressure as a function of pump-
      ing speed in experiment is plotted by filled 

       triangles and the simulational values are 

      plotted by crosses.(at Section A)

Fig. 16 Neutral pressure as a function of pump-

      ing speed in experiment is plotted by filled 

       triangles and the simulational values are 

      plotted by crosses.(at Section B)

I'm =9.7x1019[s-1]. The tuning of Te7 TZ, Mn may be 
required for more precise comparison between simula-
tional calculations and experimental observations. 

  The simulational results show that the neutral pres-
sure is inhomogeneous along z-axis. The neutrals con-
tribute to plasma density and thus the plasma may be-
come inhomogeneous along the magnetic field. In sim-
ulation model, such an inhomogeneity of plasma is not 
taken into account. Simulation model is still useful to 
obtain approximate values of Mn and T . The neutral 

pressure profile obtained from this simulation, therefore, 
can be applied as input and/or boundary conditions to 
another simulation codes e.g. NLD.



Fig. 17 The value of neutral pressure  Pn is plotted 

      against the injected particles rn in exper-
      imental value is shown by blue and simu-

      lational values are shown by black and red 
       for three different of Mn=0.2, 0.3, and 0.4, 

Te=3eV. (at Section A)

Fig. 18 The value of neutral pressure Pn is plotted 
      against the injected particles Tn in exper-
      imental value is shown by blue and simu-
      lational values are shown by black and red 

       for three different of Mn=0.2, 0.3, and 0.4, 
      Te=3eV.(at Section B)

5. Summary 

    Behavior of neutral pressure in LMD-U is inves-

tigated by numerical simulation and experiment. In 

the simulation code, the Boltzmann equation is solved 

by Monte Carlo method and Mach number dependence 
of neutral pressure is obtained. The simulated results 

of neutral pressure for the different sections of vacuum 

chamber of LMD-U are compared to the experimental

observations. 

Obtained results in this study are summarized as fol-
lows: 
1) In the simulational study, we observe that the neu-
tral pressure decreases monotonically with the increase 
of the Mach number, Mn. 

2) The Mach number Mn dependence of neutral pressure 
Pn is not apparently affected by the electron density ne . 

3) Increases in both the electron temperature Te and 
decreases in the ion temperature TZ decrease the Mach 
number Mn. The Tz dependence of Pn is found strong 
in the region of 0.2<TZ<1.0 eV. 

4) The two-point simultaneous observation of Pn is per-
formed in LMD-U. 

5) The two-point observation of Pn can be fitted to 
the simulation results under appropriate assumptions 
of Mn, Te and T. 

6) The simulation with appropriate assumptions of Mn, 
Tej TZ values can be consistent with the experimen-
tal results ((a)injected neutral flux dependence and 

(b)pumping speed dependence ). 
 Turbulence structure observed in LMD-U strongly de-

pends on the neutral pressure. For quantitative under-
standing of turbulence structure formation mechanism, 

precise values of many parameters are required. Es-
tablishment of a dependable simulation code is neces-
sary and useful to determine parameter values which 
are difficult to be observed directly. This study par-
tially demonstrates a validity of our neutral transport 
code by the comparison study with experiments.
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