A Unified Analysis of Causatives and Passives

Kayashima, Takashi
Graduate School of Humanities, Kyushu University

https://doi.org/10.15017/26982
A Unified Analysis of Causatives and Passives

Takashi Kayashima

Introduction

Causatives and passives seem to be different from each other in their nature, but actually there is something in common regarding their semantic properties. The goal of this paper is to explain the phenomena of causatives and passives in English and Japanese in a unified fashion.

1. Previous Analyses

1.1 Hale and Keyser (1993)

In this paper, I adopt one notion of Hale and Keyser (1993) and extend it. According to Hale and Keyser (1993), an external argument is indispensable to interpret an argument structure. Now, I will examine the way a subject is interpreted as an agent and an object is interpreted as a theme with the following simple example.

(1) Tom hit Mary.

First, the verb *hit* makes a constituent with *Mary*.

(2) \[v_{hit}[DP \text{Mary}]\]

What is important is that the structure (2) cannot be interpreted yet. The basic meaning of the verb *hit* is shown as in (3).

(3) \[x \text{ACT ON } y\]

When we try to interpret the structure (2), what we can understand is only that *y* in (3) corresponds to *Mary*. In Hale and Keyser (1993), it is claimed that at this point we cannot get appropriate interpretation. Therefore, an external argument is necessarily introduced to the structure (2).
Now we can understand that x corresponds to Tom and y corresponds to Mary, so that we can interpret the argument structure. This is the notion I adopt in this paper; an argument structure cannot be interpreted without an external argument.

Next, I will show what notion of Hale and Keyser (1993) I extend in this paper. Following the notion of Hale and Keyser (1993) that interpretation is not established with theta-roles but with syntactic relations, I assume that causative interpretation is also a result of some syntactic relations. According to Hale and Keyser (1993), what is called “causal relation” is represented as follows.

(5) \[\text{VP NP[V[V[VP]]]} \]

One verb can express one event. Thus, in (5), there are two events involved. One is represented in the lower VP, and the other is represented by V, which is the sister of lower VP. This structure yields such a semantic representation as in (6).

(6) \(n > (e_1 \rightarrow e_2) \)

In (6), n corresponds to the NP in spec of the higher VP, \(e_1 \) corresponds to the (causal) event which is represented by V, and \(e_2 \) corresponds to the event which is represented by lower VP. In a structure like (5), considering the relations among categories, Hale and Keyser (1993) claims that it can be said that n has a theta-role (just a relation) agent. However, I will argue that this structure is not enough to yield a causative interpretation, which I will explicate later. Briefly, there should be an additional functional projection to yield a causative interpretation. We will return to this topic in section 3.3, where I propose a structure of causative sentences.

1.2 Harley (2008)

As for causatives in Japanese, Harley (2008) proposes a structure which can cover a great range of syntactic properties of causatives. Here, I will examine her analysis. We should note that there are two types of causatives. One is lexical causatives, and the other is analytical causatives. They are different in that lexical causatives are monoclausal while analytical causatives are biclausal. This fact suggests that lexical causatives and analytical causatives are different in their construction, so any analyses about causatives should cover this important fact.
Taking it into consideration, Harley (2008) proposes that (7a) is the vP structure of lexical causatives and (7b) is the vP structure of analytical causatives.

(7a) \[vP \text{Taro-ga} [v’ [\sqrt{P} [\text{tenohira-o}] [\text{kae}]] [v^0 \text{-s}]] \]

Taro-N palm-A return-CAUS

“Taro changed his attitude suddenly”

(7b) \[vP \text{Taro-ga} [v’ [vP \text{Hanako-ni} [v’ [\sqrt{P} [\text{hanasi-o}] [\phi \text{tutae}]] [\phi \text{-ase}]]]] \]

Taro-N Hanako-D story-A convey-CAUS-PAST

“Taro made Hanako convey a story”

(Harley (2008))

The structural difference between lexical causatives and analytical causatives is the number of vPs. In lexical causatives, causative v projects immediately above √P and there is only one vP. On the other hand, in analytical causatives, there are two vPs. This structural difference can explain the contrast between lexical causatives and analytical causatives. Remember that analytical causatives are biclausal while lexical causatives are monoclausal. This fact can be explained if there are two vPs in analytical causatives while there is only one vP in lexical causatives. In this way, Harley (2008) elegantly captures the difference between lexical causatives and analytical causatives.

However, Harley (2008) does not explain the system of case assignment. In Japanese, the case system is different from English and the system corresponds to semantics. Therefore, clearly a plausible explanation about the case assignment system in Japanese causatives is needed. In section 4.1, I will propose an alternative analysis about Japanese causatives extending Harley (2008).

2. The Relation between Causatives and Passives

The virtue of the analysis in this paper is that it can capture the properties of both causatives and passives in a unified fashion. In fact, causatives and passives are not irrelevant, but they are related to each other regarding their semantic properties. I will now examine the relationship between causatives and passives in order to
show that causatives and passives have something in common in their structures. In English, *have* has many functions and meanings. It can be used as a standard main verb, as a causative verb, and as an auxiliary. When we compare these uses of *have*, we can find an interesting fact. That is, apparently there are some relations between causatives and passives. Consider the sentence below.

(8) I had a book stolen. (Washio and Mihara (1997))
(9) a. from my car when I stupidly left the window open. (ibid.)
 b. from his library by a professional thief who I hired to do the job. (ibid.)

When we interpret (8) with the context of (9a), the interpretation is passive. With (9b), the interpretation is causative.

It is important to note that this fact is not limited to the construction “DP *have* DP V-en.” We can also interpret (10) as both a passive sentence and a causative sentence.

(10) John had his students walk out of his class. (Ritter and Rosen (1997))

In Washio and Mihara (1997), it is claimed that HAVE passives as in (8) with the context of (9a) “complement” the area which BE passives cannot cover. Consider the following examples.

(11) The teacher was criticized by the students. (cf. Washio and Mihara (1997))
(12) *The teacher was criticized his article by the students. (ibid.)
(13) The teacher had his article criticized by the students. (ibid.)

(11) is a standard example of BE passives. As for (12), the intended interpretation is that the teacher’s article was criticized by the students. But this meaning cannot be expressed with BE passive. In order to complement this lack of expression, English has another method, the HAVE passive as in (13).

Taking these facts into consideration, it is natural to assume that causatives and passives are related closely. The most important goal in this paper is to explain this relation syntactically.
3. Proposal

3.1 vP above VP

First, we have to check the standard transitive construction, where an external argument projects. Today, it has generally been assumed that what introduces an external argument into a derivation is vP, and v assigns a theta-role agent to the external argument which is in spec of the vP. Therefore, when a vP projects above a VP, the voice of the sentence is considered to be active.

(14) a. Tom met Mary.
 b. \[
 \begin{array}{c}
 TP \\
 T [T' \ T [vP \ T [v' \ v [VP \ met \ Mary]]]]
 \end{array}
 \]

In (14b), after the VP projects, the vP projects in order to accommodate the argument Tom. At this point, this argument Tom is assigned the theta-role agent. The function of vP can be described as follows.

(15) vP

 (i) Accommodation of an external argument

 (ii) Assignment of the theta-role agent.

3.2 VoiceP above VP

Now, I will consider the structure of passives. In passives, there is no external argument in the derivation. This means that there is no need to project a vP above a VP. The natural expectation is that a TP directly projects above a VP in a passive sentence.

(16) a. The teacher was criticized by the students.
 b. \[
 \begin{array}{c}
 TP \ T [T' \ T [VP \ criticized \ the \ teacher]]
 \end{array}
 \]

However, I propose that the structure in (16b) is not enough to yield a passive interpretation. Remember that in this paper I adopt the notion of Hale and Keyser (1993) that interpretation of an argument structure cannot be done without an external argument. In (16b), there is no external argument, so the process of the interpretation of this structure should fail. If this is the case, how do we generate a passive sentence? In this section, I propose that a functional projection plays a role.
to determine the interpretation of a passive sentence, namely, VoiceP. When a VoiceP projects above a VP the voice of a sentence is determined to be passive, while when a vP projects above a VP the voice of a sentence is determined to be active. With this assumption, the structure of (16a) will be modified as that in (17).

(17) $[\text{TP the teacher}[\text{T'[VoiceP the teacher[Voice Voice'V P criticized the teacher]]]]]$

In (17), VoiceP projects above the VP in order to specify the interpretation of the argument structure. At this point, the verb *criticize* incorporates into Voice in the same way a verb incorporates into v in an active sentence. The DP *the teacher* moves to spec of the VoiceP, and here this DP is assigned the feature [+ passive]. In this paper, I assume that this feature is crucial for the passive interpretation, in the same sense that the theta-role *agent* is crucial for interpretation of an active sentence. Specifically, a DP which is assigned this feature is interpreted as an argument which has affectedness. After that, the DP *the teacher* moves to spec of TP for the reason of case agreement, and the derivation converges. The function of VoiceP is summed up as follows.

(18) VoiceP

(i) Assignment of [+ passive] to a DP in its spec.

(ii) A DP which is assigned [+ passive] is interpreted as affected by some action.

Note that there are two kinds of passive constructions in English, namely, BE passives and HAVE passives. We have already examined the derivation of BE passives above, and we will return to the derivation of HAVE passives in section 3.4.

3.3 Both vP and VoiceP above VP

In the literature, it has been claimed that what yields a causative reading is v (Hale and Keyser (1993), Murasugi, Fuji and Hashimoto (2008), Harley (2008), Miyagawa (2010)). However, it is dubious that a causative interpretation is a result of v’s selection of vP. The contribution of vP to an interpretation is that a head of vP assigns an agent theta-role to a DP in its spec. Agent means “the one who initiates a
certain action.” Are agent (initiator) and causer the same? Assume a situation where some students want to go out of a class because the class is boring. So these students want to cause an event where they go out of the class. Then, suppose a teacher, John, initiates the event above. To initiate the event, what should John do? All he has to do is to “permit” his students to go out of his class as the students want to do it. This interpretation is not causative, but permissive. John is actually an agent but not a causer.

How does a causative reading arise? Suppose some students are enjoying a class. So of course these students do not want to cause an event where they go out of the class. However, the students are so inactive that the teacher, John, gets irritated. Then, suppose John initiates an event so that his students walk out of his class. In order to initiate this event, what he has to do is to force his students to go out of his class. Consequently, the students are affected by this coercion. This interpretation is causative. Therefore, we can say that what is crucial in generating a causative interpretation is whether the DP which is in the spec of the complement of have (vP) is affected or not. Taking this into consideration, there should be a certain projection which determines whether a DP is affected or not. Here, we can apply the same assumption which was proposed in section 3.2. If VoiceP projects in a causative construction, it can supply the appropriate additional semantic factor, that is, the affectedness a DP has. With this assumption, now think about the construction of (19) step by step. First, a structure is generated which represents the proposition “students walk out of a class.”

(19) John had his students walk out of his class. (= (10))

(20) \[vP \text{his students}[v' \text{walk out of his class}] \]

After that, an argument which is supposed to be a causer is added. In order to add this argument, another vP is projected above the vP in (20).

(21) \[vP \text{Tom}[v' vP \text{his students}[v' \text{walk out of his class}] \]

As shown above, according to Hale and Keyser (1983), a causative interpretation has been generated at this point. However, in this paper, it is assumed that (21) is not enough to yield a causative interpretation. A functional projection
which specifies that the DP, the students, is affected is needed, namely, VoiceP. VoiceP projects between the two vPs, and the function of this projection is as mentioned above, the assignment of [+ passive]. The head of VoiceP moves to the higher vP and get fused with the head of vP, and it is lexicalized as have. Inserting VoiceP, finally the structure of (19) becomes as in (22).

\[
(22) [\text{TP} \text{John} [\text{T'_T} \text{TP} \text{John} [\text{v'_v_P} \text{his students} [\text{Voice'} \text{Voice} [\text{v'_v_P} \text{his students} [\text{v'_v} \text{walk out of his class}]])])]]]
\]

In (22), when the derivation has proceeded to VoiceP, the DP the students moves to the spec of VoiceP. At this point, a feature [+ passive] is assigned to the students. Remember that whether DP is affected or not is crucial for yielding a causative interpretation. This is decided with this feature [+ passive]. The DP which is assigned [+ passive] is interpreted as an affected argument. After the DP the students moves to the spec of VoiceP, another vP projects above it, and the DP John is merged in the spec of this vP. Since the DP the students is assigned [+ passive], this construction is interpreted as “John initiated an event so that his students walk out of his class, and the students were affected by some event.” The event which affected the students is naturally derived by the context. It is that John forced the students to walk out of his class. This interpretation is actually causative.

Now, we have seen the three types of selections of functional projections above a VP. Under TP, when only a vP projects above a VP in a certain sentence, the voice of the sentence is active. When only VoiceP projects above VP, the voice of the sentence is passive. And when both vP and VoiceP project above VP, a causative meaning is generated.

3.4 Consequences

In this section, I will show what consequences we can get from the assumption of VoiceP. Concretely, I will explain (i) why we can interpret a HAVE causative sentence as a passive sentence, and (ii) why we have to choose HAVE passives when we involve indirect passives. First, remember that HAVE causatives in English can be interpreted as a passive sentence as we saw in chapter 2. When we
interpret (19) as a passive sentence, how the derivation proceeds? One possible expectation is that the structure is the same as that of the causative sentence, but the way DPs move is different. Actually, the following structure can be interpreted as a passive sentence.

(23) \[TP \text{John}[_{T'} T_{vP} \text{John}[_{v'} v_{VoiceP} \text{John}[_{Voice'} V_{voiceP} \text{his students}[_{v'} \text{walk out of his class}]]]] \]

The whole construction in (23) is same as (22), but the way DPs move is different. In (23), when the derivation has proceeded to VoiceP, DP John is merged. Here, John is assigned [+ passive]. For the case reason, this DP John moves to the spec of TP. In this case, compared to (22), the only difference is that a DP which is assigned [+ passive] is not the students but John. Thus, the interpretation of this construction is “John’s students walked out of his class and John was affected by the event”. The event which affected John is clear from the context, that is, the event that students walked out of the class. In this interpretation, John is not a causer, but an experiencer.

Here, I have to mention the mechanism of case assignment. In this paper, I employ the mechanism of case assignment which is extended from that of Chomsky (2008). In Chomsky (2008), as for accusative case, the category which has the ability to assign accusative case (henceforth [ACC CASE]) is a phase head, v. However, v does not assign accusative case by itself, but transmits [ACC CASE] to V. After that, V assigns accusative case to the DP in spec of VP. Extending this mechanism, we assume that assignment of accusative case in causative constructions is done in the following way.

(24) \[WP \text{SPEC}[_{W'} W_{XP \text{SPEC}[_{X'} X_{YP \text{SPEC}[_{Y'} Y \text{Z}]]]]}] \]

In (24), W (which corresponds to v in (22) and (23)) is a phase head and has [ACC CASE]. W does not assign accusative case itself but transmit [ACC CASE] to X (which corresponds to Voice in (22) and (23)), which is the closest head W
c-commands. After that, X assigns accusative case to the closest DP which X c-commands (which corresponds to the students in (22) and (23)). In (22) and (23), though the way DPs move is different, the assignment of accusative case is done in the same way with the mechanism in (24).

Next, I will explain about HAVE passives in English. There are two kinds of passive constructions in English as we saw in chapter 2. For convenience, the examples of passive sentences are repeated below.

(25) The teacher was criticized by the students. (= (11))
(26) *The teacher was criticized his article by the students. (= (12))
(27) The teacher had his article criticized by the students. (= (13))

(25) is a standard BE passive. (26) is an ungrammatical sentence, whose intended meaning is that the teacher’s article was criticized by the students. In order to express this meaning, we have to use a HAVE passive as in (27). Now, consider the derivation of (27). The difference between (25) and (27) is that in (25) there is only one DP which is affected while there are two DPs which are affected, the teacher and his article, in (27). Therefore, the derivation of (27) has to contain two VoicePs to assign [+ passive] to two DPs. Taking this into consideration, the structure of (27) can be shown as below.

(28) \[TP \text{the teacher}[T' T[V\text{criticize his article}[V' V[VP criticize his article]][VP]]] \]

The beginning part of the derivation (28) is the same as a standard BE passive. When the derivation proceeds to the first VoiceP, the verb criticize incorporates into Voice and becomes the passive particle criticized. The DP his article moves to spec of VoiceP and here it is assigned [+ passive]. The only thing which is different from BE passive is that another VoiceP projects above the lower VoiceP. At this point, DP the teacher is merged into spec of VoiceP, and it is assigned [+ passive]. At this point, lower Voice has got fused with the verb criticize, thus it can be surface overtly, however, higher Voice has not incorporated into anything, so it would fail to externalize. In order for the derivation to converge, a vP without any external
arguments projects above the higher VoiceP. Then Voice moves to the head position of vP and surfaces as *have*. In this construction, both *the teacher* and *his article* are assigned [+ passive], so the interpretation is “the teacher was affected somehow, and his article was affected by criticizing.” By what the teacher was affected is clear according to the context. It is the event where his article was criticized.

Remember that we can also get a causative interpretation from (27) with some additional context as in (29).

(29) The teacher had his article criticized by his students in order to teach them what is critical thinking.

We can cover this variety by assuming that in the derivation of (29), the way DPs move is slightly different from that of (28).

(30) \[
\begin{array}{c}
\text{TP the teacher}\text{[T' T[vP the teacher[v[v[VoiceP his article[Voice' Voice[VoiceP his article[VP criticize his article]]]]]]]]]]}
\end{array}
\]

In (30), what is different from (28) is that the DP *the teacher* is generated in the spec of vP in order to be interpreted as an agent. In addition, the derivation involves two movements of DP *his article* to the specs of two VoicePs. It is because *his article* is affected by two events. One event is the students’ criticism, and the other is the teacher’s coercion. In order to express these two kinds of affectedness, *his article* has to move to two different positions (specs of VoicePs).

Now I will sum up this chapter. Considering the close relation between causatives and passives, I proposed a functional projection which plays a crucial role in the derivations of both causatives and passives. The assignment of [+ passive] to DPs is crucial to yielding causative readings and passive readings. In other words, whether a sentence is a causative or some kind of passives is determined by what projects above the lowest bare VP. This is summed up as below.
4. Japanese Causatives and Passives

4.1 Japanese Causatives

In this section, I apply my original VoiceP analysis to Japanese causatives and passives. Importantly, I will show that syntactic and semantic differences of causatives and passives between English and Japanese can be reduced to just two parameters. Before we proceed to the analysis, we will check these two parameters briefly for ease in understanding the analysis. One is varieties of case. In English, a causee is assigned accusative case. On the other hand, in Japanese there are two kinds of case which can be assigned to causees. One is the accusative case using “o,” and the other is the oblique case using “ni.” As we will see later, this difference of case marking causes a difference in the number of case positions. The other parametric difference is that in English v is a phonetically null element while in Japanese it is phonetically realized. This difference determines whether vP can
First, I will consider the derivation of causatives in Japanese. The Japanese sentence which corresponds to (10) is (30).

(33) Sensei-ga seito-o kyousitu-kara deteik-ase-ta.

The teacher-NOM student-ACC classroom-from go out-CAUSE-PAST

“The teacher had his students walk out of his class.” (causative)

Applying the same assumption as in English, the structure of (33) can be shown as follows.

(34) \[
\text{TP} \quad \text{sensei[T]} \quad \text{[vP sensei[VoiceP seito[VoiceP seito[vP kyoushitu kara deteik[v]]Voice][v]]T]]}
\]

In (34), when the derivation has proceeded to VoiceP, seito moves to the spec of VoiceP. At this point, seito is assigned [+ passive], which makes seito be interpreted with affectedness. After that, another vP projects, in whose spec sensei is merged. Here, sensei is assigned agent. As sensei has agent theta-role and seito has agent theta-role and is assigned [+ passive], the whole interpretation is “Sensei initiated the event that seito walked out of his class and seito initiated the event that they walked out of the class with affectedness.” It is the causative interpretation, which is completely the same as in English.

Now, we consider the reason why we cannot get a passive interpretation from (33) in contrast to English. In the derivation (34), it seems that sensei can be merged in spec of VoiceP, so that we can interpret (33) as a passive sentence, which is not true. Remember that in Japanese causative sentences which contain intransitive verbs, there are two patterns of case marking on causees, namely, “o” (accusative) case and “ni” (dative) case. Then, it is plausible to assume that there are two mechanisms for case marking. In this paper, we assume that in Japanese the assignment of accusative and dative case in causative constructions is done in the following way.
In (35), W has two abilities to assign case. One is [DAT CASE], which assigns dative case to the closest DP that W c-commands. Note that this assignment does not take the step of “inheritance.” The other is [ACC CASE], which is transmitted to the head of the lower projection. After that, X assigns accusative case to the closest DP it c-commands. With this mechanism, the reason why we cannot get a passive reading from construction (34) is clear.

Comparing (36) with (35), higher vP corresponds to WP, VoiceP corresponds to XP and lower vP corresponds to YP. In (36), the spec of VoiceP is a case position in contrast to English. Therefore, when the derivation has proceeded to vP, accusative case has been assigned to *seito* and dative case has been assigned to *sensei*. In (36), T has uninterpretable \(\phi \)-feature (henceforth [u-\(\phi \)]), so it is a probe. Probe searches an appropriate goal to agree. Note that only a DP (i) which has interpretable \(\phi \)-features (henceforth [i-\(\phi \)]) and (ii) which has not been assigned any case can be an appropriate goal. In (36), when the derivation proceeds to CP, T tries to find an appropriate goal, but it cannot find any appropriate goals since every DP has been assigned some case. Therefore, uninterpretable features in T remain in the derivation, so the derivation crashes.

In Japanese, as we saw in chapter 1.2, the causative suffix *-sase* can be used in a permission sentence too. In English, it is impossible to express permission using a causative verb *have*. What causes this difference? Here, remember the second parametric difference between English and Japanese. It is whether v can surface overtly or not. In Japanese, intransitive v and transitive v are pronounced as in (37).
(37) a. \textit{utu-s-(r)u} / b. \textit{utu-r-(r)u}

\begin{itemize}
 \item a. transitive
 \begin{itemize}
 \item \textit{vP}\textit{agent v' v (+ cause) VP theme V' location V \textit{utu}}
 \end{itemize}
 \item b. intransitive
 \begin{itemize}
 \item \textit{vP}\textit{theme V' location V}
 \end{itemize}
\end{itemize}

(Murasugi and Hashimoto (2004))

In contrast, \textit{v} is not pronounced in English.

(38) a. Mary sank a boat.

b. A boat sank.

In English, \textit{v} is a phonetically null element and must be lexicalized by incorporating into lower head, which means that \textit{vP} cannot project by itself. However, in Japanese, \textit{v} is phonetically realized. Thus, it is plausible to assume that \textit{vP} can project by itself in Japanese as long as \textit{v}'s suffixal properties are satisfied. Then, let us think what will happen if \textit{vP} projects without VoiceP above another \textit{vP}.

\begin{itemize}
 \item Sensei\textit{-NOM} seito\textit{-DAT} kyoushitsu\textit{-from go out-CAUS-PAST}
 \item [TP Sensei\textit{T'} [vP Sensei\textit{v'} [vP seito\textit{v'} [VP kyoushitsu\textit{ca-de-teik} v]] v]] T]
\end{itemize}

In (39), the higher \textit{vP} projects directly above the lower \textit{vP}. In this case, both Sensei and seito are assigned agent, and no argument is assigned [+ passive] since no VoiceP projects. An argument which is assigned agent is one which initiates an event, so seito is an initiator of the action “walk out of a class.” Sensei is also an agent and it is in spec of higher vP, so Sensei is an initiator of the event “students walk out of a class”. Since seito is not assigned [+ passive], it is understood that students walked out of a class on their own motive. Therefore, the interpretation of whole construction is “Students had motive to go out of the class, and the teacher initiated the event that students walk out of the teacher’s class without any coercion.” It is the
permission reading. Checking how DPs are assigned case, the object is assigned dative case as we saw in chapter 1.2. Assuming the case assignment system in (35), the higher v has the ability to assign two cases, [DAT CASE] and [ACC CASE]. As there is no appropriate head to transmit [ACC CASE], accusative case is not assigned by this ability. On the other hand, the higher v assigns dative case directly with [DAT CASE] to the closest DP which v c-commands. In this way, seito is assigned dative case.

It is clear why we cannot interpret a sentence like (10) as a permissive sentence in English. In English, it is specified that v is null suffix and it is not pronounced. Thus, in English vP cannot project independently unlike in Japanese to generate permissive meaning. It can be considered that this is why a specific verb let is needed to express the permission meaning in English.

4.2 Japanese Passives

Next, we will move on to passives in Japanese. What is important is that there are two kinds of passives in Japanese. Remember that in English, when we generate a passive sentence in which two DPs are affected, we have to choose HAVE passive rather than BE passive. On the other hand, in Japanese we can express it in a standard passive construction. I will repeat the examples of English (11) to (13) for convenience below.

(40) The teacher was criticized. (= (11))
(41) *The teacher was criticized his article by the students. (= (12))
(42) The teacher had his article criticized by the students. (= (13))
(43) Sensei-ga gakuseitachi-ni hihans-are-ta.
 teacher-NOM students-DAT criticize-PASS-PAST
(44) Sensei-ga gakuseitachi-ni ronbun-o hihans-are-ta.
 teacher-NOM students-DAT thesis-ACC criticize-PASS-PAST
 (Washio and Mihara (1997))

Sentences like (44) is called “indirect passive.” Though the interpretation which both (41) and (44) intend to express is the same, (41) is ungrammatical while (44) is grammatical. What makes this difference? In order to examine this question, first I
will propose the structure of standard passives in Japanese. The \(-ni\) phrase which corresponds to a \textit{by} phrase in English is an adjunct, so it is not represented in the derivation.

\[
(45) \left[TP \underbrace{\text{sensei}\[T\]}_{\text{VoiceP}} \underbrace{\text{sensei}\[\text{Voice'}\]}_{\text{Voice}} \left[VP \text{hihans} \right] \underbrace{\text{Voice}}_{\text{Voice'}} \right] T]
\]

As in English, vP does not project in Japanese direct passives since it is not needed to accommodate an external argument. Therefore, something which determines the interpretation of this argument structure is needed, and VoiceP projects above the VP. The DP \text{sensei} moves to spec of the VoiceP, and it is assigned \([+ \text{ passive}]\), which determines the interpretation of this argument structure. After that, \text{sensei} moves to spec of the TP for the reason of case, and the derivation converges.

Next, we move on to indirect passives in Japanese. What we should notice is that Japanese indirect passives are morphologically the same as direct passives, namely, \(-sase\) is used both in direct passives and indirect passives, while in English we have to separate \textit{BE} passives and \textit{HAVE} passives. Why does this difference exist? Considering the interpretation of (44), the structure can be represented as in (46).

\[
(46) \left[TP \underbrace{\text{sensei}\[T\]}_{\text{VoiceP}} \underbrace{\text{sensei}\[\text{Voice'}\]}_{\text{Voice}} \left[VP \underbrace{\text{ronbun}[\text{hihans}]\text{Voice}}_{\text{Voice'}} \right] \underbrace{\text{Voice}}_{\text{Voice'}} \right] T]
\]

In (46), no external argument exists, which requires VoiceP in order to determine the interpretation of this argument structure. Since there are two DPs which should be assigned \([+ \text{ passive}]\), namely, \text{sensei} and \text{ronbun}, two VoicePs are required. First, one VoiceP projects above the VP and the complement of the verb \textit{hihans(uru)}, \textit{ronbun}, moves to its spec to be assigned \([+ \text{ passive}]\). After that, another VoiceP projects above the lower VoiceP, and \text{sensei} is merged into the spec of the VoiceP, and is assigned \([+ \text{ passive}]\). When the derivation proceeds to the TP, \text{sensei} moves to its spec to be assigned nominative case, and the derivation converges.

Assuming the structure as in (46), since two VoiceP structures exist, the representation of it should be as follows.
(47) *Sensei-ga gakuseitachi-ni ronbun-o hihans-are-rare-ta.

However, (47) is not grammatical because the sequence of the past suffix –(r)are is awkward. Here, a paradox occurs. Seeing the representation, we expect that only one VoiceP exists, while considering the interpretation, we expect that two VoicePs exist in the derivation. Interestingly, the same paradox can be seen in another construction in which VoiceP is used, that is, causatives.

(48) Isya-ga kangofu-ni kanja-o yukkuri taore-sase-ta.

“The doctor had the nurse have the patient go down slowly.”

In (48), two causations exist. One is the causation from the doctor to the nurse, and the other is from the nurse to the patient. Therefore, we expect the structure of (48) to be as (49).

Assuming the structure as in (49), the representation of it will be (50), which is ungrammatical.

(50) * Isya-ga kangofu-ni kanja-o yukkuri taore-sase-ta.

This is the same kind of paradox observed in indirect passives. That is, seeing the surface representation we expect only one VoiceP exists, while considering the interpretation we expect two VoicePs to exist. Considering these facts, it seems that we can make the following generalization.

(51) Pronunciation of Voice in Japanese

When two VoiceP project in succession, only one Voice head is pronounced. Therefore, basically there is no difference between HAVE passives in English and indirect passives in Japanese. That is, in both of them, two VoicePs project successively. In English, the lower Voice is incorporated by V to be externalized as a
passive participle, and the higher Voice incorporates into v to be externalized as *have*.

I will sum up this chapter. In Japanese, v can surface by itself in contrast to English. In addition, in Japanese, there are two types of cases to be assigned to objects in Japanese causatives and passives, namely, accusative and dative, so the system of case assignment is different from the one in English. Because of this difference, the range of expression of causatives and passives in Japanese is different from that in English. The range of expression of Japanese is shown in the following table.

(52) \[\begin{array}{c}
T P \\
X P \\
Y P \\
V P
\end{array} \] (53) \[\begin{array}{c}
T' \\
X' \\
Y' \\
V P
\end{array} \]

<table>
<thead>
<tr>
<th>XP</th>
<th>YP</th>
<th>construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>vP</td>
<td>vP</td>
<td>transitive</td>
</tr>
<tr>
<td>VoiceP</td>
<td>vP</td>
<td>direct passive</td>
</tr>
<tr>
<td>vP</td>
<td>VoiceP</td>
<td>permission</td>
</tr>
<tr>
<td>VoiceP</td>
<td>VoiceP</td>
<td>causative</td>
</tr>
<tr>
<td>VoiceP</td>
<td>VoiceP</td>
<td>indirect passive</td>
</tr>
</tbody>
</table>

Conclusion

In this paper, I have claimed that in causatives and passives the functional projection, VoiceP, needs introducing into a derivation. In addition, I demonstrated that the difference between English and Japanese concerning with causatives and passives can be reduced to only two parametric differences between English and Japanese. That is, varieties of case and whether v/Voice is phonetically realized or not.

References

