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Abstract 

The interaction between tearing mode and collisional drift wave is investigated using reduced neoclas­
sical MHD equations. Introducing two types of neoclassical viscosity model, i.e., HS model and B model, 
the stability analysis of tearing mode and collisional drift wave is performed. It is found that both (neo­
classical) tearing mode and collisional drift wave are unstable for B model even in the optimized q profile 
with ll.

1 

= 0. Next, the nonlinear simulation in case with B model is performed. It is found that the growth 
rate of tearing mode is enhanced by the beat interaction of collisional drift wave. 
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1. Introduction 

The tearing mode is an important resistive magne­

tohydrodynamics (MHD) mode [1]. It perturbs the ini­

tial equilibrium magnetic flux surface through magnetic 

field reconnection to form new flux surfaces with mag­

netic islands. Nonlinear theory for the tearing mode 

began in 1973 when Rutherford showed that the mode 

ceases exponential growth and enters a domain of al­

gebraic growth as soon as the island is larger than the 

tearing layer [2]. This slowing down of the mode is due 
to the formation of an inductive current flowing at the 

island 0-point, parallel to the Ohmic current. The evo­

lution of the magnetic island in the tearing mode to a 
saturated state could be predicted by a generation of 

ll.
1 

to the case of finite island width, i.e., that the island 

state simply found a width determined by a magnetic 

energy minimum and then only slowly changed its width 

to follow the slower resistive evolution of the current 

profile [3]. This allows for the possibility of stable con­
figurations which possess magnetic islands and exhibit 

Mirnov oscillations. 

The magnetic islands are often observed in tokamak 

plasmas with high plasma /3 ( the ratio of plasma pres­
sure to magnetic pressure) even in the case that classical 
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tearing modes are stable [4, 5]. The neoclassical boot­

strap current is considered as a plausible candidate to 

drive these magnetic islands in a high /3 plasma, so that 

this nonlinear instability is called the Neoclassical Tear­

ing Mode (NTM). Since magiietic islands deteriorate the 
plasma confinement, it is important to understand the 

trigger condition for its onset and the detailed physical 
mechanism of NTM, in order to attain the self-ignition 

condition in ITER (International Thermonuclear Exper­

imental Reactor). 

Much work on NTM has been done (6, 7] and it is 

found that the predicted width of saturated island, de­

termined by the balance between the fluctuating boot­
strap current and the current of free energy source, is 

considered to be consistent with experimental observa­
tions. However, the trigger condition or the dynamics 

are still unclear from the view point of the conventional 

approach. 

In theoretical studies carried out so far, the lin­

ear analysis of NTM is performed using a three-field 

model and is compared with the one by four-field model 
which includes ion neoclassical viscosity and compress­

ibility [8]. It is found that both the parallel compress­

ibility and the ion neoclassical viscosity stabilize NTM. 
Later, the modified Rutherford equation has been de­

rived based on the four-field model using the conven­

tional ordering scheme [9]. However, it is shown that 
this model contains a serious problem, i.e., no stable 
stationary solution is found. This may be related with 

the assumption of the ordering scheme, however, no an-
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alytical solution is obtained even if a more general or­
dering is adopted. Therefore, in order to understand 
the characteristics of solution, the direct simulation us­
ing four-field model is desired to investigate the island 
evolution. In addition, there is another problem for the 

I 

model equation which describes the NTM. In the past 
analysis, the Hirshman-Sigmar viscosity model was been 
used, however, neoclassical viscosity is derived based on 
neoclassical ordering which might be irrelevant for drift 
wave time scale. For ever the conventional NTM model, 
the nonlinear simulation is very difficult for fusion rel­
evant parameter regime, therefore, some simplification 
is necessary. So far, we can not resolve this contradic­
tion, so that we use both Hirshman-Sigmar model and 
the simplified model which we call as banana viscosity 
model in this thesis. 

In this thesis, nonlinear simulation of NTM based on 
four-field reduced neoclassical magnetrohydrodynarnics 
(MHD) model is performed and the nonlinear acceler­
ation and saturation mechanism of NTM are investi­
gated. 

The organization of this thesis is as follows : In 
Chapter 2, we review collapse phenomena in high tem­
perature tokamak plasma such as a sawtooth oscillation 
and a tearing mode. Theoretical approaches based on 
linear and nonlinear theory of tearing modes are also 
explained. Viscosities in the three types of collisional 
regime are guided. In Chapter 3, model equations and 
initial profiles are explained. In Chapter 4, simula­
tion results are discussed. Finally, Summary is given 
in Chapter 5. 

2. Reviews 

For an achievement of self-ignited plasma, it is im­
portant to investigate the mechanism of crash and col­
lapse phenomena in high temperature plasma and con­
trol them. There are various types of such events in 
troidal plasmas. The references on the physics of col­
lapses are found in the review paper [12]. Fig. (1) shows 
the characteristics of crash events, precursors and trig­
gering mode. 

In this chapter, examples of such collapse events are 
reviewed. 

2.1 Trigger Events 

The trigger phenomena have been very widely ob­
served under various types of plasma confinement prop­
erties. Especially, m/n = 1/1 mode shown in Fig. 
(1) leads to various trigger mode or precursor mode, 
so it is a key to understanding collapse and the dis­
ruption( thermal quench). Sawtooth, disruption, high {3 

collapse are the typical examples. However, we should 
distinguish them from the view point of physical mech-

Time Trigs« Precursor 
Nillrte SCAie mode mode Nolle 

sawtooth T,n, <.IOOµs 111/R I/I 111/n:::: I/I No 
Aq ··- o.os etc('?) reconoo:tion 

q<Ol <I 

Partial As aOO\•e 
sav.1ooth 

Disruption Tc 10-100 JIS 111/R l/l 111fn:: 211 Density limit. 
(thmnal ·erosion' :VI etc q == 2 . .l 
qU<?!ICh) 

Hieh·.6 
(1-- p~llll ~'Ollapse T,(1;) • .- tOOµs 11 »I 111/11::: I ii 

{tokamak) balloonine etc 

Internal 
collapse T, <lOOµs 111/11:::: 2/l 111/11=2/1 
(Hdiotron) inte1dw1ge 

EL Ms T,T;n, 10-10011s II )>'>I 0<·--~un 

(type-I) 

X.ewnt x.r. <!0011s High-?; mOOe 

BLM VT, •·. IOOµs 111/11 = 3/l High-Pp mode 
lnfem.tP 

MTE Vt'.,. ..-JOOµs 11>.>1 Prohibits 
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CHS burst lf>lfl few IOOµs fll/11 2/2 nt/R:::: 2/1 NBI injection 

IRE t, Low.aspe.:t 
radio tobniak 

Fig. 1 Crash events, precursors and trigger­
ing modes. Abbreviations: ELMs( edge­
localized modes), MTE(momentum trans­
fer events), BLM(barrier-localized mode), 
IRE(internal reconnection events) (quoted 
from [4]). 

anisms even though they have the same poloidal/troidal 
mode numbers. 

Sawtooth has been known as the process that a 
m/n = 1/1 perturbation occurs and it precedes the 
decay of the central electron temperature. This per­
turbation is called a precursor. The observation of the 
precursor stimulated the study of the m/n = 1/1 in­
stabilities in tokamaks. Precise measurements of the 
development of the helical deformation have been made 
over the years. Figure (2) shows a typical example from 
the JET tokamak. Phenomena in Fig. (2) are widely 
observed on many tokarnaks and considered to be uni­
versal. The helical shift of the peak of the soft X-ray 
emission intensity is plotted as a function of time. In 
the precursor phase, the helical shift is in the range of 
1-3 cm and grows very slowly. The helical deformation, 
at some instant, abruptly starts to grow. If one plots 
the temporal evolution of the growth rate of the helical 
deformation, it suddenly changes in an unpredictable 
manner, a phase which is often called a "magnetic trig­
ger". 

2.2 Magnetic Island 

The magnetic island is widely observed in high {3 

tokamak plasmas. This structure is formed by the re­
connection of the poloidal magnetic field line. Figure 
(3) shows the-dimensional structure of m/n = 2/1 mag­
netic island in a toroidal plasma. It locally flattens the 
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0.1 ...... -------.&-..-------J 
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Fig. 2 Displacement of the sort X-ray emission 
peak during a fast sawtooth collapse ob­
served on the JET tokamak (quoted from 
[15]). 

plasma temperature and density profiles, thereby de­
grading the overall energy and particle confinement. In 

particular, the island width determines the level of the 

degradation of plasma confinement, therefore, it is im­

portant to clarify the mechanism of island saturation. 

Fig. 3 The three-dimensional structure of the 
m / n = 2/1 island in toroidal plasma. 

The analysis has been performed in a cylindrical ge­

ometry with the coordinates (r, 8, z) and the magnetic 

field of B = (O,Be(r),Bz). Consider a saturated tearing 

instability with m periods in poloidal direction (8) and 

n periods in the toroidal ( z) direction. The perturbed 

poloidal flux 'I/; takes the general form 

'l/;(r, 8, z, t) = 'lfJ(r) cos ( (1) 

Here, ( is the helical phase angle of the mode, which is 

defined by ( = m8 - nz / R. 
According to ideal MHD, the magnetic perturbation 

obeys 

~!£ (rd'!/J)- m2 '!/J- µoJ~ '!/J = 0 (2) 
r dr dr r2 Be ( 1 - f;) 

where q( r) = r B z / RBe ( r) is the safety factor profile and 

Qs = q(rs) = m/n defines the position of the "rational" 

flux surface. On the surface, lines of magnetic force close 

in finite number of rotation. 

In the vicinity of the rational surface, 

'!jJ(r) ~ '1t (3) 

for tearing instabilities, where '1t implies a constant mag­

netic flux function and W > 0 is termed "reconnected 

flux". Equation (2.3) is equivalent to the well-known 

"constant-'I/;" approximation [10]. The growth rate of 

the resistive modes is determined by requiring that the 

discontinuity of the "inner" solution should match that 

of the "outer" solution. Then we need to calculate the 

change in logarithmic derivative .6.~nt ( 'Y) of the" inner" 

solution across the resistive layer and the growth rate 'Y 

can be obtained from the eigenvalue equation 

(4) 

.6.' indicates the discontinuity of the first derivative of 

perturbed field component across the rational surface 

given by 
.6.' = 'l/;'(O+) - '!/J'(O-) 

'!/J(O) 
(5) 

For the nonlinear evolution of tearing mode, Ruther­

ford theory has an important suggestion. When the 

magnetic island width exceeds the linear tearing layer 

width, the island dynamics becomes strongly nonlin­

ear and the linear treatment breaks down. For typical 

plasma parameters in present-day tokamaks, the tearing 

layer is so thin that any visible magnetic island have to 

be in the nonlinear stage. 
It is convenient to define the "helical flux", 

x(r,() =-fr (i- ~) Bedr+'!/J(r)cos( (6) 
rs Qs 

It is easily demonstrated that (B + 8B) · Vx = 0, so 

the contours of x map out the perturbed magnetic flux 

surfaces. Close to the rational surface, Eqs. (2.3) and 

(2.6) yield 
X x2 n = - =8-+cosl" w w 2 " 

(7) 

where x = r - rs, and 

(8) 

Here, s = (rq' /q)r=rs is the local magnetic shear, which 

is assumed to be positive. 

Figure ( 4) shows contours of the normalized flux sur­

face label f2 given by Eq. (7) plotted in (x, () space. 
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An island structure of maximum radial width W is 

clearly shown. The island 0-point is at coordinates 

n = -1, ( = 7r, the separatrix corresponds to the 

n = 1 contour, and the X-point is located at coordi­

nates n = 1, ( = 0. The perturbed flux surfaces are, of 

course, periodic in the helical phase angle (, repeatidg 

every 27r rads. 

t 
f 

Fig. 4 Contours of the normalized flux surface la­
bel n plotted in ( x' () space, where x is 
the radial distance from the rational sur­
face and ( is the helical angle. 

It is suggested that the nonlinearity is important 

principally in the singular layer around k · B = 0, and 

in the case where the resistive skin diffusion time TR is 

much longer than the hydrodynamic time TH, the ex­

ponential growth of the field perturbation 'ljJ is replaced 

by algebraic growth like t2 at an amplitude of order 

(TH /rn) 4! 5 [3]. 
The relative amplitudes of the m = 4, 3 and 2 modes 

shown in Fig. (5) are in fairly good agreement with the 

observations. Figure (5) also shows that there is a small 

interval of time when both the m = 3 and m = 2 modes 

are present; this occurs despite the fact that, according 

to the linear stability criteria, the m = 3 mode becomes 

stable before the onset of the m = 2. Nonlinearly, the 

m = 3 mode takes a certain time to relax after !:l.' has 

become negative. 

In neoclassical MHD tearing instabilities, tearing 

modes first grow exponentially in time. They next en­

ter a w 'l/;112 t 1l 2 growth regime where the bootstrap 

current contribution is important. For !:l.' > 0, they 

ultimately enter that Rutherford growth regime where 

the bootstrap current contribution is negligible [6]. 

Low mode number tearing type neoclassical MHD 

instabilities with !:l.' > 0 eventually evolve according 

t 

1.0 
.8 

/; 

.4 

.2 

.05 

I__. 
q(o) 

Fig. 5 Mode amplitude as functions of time for 
a constant current tokamak with shrink­
ing current channel, and three locations 
Xb of the conducting shell. Amplitudes 
are expressed by the half-width ~ of the 
magnetic island in terms of their radii rs . 
Good agreements with the observed am­
plitudes of the m 2: 2 oscillations are 
shown (quoted from [16]). 

to the standard resistive MHD nonlinear theory. For 

higher mode numbers with D.' < 0, individual neoclas­

sical MHD modes would saturate at the end of aw t 112 

growth regime, but then the plasma becomes turbulent. 

The saturated island width of the neoclassical tear­

ing mode can be expressed as follows[l,9]: 

Wsat ~ -k1h( w)v'f,/3p8 LLq D.'( l ) (9) 
p Wsat 

where 

ki "'0(1) 

h(w) -
1 

-1+(~)2 

(XJ.) ~ ( 1 ) ! Wd = 5.09rs - --
Xl EsS8 n 

(10) 

where Es, f3vs, Lp, XJ. and Xl are inverse aspect ratio, 

poloidal beta, scale length of safety factor profile, scale 

length of pressure profile, diffusivity perpendicular to 

the magnetic field line and diffusivity parallel to the 

magnetic field line, respectively. 

2.3 The Approach Based on Four-field 
Model 

2.3.1 Linear Analysis 

The linear analysis of NTM based on the four-field 

neoclassical MHD model is performed, in which the fluc­

tuating ion parallel flow and ion neoclassical viscosity 
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are newly taken into account [8). The results from the 

four-field model are compared with those from the con­

ventional three-field model which is with only the elec­

tron neoclassical viscosity. Figure (6) shows the colli­
sionality dependence of the growth rate. In the three­

field model case, NTM is unstable in the entire colli­

sionality regime. On the other hand, in the case of the 

four-field model, the NTM is stabilized in the banana.­
plateau regime in spite of fl.' > 0. This indicates that 
the fluctuating ion parallel flow and ion neoclassical vis­

cosity have the stabilizing effect on the NTM. 

to' r ·-

I } 

I I/ 

I 

l ,· 
.-f 

I 
! 

5 JO I 

I 
I 

l ' f 1eld 

fl Jrr· 

r . 
r 411dd 

f''·-,· ... _ 
I -) jf) I · ··· ·- ----

llJ·I (()" JO: 

v,, 

Fig. 6 The collisionality dependences of the 
growth rate. The solid line indicates 
the present four-field model including the 
ion and electron neoclassical viscosities. 
The dashed line indicates the conven­
tional three-field model including only 
electron neoclassical viscosity. In the ba­
nana regime, this model has the negative 
growth rate compared with the three-field 
model (quoted from [16]). 

2.3.2 Nonlinear Analysis 

The dynamics of the magnetic island affected by the 

microscopic turbulence has been analyzed by using the 

renormalized reduced MHD equations with the cold ion 

approximation [9). The evolution equations of the is­

land width w(t) and rotation frequency w(t) are derived 
according to the Rutherford approach. 

The island evolution equation is given by 

And the evolution equation for the rotation frequency 

is given by 

(12) 

The symbol of dot (as j) indicates the time derivative. 

The numerical coefficients are given by G1 ,..,,, 0.41, C1 ,..,,, 

2.1, C2 ,..,,, 0.78, G2 ,..,,, 0.77. And Ki ,..,,, 33.7, K2 
5.45, K4 ,..,,, 26.0, K1 ,..,,, 2.44, Kg ,..,,, 1.03, K10 
67.4, K 11 ,..,,, 22.5. 

Using Eqs.(2.11) and (2.12), a stability analysis is 
performed. Figure (7)(a) shows the stability of win the 

(w,w) plane. The solid curve indicates w = 0. The 

grey arrow shows the rough direction of magnetic island 

evolution. In the shaded portion 0 < w < w* + w9 , 

Eq.(2.12) does not have a solution which satisfies the 
boundary condition. It is found that the steady state 

solution of island width W 8 is stable against the per­

turbation of island width 8w. Figure (7)(b) shows the 

stability analysis of rotation frequency w in the ( w, w) 
plane. In contrast to the island width, the rotation fre­

quency w has an only unstable solution to the perturba­

tion of rotation frequency 8w. If the rotation frequency 

exceeds the value of steady state solution, the rotation 
is accelerated. This leads to a disruption of the fre­
quency in the end. Rutherford equation derived from 

four-field model has no steady state solution and the 
linear stability in four-field model is different from one 

in conventional three-field model. For these reasons, to 

investigate the onset condition and the mechanism of 

the island formation, the direct simulation of NTM by 
using four-field model is inevitable. 

2.4 The Moment Approach to Neoclassical 
, Theory 

The theory of plasma transport in a torus relies 

mostly on kinetic theory ; the drift kinetic equation was 

solved rather than moment equations. A kinetic treat­

ment was necessary since the mean-free path is long in 

the banana-plateau regime. Accordingly, Braginskii's 
collisional closure of the moment equations is not ap­

plicable. With kinetic, long-mean-free-path results in 
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w>O 
ei><O 

wl 11 wl11 

Fig. 7 The stabilities of w(a) and w(b) are shown 
in the ( w, w) plane. The solid curves indi­
cate w = 0 in (a) and w = 0 in (b) respec­
tively. The grey arrow the direction of the 
island evolution (quoted from [16]). 

hand it is, however, now instructive to inspect their im­

plications in terms of moment equations. Not only does 

this exercise shed light on the physics behind neoclassi­

cal transport, it is also highly useful in generalizing the 

theory to include the case of several ion species. The 

essential advantage of the moment approach to neoclas­

sical transport in a multicomponent plasma is that it 

largely decouples the kinetics of different particle species 

from each other, which simplifies the calculations con­

siderably. In this chapter we give a broad outline of the 

most important elements of the theory, which has been 

reviewed in full detail by Hirshman and Sigmar (1981). 

2.4.1 The Parallel Viscous Force 

We begin by recalling that the cross-field particle 

flux can be obtained by taking the toroidal projection of 

the momentum equation. After splitting off the classical 

flux (due to perpendicular fricton) and the E x B flux, 

the neoclassical flux remains 

by using 

We now decompose the latter into the P fir sh -
Schluter flux and the banana - plateau flux, 

with 

(13) 

Some details of these decompositions vary in the lit­

erature. The neoclassical heat flux is decomposed simi­

larly, into 

1 )PS \Hall ( B
2 

) ) ,qa · '\7¢ = -IT. - 1 - -
a eaB (B2 ) 

lq . '\l~'·)BP = -IT. (BHall) 
\ a 'f/ - a ea (B2) 

(14) 

In this chapter we focus on the banana-plateau 

fluxes, which turn out to be dominant at low collision­

ality , v « VT/ qR, and large aspect ratio, t: « 1. 

The banana-plateau particle flux is driven by the 

parallel viscous force. To see this, we consider the 

scalar product of the momentum equation with B, and 

take the flux-surface average. Since the time derivative 

is small in the transport ordering, 

we have 

(15) 

where we recall the vector notation B · '\l · 11 = 
Ej,kaknjk, and the definition 

Iljk = f m ( VjVk - v; 8jk) fd
3v 

We defined 11 without the term (v2 /3)8ik; this dif­

ference is unimportant here since this term does not 

survive the flux-surface average 

(B · '\l !(¢, 0)) = 0 

We also note that 

Iljk = 'Trjk + mnVj vk 

Since we have assumed small flow velocities, V ,....., 

8vr, as is appropriate for most naturally occurring flows 

in a tokamak, II is approximately equal to the usual 

viscosity 7r ; the difference is only 0( 82p), and we shall 

make no distinction between them. It is thus clear that 

the banana-plateau particle flux (13) is proportional to 
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the parallel viscous force (15), averaged over the flux 

surface, 

(16) 

In a completely analogous way, the heat flux across 

the flux surface, which is related to the heat friction by 

(14), as in 

(qa. \l'lf;)neo = - /!Hall\ 
Ta \ eaB / 

can be expressed in terms of the 'heat flux tensor' 

by 

BP_ (BHa11) B·\7·9a 
(qa. \71/J) =-!Ta ea(B2) =-!Ta ea(B2) (17) 

The parallel viscous force can be related to a pres­

sure anisotropy in the following way. We know that 

the distribution function f depends only weakly on the 
gyroangle {}, 

8f rv 8/ 
8{} 

if the Larmor radius is small. Therefore, in a coordi-

nate system aligned with the magnetic field, off-diagonal 

elements of II are small. For instance, if the coordinates 

(x, y, z) are orthogonal, with z in the direction of B, a 

typical off-diagonal element is 

II:i:y = J mvzvyfd3v = j mv1_siniJcosiJfd3 v = 0(8) 

Hence 

6 ) = pj_(I-bb)+pubb 

PU 

Here, I is the unit tensor, Ijk = 8ik, b = B / B is the 

unit vector in the direction of the magnetic field, and 

the parallel and perpendicular pressures are defined by 

( ;1 ) =Im ( vl~2 ) fd3v 

Note that the usual pressure is the mean of the 

pressure in the three perpendicular directions, p = 

(2p3_ + Pll) /3. It now follows from the definition of II 
that we can express this quantity in terms of the parallel 

and perpendicular pressures, 

Il = pj_ (I - bb) + P11 bb - pl 

= (P11 - p J_) ( bb - ~I) (18) 

Finally, to evaluate (B · \7 · Il), we note that for any 

scalar a, we have 

B · \7 · (al) = B · \7 a 

and 

B · \7 · (abb) = Bi8k(abibk) = Bibi8k(abk) + Bibka8kbi 

= B\7. (a:)+ aB · [(b · \l)b] 

= B
2
\7 11 (~) = B\711a - a\711B 

where we have noted that the curvature K, = (b · 
\l)b is perpendicular to the magnetic field. The parallel 

viscous force thus becomes 

where the second term does not contribute to the 

flux-surface average. 

(B · \7 · Il) = ((P.L - P11)\711B) (19) 

We conclude that the banana-plateau flux is driven 

by parallel variation of magnetic field strength, \711 B =/; 
0, in combination with a difference between the paral­

lel and perpendicular pressures. This difference can be 

written in terms of the Legendre polynomial P2(e) = 

(3e2 
- 1)/2, 

Pu - P.L =I mv
2 
P2(e)fd

3
v 

2.4.2 Plasma Flows 

Parallel Viscosity Coefficients 

(20) 

As we have seen, the banana-plateau cross-field 

transport fluxes can be expressed in terms of parallel 

viscous forces. Our next step is to relate these forces to 

flows within the flux surface. It is required that (i) per­

pendicular fluxes are diamagnetic and (ii) total fluxes 

within the flux surface are divergence free. So we write 

the parallel fluxes of particles and heat as 

where 

and 

v; = _ lTa (dlnpa ea d<P) 
Ia - man d't/J +Ta d'lj; 

I dTa 
Via = - ma na d'tf; 

Va· \78 
Uae('lf;) = B. \78 

(21) 

(22) 

(23) 
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(24) 

are contravariant components of the flow velocity 
and the heat flux. They are related to the notation in 

l 

na Va= Wa('l/J)na('l/;)Rcp + Ka('l/J)B (25) 

and 

(26) 

by Ua(J = Ka/na, qa9 = La. Note that BVia and 
BVia are flux functions, so that the two terms in the 

parallel fluxes (25) and (26) vary over the flux surface in 

different ways. The first term is inversely proportional 

to B and the second term is directly proportional to B. 
In general, the quantities Uae and Qae must be de­

term.ined from kinetic theory. They are essentially the 

fluxes associated with the part Ya of the distribution 

function fa1 when the latter is decomposed as 

faI =Ya+ Fa 

with Fa defined by 

F. = - Iv11 8/ao 
a - Oa 8'lj; 

(27) 

=_!vu [din na + ea d'f> (mav
2 

_ ~) din Ta l f, 
Oa d'lj; Ta d'lj; + 2Ta 2 d'lj; ao 

Indeed, if Ya is expanded in Sonine polynomials, 

then 

00 

mav11 ~ 3/2 2 
Ya= fao---:r,- L..J UajLj (x ) 

a j=O 

Uao = Uae('lf;)B 
2 

Ua1 = --
5 

Qae('lf;)B 
Pa 

(28) 

(29) 

It is clear that if the coefficients Uaj of all species 

were known, we would have complete knowledge of the 

distribution functions, and we could thus calculate the 

friction force Ran, or equivalently, the parallel viscous 

force by (15). In a similar way, the heat friction Han 
and the heat flux tensor e could also be calculated. In 
practice, sufficient accuracy is often obtained by includ­

ing only the first two terms. This truncation is known 
as the 13-moment approximation in the literature on 

kinetic gas theory. Hence, the basic problem of neoclas­

sical theory is to calculate the coefficients ua; in 

where the overall multiplier 3 ((V'uB)2
) has been 

chosen in order to match to Braginskii's terminology 

in the appropriate limit. The unknown coefficients µaj 
are often referred to as neoclassical parallel viscosity 

coefficients and summarize most of the kinetic informa­

tion necessary to evaluate the neoclassical transport. It 

is sometimes practical to write them as 

µa1 = Kf1 

K a 5Ka µa2 = 12 - 2 11 (32) 

Ka Ka 25 Ka µa3 = 22 - 5 12 + 4 aa 

The new coefficients K'fk thus defined turn out to be 

positive definite and are easier to interpolate between 

different collisionality regimes. 

Parallel Flow 

We now use neoclassical parallel viscosity coeffi­

cients to construct the parallel flow velocity in a torus 

with large aspect ratio, e « 1. In this limit the parallel 
flow velocities of all species are approximately equal and 

parallel heat fluxes are small ( compared with naTa Via 
or naTa Via ). This is intuitvely clear from the circum­

stance that in a cylinder ( the limit e -.. 0 ) all species 

must share a common parallel flow velocity. There is 

then no toroidicity to drive a particle flow or a heat flux 

in either direction along the field. In a torus, the rela­

tive fl.ow velocity between different species is finite but 
small if t « 1. It is of order O(t1

/
2 )Vi, and we can thus 

write 

(Va11B) ~(VB) (33) 

(34) 

where Vis the same for all species if e is small. This 

common flow V can be determined from momentum bal-

ance, 

L (B · V' ·Ila)= L (B (Ran+ naeaE11)) = 0 
a a 

where we substitute (21), (22) and (30), and solve 

for V, 

V = E(µal Via+ µa2 V2a) 
Eµai 

As the viscosity coefficients turn out to be smaller 

for electrons than for ions by the ratio (me/mi) 112
, only 

the latter need to be included in the sums over species 

index a. In a pure plasma with only one ion species, we 

have simply 
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Hence and from (21) it follows that, in such a 

plasma, the poloidal flow velocity is simply proportional 

to the temperature gradient, 

µi2 Vie= µio('f/J)B = Vi11 - Vli = -V2i (35) 
µil 

We also note that the parallel and toroidal flow ve­

locities within the flux surface depend on density and 

temperature gradients as well as on the radial electric 

field ( through def.>/ d'ljJ in Via ) . The latter does not af­

fect cross-field fluxes ( as long as it is small enough to 

comply with our orderings, which preclude sonic flows 

) , to which we now turn our attention. 

Cross-field Transport 

When the aspect ratio is large and the collisional­

ity low the largest contribution to cross-field transport 

comes from the banana-plateau fluxes (16), (17). These 

fluxes can be obtained directly from the fundamental 

relations (17), (18) once the poloidal flows are known. 

In the approximation (33), (21), which holds for€~ 0, 

the latter are given by 

( ~'·) _ {(V - Via)B) 
Ua(J '+' - {B2) 

2qae('l/J) V2aB 
~=-{B2) 

Note that although the radial electric field enters 

through def.>/ d'ljJ in Via it disappears from the poloidal 

flow Uao and from the banana-plateau cross-field fluxes 

of particles and heat, Eqs. (16) and (17), which become 

{ra. V'ljJ)BP = -3 I (VuB)2) IB4 
\ ea Bo 

X [µal L(µbl Vib + µb2 Vib) - µal Via - µa2 Via] 
µ1 b 

{qa. V'f/J)BP = -3 j (V11B)2) !Ta~ 
\ ea Bo 

X [µa
2 

L(µbl Vib + µb2 Vib) - µa2 Via - µa3 V2a] 
µ1 b 

a 

Finally, these transport laws may be summarized 

in a compact form by introducing the thermodynamic 

forces 

so that VJa 
fluxes 

-(ITa/eaB)A't, and the cross-field 

If = (r a . v 'f/J) B p 

12 := (qa · V'f/J)BP /Ta 

Their relation to one another is then given by 

I'J = LLj~At 
b,k 

L ab 3 (('"' B)2) 1
2
Tb (µajµbk ) jk = VII -
8

4 --- - µa,j+k-1<5ab 
eaeb 0 µ1 

(36) 

Note that the transport coefficients L'J~ = Lkj are 

Onsager symmetric. These laws essentially summarize 

the neoclassical transport of a plasma with an arbitrary 

number of ion species. All kinetic information neces­

sary to evaluate the transport at large aspect ratio is 

contained in the velocity coefficients µai. The advan­

tage of this formulation is that the viscosity coefficients 

can be determined relatively easily for one species at a 

time since they depend on the other species only through 

collision frequencies. The fluxes are more complex quan­

tities, depending in a complicated way on the parallel 

flows of all species. 

3. Numerical Analysis of Neoclassi­
cal Tearing Mode 

3.1 Model Equations 

We consider a high temperature plasma of major 

and minor radii Ila and a with a troidal magnetic field 

Bo in the cylindrical coordinates (r, 8, z). To analyze 

NTM, we use the four-field reduced neoclassical MHD 

model [8]. This model consists of 

the vorticity equation: 

a 2 2 
&t V .1.F + [F, V .LF] - aiV .LF · [p, V .1.F] 

= -VuViA- (fl,p] + µ~lViF 
q neo 8Upi q me neo 8Upe 

--µ· -----µ --
€ i 8r fmie 8r 

Ohm's law: 

8A 2me 2 8t =-Vu(</>- aep) +a mi[</>, V .LA] 

+ cl't"72 A me neou 7J11 v .1. + a-µe pe 
mi 

the evolution of pressure: 

a 
8tp+ [</>,p] 

= ,8([0,¢- aep] - V11(v11 + aVlA) 

+ 'l'lclV2 P a me q neo8Upe) 
·t.1. .1. - mi ;µe -g;:-

(37) 

(38) 

(39) 
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the evolution of ion parallel velocity: 

a 
at vu+[¢, vu) 

n 4 cln2 neou me neo 8Uve = - v uP + µi v .L vu - µi vi - -µe -
8 mi r 

where 

and 

F = </>+aip 

Upi =vu + '1(¢ + aip) 
€ 

Upe =vu + aViA + '1(¢ - aep) 
€ 

A j3 c 
ff= 2rcos8,j3 =--,a= --

1 + j3 awpi 

Ti Te 
ai = -;:;;:--T. a, O:e = -;:;;:--T. a 

.Li+ e .Li+ e 

(40) 

(41) 

(42) 

(43) 

(44) 

The variables { </>, A, p, vu } are the fluctuating electro­
static potential, vector potential parallel to the mag­

netic field, pressure and parallel velocity, respectively. 

In this model, the ion and electron temperatures Ti 

and Te are assumed to be constant and uniform and 
Ti = Te. The coefficients µi,l , 17tti, r{f.. are classical ion 

viscosity, resistivity and diffusivity, respectively. F is 

the generalized potential, Upi and Upe are the fluctu­

ating ion and electron neoclassical flows. a is the nor­

malized ion skin depth, and n is the normalized mag­

netic curvature, which introduces the ballooning cou­

pling. q, <:, Wpi, j3 indicate the safety factor, the inverse 
aspect ratio, ion plasma frequency and plasma beta 

value, respectively. The Poisson bracket is defined by 

[!, g] = b · V f x V g where b is an unit vector parallel to 
the magnetic field. These equations are normalized by 

the toroidal Alfven times and minor radius, respectively; 

VAt/R--+ t, r/a--+ r. The energy balance is written by 

dH f ( cl I 2 12 cl I 2 12 dt = - dv µi V .L F + 11 11 V .LA 

+ 4µ~l IV .LVu 1 2 +17~ IV .LPl2 (45) 

+ µfeo 1Uvil2 +me µ:eo 1Uvel2
) 

mi 

where the Hamiltonian His given by 

H = ~ j dv (1v -'-Fl
2 + IV -'-Al

2 + ivu 12 + 1~
2

) (46) 

3.2 Viscosity Model 

In the four-field reduced neoclassical MHD model, 

we approximated parallel and cross viscous stress tensor 
terms as 

where the subscript z . denotes species of charged par­
ticle, and the neoclassical viscosities are given by the 

interpolated formula (13] as 

neo 2.3.Jfve ( ) 
µe = ( 1/2 )( 3/2) 49 1 + l.07v.e + l.02v.e 1 + 1.07v.e€ 

neo 0.66.Jfvi (50) 
µi = (1+1.03v;{2 + 0.3lv.i)(l + 0.66v.i€312 ) 

where 

V•s = VsQR/(i 12Vths) 

In a realistic parameter range of present experiments 

and future reactors, NTM might occur in the ba­

nana regime, however in simulation, we use 11ttl = 
10-7 ,...., 10-5 which corresponds to the Pfirsh-Schliiter 

and plateau regime. Then, for nonlinear simulations, 
we need somewhat larger value of viscosity, otherwise, 

smaller mesh grid and time step are required. Such sim­

ulations are expensive and time-consuming so that only 

a few simulations are possible. 

For this reason, instead of using the above formula of 

neoclassical viscosity, in this thesis, we employ two types 
of model viscosity which are shown in Fig. 8. We call 

(1) Banana viscosity model, and (2) HS viscosity model. 
The Banana viscosity model ( 1) is an idealized model 

where the viscosity in the banana regime is extended to 

the plateau and Pfirsh Schluter regime. For this model, 
the neoclassical viscosities in PS regime are given by 

µ:eo = 2.3.J;.µe, 

µfeo = 0.66.J;.µi. 
(51) 

On the other hand, the HS viscosity model (2) is 
based on the Hirshman-Sigmar formula {13]. For this 

model, neoclassical viscosities in PS regime is given by 

(52) 

3.3 Safety Factor and Plasma Parameter 

As the standard case of numerical simulations, we 

set the following form of safety factor profile as the ini­

tial condistion; 

q( r) = qo ( 1+ (:. n , (53) 

where qo = 1.01 and rs= 0.56. Then the shear param­
eter, at the rational surface rs is evaluated by 

rs dq (r,,) 
s=-----. 

q (rs) drs 
(54) 

This q profile is unstable against the classical tearing 

mode, that is ti' > 0, where ti' is defined by 
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µ 

Vv 
-Je_!!__p_ 

v 

(2) 

Collisional frequency V 

(banana) (plateau) (Pfirsch schluter) 

Fig. 8 Viscosity model: We use two models; (1) 
B model and (2) HS model. B model is an 
idealized model where the viscosity in the 
banana regime is extended to the plateau 
and Pfirsh-Schluter regime on the other 
hand, HS model is based on the Hirshman­
Sigmar formula. B model is adopted in or­
der to solve problems characteristic of nu­
merical simulations for expressing NTM .. 

!J.' =A' (+8) -A' (-8) 
A(O) . 

If /J.' > 0, then the tearing mode is unstable and if 

!J.' < 0, it is stable. 

In order to exclude the eff~t of the classical tearing 

mode at the initial phase, we also use the q profile, which 

is optimized so that /J.' = 0. This q profile is refered 

as the optimized q profile. Fig. 9 show these two initial 

q profiles. There is a small difference between them 

around the rational surface. 

The initial pressure profile is given by 

p (r) = ~ (1 - r) 2 

€ 
(55) 

where E = a/ Ro = 1/3, f3 = 0.01. 
We also fix a= 0.01 in the following simulations. 

3.4 Linear Analysis 

To analyze linear NTM, a perturbed quantity f(x, t) 

is assumed to vary as fm,n(r) exp[imO+in( +(r-iw)t] in 

the cylindrical coordinates, where mis a poloidal mode 

number, n is a troidal mode number, 'Y is the growth 

rate and w is the frequency of the linear tearing mode. 

The direction of w > 0 corresponds to the electron dia­

magnetic drift direction and of w < 0 to the ion dia-

--q_normal 

q-profile --q_opt 

4 

0 L-~~~~~~--'-~~~~~~~~ 
0 0.5 

r 

Fig. 9 Safety factor profile: We use two types 
of safety factor profiles; (1) the normal q 
profile (/J.' > 0) and (2) the optimized q 
profile (/J.' = 0). The red curve indicates 
the normal q profile and the blue curve 
indicates the optimized q profile. The op­
timized q profile is adopted in order to 
exclude the effect of the classical tearing 
mode at the initial phase. 

1 

magnetic drift direction. fm,n(r) satisfies the boundary 

conditions; fm,n(O) = 0 and fm,n(a) = 0. In this study, 

a single helicity mode with m/n = 2 is considered. The 

basic Eqs. (3.1)-(3.4) are linearized and the linear con­

tribution from the ion convective term and gyro-viscous 

term in the vortisity equation is evaluated as 

(56) 

where Po is the equilibrium pressure profile. 

3.5 Nonlinear Simulation 

The four-field equations are solved by the mix­

ture of finite difference and spectral method. A 

perturbed quantity is decomposed by f(r, 0, z, t) = 
~ fm n(r, t)eimO-imz. In r direction, the finite dif-
L...im,n ' 

ference method is used, and in () , z direction, Fourier 

expansion method is employed. The boundary con­

dition is given by fm,n(O) = 0, fm,n(a) = 0 and 

f~,0 (0) = 0, fo,o(a) = 0. The perturbed energy are 
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defined by 

m,n 

m,n 

m,n 

m,n 

1 ! 2 Ep(m, n) = 2 = IV' Fl dr 

1 ! 2 EA(m, n) = 2 = IV' Al dr 
j 

1 ! 2 Ep(m, n) = 
2

/3 = IPI dr 

Ev
11 
(m,n) = ~ = f lv11 l2 

dr 

(57) 

Using these quantity, we investigate the time evolution 

of perturbed energies. 

4. Simulation Results 

4.1 Linear Analysis 

4.1.1 Dependence of the Growth Rate on the 
Viscosity Model and the q Profile 

The dependence of neoclassical viscosity (µneo) on 

the resistivity (171fl) is shown in Fig. (10). The opposite 

dependence on the resistivity is observed for B model 

and HS model; viscosity µneo is an increasing function 

of 1lttl for B model on the other hand µneo is decreasing 

function of 1lttl for HS model. This is because fJ c::::: 10-7 

is laid on the plateau region, so that HS model shows 

plateau and Pfirsch-Schluter nature. On the other hand, 

B model shows the banana nature. 

Figure ( 11) shows the dependence of growth rate on 

the toroidal mode number n in the case with normal 

q profile. The (2,1) mode is stable for HS model with 

'T/ c::::: 10-7 (see in Fig.(6)), on the other hand, it is un­

stable for B model in the range of 10-7 ~ 17 ~ 10-5
. 

According to an increase of neoclassical viscosity, the 

(2,1) mode is stabilized in HS model, while it tends to 

be destabilized for B model. All high n modes are sta­

ble in HS model, which indicates the nature of classical 

tearing mode, while it is unstable in B model. It is 

found that the high n mode is more unstable than (2,1) 

mode. The collisional drift wave might be driven by en­

hanced neoclassical viscosity for B model. We obtain 

the relation of 'Y ex: ( 171fl) 113 n 213 by fitting of numerical 

results in Fig. (11), which agree with the theoretical 

prediction (1 7). 
Next, we investigate an instability source of B 

model. Fig. (12) shows the dependence of the growth 

rate on the electron neoclassical viscosity for B model. 

The blue curve indicates the growth rate of (2,1) mode, 

and the red curve indicates that of (20,10) mode, respec­

tively. Since a relation of µ";eo ex: 77~ is hold in B model, 

µ-r;eo is changed with fixed 1lttl to separate these two ef­

fect. It is shown that both growth rates increase with 
the µ-r;eo increase, and following relation is obtained, 

( neo)3/4 d ( neo)4/5 b fitt• '"'/1/2 ex: µe an '"'/10/20 ex: µe y mg. 

103 

102 

101 

100 

0 
Q) 

10-1 c: 
:::t 

10-2 

10-3 

10-4 

10-s 
10-7 10-6 

cl 
17 II 

-11- HS , µ.neo(e) 
....._ B, µ.neo(e) 
-0-HS, µ. neo(i) 
~B,µ.neo(i) 

Fig. 10 µneo dependence on 1lttl: This figure shows 
the dependence of neoclassical viscosity 
(µneo) on the resistivity ( 17f11

). For HS 
model, both µ";eo and µieo decrease ac­
cording to an increase of 170

1 on the other 
hand, for B model, both µ";eo and µieo in­
crease with an increase of 17f11. µneo depen­

dence on 77~ is different for each viscosity 
model. 

It is found that the (20,10) mode has more strong 

dependence on the neoclassical viscosity compared with 

the (2,1) mode, which indicates the collisional drift wave 

nature of high n modes. 

Finally, the relation of '"'/l/2 ex: (17f11)-
5112 (µ~e0) 314 is 

obtained by using these results. 

Figure ( 13) show the dependence of growth rate on 

the toroidal mode number n in the case with the opti­

mized q profile. The same value of neoclassical viscosity 

are used for these calculations. For the HS model, the 

(2,1) mode becomes stable for 17 = 10-5 and rt = 10-6 

due to the optimized q profile, i.e. , 6.' = 0. On the 

other hand, the (2,1) mode is unstable for the B model 

in the range of 10-7 ~ 17 ~ 10-5
. It is found that the 

growth rate of high n mode is larger than that of nor­

mal q profile in B model, however, whole tendency is 

not changed. The optimization of q profile destabilizes 

not only TM but also the collisional drift wave driven 

by neoclassical viscosity for B model. Therefore, the 

modeling of dissipation is quite important to examine 

the NTM dynamics. 
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Fig. 11 Dependence of growth rate ( 'Y) on the 
toroidal mode number ( n) in the case with 
the normal q profile: The (2,1) mode is 
unstable for HS model with 11ttl > 10-7 on 
the other hand it is unstable for B model 
in the range of 10-7 ~ 11ITl ~ 10-5

. High 
n mode is stable in HS model, which indi­
cates the nature of classical tearing mode, 
while it is unstable in B model. 

20 

4.1.2 Dependence of the Frequency on Viscos­
ity Model and q Profile 

Figure (14) shows the dependence of frequency on 

toroidal mode number n . It is shown that the frequency 

depends on the viscosity model. Here, w < 0 indicates 

an electron diamagnetic direction and w > 0, an ion 

diamagnetic direction. The frequency of (2 ,1) mode in 

case with fJ = 10-5 and rJ = 10-6 for HS model is in the 

electron diamagnetic direction (w < 0) while it is almost 

zero in the case with fJ = 10-7
• The frequencies of high 

n modes are deeply in the electron diamagnetic direc­

tion in cases with 17 = 10-5 and fJ = 10-6
• In the case 

with 17 = 10-1
, the frequencies with middle n modes are 

in the ion diamagnetic direction and those with high n 

modes are in the electron diamagnetic direction. The 

similar tendency as for B model is observed in the mid­

dle n mode, however, high n mode shows the nature for 

HS model with 17 = 10-5 and 10-6
• 

Figure (15) shows dependence of the frequency on 

the toroidal mode number n in the case with the opti­

mized q profile. The similar tendency is observed as the 

case with normal q profile. The (2,1) mode frequency 

in the case of HS model with 17 = 10-6 is almost zero 

2.5 10-z .-----B_mode __ I ~--1 

I -!----r----·-->-: - '-----l 

i 
1.5 10-z r------~----+~"'---+------1 

~ 

0.5 1.5 2 

µneo, e 

Fig. 12 The electron neoclassical viscosity depen­
dence of the growth rate for B model: 
The blue curve indicates the growth rate 
of (2,1) mode, and the red curve indi­
cates that of (20,10) mode, respectively. 
Since a relation of µ~eo ex 11r is formed in 

B model, µ~eo is changed with fixed 11ITl. 
Both growth rates increase with the µ-r;eo 

increase, and following relation is formed, 
( neo)3 / 4 d ( neo)4/ 5 

"(1/2 ex µe an "(10/20 ex µe . 

and the direction of propagation of high n modes are 

in the electron diamagnetic direction. From Figs. (14) 

and (15), frequencies of high n modes shift to the ion 

diamagnetic direction according to the increase of neo­

classical viscosity of B model, on the other hand, fre­

quencies of high n modes are sensitive to the q profile 

for HS model. For B model, the similar tendency is ob­

served for three cases. The frequency increases in the 

ion diamagnetic direction according to the increase of 

n. It is considered that this the unstable high n mode 

has the property of the collisional ion drift wave. 

4.2 Nonlinear Simulation 

The nonlinear simulations are performed for two 

cases : 

1. HS model with 17 = 10-5 and normal q profile, 

which corresponds to the nonlinear simulation of 

TM. 
r 

2. B model with 17 = 10-5 and normal q profile, which 

corresponds to the nonlinear simulation of NTM 

and collisional ion drift waves. 

It should be noted that a slightly different q profile 

is used for these simulations compared with those in 

the previous section, i.e. , Eq. (53) with Qo = 1.2 and 

Ts= 0.6. 
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Fig. 13 Dependence of growth rate ("I) on the 
toroidal mode number ( n) in the case with 
the optimized q profile: For HS model, the 
(2,1) mode becomes stable for 77IT1 = 10-6 

and 77IT1 = 10-5 due to 1::1' = 0. On the 
other hand, the (2,1) mode is unstable for 
B model in the range of 10-7 

:; 77IT1 
:; 

10-5. 

20 

Figures (16) and (17) show temporal evolutions of 

fluctuation energy for the cases with HS model and with 

B model, respectively. Each energy is given by Eq. (57), 

where the blue curve represents Ep, the green curve EA, 

the brown curve Ev
11 

and the orange curve EF. Ep and 

EA are dominant in the total energy. In the case with 

HS model, the linear growth and quasi-linear satura­

tion is attained as is seen in Fig. (16). On the other 

hand, in the case with B model, two step saturation is 

observed. The TM growth is driven by the beat inter­

action of high n modes so that the linear growth rate of 

TM plays no role in the growing phase t:; 1000. Then 

the first saturation is observed at t ~ 1000. In this 

phase, the high n collisional drift waves are saturated 

at the low amplitude, and TM continues to grow. At 

t ~ 5000, the second saturation is observed where TM 

is saturated quasi-linearly. This time is almost half of 

that in HS model. It is conjectured that high n drift 

wave accelerates the growth of TM via nonlinear beat 

interaction so that the linear time scale of TM is not 

important anymore in this simulation. 

Figures (18) and (19) show the temporal evolution 

of electromagnetic energy of each Fourier mode for the 

cases with HS and B models, respectively. For HS 

--HS 71=10A{-5} 
--HS 71:10A{-6 } 
--HS 7J == l0Aj-7J 
--8 11 =1 0A{-5} 

normal q profile --B 7J=10 A{-6} 

1 10-2 
- -B 7J=l0A{-7} 

B 

010° 

HS 

3 

-2 10-2 

-3 10-2 

-410-2 
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n 

Fig. 14 Dependence of frequency w on toroidal 
mode number n: w < 0 indicates an elec­
tron diamagnetic direction and w > 0, an 
ion diamagnetic direction. The (2,1) mode 
frequency in the case with 77IT1 = 10-6 and 
77ITz = 10-5 for HS model is in the elec­
tron diamagnetic direction. Frequencies 
of high n modes shift to the ion diamag­
netic direction according to the increase of 
neoclassical viscosity of B model, on the 
other hand, frequencies of high n modes 
are sensitive to the q profile for HS model. 

20 

model, TM mode grows and quasi-linear saturation oc­

curs as is explained in the previous paragraph. For B 

model, the collisional drift wave is saturated at t = 3000 
with the low amplitude EA(n) ~ 10-7 (n > 1), then 

at t ~ 5000, TM is saturated with the high amplitude 

EA(n = 1) ~ 5 x 10-2
• The behavior in the second 

phase is similar to that of HS model. The main differ­

ence is that for B model, EA(n = 0) is comparable to 

EA ( n = 1) in the second saturation phase and the sat­

uration amplitude of EA(n = 1) is 1 order larger than 

that of HS model. 

Figures (20) and (21) show the time slices of power 

spectrum of electromagnetic energy in n space for HS 

and B model, respectively. For HS model, TM grows 

and the energy is transfered to high n modes. The zonal 

field (Ao,o) is mainly generated by the coupling of (2,1) 

and (..,2,-1) modes which contribute to the quasi-linear 

saturation of TM. For B model, two stages of satura­

tion are clearly observed in the power spectrum. At 

t = 3000, high n modes saturate at the low amplitude 
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Fig. 15 Dependence of the frequency w on the 
toroidal mode number n: The similar ten­
dency is observed as the case with normal 
q profile. 
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with EA(n) c::: 10-7 as is explained in the previous para­

graph, while TM is still growing then at t = 5000, the 

quasi-linear saturation occurs and at t = 20000, the 

zonal field saturates. After the quasi-linear saturation, 

the energy of high n mode decreases gradually while 

that the zonal field increases until it saturates. The am­

plitude of zonal field is higher than that of HS model, 

which is contributed by the high n collisional drift wave 

components. 

Next, we discuss the zonal flow generation. 

Figures (22) and (23) show the temporal evolutions 
of electrostatic energy for the cases with HS model and 

B model, respectively. The behavior of these evolution is 

quite similar to those in Figs. (18) and (19) . However, 

the saturation amplitude is very low. For HS model, 

the zonal flow is the order of Ep(n = 0) c::: 10-7 and 

for B model, Ep(n = 0) c::: 10-5
. This difference comes 

from the contribution of high n collisional drift wave. 

However, the zonal flow does not play important role 

for island saturation. If the turbulence is stronger such 

as the ballooning type turbulence, then the zonal flow 

might play a crucial role. It is beyond the scope of this 

thesis and is left for future work. 

Figures (24) and (25) show the time slices of power 

spectrum of electrostatic energy in n space for HS model 

and B model, respectively. For HS model, Ep(n = 1) 

saturates at t = 6000, then the zonal flow Ep(n = 0) 

and high n modes Ep(n > 1) grow gradually until 

t = 8000 and saturate. The saturation amplitude of 
whole modes is roughly of the order of 10-7 

rv 10-6
. 

For B model, Ep(n = 1) saturates at t c::: 4000. Af­

ter that, the zonal flow Ep(n = 0) and high n modes 

Ep(n > 1) saturate at t = 6000 and decrease gradually 

and attain the steady state at t = 20000. In this case, 

the amplitude of Ep(n = 1) is of the order of rv 10-5
, 

while the amplitudes of high n modes Ep(n > 1) are of 
the order of 10-7 

rv 10-6
• We can say that the struc­

ture formation in the flow field is really driven by the 

collisional drift wave. 

Figures (26) and (27) show the temporal slices of 

mode frequencies vs. n for HS model and B model, 

respectively. The mode frequencies are initially ran­

dom. For HS model, the phase is adjusted each other 

at t = 8000 where the propagations i. e. , the signs 

of frequencies are in the ion diamagnetic direction, and 

gradually decrease. For t = 30000, they change the sign 

and weakly rotate in the electron diamagnetic direction. 

For B model, the phase adjustment occurs at t c::: 5000. 

In this case, whole mode frequencies are positive, i. e. 

, in the ion diamagnetic direction and oscillate; For 

5000 < t < 6000, frequencies decrease to almost zero, 

then for 6000 < t < 8000, they start to increase again 

then they decrease to zero for 8000 < t < 30000. This 

behavior might be related with neoclassical damping of 

flow. 

Figures (28) and (29) show the contour plot of he­

lical flux of NTM at t = 30000 and the contour plot 

of kinetic energy of NTM parallel to the magnetic field 

at t = 30000, respectively. The magnetic island is ob­

served. And it is observed that the velocity direction is 

change at the edge of the magnetic island because the 

kinetic energy becomes large there. 

Finally, we will summarize our numerical results 

briefly. In our simulation, the neoclassical tearing mode 

(NTM) is driven by Ll.' > 0 and neoclassical viscosity 
µ~eo. Our terminology of NTM is different from the con­

ventional one, which indicates the nonlinear instability 

of tearing mode with Ll.' < 0 driven by µ~eo. B model 

enables to produce the system where unstable MHD 

mode and unstable drift wave coexist. Using this model, 

we investigate the interaction between MHD mode and 

weak collisional drift wave turbulence. In the growing 

phase, the acceleration of (2,1) mode is driven by the 

three wave interaction due to the high n modes, how­

ever1, the island saturation is dominated by quasi-linear 

effect. In our case, the island width might be determined 

by the balance Ll.' (> 0) +A'+ (bootstrap current) c::: 0. 

Since the relation Ll.'(> 0) +A' < 0 is hold in the satu­

ration phase, the careful experimental measurement of q 

profile is required to identify NTM is linearly or nonlin­

early driven. So far, Ll.' is evaluated by the cylindrical 
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model not toroidal model in almost experiments, the de­

cisive conclusion can not be drawn. This point should 

be resolved in collaboration with experimentalists. This 

is left for a future work. 
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for the cases with B model: This figure 
corresponds to the nonlinear simulation 
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zonal flow Ep(n = 0) and high n modes 
E F ( n > 1) grow gradually until t = 8000 
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Fig. 25 The time slices of power spectrum of elec­
trostatic energy in n space for B model: 
Ep(n = 1) saturates at t ~ 4000. Af­
ter that, the zonal flow EF(n = 0) and 
high n modes Ep(n > 1) saturate at 
t = 6000 and decrease gradually and at­
tain the steady state at t = 20000. 

010° ~ 

TM 
omega 

each mode number 

z 3 4 

n 

--2000 
--4000 
--6000 
--8000 
--10000 
--20000 

s 6 7 8 

Fig. 26 The temporal slices of mode frequencies 
vs. n for HS model: The mode frequencies 
are initially random. For HS model, the 
phase is adjusted each other at t = 8000 
where the propagations i. e. , the signs 
of frequencies are in the ion diamagnetic 
direction, and gradually decrease. For t = 
30000, they change the sign and weakly 
rotate in the electron diamagnetic direc­
tion. 
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Fig. 27 The temporal slices of mode frequencies 
vs. n for B model: For B model, the 
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Fig. 28 Contour plot of helical flux of NTM at t = 
30000: The magnetic island is observed. 

Fig. 29 Contour plot of kinetic energy of NTM 
parallel to the magnetic field at t = 30000: 
It is observed that the velocity direction is 
change at the edge of the magnetic island 
because the kinetic energy becomes large 
there. 
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5. Summary 

We investigate interaction between tearing mode 

and collisional drift wave using reduced neoclassical 

MHD equations. Introducing two types of neoclassi­

cal viscosity model, e.g., Hirshman-Sigmar interpolation 

(HS) formula and banana (B) model, we examine the 

stability of tearing mode and collisional drift wave in 

the range of 10-7 :::; 11fil :::; 10-5 . Also, we investigate 

the stability of these modes on q profile; the normal q 

profile with 6' > 0, and the optimized q profile, where 

the tearing mode is stable. It is found that 

1. in the normal q profile, tearing mode and high n 

mode are both unstable for B model, on the other 

hand, only tearing mode is only unstable for HS 

model, 

2. in the optimized q profile, both modes are unstable 

for B model and the growth rate is larger than that 

in the normal q profile, for HS model, both modes 

are stable for 10-6 
:::; T/, but these are unstable for 

1] = 10-7, 

3. the frequency of modes are in the ion diamagnetic 

direction for B model, on the other hand, these are 

in the electron diamagnetic direction for HS model 

except with ry = 10-7
• 

We observe the collisional ion drift wave is driven 

by the enhanced neoclassical viscosity in B model. This 

result suggests the importance of the dissipation form 

on the stability of MHD modes. The choice of the form 

changes the stability property. The appropriate form of 

neoclassical viscosity in the collisionless limit is neces­

sary for realistic applications. It is left for future work. 

Next, we perform nonlinear simulations for two 

cases: 

1. HS model with 17 = 10-5 and normal q profile (the 

nonlinear simulation of TM), and 

2. B model with rJ = 10-5 and normal q profile (the 

nonlinear simulation of NTM and collisional ion 

drift waves). 

In the case (1), we observe the linear growth of TM 

and then quasi-linear saturation. On the other hand, in 

the case (2), we observe two step saturation; in the first 

phase, high n modes saturate at low amplitude and (2,1) 

mode continues to grow and in the second phase, (2,1) 

mode saturates through the quasi-linear effect which is 

similar to the case (1). It is also found that the growth 

of TM is accelerated by the nonlinear beat interaction 

of high n mode so that the linear growth of TM is not 

observed in the case (2). We also investigate zonal flow 

generation and structure formation in the flow field. It 

is concluded that the zonal flow does not play important 

role for the saturation of magnetic island, although the 

structure formation in the flow field really occurs due to 

high n drift waves in the case (2). The frequencies of 

modes adjust the each phase via the nonlinear effect and 

oscillatory decrease to zero via the neoclassical damping 

process. In this research, we did not consider ballooning 

types turbulence, in which case, the turbulence is more 

violent so that the zonal flow might play a crucial role for 

island saturation. It should be investigated near future. 
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