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                                      Abstract 

   Numerical prediction of the macroscopic stiffness and microscopic stresses for carbon nanotube polymer 
composites is performed based on the homogenization theory. A new solution method is proposed for the 
homogenization analysis. The conventional inhomogeneous integral equation related to the microscopic mechanical 
behavior in the basic unit cell is replaced by a homogeneous integral equation based on a new characteristic function. 
According to the new solution method, the computational problem of the characteristic function subject to initial 
strains and periodic boundary conditions is reduced to a simple displacement boundary value problem without initial 
strains, which simplifies the computational process. The effects of various geometry parameters including straight 
and wavy nanotubes on the macroscopic stiffness and microscopic stresses are presented. Numerical results are 
compared with previous results obtained from the Halpin-Tsai equations, Mori-Tanaka method, which proves that 
the present method is valid and efficient. 
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1. Introduction 

  The extremely high strength and stiffness combining 

with high aspect ratio make carbon nanotube (CNT) 

become attractive as reinforcement of polymer matrix 

composites. Many researches of experimental and 

analysis have been carried to develop CNT polymer 

composites, e.g. as reviewed by Andrews and 

Weisenberger [I]. In order to promote the development 

of excellent CNT ploymer composites, the prediction of 

the macroscopic stiffness and microscopic stresses plays 

an important role in the design and the application of 

CNT ploymer composites in practice. On the other hand, 

it is extremely difficult to analyze a CNT polymer 

composite with complex material heterogeneity 

involving with individual nanotubes precisely due to the 

huge computational time and cost. Hence, many 

researches have been focused on exploring an 

approximate but simple and efficient analysis method. 

  Halpin-Tsai equation [2] is a popular method for 

predicting the macroscopic properties of traditional 
fiber-reinforced composites. The modified Halpin-Tsai 

equation is utilized to predict the elastic properties of 

CNT polymer composites in [3]. Mori-Tanaka method

developed in (e.g. [4,5]) is also a well-known method to 

predict the macroscopic material properties of various 
composites and is applied to the prediction of 

macroscopic stiffness of nano-composites with layered 

silicate [6] and long wavy CNT polymer composites[7]. 

However, both of these two methods have a common 

shortcoming that they cannot accurately reflect the 

interactions between neighboring fibers or nanotubes 

because of the limitation of their analytical models. 

Recently, a shear lag model is developed to study the 

macroscopic stiffness [8]. It is a very simple analysis, 

but it also cannot reflect the interactions between 

neighboring nanotubes accurately. 

   In parallel to the above analytical methods, different 

approaches to composites analysis have been also 

developed based on the analysis of a basic cell by finite 

element method (FEM) in the past years. In general, 

these approaches can be roughly classified into the 

average-field method and the homogenization method. 

The average-field method (e.g. [9]) has been developed 

based on the physical viewpoint that the macroscopic 

material properties obtained from experiments represent 

the properties of volume average. In contrast, the 

homogenization method (e.g. [10]) has been developed 

based on the mathematically multi-scale perturbation 

theory. In [7,11], the average-field method is used to*I Research Institute for Applied Mechanics, Kyushu Uni-
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predict the macroscopic properties of straight CNT and 
long wavy CNT polymer composites. However, it is 

realized that it is difficult to impose exact periodic 

condition along a basic unit cell with asymmetric and 

complicated microstructures in the average-field method 

 [12].  In the case of homogenization method, a 
characteristic function of the third order tensor is 

introduced to relate the microscopic displacements to 

the macroscopic displacements, which make it possible 

to express the exact periodic conditions formally along 

the boundary of a basic cell. However, since the integral 

equation related to the characteristic function is 

inhomogeneous, two computational processes of 

imposing initial strains and periodic displacement 

conditions are needed to obtain the characteristic 

function in the conventional solution method. It is 

obviously inefficient because there are six independent 

sets of components of the characteristic function need to 

be solved for a general three-dimenSiOnal unit cell. 
  In this paper, numerical predictions of the 

macroscopic stiffness and microscopic stresses for CNT 

polymer composites are performed based on the 
homogenization theory. A new solution method is 

proposed for the homogenization analysis. According to 
the new solution method, the computational problem of 

the characteristic function subject to initial strains and 

periodic boundary conditions is reduced to a simple 
displacement boundary value problem without initial 

strains, which simplifies the computational process. The 

effects of various geometry parameters including 

straight and wavy nanotubes on the macroscopic 

stiffness and microscopic stresses are presented. 

Numerical results are compared with previous results 

obtained from the Halpin-Tsai equations, Mori-Tanaka 

method.

2. Formulation 

   Consider a linearly elastic body with a periodic 

microstructure, as shown in Fig. 1. Q denotes the 

open subset of three-dimenSiOnal space occupied by the 

body, F the boundary of Y the open subset of the 

space occupied by the basic unit cell, Si. the boundary 

of Y . The sub-domain Y2 may represent an incluSiOn 

in the unit cell to describe a composite, or a void to 

describe a porous material. Define Sv12 as the interface 

when Y, and Y2 are different materials, or as the 

internal boundary of Y1 when Y2 represents a void. 

For the sake of simplicity, it is assume that S112 is a 

traction-free surface if Y, represents a void. A brief 

review of the basic equations of homogenization theory 

is given in the following paragraphs.

Fig.1 A material with periodic microstructures.

In the construction of the homogenization theory, the 
displacements u, (x) are assumed as an asymptotic 
expanSiOn with respect to a parameter i7 that is a 
scaling factor of the microscopic/macroscopic 
dimenSiOn, i.e. 

u, (x) = (x, y) + tlu; (x, y) 77274,2 (x, y) + ... (I ) 
Where x = (x1, x2 , x3) and y = (y1, y2, y3) represent 
the macroscopic and the microscopic coordinate systems, 
respectively, which are related to each other by

Then, based on the elasticity, the strain-displacement 

and stress-strain relations can be expressed as

Where E0,1 denotes the elastic constants tensor. 
Applying the chain rule of differentiation of a function 

with implicit variables to the partial differentials of (3) 

leads to

  According to the elasticity, the virtual displacement 

equation can be expressed as:

Where FT denotes the region of the boundary F with 
specified tractions T, v, is the virtual displacement 
and v, = 0 on the Fu where u; = u , f is the



 body force. By inserting (1)  into the above virtual 

displacement equation, applying the chain rule of 

differentiation to the partial differentials of uk and v, , 

and equating the terms with the same power of 77, we 

can derive a series of equations related to the 

displacements u ° , u' , u,2 and so on as follows.

       etc. 

 Theoretically, solving all the above equations together 

with specified boundary conditions will yields the full 

solution for u0, 141: u?, However, the first order 
approximation of u, (x) is usually of interest for many 
practical applications. Then only two equations of (8) 
and (9) related to u,° and u' need to be solved. 

 In the conventional solution method for the 

homogenization analysis, it is assumed that

Where x[ ̀ ' , called as characteristic function, is an 
unknown Y- periodic tensor of the third order. It is 
noted that 2' may also be considered as a symmetric 
tensor of the second order for each k (k=1,2,3). Inserting 

(11) into (8) leads to

Then the periodic boundary conditions of 

uk (x, y) require

Inserting (11) into the above equations leads to

Hence, the characteristic function can be completely 

determined from (12) and (15). 

 On the other hand, inserting (11) into (9) leads to

Equation (16) describes the macroscopic equilibrium. 
Where Dil, denotes the homogenized stiffness and is 
usually called as the macroscopic stiffness. Therefore 
the basic equations of a homogenization problem in the 
sense of first order approximation are reduced to the 
integral equation (12) subject to periodic conditions of 
(15) and the integral equation (16) subject to specified 
boundary conditions. Both of the integral equations can 
be solved separately by the use of FEM. We can firstly 
obtain x,kI (x, y) by solving (12) and then solve (16) to 
obtain macroscopic u4 (x) . If only the homogenized 
elastic constants Dul is of interest, we can solve (12) 
and calculate (17) to obtain x;k` (x, y) and Di,  . 
Hence, solving (12) is an important step in the 

homogenization analysis. 

 Equation (16) describes the macroscopic equilibrium. 

Where D1 , denotes the homogenized stiffness and is 

usually called as the macroscopic stiffness. Therefore 

the basic equations of a homogenization problem in the 
sense of first order approximation are reduced to the 

integral equation (12) subject to periodic conditions of 

(15) and the integral equation (16) subject to specified 
boundary conditions. Both of the integral equations can 

be solved separately by the use of FEM. We can firstly



 obtainx(x,y) by solving (12) and then solve (16) to 
obtain macroscopic uk'(x) • If only the homogenized 
elastic constants D~k, is of interest, we can solve (12) 
and calculate (17) to obtain x'(x,y) and Dk1 . 
Hence, solving (12) is an important step in the 
homogenization analysis.

Where x: is also a symmetric tensor of the second 
order for each k (k=1,2,3) and is expressed by

and the unit cell with a complete CNT and four quart CNT 

is used for the staggered array. Furthermore, the CNT in 

the unit cell may be straight or wavy in order to 

investigate the effect of the waviness of CNT on the 

macroscopic stiffness, as listed in Table 1. That is, five 

models with straight CNT, wavy CNT and mixed CNTs 

are calculated. The details of geometrical parameters 

related to neighboring CNT are depicted in Fig. 3. The 

diameter D of the CNT is taken as an unit, Hf and Tf 

describe the half of the distance between neighboring 

CNTs. The waviness of a wavy CNT is expressed by a 

sinusoidal function

The symbol S is the Kronecker delta. Then the 
derivation of x;;: can be expressed by

Inserting (21) into (12) and using E;lk, = Eiji,. lead to

Similarly, by the use of (21) the homogenized elastic 

constants can be rewritten as

Fig. 2 Two nanotube arrays.

Table 1 Calculation models
Consequently, it is seen that (12) has been transformed 
into a homogeneous integral equation (22) in terms of 
the new characteristic function x7 (x, y) . That is, the 
original problem with initial strains and periodic 

conditions is reduced to a simple displacement boundary 

value problem. Hence, the calculation process of 

imposing the initial stresses is reduced during the 

solution of every set (x;',xz',x3 ). Furthermore, the 
periodic conditions for a rectangular parallelepiped unit 
cell in terms of xk"' can be easily expressed as follows 
by the substitution of (19) into (15).

(a) x-y plane of regular array

3. Calculation Models 

  In the present numerical analysis, two kinds of regular 

and staggered CNT arrays are calculated, as shown in Fig. 

2. The unit cell with one CNT is used for the regular array
(b) x-y plane of staggered array



Fig. 3 Geometrical parameters

 z = Asin(2icd L) (25) 
and the wavy plane of the wavy CNT is assumed to 

coincides with the x-z plane.

4. Numerical Results 

   In this section, numerical results are presented to 

demonstrate the validity and efficiency of the new 

solution method for the prediction of the macroscopic 

stiffness and microscopic stresses of CNT polymer 

composites. Finite element analysis is performed by the 

use of a commercial finite element code ABAQUS. In the 
calculation, the CNT are considered as a transversely 

isotropic fiber [13] and the effective stiffness constants 

are C11=457.6GPa, C12=C13=8.4GPa, C22=C33=14.3GPa, 

C73=5.5GPa, C44=C55=27.0GPa, and C66==4.4Gpa. The 

Young's modulus and Poisson's ratio of the matrix are 3.8 

GPa and 0.4, respectively. 

   The variation of macroscopic stiffness with the 

aspect ratio is shown in Fig. 4 for the case of straight 

CNTs. Where, SS and RS denote the results of staggered 

array CNT and regular array CNT, respectively. The 

results obtained from Mori-Tanaka method and 

Halpin-Tsai equation are also depicted for a comparison. 

The ratio of Tf to Ilf is taken as a parameter. From 

these results of four stiffness constants, it is seen that 

E1 i is sensitive to the aspect ratio, and that the others are 

slightly influenced by the aspect ratio, except for small 

aspect ratio. The staggered array gives high Eli than the 

regular array, especially for relatively large Tf/Hf, but 

the differences between the two arrays for the other

constants are small. The values of E11 obtained from 

Mori-Tanaka method and Halpin-Tsai equation are close 
to the present ones with Tf=Hf. It is interesting that a 

small Tf gives high E11, which is useful for the design 

and fabrication of CNT composites. The present results 

except for E11 predict lower stiffness than Mori-Tanaka 

method and Halpin-Tsai equation. Figure 5 shows the 

variation of macroscopic stiffness with the fiber volume 

fraction. All constants increase with increasing fiber 

volume fraction. Also only the results for the models 

with straight CNT are presented. Similarly, a small Tf/Hf 

ives high E11 and the staggered array gives high E11 

an the regular array, especially for large T1IHf. 

   The effects of waviness of the CNT on the 

macroscopic stiffness are presented in Fig. 6 and Fig. 7. 

Figure 6 shows the variations of the stiffness with fiber 

volume fraction and waviness A/D. It is seen that large 

waviness reduces E1, but improves G13 due to the wavy 

plane coinciding with the x-z plane. The other stiffness 
constants, that are not presented here, have little variation 

with the waviness. 

    The microscopic stresses at the surface of the 

effective fiber and along the fiber axial direction of the 

CNT are presented in Fig. 8 when the composite is 

subjected to a uniform tenSiOn. Only two stress 

components are depicted due to the limitation of pages. 

The stresses are normalized by the average tensile stress. 

The upper two figures show the distributions of the fiber 

axial stress and the shear stress in x-y plane in the case of 

straight fibers with regular array. The axial stress is almost 
uniform except for the region near to the two ends, while 

high shear stress appears in the end regions. These results 

are similar to the results in many previous papers. The 

second two figures describe the stress distributions in the 

case of straight fibers with staggered array. It is seen that 

high axial stress appears in the middle region due to the 

influence of neighboring fibers (referring to Fig.3). Also 

high shear stress occurs in the regions near to the two ends 

and it is a few higher than that in the case of regular array. 

The third two figures present the stress distributions in the 

case of wavy fibers with regular array. The effect of the 

waviness on the axial stress is apparent and the maximum 

value occurs at the center region of the fiber, although the 

variation of the shear stress in x-y plane is not clear. 

Fiiaally, the lower two figures give the stress distributions 

in the case of wavy fibers with staggered array. The 

distribution of the axial stress is similar to that in the case 

of wavy fibers with regular array, but the variation of the 

shear stress with the waviness is more obvious. These 

stress results are useful for the understanding to the 

microscopic damage and the macroscopic strength of CNT 

polymer composites.



Fig. 4 Variations of macroscopic stiffness with the fiber aspect ratio.



Fig. 5 Variations of macroscopic stiffness with the fiber volume fraction.

Fig. 6 Variation of macroscopic stiffness with the fiber volume fraction in the case of SW2 model.

Fig. 7 Variation of macroscopic stiffness with the waviness of  CN`I's.



Fig. 8 Microscopic stresses along the effective fiber of the CNT.



5. Summary 

   A new solution method is proposed for the 

homogenization analysis. Numerical prediction of the 

macroscopic stiffness and microscopic stresses for CNT 

polymer composites is performed based on the new 
solution method. The effects of various geometry 

parameters including straight and wavy CNT on the 
macroscopic stiffness and microscopic stresses of the 

composites are presented. Numerical results of 

macroscopic stiffness are compared with previous 

results obtained from the Halpin-Tsai equations, 

 Mori-Tanaka method, which proves that the present 

method is valid and efficient.
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