風況シミュレーションのための紙地図からの高解像 度地形データの構築

内田,孝紀 九州大学応用力学研究所

大屋,裕二 九州大学応用力学研究所

荒屋, 亮 (有)環境ジーアイエス研究所

田辺,正孝(有)流体物理研究所

他

https://doi.org/10.15017/26805

出版情報:九州大学応用力学研究所所報. 129, pp.135-141, 2005-09. Research Institute for Applied Mechanics, Kyushu University

バージョン:

権利関係:

風況シミュレーションのための 紙地図からの高解像度地形データの構築

内田 孝紀*, 大屋 裕二*, 荒屋 亮**, 田辺 正孝***, 川島 泰史**** (2005年7月29日受理)

Construction of High Resolution Elevation Data from Paper Map for Numerical Model "RIAM-COMPACT"

Takanori UCHIDA, Yuji OHYA, Ryo ARAYA, Masataka TANABE and Yasushi KAWASHIMA E-mail of corresponding author: takanori@riam.kyushu-u.ac.jp

Abstract

We are developing the numerical model called the RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The object domain of this numerical model is from several m to several km, and can predict the airflow and the gas diffusion over complex terrain with high precision. First, we summarize elevation data that can be used with RIAM-COMPACT. Next, we concretely explain the construction of the high resolution elevation data from the paper map.

Key words: RIAM-COMPACT, Elevation data, Paper map

1. 緒言

現在,地球温暖化を防ぐため, CO。の大幅な削 減が緊急課題となっている.これに伴い、クリーン で環境に優しい風力エネルギーの有効利用に注 目が集まっている. 風力タービンの発電出力は風 速の三乗に比例するため, 風況の良好な地点を 的確に,かつピンポイントに選定することが重要で ある. 日本の地形は欧米とは著しく異なり、平坦な 地形は少なく、複雑地形がほとんどである。こうした 状況では,流れの衝突,剥離,再付着,逆流など の風に対する地形効果を考慮することが極めて重 要である. 最近では, 風力タービン近傍の地形起 伏や粗度の影響による風の乱れが,風力タービン の発電出力に影響を与えているとの報告もある. 今後の風力発電施設は、山間部などのより厳しい 場所に設置せざるを得えない.よって、日本国内 で風力エネルギーが有効に利用されていくために は, 風力タービンのハブ高さにおける気流性状を 今まで以上に高い精度で予測する必要がある.

我々の研究グループでは,数(十)km以下の狭 領域に的を絞り,RIAM-COMPACT(<u>R</u>esearch <u>Institute</u> for Applied Mechanics, Kyushu University, <u>COM</u>putational <u>P</u>rediction of <u>A</u>irflow over <u>C</u>omplex <u>T</u>errain)と称する非定常・非線形風況シミュレータを開発している¹⁻⁵⁾. 最大の特徴は、国内外を問わずあらゆる市街地から複雑地形にまで適用可能で、かつ、局所域の風の流れをアニメーションとして視覚化できる点にある. 2003年11月から、(有)流体物理研究所、西日本技術開発(株)、(有)環境ジーアイエス研究所の三社の提携企業と連携し、ソフトウエア販売と受託解析サービスを開始した. 既に民間企業や研究機関など多数に納入実績を有し、大手電力事業者や風力発電デベロッパーの受託解析も数多く実施している.

一般的に狭領域の風況シミュレーションでは、 国土地理院の50m標高データが利用される.しか しこのデータでは、上記で記述したような風力ター ビン近傍の地形起伏や粗度の影響を再現するに は解像度が不十分である.最近、我々の研究グル ープでは、紙図面(白地図)やDXF(Data eXchange Format)ファイルから高解像度標高データを構築 する技術を開発した.その結果、風況シミュレーションにおいてこれまで利用することが難しかった2~ 5mの標高データの利用が可能になった.

^{*} 九州大学応用力学研究所, 092-583-7776, takanori@riam.kyushu-u.ac.jp

^{** (}有)環境ジーアイエス研究所, 092-631-6406, araya@engisinc.com

^{*** (}有)流体物理研究所, 042-373-1264, tanabe@ifpj.com

^{****} 西日本技術開発(株), 092-713-0470, y-kawashima@wjec.co.jp

本報では、現在RIAM-COMPACTで利用可能な標高データを整理し、紙地図から高解像度地形データを構築するワークフローを解説する.

風況シミュレータRIAM-COMPACTで 利用可能な標高データ

ここでは、風況シミュレータRIAM-COMPACTで利用可能な標高データを概説する.

2.1 国土地理院の50m標高データ (数値地図50mメッシュ(標高))

国土地理院が刊行している1/25,000地形図に描かれている等高線からベクトルデータを作成し、それから計算によって求めた数値標高モデルDEM(Digtal Elevation Model)データである.詳細はhttp://www.jmc.or.jp/data/mem.htmlを参照していただきたい.収録されているデータは標高のみで,道路や行政界といったその他の地図要素は含まれていない.

1/25,000地形図 $(2\chi yyy)$ ュ)を経度方向,緯度方向にそれぞれ200等分して得られる各区画(1/20細分yyy)ュ,1/25,000地形図上で約2mm四方)の中心の標高が記録されている.標高の間隔は緯度(南北)方向で1.5秒,経度(東西)方向で2.25秒となり実距離で約50m四方である.標高値は5 桁の数値で記録(標高1000mであれば「10000」)されているが,1桁目(0.1mの位)は0で切り捨てられており,最小単位は[m]である.海部には[-9999]というコードが振られている。数値地図50mメッシュ(標高)は全国を3枚のCD-ROM(67,500円)で刊行されている(図1を参照).

Fig.1 Range of collection of CD-ROM

2.2 北海道地図(株)の10m標高データ (GISMAP Terrain)

GISMAP Terrainとは、国土地理院発行の1/25、000地形図の等高線(10m間隔)から生成した高分解能なDEM(デジタル標高データ)である.詳細はhttp://www.hcc.co.jp/style2_4.htmlを参照していただきたい. 価格および購入方法などは北海道地図(株)に直接問い合わせていただきたい.

2.3 GTOPO30

GTOPO30(Global 30 Arc Second Elevation Data Set)とは全世界のDEMデータである. 詳細な内容はhttp://www.esrij.com/support/arcview3/material/gtopo/を参照していただきたい. 水平方向30秒(約1km)間隔のグリッドでモデル化されている. USGS(U.S. Geography Survey) およびEDC(EROS Data Center)のスタッフ,その他日本の国土地理院を含む7つの組織からの資金およびソース・データの提供による協力で作成されたデータである. 3年間を費やし,1996年末に完成し,Webを通じて入手が可能である(無料).

GTOPO30は数種のラスタ,ベクタ形式の地形情報をベースにして作成されている.配布を容易に

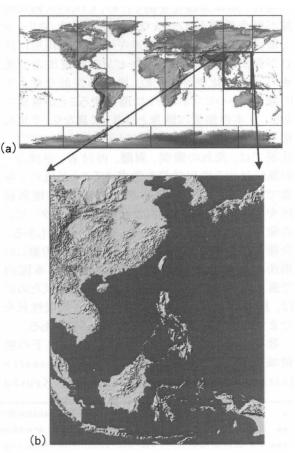


Fig.2 Download screen

するため、GTOPO30はタイル状に分割されている。 データフォーマット、データ・ソース、データ作成方 法、精度などのGTOPO30に関する詳細情報は、 データ添付のREADMEファイルに説明がある。

ダウンロード方法は、http://edcdaac.usgs.gov/gtopo30/gtopo30.htmlの地図(図2(a))でダウンロードしたい地域をクリックする. ダウンロード用のページが表示され、このページの右側にはそのデータの陰影図(図2(b))が表示される. 左側には説明があり、この地域名(例えば"E100N40")をクリックすることでデータをダウンロードできる.

RIAM-COMPACTでは、必要なデータをGISソフト(ArcView)へ入力後、テキストデータとして出力することで利用が可能である(Fig.12を参照).

2.4 スペースシャトル地形データ

SRTM(\underline{S} huttle \underline{R} adar \underline{T} opography \underline{M} ission)は,スペースシャトルに積み込んだレーダにより,全世界の詳細な立体地形データを作成すること目的としたミッションである.現在公開されている立体地形データは2種類ある.1つはSRTM-1と呼ばれる1秒メッシュ(約30m)で,アメリカのみである.もうつはSRTM-3と呼ばれる全世界3秒メッシュ(約90m)である.このデータの詳細はhttp://srtm.usgs.gov/index.htmlを参照していただきたい.データの取得はftp://e0mss21u.ecs.nasa.gov/srtm/のサイトから行える.地形データは緯度経度で区切られた区画ごとにファイルになっている.

図3には、カリフォルニア近郊(SRTM-1)の山地データをArcViewに取込んだ例を示す。メッシュの水平分解能は25m前後であった。このデータの投影法をUTM(Universal Transverse Mercator、ユニバーサル横メルカトル図法)に変換し、テキストデータとして出力することでRIAM-COMPACTにおける利用が可能である(Fig.12を参照)。

Fig.3 Image of SRTM-1

2.5 レーザープロファイラデータ

航空機からレーザを照射し、反射波の時間差により地形起伏を計測する技術である。 $1m\sim$ 数十cmの地形データを取得できる。RIAM-COMPACTでの利用は2.3, 2.4と同じである(Fig.12を参照)。

Fig.4 Image of laser profiler

3. 紙地図を利用した 高解像度地形データの構築

ここでは、紙図面に基づいた高解像度標高データ構築のワークフローを説明する.

1.紙地図の入手(図5を参照)

- ◆ 自治体より1/2,500から1/10,000程度の地形図 を入手する.
- ◆ 鮮明な線の図面が望ましい. 着彩, 青焼き, 折れ曲がり, その他, 鮮明で無い図面は好ましくない.
- ◆ 公共座標の記されている図面が望ましい. 地形図のスケールが正確となり, 隣接する図面接合が可能となる.

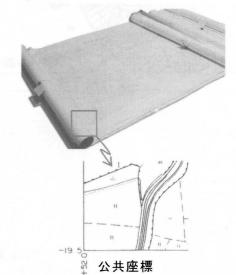
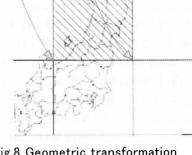


Fig.5 Obtaining of paper map

2. 紙地図のスキャニング(図6を参照) ◆ 大判スキャナで読み取る. ◆ モノクロ400dpi ◆ 折れ目などがない方がより良い.

3.ラスターベクトル変換(図7を参照)

→ スキャンした画像データをベクトル(線)データ に自動的に変換する.


Fig.6 Scaning of paper map

◆ 公共座標に基づき, 幾何補正 (rectify)を行う.

Fig.7 Raster to vector conversion

地形図に記された公共座標

Fig.8 Geometric transformation using public coordinates

5. 高さ情報の付加(図9を参照)

- ◆ 等高線, 道路, 造成面などの高さ情報を与える.
- ◆ 標高は地形図から読み取る.

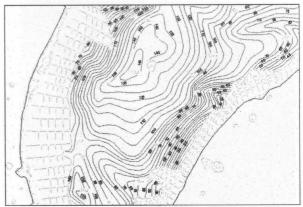


Fig.9 Addition of elevation data

6.3次元データ(TIN)の作成(図10を参照)

- ◆ 地 理 情 報 シ ス テ ム GIS(<u>G</u>eographical <u>Information System</u>)により3次元形状データ TIN(<u>T</u>riangulated <u>I</u>rregular <u>N</u>etwork)を作る.
- ◆ 内容に誤りがないか3次元的に確認する.

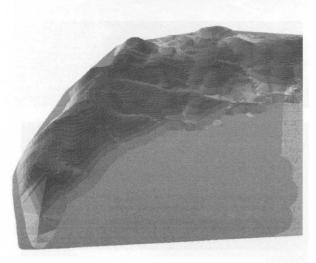
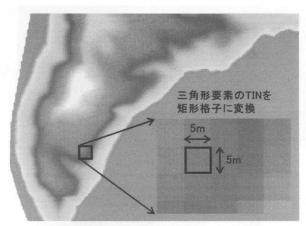



Fig.10 Construction of 3D data using GIS technique

7.メッシュデータの作成とデータ出力(図11を参照)

- ◆ 任意解像度の標高データ(矩形格子)を作る.
- ◆ RIAM-COMPACTで利用するため、テキスト形式で出力する.

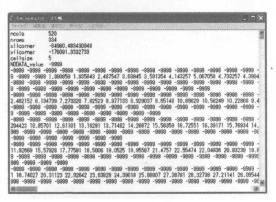
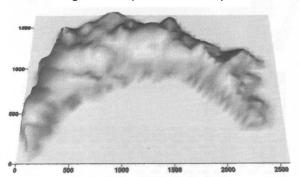


Fig.11 Arbitrary data creation and output

8. RIAM-COMPACTでの利用(図12, 13を参照)

- ◆ 風況シミュレータRIAM-COMPACTでの利用が 可能である.
- ◆ 微地形の影響を考慮した風況シミュレーション が可能である.



MEM標高データ	国土地理院の50m標高データ
HGF標高データ	北海道地図(株)の10m標高データ
GIS標高データ	GTOPO30, スペースシャトル標高データ, レーザープロファイラ標高データ, 紙地図, DXFファイルから作成した微地形 標高データ

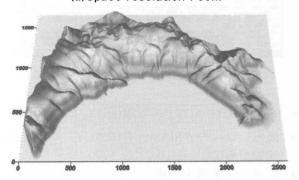

Fig.12 Data input screen

Fig.13 Example of Noma cape

(a)Space resolution: 50m

(b)Space resolution : 5m Fig.14 Comparison of space resolution

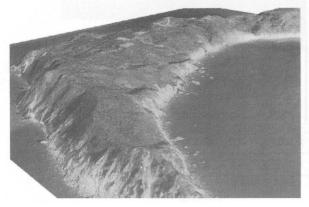
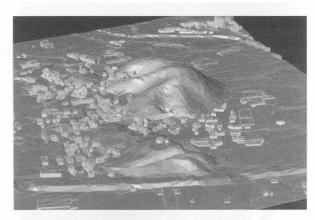



Fig.15 Example of overlapping aerial photograph with elevation data

DXFファイルを利用する際は、紙地図の場合のスキャンニングの工程が省略される.その後の作業内容は、紙地図の場合と基本的には同じである. DXFファイルは、Autodesk社のCADソフト「AutoCAD」で使用されているファイル形式であり、2次元や3次元のベクトルデータを格納するファイル形式の事実上の業界標準である.よって、DXFファイルを所有している企業は多く、これに基づいた詳細地形データの構築ニーズは極めて大きいと予測される.

図14には、国土地理院の50m標高データ(図14(a))と、紙図面から作成した5m解像度標高データ(図14(b))の比較を示す。図14(b)では、地形の細部に至るまで明瞭に再現されているのが分かる。風力タービン近傍のわずかな地形起伏や粗度が

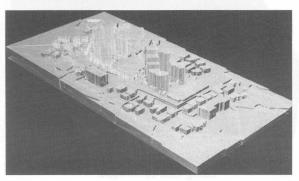
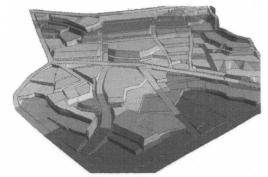
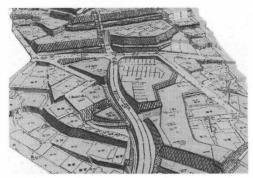




Fig.16 Example of various data

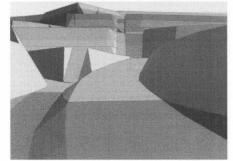


Fig.16 Example of various data (continuation)

ハブ高さの気流性状に与える影響を明らかにするためには、10m以下の解像度の地形データが必要である。図15には、地形データにオルソ航空写真を重ね合わせた例を示す。GIS上ではこのような作業が極めて容易に実現され、視覚的に理解し易い画像を作成することができる。図16には、紙図面などから作成した市街地・地形データの例を示す。RIAM-COMPACTでは、これらのデータの利用が可能である。

4. 結言

現在、非定常・非線形風況シミュレータRIAM-COMPACTで利用可能な標高データを整理するとともに、紙地図から高解像度地形データを構築するワークフローを解説した.最近では、風力タービン近傍の地形起伏や粗度の影響による風の乱れが、風力タービンの発電出力に影響を与えているとの報告がある.今回紹介した技術を有効活用すれば、2~5mの標高データを構築することができる.さらに、GISによる市街地および地形データの作成は、国内外を問わずあらゆる地域で可能である.RIAM-COMPACTでは、これらのデータを標準的に利用することが可能である.今後、国内外の狭領域の風況シミュレーションが容易に実現される.

参考文献

- 内田孝紀,大屋裕二:風況予測シミュレータ RIAM-COMPACTの開発—風況精査とリアルタイム シミュレーション—,日本流体力学会誌「ながれ」, Vol.22, No.5, 2003, pp.417-428
- 内田孝紀,大屋裕二:風況シミュレータ RIAM-COMPACTによる拡散場シミュレーション―その1.不安定時の場合―,九州大学応用力学研究 所所報,第126号,2004,pp.9-15
- 3) 内田孝紀,大屋裕二:風況シミュレータ RIAM-COMPACTによる拡散場シミュレーション一そ の2. 安定時の場合一,九州大学応用力学研究所 所報,第126号,2004,pp.17-22
- 4) 内田孝紀, 大屋裕二, 田辺正孝, 葛生和人, 橋本 晃慈: 風力タービン適地選定のためのコンピュータ によるマイクロサイティング技術―実地形を対象にし た非定常風況・拡散シミュレータRIAM-COMPACT ―, 土木施工, Vol.45, No.8, 2004, pp.49-55
- 5) 内田孝紀, 大屋裕二, 鵜野伊津志: 急峻な岬まわりの気流場シミュレーション 一気象力学モデル CSU-RAMSと流体力学モデルRIAM-COMPACTの適用性について一, 第18回風工学シンポジウム論文集, 2004, pp.35-40