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                                    Abstract 

   The nonlinear simulation of colliSiOnal drift-tearing mode is performed using the reduced two fluid 
model, and the characteristics of poloidal flow generated by tearing mode is investigated in the phase of 
magnetic island formation. It is found that the poloidal flow extends to the outside of magnetic island. It 
is also found that the ion viscosity is an important parameter to determine the flow pattern. 
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1. Introduction 

  The spontaneous topology change of magnetic field 
is observed in magnetized plasmas. The magnetic is-
land formation is one prototypical example of structure 
formation in high temperature plasma. There are some 
important problems to be resolved. 

  The control of magnetic island is a crucial issue in 
the International Thermonuclear Experimental Reac-
tor(ITER); if the magnetic island appears, the confine-
ment degradation occurs, which may prevent the self-
ignition. This issue requires progress of understanding 
from various view points. First, the island can be an ori-

gin of collapse events, i.e., the disruption can be caused 
by the overlap of magnetic islands1). Further assess-
ment on the recent work on tearing mode is found in 
a recent review2) . Second, the active control of mag-
netic island is studied with the 'electron cyclotron cur-
rent drive', which heats the plasma and modifies the 
bootstrap current to suppress the neoclassical tearing 
mode3) . Third, the coupling of the tearing mode with 
the pressure stimulates studies in wider circumstances 
of configurations, and the characteristics of static mag-
netic island is intensively investigated in the helical 
devices4) . Fourth, the magnetic island also influences 
the meso-scale poloidal flow, such as zonal flows5' s) 
and a new route of the influence of islands on confine-
ment is searched for7) . The flattening of pressure profile 
is well known, and recently the poloidal flow in the is-

land is also measured in the herical device8) . 
  It has been often believed that the tearing mode 

is linearly stable in high temperature tokamak plasmas 
and there exists external drive to excite magnetic is-
land nonlinearly(see review 2)). Indeed, the sawtooth 
collapse and the edge localized mode9) sometimes trig-

ger the neoclassical tearing mode. However, the mag-
netic island appears without clear trigger events in some 
casesw) . These observations lead to two working hy-

pothesis. In the first line of thought, it is suggested 
that the linear tearing mode might be unstable so as to 
explain the trigger-less excitation of magnetic island 11) 
Then, the experimental observation of current profile, 
which determines the linear stability of tearing mode, 
should be evaluated more accurately in toroidal geom-
etry. In addition, the analysis of tearing mode in the 
colliSiOnless regime (including electron inertia and dy-
namic neoclassical viscosity) is necessary. The alterna-
tive way of thought is to take into account the coupling 
with the background microscopic turbulence. Possibility 
has been pointed out that a stable neoclassical tearing 
mode can be excited by background turbulence, based 
on the theory12' 13) and on the nonlinear simulation14) 

   In the theoretical research, much works has been 
done for the neoclassical tearing mode. Saturation level 
of magnetic island seems to be explained2' 11, 15), but 
trigger mechanism requires further research. The influ-

ence of the island on transport has not yet been fully 

understood. The interaction between magnetic island 

and drift waves has been investigated in the context 

of the drift-tearing mode16' 17). This model describes 

the coexistence of linearly unstable tearing mode and
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linearly stable drift waves. It is known that the drift-
tearing mode describes the characteristics of magnetic 
island observed in experiments, for instance, flattening 
of the pressure gradient and generation of the poloidal 
flow17'  18). Such modifications of equilibrium profile is 
significant for the confinement degradation, and they 
also affect the threshold of other instabilities in the pe-
ripheral region of the island. Surveying the proceeding 
simulations on drift-tearing mode, the pressure flatten-
ing effect was analyzed in simulation results. However, 
the generation of poloidal flow has not been subject to 
attentions so much. 

   Our motivation of this study is as follows. The 
anomalous transport in tokamak plasmas is dominated 
by the turbulence. The intensity of flux is determined 
by the competition between turbulence and zonal flow5). 
The importance of the Maxwell stress, in addition to the 
Reynolds stress, has been pointed out, as was reviewed 
in 5). In addition, the oscillation of geodesic acoustic 
mode(GAM) is thought to be important for turbulent 
transport. Since the GAM absorbs the energy of the 
zonal flow, then the turbulent transport is excited19). 
By analogy with this, the poloidal flow generated by 
magnetic island might interact with the zonal flow and 
modifies the turbulent transport. On the view point of 
multi-scale interaction between turbulent transport and 
MHD, the flow generation should be examined in detail. 

   In this paper, the nonlinear simulation of colliSiOnal 
drift-tearing mode is performed, and the generation 
mechanism and the characteristics of poloidal flow gen-
erated by magnetic island is investigated, using the re-
duced two fluid model. In § 2, we introduce our model 
equations. In § 3, the nonlinear simulation of colliSiOnal 
drift-tearing mode is performed, and characteristics of 

poloidal flow is discussed. In addition, the angular mo-
mentum of poloidal flow and the transport by colliSiOnal 
drift-tearing mode are shown. § 4 is devoted to summary 
and discusSiOn.

2. Model Equations 

  In this paper, the linear stability and the nonlinear 
evolution of colliSiOnal drift-tearing mode are investi-

gated using the reduced set of two-fluid equations18), 
which is derived from Braginskii's two fluid equations. 
In large tokamak plasmas such as JT-60U, the colliSiOnal 
frequency is sufficiently small, so that the colliSiOnless 
drift-tearing mode should be considered29). However, 
we are interested in the generation of poloidal flow fol-
lowed by the magnetic island formation not linear sta-
bility, so that we will analyze colliSiOnal drift-tearing 
mode as a first step. 

   We consider the cylindrical plasma coordinates 

(r, 0, z) stand for the radius, the poloidal angle and the

toroidal position. Variables, notations and the the nor-

malization are almost the same as those in our previous 

work21), here we briefly explain model equations. The 

model equations are written as:

Equations (1)-(4) are vorticity equation, generalized 
Ohm's law, continuity equation and electron heat bal-
ance equation, respectively. The variables {¢), A, n, T, p} 
indicate the electrostatic potential, vector potential par-
allel to the ambient magnetic field, electron density, elec-
tron temperature and electron pressure, respectively. 
The colliSiOnal transport coefficients {A,7711 , 14001, XI } 
are ion viscosity, parallel resistivity, perpendicular 
resistivity(ijj3 implies particle diffusivity), electron 

parallel thermal conductivity and electron perpendicu-
lar thermal conductivity, respectively. We may assume 
these transport coefficients implicitly include the tur-
bulent transport effect. Quantities {(5, 13} indicate ion 
skin depth normalized by the minor radius and plasma 
beta value at plasma center. 13,9 is the beta value at the 
rational surface. 

   A perturbed quantity f (x,t) is assumed to vary as:

in the cylindrical coordinates (Fourier expanSiOn in 6 
and z directions). m is a poloidal mode number and 71 
is a toroidal mode number. In our normalization, the 
center and the edge of plasma corresponds to r = 0 and 
r = 1, respectively. The perturbation im,n,(r) satisfies 
the boundary conditions; f,,„(0) = fm,„(1) = 0 for 
m, n 0 and afo,o/arir—o = fo,o(1) = 0. In addition, 
we impose the same boundary conditions to the vorticity 

Viii5 and the current 
   The energy conservation relation is written as



where  ( ) indicates the volume integral and H is Hamil-
tonian defined as:

The electrostatic and electromagnetic energies of (m, n) 
Fourier mode averaged in the r direction are given by:

The equilibrium quantities are chosen as:

where the prime indicates the radial derivative. q(r) 
stands for the safety factor. {r3, qo, q,,, e} are the radial 

position of rational surface, the safety factor at plasma 
center, the safety factor at rational surface and the in-
verse aspect ratio of plasma, respectively. In this profile, 

/38 is given by 138 = /3(1 - r1)2. 
   In the numerical calculation, we set qo = 1.5, qT = 

2.0, rs = 0.6, e = 0.2, ,Q = 0.01 and 6 = 0.01, which are 
typical values in large size tokamaks. The equilibrium 
current jo(r) is evaluated by the cylindrical equilibrium. 
The default value of transport coefficients are chosen as 

p = 10-5, 7711 = 10-5, ii = 2 x 10-5, XII = 10°, X± = 
10-5. 

  In the linear stability analysis, we use the inverse it-
eration method to solve the eigenvalue problem. For the 
nonlinear simulation, the predictor-corrector scheme is 
adopted to calculate the time evolution, and the spec-
tral method is used to evaluate nonlinear terms. For 
the simplicity, we consider the resonant mode with sin-

gle helicity, which satisfies min, = 2. The radial grid 
is 512 meshes, and the time step is 0.01 for nonlinear 
calculations.

3. Analysis 

3.1 Linear stability analysis 

   For the preparation of nonlinear simulation, the lin-
ear stability analysis is performed using the linearlized 
model equations, which are given in Ref.21) . 

  Figure 1 shows the linear growth rate of colliSiOnal 
drift-tearing mode. n indicates the mode number. It is 
shown that only (m, n) = (2, 1) mode is unstable and the 
drift waves with higher mode number ((m, n) = (2n, n) 

(n > 2)) are stable.

  Figure 2 shows eigenfunction of (2,1) colliSiOnal 
drift-tearing mode, where the vorticity and current are 

plotted. It is found that the vorticity and the current 
have real and imaginary parts around the rational sur-
face rs = 0.6, which plays a role to generate the poloidal 
flow shown in the next subsection. 

3.2 Nonlinear simulation 

  In this subsection, the nonlinear simulation of colli-
SiOnal drift-tearing mode is performed. Firstly, the tem-

poral evolution of magnetic island and the poloidal flow 
is discussed. The detailed analyses are given in the next 
two parts. 

3.2.1 Temporal evolution of magnetic island 
      and poloidal flow 

  In the nonlinear simulation, the saturation of mag-
netic island and generation of poloidal flow are observed. 

   Figure 3 shows time evolution of EA2 1 and Ec30,o . 
In this case, the vector potential A2,1 and the scalar po-
tential Q;o,o correspond to the magnetic island and the

Fig. 1 Mode number dependence of linear growth 

     rate of colliSiOnal drift-tearing mode.

Fig. 2 The eigenfunctions of (2, 1) colliSiOnal 
     drift-tearing mode; (a) vorticity and (b) 

     current. The solid and dotted lines indi-
     cate the real and imaginary parts, respec-

      tively.



poloidal flow, respectively. The linear growing phase is 
between t = 0 and t = 4000. After t = 4000, the so 

called 'Rutherford regime22)' is observed. The satura-

tion time of magnetic island is about t = 8000 similar 

to the case of poloidal flow. 

  Figure 4 indicates the contour plot of helical  flux22) 

at t = 12000 and z = 0. The helical flux is defined by:

in our normalization, and the contour plot of helical 

flux describes the topology of perturbed magnetic flux 

surface. The separatrixes of magnetic island at the 

maximum width are radially located at r = 0.44 and 

r = 0.67. The X-point and the 0-point are located at

r = 0.61 and r = 0.56, respectively. 
  Figure 5 indicates the radial profiles of pressure and 

poloidal flow velocity. The poloidal flow velocity is given 
by: 

                 a0-0,0                             (15) 
      ve=a r15 

which is the 0 component of E x B drift velocity in our 
normalization. The initial conditions are represented 
by broken lines, and the solid lines shows the profiles 
at the state where magnetic island is saturated. It is 
dbserved that the pressure gradient inside the separatrix 
is flattened by magnetic island(the residual gradient of 
the pressure gradient on the magnetic island is owing 
to the fact that the thermal conduction is kept finite in 
this simulation). The poloidal flow has the radial nodes, 
and extends out the separatrix. 

  It is found that the saturation amplitude of magnetic 
island are not strongly affected by the poloidal flow.

Fig. 3 The time evolutions of magnetic island en-

     ergy EA21 and poloidal flow energy E 0
,0.

Fig. 4 The contour plot of helical flux function.

Fig. 5 The radial profiles of equilibrium quanti-
     ties modified by magnetic island; (a) the 

     pressure and (b) the poloidal flow veloc-
     ity. The solid and dotted lines indicate 

     the profiles in the initial state and the sat-
      urated magnetic island state, respectively.



3.2.2 Poloidal flow generation 

  Next, we investigate the generation mechanism of 

poloidal flow. 
  Figure 6 shows time evolution of magnetic island 

and poloidal flow growth rate. The growth rates  -y are 
calculated by the data of Fig.3, using the definition 2-y = 

(e/at) in X (where X is either for magnetic perturbation 
energy or flow energy). 

  The growth rate of poloidal flow is just double of 
that of magnetic island which implies the poloidal flow 
is generated by the quasi-linear effect of magnetic island 

perturbation. This is explained as follows. The (0, 0) 
component of Eq.(1), which indicates the evolution of 

poloidal flow, is given as:

and k9 = m/r, where the suffix * indicates the complex 
conjugate. These brackets produce quasi-linear effects. 
If j2,1 has the time dependence of exp {(-y +iwr) t} 
where wr is the rotation frequency, the complex conju-
gate of VI g;2,1 is proportional to exp { ('y — iwr) t}. So 
that, the time dependence of bracket is exp (2-yt) and 
the growth rate of poloidal flow is double of the growth 
rate of magnetic island, if the flow is driven by the quasi-
linear effect. Higher harmonics is driven nonlinearly by 
the (2, 1) mode, so that they have larger growth rate. 
The flow has twice larger growth rate compared to (2, 1) 
mode. The comparison in Fig.6 shows that the flow is 
dominantly driven by the (2, 1) perturbation that in-
duces magnetic island.

  Next, the contribution to the quasi-linear effect from 
higher harmonics is investigated. 

  Figure 7(a) shows the temporal evolution of poloidal 
flow energy and (b) the radial structure of poloidal flow 
with the different number of Fourier harmonics. '1 
mode' indicates that we use (2, 1) and (0, 0) mode in 
the nonlinear simulation. Similarly, '4 mode' represents 
the case where (2,1), (4, 2), (6, 3), (8, 4) and (0, 0) are 
retained. In Fig.7(a), the saturation level of poloidal 
flow energy is not strongly dependent on the number of 
harmonics. This indicates that the lowest mode number 

(2, 1) dominates the poloidal flow generation, although 
the fine structure of poloidal flow is modified by the 
higher harmonics. The radial structure with 4 mode 
case is almost same as 16 mode case in Fig.7(b), so that 
we confirm that 4 mode case is sufficient for discusSiOn 
of poloidal flow generation. 

  We next demonstrate the role of diamagnetic flow 
on the turbulence-driven mean poloidal flow.

Fig. 6 The time evolutions of magnetic island 

     and poloidal flow growth rate.

Fig. 7 The number of harmonics dependence of 
     poloidal flow generation; (a) the time evo-

     lution of energy and (b) the radial profile 
      of velocity.



  Figure 8 indicates the dependence of saturation am-

plitude of poloidal flow energy on the diamagnetic  ro-
tation frequency of (2,1) mode. The diamagnetic fre-

quency is calculated by initial condition of equilibrium 
temperature and density profile. It is found that the 

generation of poloidal flow is strongly depend on the dia-
magnetic effect. In the classical tearing mode ((Ai* = 0), 
the amplitude of perturbed scalar potential and per-
turbed vector potential have pure real or pure imagi-
nary values. In this condition, brackets in Eq.(16) have 
no contribution, therefore the poloidal flow is not gen-
erated. When the diamagnetic drift frequency has finite 
value, those amplitude become complex shown as Fig.2, 
so that the brackets have the contribution to the gener-
ation of the poloidal flow. 

   Next, we investigate the contribution to the genera-
tion of poloidal flow from Reynolds and Maxwell stress. 
Figure 9(a) shows the temporal evolution of poloidal 
flow energy and (b) the radial structure of poloidal 
flow. The first term and the second term in R.H.S. 
of Eq.(16) are called 'Reynolds stress' and 'Maxwell 
stress', respectively. 'Reynolds type' and 'Maxwell type' 
in Fig.9 indicate the cases without Maxwell stress and 
without Reynolds stress in Eq.(16), respectively. In 
these cases, to keep the energy conservation property, 

V1jko,o1 in the R.H.S. of Eq.(1), and V11C/50,0 in 
the R.H.S. of Eq.(2) are also neglected, respectively. 
'mix type' indicates the case with both Reynolds stress 

and Maxwell stress retained. It is found that the sat-
uration level of poloidal flow energy without Reynolds 
stress or Maxwell stress are larger than that with both 
terms in Fig.9(a). This result implies that Reynolds 
stress and Maxwell stress partially cancel each other.

In the framework of ideal MHD theory, the residue of 
summation of Reynolds stress and Maxwell stress per-
fectly vanishes . The radial profile via Reynolds stress 
approximately has the even parity, on the other hand, 
Maxwell stress gives the odd parity in the separatrix. 
The difference of parities between two stress reflects the 

parity of eigenfunctions in the linear regime (Fig.2). 
  Figure 10 shows the ion viscosity(p) dependence of 

poloidal flow. Three cases are plotted; '1.E-6', '1.E-5' 
and '1.E-4' represent 10-6, 10-5 and 10-4, respectively. 
In Fig.10(a), as the value of ion viscosity increases, the 

growth rate of poloidal flow energy becomes small, since 
the growth rate of (2, 1) colliSiOnal drift-tearing mode is 
monotonic decreasing function of ion viscosity in our 

parameters of interest. The saturation level of poloidal 
flow energy is also monotonic decreasing function of ion 
viscosity. According to the increase of ion viscosity, the 
radial flow pattern changes. Comparing radial structure 
in cases with = 1.E - 6' and 'it = 1.E - 4', it is 
found that they roughly have the odd parity and the

Fig. 8 The initial diamagnetic rotation frequency 
     of (2, 1) mode dependence on saturation 

     energy level of poloidal flow.

Fig. 9 The three types of poloidal flow; (a) the 
     time evolutions of energy and (b) the ra-
     dial profiles of velocity.



even parity in the separatrix, respectively. There is a 
similarity between Fig.9(b) and  Fig.10(b). 

  Figure 11 shows the ion viscosity dependence of the 
ratio of fluctuating vector potential energy and fluctu-
ating scalar potential energy EA/E. Here, the fluc-
tuating energy is calculated by the summation of each 
energy except (0,0) mode. Each component consisting 
Reynolds stress:

is approximately proportional to each fluctuating energy 
of scalar potential E, n , and so is the Maxwell stress. 
The ratio EA / kt, monotonically increases with the ion 
viscosity. This implies that as the ion viscosity becomes 
larger, the strength of Maxwell stress becomes stronger. 
On the other hand, the strength of Reynolds stress be-
comes stronger when the ion viscosity is small. This 
tendency explains the similarity between Fig.9(b) and 
Fig.10(b). The competition between Reynolds stress 
and Maxwell stress is essential to determine the radial

structure of poloidal flow pattern and ion viscosity is a 

nob to control them. 

3.2.3 Angular momentum of poloidal flow 

  Here, we discuss the total angular momentum of 

poloidal flow. 

  Figure 12 shows the time evolution of total angular 

momentum of poloidal flow. it is found that the total 

angular momentum monotonically decreases with time. 

The total angular momentum of poloidal flow L is de-

fined by:

in the cylindrical coordinate. To clarify the mechanism

Fig. 10 The ion viscosity dependence of poloidal 
      flow; (a) the time evolutions of energy and 

      (b) the radial profiles of velocity.

Fig. 11 The ion viscosity dependence of the ratio 
      between the fluctuating energy of vector 

      potential and that of scalar potential.

Fig. 12 The time evolution of total angular mo-

      mentum of poloidal flow.



of change in the total angular momentum, we derive 
the analytic formula of time evolution of total angular 
momentum, which is derived from Eq.(16). Operating 

 for dr r on both side of Eq.(16), we get:

Besides, integrating Eq.(19) over the volume, i.e. oper-
ating fo dr r on both side of Eq.(19), the time evolution 
of total angular momentum is given by:

where we use the boundary condition of q5o,o and V o,o 
to reach the second line. It can be shown that the terms 
related with Reynolds stress and Maxwell stress vanish, 
because of the boundary conditions of amplitude of per-
turbed scalar potential and perturbed vector potential. 
Therefore, the total angular momentum is altered by the 
torque which is caused by the friction between plasma 
and outside boundary. We confirm that Eq.(20) repro-
duces the evolution of total angular momentum shown 
in Fig.12. 

3.2.4 Transport by drift-tearing mode 

  Finally, we investigate the heat transport driven by 
the colliSiOnal drift-tearing mode, which is caused by 
nonlinear mechanism of tearing mode. 

   Figure 13(a) shows the power spectrums of averaged 
heat flux, where n represents the mode number. The 
heat flux is defined by the product of radial E x B drift 
velocity and fluctuating temperature as:

The absolute value of radially averaged heat flux is plot-
ted in Fig.13(a). It is found that the low modes are 
dominant and the high modes are ineffective in the heat 
transport. This result implies that the drift wave(with 
high mode numbers) does not grow to large amplitude. 
To evaluate the impact of this nonlinearly induced heat 
transport, the spectrum of perturbed temperature am-

plitude is plotted in Fig.13(b) and is compared with the 
reference(mixing length estimate). The 'mixing length' 
indicates the mixing length estimation of perturbed 
temperature amplitude, which corresponds to the sat-
uration level of unstable drift wave. The mixing length 
theory is represented by:

and this value is used as a reference. In Fig.13(b), we 
set To ",13/€,  LT = 1 and k1 ti Ice. It is found that the

heat flux by micro modes in the numerical result is much 

smaller than reference in the high mode number regime. 

Therefore, it is concluded that the weak heat transport 

of high mode number is due to the low amplitude of 

nonlinearly driven drift wave.

4. Summery and DiscusSiOn 

  We introduce the reduced two fluid equations which 
can describe the synergy of magnetic island and drift 
wave turbulence(so called the colliSiOnal drift-tearing 
mode). Using the reduced two fluid equations, the linear 
stability analysis of colliSiOnal drift-tearing mode and 
the nonlinear simulation of drift-tearing mode are per-
formed. 

  In the linear stability analysis, we show that only the 
lowest mode is unstable, and other high mode number 

perturbations are completely stable in our parameter of 
interest. The deference of parity around rational surface 
between the vorticity and the current of unstable mode 
is observed.

Fig. 13 The power spectrums of (a) averaged heat 
      flux and (b) perturbed temperature.



  In the nonlinear simulation, the saturation of mag-
netic island is observed. In addition, accompanying the 
formation of magnetic island, the pressure is flattened in 
the separatrix of magnetic island, and the poloidal flow 
is generated. In particular, the radial  profile of poloidal 
flow velocity extends to the outside of separatrix. 

   Then, the generation mechanism and the character-
istics of poloidal flow is analyzed. It is found that the 

poloidal flow is mainly generated by unstable magnetic 
island perturbation through the quasi-linear effect. In 
this mechanism, the diamagnetic drift rotation is the 
origin of poloidal flow generation. Next, the contribu-
tion of Reynolds stress and Maxwell stress in Eq.(16) are 
investigated, then radial pattern of poloidal flow is cate-

gorized into three cases; the Reynolds type, the Maxwell 
type and the mixture of them. Surveying the ion vis-
cosity dependence of radial poloidal flow pattern, the 
change of poloidal flow pattern from Reynolds type to 
Maxwell type is observed. This is caused by the chang-
ing of fluctuation energy of scalar potential and vec-
tor potential, which represent the strength of Reynolds 
stress and Maxwell stress. Then, we confirmed that the 
ion viscosity dominates the flow pattern of poloidal flow. 
The other transport coefficient dependence of poloidal 
flow is left as a future work. 

  Next, we investigate the angular momentum of 

poloidal flow. It is found that the total angular mo-
mentum of poloidal flow is changed together with the 
time evolution. We derived the analytic formula of to-
tal angular momentum evolution and confirmed that it 
is caused by the friction between plasma and outside 
boundary. 
  Finally, we discuss the nature of drift wave in our 
simulation. It is found that the heat transport by the 
stable drift wave is much weaker than that by the mag-
netic island. This is because the amplitude of drift wave 
does not sufficiently grow by comparison with unstable 
drift wave. 

  Hereafter, the synergy of magnetic island and ac-
tive(linearly unstable) turbulence should be investi-

gated.
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