九州大学学術情報リポジトリ Kyushu University Institutional Repository

重希土類改質Nd-Fe-B系磁石材料の微細構造と磁気特 性

渡邊, 奈月 九州大学総合理工学府量子プロセス理工学専攻

https://doi.org/10.15017/26667

出版情報:九州大学,2011,博士(工学),課程博士 バージョン: 権利関係:

重希土類改質 Nd-Fe-B 系磁石材料の 微細構造と磁気特性

第1章 序論	1
1.1 本研究の背景	1
 1.2 高保磁力化に関する従来の研究 	6
1.2.1 焼結磁石	6
1.2.2 熱間加工磁石	11
1.3 本研究の目的および構成	14
第2章 実験方法	
2.1 試料作製方法	
2.1.1 焼結磁石	
2.1.2 熱間加工磁石	
2.2 組織解析手法	
2.2.1 走查電子顕微鏡観察	
2.2.2 透過電子顕微鏡観察	
2.2.3 元素分析法	
2.2.3.1 エネルギー分散型 X 線分光分析	
2.2.3.2 電子エネルギー損失分光分析	
第3章 Tb スパッタ改質 Nd-Fe-B 系焼結磁石	
3.1 Tb スパッタ改質処理による微細構造変化	
3.2 EELS 分析による微量 Tb の計測	
3.3 高保磁力化に及ぼす Tb スパッタ改質処理の影響	

目次

第4章	Tb フッ化物塗布改質 Nd-Fe-B 系焼結磁石	. 41
4.1	Tb フッ化物塗布改質処理による微細構造変化	. 41
4.2	高保磁力化に及ぼす Tb フッ化物塗布改質処理の影響	. 47
4.3	粒界近傍の微細組織変化に及ぼす Tb の役割と最適構造	. 48
4.4	小括	. 54

5.1	熱間力	叩工磁石の微細構造		
5.2	残留硫	兹化と保磁力に及ぼす	▶粒界近傍の微細構造の影響	61
5.3	小括			

6.1	Dy 改質処理による微細構造変化	. 66
6.2	EDS 分析による Dy 拡散の調査	. 74
6.3	高保磁力化に及ぼす Dy 改質処理の影響と最適構造	. 79
6.4	小括	. 83

第7章	総括		84
-----	----	--	----

参考文	「献	6
謝辞		3

1章 序論

1.1 本研究の背景

Nd-Fe-B 系磁石は最高の磁気特性を有する希土類磁石材料であり, 産業を支える基盤的な 材料に成長してきている.この磁石材料は 1984 年に Sagawa¹⁾ らによって発明されて以来, Fig.1-1 に示すように生産量は年々増加している.また,Nd-Fe-B 系磁石の生産額も 1990 年 代には他の磁石材料を上回り,いまや全磁石材料の生産額の 80%を占めるまでになってい る²⁻⁵⁾.Nd-Fe-B 系磁石の応用分野は,音響機器から情報機器,医療分析機器,家電製品ま で多岐にわたる.Fig.1-2 に 2000 年および 2007 年における希土類磁石の用途別生産を示す ように,モータや発電機に向けた用途が増大していることがわかる.これは,Nd-Fe-B 系磁 石材料が省エネルギー化を目的として風力発電機,自物家電製品(エアコン,冷蔵庫,洗 濯機),産業用ロボット,ハイブリッド・電気自動車(hybrid electric vehicle/ electric vehicle: HEV/EV)に応用され始めたためである.

Fig. 1-1 Trend of production weight of rare-earth magnets, which are consisted mostly of Nd-Fe-B magnet, in Japan²⁾.

Fig. 1-2 Applications of rare-earth magnets, which are consisted mostly of Nd-Fe-B magnet, in Japan²: (*a*) 2000, (*b*) 2007.

Fig.1-3 Temperature dependence of demagnetization in three Nd-Fe-B sintered magnets with different coercivity¹⁴⁾.

モータや発電機に用いるには,磁石材料は 200 ℃程度の高温環境下に耐える必要がある. しかしながら, Nd-Fe-B 系磁石はキュリー温度が 312 ℃⁶⁻¹³⁾ と低く,温度に対する減磁が非 常に大きい. Fig. 1-3 に保磁力の異なる三種類の Nd-Fe-B 系磁石における磁化の温度依存性 を示す. 10 %減磁をひとつの目安とすると,保磁力 1.1 MA/m を示す磁石における耐熱温度 は 120 ℃程度である.それに対し,保磁力 2.4 MA/m では 240 ℃程度にまで改善し,200 ℃ では減磁がほとんど生じないことがわかる.そこで,高温での急激な減磁への対応策として, できるだけ保磁力を高める試みが成されている^{5,15,16)}.モータや発電機にむけた Nd-Fe-B 系 磁石の需要が今後もさらに高まると予測されているので⁵⁾,高保磁力化への要求は益々高ま っていくことは必至である.

Nd-Fe-B 系磁石の強磁性主相の Nd₂Fe₁₄B 化合物の結晶構造 (*P4₂/mnm, a*=0.88 nm, *c*=1.22 nm)¹⁷⁻²⁴ を Fig. 1-4 に示す. Nd₂Fe₁₄B 単位胞は Fig. 1-4 中に灰色で色づけした Nd/Fe/B より なる層と σ 層と呼ばれる Fe のみからなる層を *c* 軸方向に積み重ねた構造となっている. σ 層における Fe-Fe の原子間距離は α -Fe (bcc) における 0.25 nm に極めて近く強磁性状態 が安定となり,実際の Nd₂Fe₁₄B 化合物の Fe は α -Fe と同等の大きな磁気モーメント 2.2 μ B をもつ. これに対して, Nd の磁気モーメントは小さいが,ドーナツ型の 4f 電子分布 (Fig. 1-5) に起因する大きな磁気異方性を有している. Nd の 4f 電子は σ 層の Fe よりも Nd/Fe/B 層の Fe に引きつけられ, Nd のドーナツ電子雲の扁平な面は *c* 面に平行に揃う. その結果, Nd の磁気異方性が全体のモーメントを *c* 軸方向に拘束し, Nd₂Fe₁₄B 化合物は *c* 軸方向に一軸 性の結晶磁気異方性を有する. すなわち, Nd₂Fe₁₄B 化合物の *c* 軸方向が磁化容易軸となる.

Fig. 1-4 Tetragonal unit cell of $Nd_2Fe_{14}B$, the prototypical structure of the $R_2Fe_{14}B$ compounds²⁴⁾. The *c/a* ratio in the figure is exaggerated to emphasize the puckering of the Fe nets which is called as σ layer.

Fig. 1-5 Schematic illustrations of 4f-orbital distributions in Nd³⁺, Tb³⁺ and Dy^{3+ 25)}.

Table 1-1. Magnetic properties of $Nd_2Fe_{14}B$ compound and commercial Nd-Fe-B magnets with the highest $(BH)_{max}^{17, 26-30}$.

	<i>В</i> , (Т)	H _{cj} (MA/m)	(<i>BH</i>) _{max} (kJ/m)
Theoretical Nd ₂ Fe ₁₄ B	1.61 ²⁶⁻²⁹⁾	5.33 ³⁰⁾	509 ^{17,27-29)}
Commercial magnet ¹⁵⁾	1.47	1.00	440

このように、Nd₂Fe₁₄B 化合物では、高い磁気モーメント(すなわち磁化)を Fe が担い、高 い結晶磁気異方性(すなわち保磁力)をNdが担っている.Nd₂Fe₁₄B化合物の残留磁化B_r, 保磁力 H_{ci},最大エネルギー積(BH)_{max}の理論値を現在最高クラスの磁気性能を有する市販の 重希土類無添加の Nd-Fe-B 系焼結磁石とともに Table. 1-1 に示す. 現在市販されている焼結 磁石の残留磁化はすでに理論値の 90%以上に達している. これは磁石材料中の強磁性 $Nd_2Fe_{14}B$ 相の体積分率の増加と c軸配向度の向上を目的とした製法改善 $^{31-35)}$,ならびにス トリップキャスト法^{36,37)}や傾斜磁界配向法^{38,39)}等の新たな製法の開発が行われた結果であ る. これに対して,保磁力は元素添加⁴⁰⁻⁵¹⁾ や粒径微細化⁵²⁻⁵⁷⁾ 等の検討が行われたにも関わ らず,現在でも理論的に予想される値の20%にも達していない.そこで現在は,Nd-Fe-B磁 石に重希土類元素の Dy あるいは Tb を添加して, 主相の結晶磁気異方性を高めることで高 保磁力化させる手法がとられている^{2-5,15,16)}. Fig. 1-5 に示すように, Dy と Tb は Nd と同様 にドーナツ型の4f電子分布を有する重希土類元素として知られている. Fig. 1-6 に R₂Fe₁₄B 化合物における磁気異方性定数 K₁と保磁力の理論値を周期律順にプロットした図を示す. 保磁力を高める効果は Tb の方が Dy より著しいが,工業的には資源が多く価格的にもやや 安価な Dy が主に利用されている.しかしながら,重希土類元素(Dy,Tb)を Nd-Fe-B 系磁 石に添加すると,Fe と重希土類元素のスピンは反平行に結合するため,フェリ磁性的とな って磁化が低下してしまう(Fig. 1-7).したがって、重希土類添加による高保磁力化には、 磁化が犠牲になって最大エネルギー積も低下してしまう問題がある.Fig. 1-8 に保磁力,最

Fig.1-6 Anisotropy constants (K_u) and theoretical coercivities (H_{cj}) of $R_2Fe_{14}B$ compounds^{58,59)}.

Fig.1-7 Changes in magnetic properties by Dy addition to Nd-Fe-B sintered magnet¹⁰⁾.

大エネルギー積, Dy 添加量および磁石の応用用途の関係を示す. 高保磁力が必要とされる 風力発電機,産業用ロボットおよび HEV/EV の駆動モータに利用されている磁石は, Dy が 10 wt%程度も添加されており, 2.4 MA/m 級の大きな保磁力を示すが,最大エネルギー積が 240 kJ/m³まで低下していることがわかる.また,重希土類元素の生産国は中国に一極化し ており^{3,5,60},中国政府の輸出制限開始によって価格が 2005 年から 5 年間で 4 倍以上に高騰 している⁶¹⁻⁶⁴ という資源的な問題もある.特に,日本は Dy と Tb の輸入を中国一国に依存 しているため,資源の安定供給に対する不安が高まっている.

一方で、Nd-Fe-B 系磁石の磁気特性と微細構造の対応は長年研究されてきたが、統一的な 解釈には到っておらず、経験則が提案されているのみである.最近、保磁力に Nd₂Fe₁₄B 結 晶粒界領域のナノスケールの構造が重要であることが明らかになりつつあるものの、最適 な微細構造に関する議論は分かれている.Fig.1-9 に Nd-Fe-B 系焼結磁石の典型的な電子マ

Fig.1-8 A map of the magnetic properties of commercially available (Nd,Dy)-Fe-B sintered magnets and their applications¹⁶.

Fig.1-9 Electron probe mico-analyzer (EPMA) image of Nd-Fe-B sintered magnet⁵⁸⁾. T_1 , T_2 and Nd denote Nd₂Fe₁₄B, Nd_{1.1}Fe₄B₄ and Nd-rich phase, respectively.

イクロアナライザー(electron probe micro-analyzer: EPMA)像の一例を示す.像中の T_1 相が $Nd_2Fe_{14}B$ 主相, T_2 相が B-rich ($Nd_{1.1}Fe_4B_4$)相, Nd 相が Nd-rich 相である.Nd-rich 相は,基本的には主相よりも Nd に富んだ酸化物相で,主相粒界三重点に存在するとされてきた.ところが最近では、電子顕微鏡法の進化によって, $Nd_2Fe_{14}B$ 粒同士の粒界部分にも Nd に富んだ薄い相が存在していることが明らかになりつつある.現在,これらの粒界三重点に存在する Nd 酸化物相と主相粒界に存在する Nd に富む相は、研究者によって様々な表記がなされているが、本研究では粒界三重点に存在する酸化物相を Nd-rich 相, $Nd_2Fe_{14}B$ 粒同士の粒界に存在する

以上のように、Nd-Fe-B 系磁石においては、重希土類元素の使用量を抑えつつ高保磁力化 することが急務となっている.Nd-Fe-B 系磁石は現在の磁気特性よりもはるかに高い保磁力 を発現させる可能性を有しているが、保磁力と微細構造の関連はよくわかっていない.そ のために、最新の電子顕微鏡技術を駆使して、高保磁力を発現する粒界微構造の知見を得 ることが重要である.

5

1.2 高保磁力化に関する従来の研究

1.2.1 焼結磁石

焼結磁石の微細構造は極めて配向度の高い 5 μm 程度の Nd₂Fe₁₄B 主相粒から構成され,初 磁化曲線の解析結果より保磁力機構はニュークリエーション型(Fig. 1-10)であるとされて いる⁶⁵⁻⁶⁸⁾. ニュークリエーション型の保磁力機構では,主相粒内に磁壁をピン止めする場 所が存在しないので,いったん磁化の反転が始まるとそれを止めることができない. この 保磁力機構は 1948 年に Storner と Wohlfarth⁶⁹⁾ によって 2 次元の磁気モーメントに対して提 案されたものである. その後,このニュークリエーション型モデルは 3 次元の磁気モーメ ント配列に対して用いるために Brown ら^{70,71)} によって「マイクロマグネティクス理論」と して拡張された.「マイクロマグネティクス理論」は多くの磁気モーメント集団について計 算した複雑な非線形理論であるため,さらに Kronmüller ら^{72,73)} によっていくつかの仮定を 用いて簡便な線形方程式が導かれた.現在は保磁力を表す式として,以下に示す Kronmüller の式⁷³⁾ が用いられることが多い. ただし,ここで注意すべきことは,この式は一つの単磁 区粒子に関するものであることである.

$$H_{\rm cl} = \alpha_K^{nuc} H_{\rm A} - N_{\rm eff} I_{\rm s}....(1)$$

ここで、 H_A は異方性磁場(= $2K_u/I_s$)、 I_s は飽和磁化、 α_K^{nuc} と N_{eff} は係数である.係数 α_K^{nuc} は、おおよそ {1-逆磁区の生成確率} に相当する.係数 N_{eff} は試料の逆磁区の核生成領域における反磁場係数である. H_A と I_s は物質固有の値であるため、組織制御により大きく変えることができるのは係数 α_K^{nuc} と N_{eff} である.したがって、逆磁区の生成サイトを低減すること

Fig.1-10 Schematic illustrations of nucleation and propagation of magnetic-reversed domain.

が重要と考えられてきた. 逆磁区生成サイトとして, Kronmüller ら^{72,73)} によるモデルの場 合には以下に示す2箇所が提案されている.

- A) Nd₂Fe₁₄B 主相粒表面にある構造的な欠陥や微細な軟磁性相(例えば Fe)などの結晶磁 気異方性の低い箇所から逆磁区が発生する^{72,73}).
- B) 磁石材料は多結晶体であるため、*c*軸が配向していない Nd₂Fe₁₄B 粒が存在し、その結 晶粒付近で逆磁区が発生する⁷²⁻⁷⁵⁾.

これらの逆磁区の発生サイトを減少させるために、さまざまな製法の改善が試みられてきた. その結果,最近の焼結磁石では、大きなクラックや Nd-Fe-B 系合金の初晶として生じる大きな軟磁性 Fe 粒子は生成されにくくなってきている.また、c 軸配向度は実験レベルにおいては *B*_t/*I*_s=0.991 にまで達している⁷⁶.しかしながら、保磁力は理論値の 20 %程度に留まっていることから、さらに保磁力を向上させるための重要な核生成サイトが存在すると考えられるが、具体的には解明されていない.また、最近では Kobayashi ら⁷⁷⁾ が焼結磁石の初磁化曲線を解析することにより、保磁力が高くなるにつれてピンニング型的な挙動を示すことを報告しており、保磁力機構はニュークリエーション型では一概に説明できなくなっている.以上のように、焼結磁石はその磁気特性の高さから最も研究が行われている Nd-Fe-B 系磁石であるが、この磁石でさえも保磁力機構の詳細はよくわかっていないのが現状である.

近年,走査電子顕微鏡 (scanning electron microscopy: SEM) と透過電子顕微鏡 (transmission electron microscopy: TEM) を用いた微細構造解析技術が急速に進歩しており,その解析技術 を用いた研究が盛んに行われてきた.そのため,これまで磁性を希釈するだけと見なされ てきた Nd-rich 相の結晶構造が保磁力に影響を与えることが解明されつつある.1980 年代の 研究では,Sagawa ら¹⁰⁾ は Nd-rich 相が fcc 構造を有すること,Ramesh ら⁷⁸⁾ は 20-50 %の酸 素を含んでいることを報告していた.最近では,様々な Nd-rich 相の構造が報告されており, 保磁力発現に最適な Nd-rich 相の構造について議論が分かれている. Fig. 1-11 に Nd-rich 相 として報告されている Nd 酸化物の構造を示す. Makita ら⁷⁹⁾ は酸素欠損をもつ fcc 構造の NdO_{2.8}相が保磁力発現に最も適しており,Nd-rich 相が Nd₂Fe₁₄B 主相と結晶学的方位関係を 有して接していることが高保磁力化に重要であると報告している. Shinba ら⁸⁰⁾ は最適熱処 理を施した焼結磁石の微細構造を解析することによって,Ia3構造の Nd₂O₃ 相が高保磁力発現に最高 な相であることを指摘している. Ia3-Nd₂O₃ 相は fcc-NdO_{2.8}構造を基本とした長周 期構造である.Li ら⁸¹⁾は粒径の異なる2 種類の焼結磁石の微細組織を解析することにより,

Fig.1-11 Unit cells of Nd-oxides⁷⁹⁻⁸⁴⁾. (a)dhcp-Nd, (b)fcc-NdO₂, (c) $Ia\bar{3}$ -Nd₂O₃ and (d)hcp-Nd₂O₃. 最適な Nd-rich 相は dhcp 構造の α -Nd 相であると報告している. Mo ら⁸²⁾はこれらの Nd-rich 相の酸素量を系統的に調査し,酸素量増加に伴って dhcp-Nd→ fcc-NdO_{2- δ}→ $Ia\bar{3}$ -Nd₂O₃→ hcp-Nd₂O₃ へと変化することを報告している. さらに,最近では,主相粒界に存在する粒界 相も保磁力発現に影響することが報告されている. Vial ら⁸³⁾は,最適熱処理を施すと,主 相粒界に極薄のアモルファス粒界相が均一に形成され,これが保磁力向上の原因であるこ とを報告している.また,Liら⁸⁴⁾はNdとの低融点の共晶反応を生じる Cu を添加するこ とによっても,Cu を含む薄い粒界相がより均一に形成されて,保磁力向上に寄与すること を報告している.

一方で、重希土類元素を導入して高保磁力化させる製法も盛んに研究されており、でき るだけ重希土類添加量を低減するために、2 合金法と粒界改質法の2 種類の製法が新たに開 発されてきた.2 合金法は Nd₂Fe₁₄B を主組成とした合金粉末に Dy あるいは Tb を助剤とし て配合した混合粉末を焼結する方法である.Nd₂Fe₁₄B 多結晶粒組織において、各々の主相 結晶粒の粒界近傍に Dy や Tb を偏在させることにより、粒界近傍すなわち主相結晶粒の表 層における結晶磁気異方性を向上させるとともに、重希土類添加に伴う磁化の減少を最小 限に留めることを目的として開発された.例えば、Velicescu ら⁸⁵⁾ は Dy₃Co₂を助剤とする 2 合金法を用いて焼結磁石を作製し、保磁力が 0.5 MA/m から 1.2 MA/m まで向上したことを 報告している.しかし、焼結温度が 1000 ℃程度と高温であるため、Fig. 1-12 に示すように 2 合金法では Dy が主相結晶粒の内部まで拡散してしまい、残留磁化が下がってしまうとい う問題がある⁸⁵⁻⁸⁷⁾.一方、粒界改質法は磁石表面に Dy や Tb を被覆させて熱処理を施す方 法である.粒界改質法は、元々は、機械加工により劣化した小型磁石の保磁力を回復させ るために開発されたものである.機械加工した微小な焼結磁石は表面から欠陥が多数導入 され、これが逆磁区の発生サイトとなり保磁力が低下してしまう.しかも、磁石が小型に

Fig.1-12 SEM images of two-powder-alloy Nd-Fe-B magnet $^{87)}$ (a)Backscattered electron image, showing (1,5)Nd₂Fe₁₄B grains, (2)Dy-free center of the Nd₂Fe₁₄B grain, (3)Nd₃Ga₂, (4)Nd_{1.1}Fe4B4 phase and (b)EPMA image of Dy distribution.

なるほど加工により導入されるダメージ層の厚さが相対的に増すため、保磁力が大幅に低下してしまう^{88,89)}.加工劣化した磁石に粒界改質処理を施すと、DyやTbが主相粒界に入り込んで、磁石表面に導入された欠陥を修復して、残留磁化の低下を抑えて保磁力を向上させることができる。Park ら⁹⁰⁾ は厚さ 50 µmの焼結磁石薄片に数 µmの厚さの Dy 膜をスパッタ法で形成させた後、900 ℃と 600 ℃の 2 段階の熱処理を施して、磁石表面に (Nd,Dy)₂Fe₁₄B 層を有する Nd₂Fe₁₄B 粒を形成させることにより、残留磁化の低下なしに保磁力が向上したと報告した。その後、Suzuki ら^{91,92)} は、切削加工した 3 mm 角の磁石表面に Dy あるいは Tb を三次元スパッタリング法で被覆して熱拡散させるスパッタ改質法を施すことで、加工劣化した保磁力を回復できることを見出した。また Suzuki らと同じ研究グループの Machida ら^{93,94)} は、Dy よりも Tb を用いた場合の方が保磁力の増加率が大きいことを指摘している。さらに、Li ら^{95,96)} は、同様に切削加工した 3 mm 角の磁石表面に Dy あ

Fig.1-13 Magnetic curves of (a)original, (b)downsized, (c)Tb-sputtered and (d)TbF₃-coated Nd-Fe-B sintered magnets $^{92-96)}$.

るいは Tb フッ化物と CaH₂を塗布し,これに還元・拡散熱処理を施す Tb フッ化物塗布改質 法によっても保磁力が向上することを報告している. Fig.1-13 の磁化曲線に示すように,Tb フッ化物塗布改質法は Tb スパッタ改質法よりも保磁力向上の度合いは劣る.しかしながら, プロセスが簡略化できるためコスト的に有利である.Fig.1-14 に Tb フッ化物塗布改質前後 における Nd-Fe-B 系焼結磁石の処理表面近傍の Tb 元素の分布状態を可視化した断面 EPMA 像⁹⁶⁾を示す.Tb 元素は磁石表面から約 50 µm 程度まで主相粒界を通して拡散していること がわかる.さらに,EPMA 像で Tb 拡散が観察されなくなる磁石表面から 60 µm までの領域 を研磨して取り除いても,なお保磁力が低下しないことがわかっている.なお,研磨後の Tb 濃度は 2 at%と極微量である.この事実は Tb 改質処理の極微量な Tb によって磁石内部 の実質的な保磁力が向上したことを示している.Tb 濃度が最も低いと推測される磁石中心 部の微細構造変化を解析すれば,極微量の重希土類元素によって保磁力を向上できる磁石 組織の知見を得ることができるものと考えられる.

Fig.1-14 EPMA images of untreated (a),(b) and TbF₃-coated (c),(d) magnets with Nd (a),(c) and Tb (b),(d) element maps⁹⁶⁾. Black arrows indicate top-surfaces of the magnets.

1.2.2 熱間加工磁石

熱間加工 Nd-Fe-B 系磁石の大きな特徴は, Fig. 1-15(a)に示すように円筒状磁石の半径方向 に平行に主相粒の c 軸が配向したラジアル異方性を有することである. ラジアル異方性は熱 間加工中の粒界滑りによって数百 nmの平板状 Nd₂Fe₁₄B 粒の c 軸が押出方向に垂直に配向 した組織を形成することにより獲得されることが知られている(Fig. 1-15(b))⁹⁷⁻¹⁰¹⁾. ラジ アル異方磁石を焼結法で作製することは困難なため、最近では、熱間加工磁石を産業用ロ ボットや HEV/EV の駆動用モータなどに適用する需要が増えてきている. また, Nd-Fe-B 系磁石では一般的に主相粒径が小さいほど、高い保磁力を示す傾向にあるため、焼結磁石 よりも粒径の1桁小さな熱間加工磁石は保磁力の点でも有利なはずである. Fig. 1-15 は焼結 磁石の保磁力をさまざまな文献から結晶粒径に対してプロットした図である.焼結磁石で は粒径が 3 μm を切ると,酸化などの影響により保磁力が低下してしまうが, 3 μm までは結 晶粒径の低下とともに対数的に保磁力が増加することがわかる. Fig. 1-16 に外挿した実線で 示す結晶粒径に対する保磁力変化を見ると,約0.3μmの粒径で2.5 MA/m級の保磁力が得ら れることがわかる.しかしながら,熱間加工磁石の保磁力は実験室レベルでさえ 1.4 MA/m 程度に留まっており、他の製法と同様に高保磁力化が急務となっている。一方で、熱間加 工磁石においては残留磁化も実験レベルでさえ 1.4T 程度とまだそれほど高くないので, 配 向度を改善することも求められている. Lewis ら¹⁰³⁾は中性子回折と硬 X 線回折実験により Nd-Fe-Co-Ga-B 系熱間加工磁石について配向度を調査し、少なくとも 30°方位のずれた Nd₂Fe₁₄B 結晶が存在しており、その大きく方位のずれた結晶が磁石の2 割程度を占めると

Fig.1-15 (a)Schematic illustration and (b)SEM image¹⁰²⁾ of the die-upset Nd-Fe-B magnet.

Fig.1-16 Grain-size dependence of coercivity. A plot of intrinsic coercivity against the logarithm of grain sizes in the sintered and the die-upset magnet^{5,84}).

報告している.また、Mishra ら⁹⁹⁾は TEM 観察により、配向度の低い Nd₂Fe₁₄B 粒が全体の 15 %程度存在するとの結果を得ている.彼らは、配向度の高い Nd₂Fe₁₄B 粒組織には粒界相 が存在するのに対し、配向度の低い領域では粒界相が検出されなかったと報告している. したがって、熱間加工磁石では粒界相が残留磁化にも強く影響を与えているものと推察さ れる.

熱間加工磁石の保磁力機構は Pinkerton と Van Wingerden¹⁰⁴⁾ が初磁化・減磁曲線の解析に よって提案したピンニング機構 (Fig. 1-17) が有力である.後に Mishara ら⁹⁸⁾ はローレンツ 顕微鏡法による磁区観察によって、粒界で磁壁のピンニングが起こることを報告している. ピンニング機構の保磁力を表す式は、ニュークリエーション型の式(1)の係数 α_{K}^{nuc} を磁壁の ピンニング効果によるものとして拡張した示した式(2)⁷³⁾ が広く用いられている.

Fig.1-17 Schematic illustrations of nucleation and pinning of magnetic-reversed domain.

すなわち,ピンニング型磁石もニュークリエーション型磁石と基本的には同じ式によって 保磁力を表現することが可能である.そこで,典型的なニュークリエーション型とされて きた焼結磁石と,ピンニング型の熱間加工磁石およびメルトスパン法によるナノ結晶磁石 において係数αとN_{eff}の実験数値が多く求められている.しかしながら,ニュークリエーシ ョン型とピンニング型の保磁力機構から見積もられる理論数値と実験数値の対応関係を見 いだすのは現在のところ難しい^{105,106)}.したがって,熱間加工磁石ではピンニング機構が支 持されているものの,焼結磁石のニュークリエーション機構との明確な区別はできていな い.すなわち,熱間加工磁石においても保磁力機構の詳細はなお検討の段階である.

また,熱間加工磁石の高保磁力化に関する研究は、添加元素と熱間加工条件等の作製条件の検討が主である^{102,107-112}.現在まで高保磁力化に向けた微細構造に関する研究は焼結磁

石に比べると極めて少なく,最近になって報告され始めたばかりである.例えば,Kishner ら¹⁰²⁾はCoとGaを添加して0.79 MA/mから1.3 MA/mにまで高保磁力化した Nd-Fe-B系 熱間加工磁石に微細構造解析を行って,高配向領域における粒界相は Nd-Ga を主体として Coをわずかに含む厚さ0.4-2 nm程のアモルファス構造をもつと報告している.Kwonら¹¹⁰⁾ は磁石組成のNd量が少ないとCuを添加しても微細組織に大きな変化はないが,Ndに富む とCu添加によってアスペクト比が高い組織に変化して高保磁力化することを報告している. Yiら¹¹¹⁾はCuを添加することにより,主相粒界にCuに富んだ粒界相が形成されてアスペ クト比の高い主相粒が得られるとともに,残留磁化と保磁力が向上することを報告してい る. Maら¹¹²⁾は2 wt%のZn添加でアスペクト比が高い粒組織に変化して0.15 MA/mから 0.67 MA/m まで保磁力が向上することを報告している.以上のように熱間加工磁石では, Ndと低い温度で共晶反応を生じる元素を添加して,流動性の高い粒界相を形成することに より高保磁力化が図られているのが現状である.

最近,熱間加工磁石においても重希土類改質処理を行うことによって2wt%のDy添加で 1.2 MA/mから1.6 MA/mまで保磁力が向上することが報告され始めている¹¹³. Fig. 1-18 に 示すように,Dy改質処理を施すと、熱間加工磁石でも焼結磁石レベルの高い磁気特性を示 すため,実用的な価値が非常に高く,このDy改質熱間加工磁石はすでに工業的に生産され 始めている¹¹⁴.しかしながら,これまで述べてきたように熱間加工磁石の磁気特性と微細 構造の関連に対する研究は少ないため,重希土類改質処理による保磁力向上メカニズムや 重希土類元素の役割等も未解明となっている.

Fig.1-18 Magnetic properties of various Nd-Fe-B magnets⁵⁾.

1.3 本研究の目的および構成

これまで述べてきたように、ハイブリッドカーなどの駆動用モータに使われる Nd-Fe-B 系磁石の需要が高まっており、高温での使用に耐えるために更なる高保磁力化が課題とな っている.現在、Nd-Fe-B系磁石には10 wt%程の重希土類元素(Dy,Tb)を添加して使用 に耐える保磁力を確保している.しかし、重希土類元素を添加すると残留磁化が低下する 上に、希少性や価格高騰の問題があり、できるだけ重希土類元素を使わずに高保磁力化さ せた Nd-Fe-B系磁石の開発が切望されている.本研究では、重希土類元素を粒界近傍のみ に効果的に導入する粒界改質処理により高保磁力化させた Nd-Fe-B系焼結磁石および熱間 加工磁石について、最新の電子顕微鏡法を駆使した詳細な微細構造解析を行い、高保磁力 発現に及ぼす重希土類元素の役割ならびに保磁力発現に適した微細構造についての知見を 得ることを目的とした.

本論文は以下の7章から構成される.

第1章では, Nd-Fe-B系磁石の概要ならびに重希土類を用いて高保磁力化させる粒界改質 処理の現状と問題点などの研究背景と目的および本論文の構成を示した.

第2章では、各試料の作製方法および実験方法について示した.

第3章では、Tb スパッタ改質 Nd-Fe-B 系焼結磁石の微細構造解析結果について述べた. 第1.2.1 節で述べたように、Tb スパッタ改質磁石では、磁石表面から約 60 µm までの領域を 削除して、Tb 濃度が2 at%と極微量な磁石内部においても保磁力向上の効果が認められる. このことは、微量の Tb で磁石内部の微細組織が高保磁力発現に適したものへと変化してい ることを示唆している.また、Tb 粒界改質処理では Tb は主相粒界に沿って拡散するものと 予想される.そこで、まず、Tb スパッタ改質処理前後の磁石内部領域において、主相粒界 に着目して SEM 観察を行って、マイクロスケールの微細組織の差異を調査した.その後、 集束イオンビーム (focused ion beam: FIB) 装置を用いて磁石内部領域の TEM 試料を作製し て、SEM 結果に基づいて TEM 観察および元素分析を行った. Tb 改質処理における保磁力 向上メカニズムを解明する上では、特に Tb 分布の把握が重要となる.しかしながら、磁石 内部領域では EPMA 分析では検出できないほど Tb 拡散量が少ないため、検出感度の高い電 子エネルギー損失型分光分析 (electron energy loss spectroscopy: EELS) 元素分析を用いて Tb の存在箇所を明らかにした.さらに主相粒界領域を高分解能 TEM 観察に供して、ナノスケ ールの組織変化を調査した.以上の結果を併せて、Tb 改質処理の微量な Tb による保磁力向 上メカニズムを解明した.

第4章ではTbフッ化物塗布改質に伴うNd-Fe-B系焼結磁石の微細構造変化を示した.Tb

フッ化物塗布改質法は Tb スパッタ改質法よりもプロセスが簡便であるが,保磁力向上の観 点からはスパッタ法よりも劣っている.この原因を明らかにすると共に,詳細なエネルギ 一分散型 X 線分光分析 (energy dispersive X-ray spectroscopy: EDS) を行って改質処理に伴う Tb 拡散箇所を明確にして,高保磁力化に及ぼす重希土類元素の役割を調査した.これらの 結果を第3章のスパッタ改質法の結果と併せて,高磁力化に最適な粒界相組成と Nd-rich 相 の構造を検討した.さらに,焼結磁石における,微量の重希土類元素添加で高保磁力を発 現する微細組織について考察した.

第5章では,異方性 Nd-Fe-B 系熱間加工磁石の高性能化について検討した.熱間加工磁石は,第3章と第4章で述べる焼結磁石よりも1桁ほど微細な Nd₂Fe₁₄B 主相粒から構成されるため,高保磁力化の観点でははるかに有利なはずであるが,粒径から見積もられる保磁力よりもかなり小さい値に留まっている.また,残留磁化に関しても焼結磁石よりも劣っており,微細な主相粒の磁化容易軸(*c*軸)をより配向させることも望まれている.そこで,最近の市販品に近い高保磁力 Nd-Fe-B 系熱間加工磁石について最新の SEM および TEMを用いた微細構造解析を行い,高保磁力ならびに高残留磁化を発現させる微細組織の知見を得た.

第6章では、Nd-Fe-B系熱間加工磁石に Dy 改質処理を行って高保磁力化させた際の微細 構造変化を解析した. Dy 改質熱間加工磁石は焼結磁石に匹敵する保磁力を示すラジアル異 方性磁石であるため、実用上的に非常に価値が高いが、HEV/EV などの駆動用モータへ応用 するには更なる保磁力向上が求められる.そこで、SEM と TEM を用いて、微細構造を調査 して、第5章で述べる未処理熱間加工磁石の結果と比較することにより Dy 改質処理による 組織変化を明らかにした.また、第3章と第4章で行った詳細な EDS 分析を用いて Dy 分 布を明らかにすると共に、高分解能走査透過電子顕微鏡(scanning transmission electron microscopy: STEM)観察を行って原子レベルでの Dy 拡散メカニズムを調査した.これらの 結果より、熱間加工磁石における、微量の重希土類元素添加で高保磁力を発現する微細組 織について考察した.

第7章では総括として本研究で得られた結果をまとめた.

15

2章 実験方法

2.1 試料作製方法

本研究では焼結法および熱間加工法で作製した2種類の Nd-Fe-B 系磁石に着目した.こ れらの2種類の磁石材料に重希土類改質処理を施して高保磁力化させた試料を微細構造解 析に供した.以下に解析試料の作製法および解析手法を述べる.

2.1.1 焼結磁石

本研究では、未処理焼結磁石として市販されている Nd-Fe-B 系焼結磁石を用意した. Fig. 2-1 に焼結磁石の製造過程を示す. 原料合金を溶解し、得られたインゴットを水素吸蔵によ って粗粉砕,さらにジェットミルによって数 µm まで微粉砕し、粉砕粉を磁場中でプレスし て成形、焼結、熱処理を施して異方性バルク磁石を得ている. 焼結後の熱処理は粒界近傍 の組織を最適化させ、保磁力を最大にするために施される行程^{80,83)} である.

本研究で用意した焼結磁石の組成は Nd_{12.9} (Dy, Tb)_{0.5} Fe_{bal}. Co_{1.5} B_{6.0} Al_{0.5} Cu_{0.1} Zr_{0.05} であり, 最大エネルギー積は 373 kJ/m³,保磁力は 1.18 MA/m,残留磁化は 1.40 T を示す.この磁石 を未処理磁石とする.未処理磁石を約3 mm角に切削加工すると,保磁力は 1.09 MA/mまで, 最大エネルギー積は 283 kJ/m³まで低下してしまう. Tb 改質処理磁石はこの切削加工した微小磁石を(1) Tb 被覆し, (2) 熱処理を施すこと によって得られる.以下に Fig. 2-2 に示す Tb スパッタ改質法と Tb フッ化物塗布改質法を述 べる.

Tb スパッタ改質法

- 高周波(radio frequency: RF) 三次元スパッタ装置を 5×10⁻⁶ Pa にまで真空排気した後, 高純度 Ar ガスを導入して 2 Pa に維持して,最初に逆スパッタを行って切削加工磁石表 面の酸化膜を除去した後, RF 出力 60~100 W と直流電流出力 100~160 W を印加して スパッタを行い,磁石の外表面に厚さ 5 μm の Tb を成膜する.
- (2) 酸素および水素濃度を 2 ppm 以下に維持した Ar 雰囲気中で,900 ℃で 12 h の熱処理を 施す.

Tb フッ化物塗布改質方法

- (1) 切削加工磁石を TbF₃, CaH₂ (還元剤) および無水ブタノールの懸濁液に未処理磁石を 浸し塗布した後, 乾燥させる.
- (2) Tb フッ化物を塗布した磁石を Ar 雰囲気中 1000 ℃で4hの熱処理を施す.続いて,磁石表面の Ca と Ca 化合物を取り除くために,得られた磁石を超音波機内で希硝酸洗浄し,後にエタノール洗浄する.

Fig. 2-2 Preparing procedures of two kinds of Tb-treatments for Nd-Fe-B sintered magnets⁹¹⁻⁹⁶.

Table 2-1 に未処理, Tb スパッタ改質, Tb フッ化物塗布改質磁石の磁気特性を示す. Tb スパッタ改質処理によって保磁力が 1.2 MA/m から 1.98 MA/m に, Tb フッ化物塗布改質処理によって 1.42 MA/m にまで向上している. 残留磁化の減少は両 Tb 改質処理では見られない. また, Tb 改質処理による保磁力向上に伴って最大エネルギー積も増加していることがわかる.

Table 2-1 Magnetic properties of original, Tb-sputtered and TbF₃-coated Nd-Fe-B sintered magnets.

	Br	H _{cj}	BH _{max}
	(T)	(MA/m)	(kJ/m ^³)
original	1.4	1.20	379
Tb-sputtered	1.4	1.98	401
TbF ₃ -coated	1.4	1.42	393

2.1.2 熱間加工磁石

本研究では、未処理熱間加工磁石として市販されている磁石を用意した.熱間加工磁石 はNd-Fe-B 超急冷フレークを冷間圧縮、熱間圧縮、熱間後方押出を経て作製される(Fig. 2-3). 熱間圧縮は約 100 MPa, 700-800 ℃で行われ、原料フレークの緻密化を目的としている. こ のとき、まだ異方性を有していない. この後に、同じく 700-800 ℃で熱間後方押出加工を することによって、リング形状を獲得するとともに、ラジアル異方性が得られる(Fig. 2-4).

Fig. 2-3 Production process of Nd-Fe-B die-upset magnets and a pseudo-binary phase diagram of Nd-Fe-B ternary system.

Fig. 2-4 Schematic illustrations of crystallographic *c*-axes alignment process of $Nd_2Fe_{14}B$ grains in production of Nd-Fe-B die-upset magnets¹¹⁴⁾. White arrows show the crystallographic c-axis directions of $Nd_2Fe_{14}B$ grains.

本研究で準備した熱間加工磁石は、 $Nd_{13.8}Fe_{bal}Co_{6.6}Ga_{0.45}B_{5.9}$ の組成を有する超急冷フレー クを用いて 800 ℃で熱間圧縮,押出加工を施したものである.また、前述の超急冷フレー クに少量の Cu を含む Dy 片を 2 wt%含有させたものを、未処理磁石と同様の圧縮、押出加 工を施した後、さらに 1 h、750 ℃の熱処理を行った磁石を Dy 改質熱間加工磁石とした. Table 2-2 に未処理、Dy 改質熱間加工磁石の磁気特性を示す.Dy 改質処理によって保磁力 が 1.22 MA/m から 1.63 MA/m まで向上している.一方、残留磁化は若干低下していること がわかる.

Table 2-2 Magnetic properties of original and Dy-treated die-upset Nd-Fe-B magnets.

	<i>В</i> , [T]	<i>H</i> _{cj} [MA/m]
original	1.25	1.22
Dy-treated	1.13	1.63

2.2 組織解析手法

本研究では、巨視的視点と微視的視点の両視点から組織観察を行い、その結果に基づい て組織と磁気特性との関連を検討した.本節では、走査電子顕微鏡観察、透過電子顕微鏡 観察および元素分析について述べる.

2.2.1 走查電子顕微鏡観察

走査電子顕微鏡法 (SEM) とは試料に電子ビームを走査して, 試料表面から放出される 2 次電子・反射電子・試料を透過した透過電子の像を構築し表示する方法である. SEM の利 点はマイクロスケールでの試料の表面・組成・チャネリング情報などを得ることができる 点である.

本研究では、九州大学産学連携センター所有のCarl Zeiss ULTRA55を用いてSEM観察を行った.この機種は電界放射型電子銃(field emission gun: FEG)を有していることに加え、エネルギーおよび角度選択性を有するin-column型の反射電子検出器(energy and angle selective backscattered electron detector: EsB)などを搭載している.低加速電圧でEsBを用いると、高分解能かつ組成に非常に敏感な像が取得できる¹¹⁵⁾.本研究で用いたEsB像は、加速電圧1.5-4 kV、ワーク長1.5-3 mm、フィルタリンググリッド1500 Vの条件で取得した.SEM 観察には、磁石試料をアイソメットで切断したものを機械研磨、乾式手研磨を施した後、クロスセクションポリッシャ(JEOL SM-09020CP)でAr⁺研磨を行った断面観察試料を供した.Ar⁺研磨は6 kV 3 hの後、4 kV 0.5 hの条件で行った.

2.2.2 透過電子顕微鏡観察

透過電子顕微鏡法(TEM)はナノスケールの組織観察ができることに加え,結晶構造情 報を得ることができる.さらに近年では,TEM 像で顕著に現れる回折コントラストの影響 を弱めた像が取得できる走査透過電子顕微鏡法(STEM)が組織観察に威力を持ってきてい る.STEM とは,収束させた電子線を試料上で走査させて像を取得する方法である.STEM の内,STEM 高角度散乱暗視野法(high-angle annular dark-field: HAADF)は格子振動による 熱散漫散乱によって高角度に非弾性散乱された電子を円環状の検出器で受けて像を表示す る手法である.この方法は電子の回折効果を使っていないので像強度は原子番号のほぼ二 乗に比例したものとなる.また,TEM や STEM を応用した,透過電子と特定の回折電子を 同時に通過させた干渉像を観察する手法は高分解能電子顕微鏡像法(high resolution electron microscopy: HREM)と呼ばれる.HREM は微小領域の結晶構造情報を得ることができる.

本研究では、TEM 観察には九州大学総合理工学研究院所有の JEOL JEM-2000EX/T とアン

トワープ大学所有の JEOL JEM-4000EX を用いた. JEOL JEM-2000EX と JEM-4000EX はト ップエントリー型の試料ホルダを搭載しており,試料ドリフトを逓減した安定した観察が 可能となっている. STEM 観察では,九州大学超高圧電子顕微鏡室所有の FEI TECNAI-F20 と JEM-ARM200F を用いた. FEI TECNAI-F20 は FEG を搭載している.一方, JEM-ARM200F は FEG と収差補正装置を搭載しており,0.11 nm の高い分解能を有している.観察時の加速 電圧は JEM-4000EX では 400 kV,その他の顕微鏡では 200 kV である.観察試料の作製は, 九州大学産学連携センター所有の Ga⁺による FIB (HITACHI FB-2000K)装置を用いた.こ の装置はマイクロサンプリング機構を有しており,試料の任意の箇所から約 10×10 µm 程 度の薄膜試料を作製できる.しかし,FIB 加工を行うと,試料表面にダメージ層が生成して 観察時に悪影響を及ぼしてしまう¹¹⁶⁾.そこで,FIB 加工後に低角度 Ar⁺ミリング (Fishione Model-1010A)装置を用いてダメージ層を除去した. 2.2.3 元素分析法

2.2.3.1 エネルギー分散型 X 線分光分析

エネルギー分散型 X 線分光法(EDS)は試料に電子を当てて発生した特性 X 線をエネル ギーで区別し、スペクトルを得る分光分析法である. EDS は化学組成などの定量・定性分 析ができる、重元素の検出ができる、全元素範囲の同時分析ができるなどの特徴がある.

本研究では,前述の SEM (Carl Zeiss ULTRA55), STEM (FEI TECNAI-F20) に装備された EDS 装置を用いて分析を行った.分析測定時間は,点分析では 60 s/point,線分析では 10 s/2 nm,面分析では 0.5 s/3 nm² である.分析時の加速電圧は,SEM-EDS では 6 kV, STEM-EDS では 200 kV である.

2.2.3.2 電子エネルギー損失型分光分析

電子エネルギー損失型分光分析(EELS)は試料に電子線を当ててX線放出の原因となっ た内殻電子励起に消費されたエネルギー損失端スペクトルを得る分光法である.最近では, エネルギーフィルターを搭載した TEM (energy filtered TEM: EFTEM)を用いた高エネルギ ー分解能 EELS が広まってきた. EELS は EDS に比べてエネルギー分解能が高い,軽元素の 検出ができる,全元素範囲の同時分析は困難であるなどの特徴を有する.

本研究では、九州大学超高圧電子顕微鏡室所有の Ω フィルタを搭載した EFTEM である JEOL JEM-3200FSK を用いた.分析時の加速電圧は 300 kV である.より正確なマッピング 像を得るために 3 ウィンドウ法によるバックグラウンド演算を行った.

3章 Tb スパッタ改質 Nd-Fe-B 系焼結磁石

Nd-Fe-B系焼結磁石では、小型化のために切削加工を施すと保磁力が大きく低下すること が知られている.この問題を解決するために、加工磁石表面にTbをスパッタ蒸着させ、こ れに熱処理を施して拡散させるTbスパッタ改質処理法が考案されている.このTbスパッ タ改質処理を施すと、加工による劣化分を上回る保磁力向上が認められるため、改質処理 に伴って磁石内部にどのような微細組織変化が起きているのかが問題となる.本章では、 Tbスパッタ改質処理前後のNd-Fe-B系焼結磁石の微細構造を最新のSEMおよびTEMを用 いて解析し、高保磁力を発現する微細構造についての知見を得ると共に、高保磁力化に及 ぼす重希土類元素の役割について検討した.

3.1 Tb スパッタ改質処理による微細構造変化

Fig. 3-1 に未処理磁石および Tb スパッタ改質磁石の EsB 像を示す.暗いコントラストを 呈する直径 5 µm 程度の Nd₂(Fe,Co)₁₄B 主相粒と明るいコントラストを呈する直径 2 µm 程度 の Nd-rich 相が存在する. さらに Nd₂(Fe,Co)₁₄B 相粒間には黒矢印で示す薄い粒界相がわず かに明るいコントラストで観察される. Fig. 3-1(a)の未処理磁石の EsB 像では,粒界に白矢 印で示す微細な析出物が存在しているのに加え,白破線で示す一部の粒界では粒界相の厚 みが不均一な箇所があることがわかる.それに対して,Fig. 3-1(b)に示す Tb スパッタ改質磁 石では,粒界部に微細な粒界析出物は観察されない.また,粒界相の厚みが不均一な箇所 は存在せず,粒界相が均一に形成されている.以上の SEM 結果より,Tb スパッタ改質処理 により粒界近傍の微細組織が変化したことが判明した.そこで,次に粒界に注目して TEM による微視的な解析を行った.

Fig. 3-2に未処理磁石とTbスパッタ改質磁石のNd₂(Fe,Co)₁₄B相粒同士の粒界近傍のTEM 明視野像を示す.Fig. 3-2(a)に示すように、未処理磁石の粒界には白矢印で示す微細な粒界 析出物が多数存在している.粒界析出物の周囲のNd₂(Fe,Co)₁₄B相は歪コントラストを呈し ているのがわかる.この粒界析出物は上述のFig. 3-1(a)で確認された微細な粒界析出物に対 応するものと考えられる.これに対して、Fig. 3-2(b)に示すように、Tbスパッタ改質磁石で はNd₂(Fe,Co)₁₄B相同士の粒界には析出物が全く存在せず、非常に滑らかな粒界となってい るのが確認できる.また、両磁石のNd₂(Fe,Co)₁₄B相粒内部には黒矢印で示す析出物が存在 している.この析出物から取得した制限視野回折(selected area diffraction: SAD)図形を解

Fig. 3-1 SEM backscattered electron (BSE) images taken with an energy selective BSE (EsB) detector of (a) the original and (b) the Tb-sputtered Nd-Fe-B sintered magnet. Black, white arrows and ellipses indicate a homogenous grain boundary (GB) phase, GB precipitates and an inhomogeneous GB phase, respectively.

Fig. 3-2 TEM-bright field (BF) images of GBs in (a)the original and (b)the Tb-sputtered Nd-Fe-B magnets. White, grey and black arrows indicate GBs, fine precipitates formed along GBs and spherical precipitates in $Nd_2(Fe,Co)_{14}B$ phase, respectively.

Fig. 3-3 (a)TEM-BF image of the GB precipitate in the original magnet. (b)-(f) STEM-EDS elemental maps acquired from the white dotted rectangular region in Fig. 3-3 (a). (b)Nd- L_{α} , (c)Fe- K_{α} , (d)Co- K_{β} , (e)Cu- K_{α} and (f)Al- K_{α} .

析した結果, dhcp 構造の α-Nd (*P6₃/mmc*, *a*=0.365 nm, *c*=1.18 nm)¹¹⁷⁾であることが明らかに なった.次に、未処理磁石の粒界析出物の組成および構造を調査するために行った STEM-EDS 元素分析結果とHRTEM 観察結果を Fig. 3-3 と Fig. 3-4 にそれぞれ示す. Fig. 3-3(a) の TEM 明視野像には、白矢印で示す粒界析出物が存在している. Fig. 3-3(a) TEM 明視野像 中の白破線領域から取得した元素マップを Fig. 3-3(b)-(f)に示す. Fig. 3-3(b), (e)および(f)の元 素マップより, 粒界析出物は Nd, Cu および Al に富んでいることがわかる. また, Fig. 3-3(b) の Nd マップから粒界析出物周辺にも薄い粒界相が存在していることが観察される. Fig. 3-3(a)の TEM 明視野像中の Nd 粒界析出物を含む白実線枠領域と,Nd 粒界析出物から離れ た黒実線枠領域から取得した粒界析出物付近の HRTEM 像を Fig. 3-4(a)と(c)にそれぞれ示す. Fig. 3-4(a)の白枠領域を拡大した Fig. 3-4(b)に示すように、粒界析出物中に格子フリンジが観 察されるため、粒界析出物が結晶質であることが明確である.この格子フリンジの幅は約 0.32 nm 幅であり, dhcp-Nd の{1010}間隔である 0.315 nm に近いことから, この粒界析出物 は dhcp-Nd の構造を有している可能性が高いものと推察される. それに加えて, 格子フリ ンジは様々な方向を向いており、粒界析出物は多結晶体であることがわかる.また、微細 析出物近傍の粒界相もまた同じ約 0.32 nm 幅の格子フリンジを有しており, 粒界析出物近傍 の粒界相が dhcp-Nd 粒界析出物と同じ結晶構造を有していることが示唆される. したがっ て、未処理磁石の一部の粒界では Cu と Al に富んだ Nd 粒界析出物を含む結晶構造の粒界相 が形成されていることが判明した.一方, Fig. 3-4(b)から, 粒界析出物から離れるにつれて, 粒界相の厚みが薄くなっていることがわかる.また、この領域の粒界相には Fig. 3-4(b)で観 察されたような格子フリンジは観察されず,両側の Nd₂(Fe,Co)14B 相粒からの格子フリンジ も重なりもないことから、粒界相の構造はアモルファスであるものと考えられる.

Fig. 3-4 (a)-(c) High Resolution TEM (HRTEM) images acquired from the GB. (a) the white solid rectangular areas in 3-3(a) and the corresponding selected area diffraction (SAD) pattern. (b) the enlarged HRTEM image taken form the GB precipitate in Fig. 3-4(a). (c) the black solid rectangular areas in 3-3(a). Black arrows denote the GB phase.

この粒界相に STEM-EDS 分析を施すと, 平均化学組成は Nd₁₉Fe₇₈Co₁Cu₁Al₁と見積もられた. 以上の結果より、未処理磁石には Nd 粒界析出物と結晶構造の粒界相からなる乱れた粒界が 多数存在するが、一部にはアモルファス粒界相が形成された滑らかな粒界も存在すること がわかった. すなわち, 未処理磁石には不均質な粒界が形成されていることが判明した. 続いて, Fig. 3-5 に Tb スパッタ改質磁石の Nd₂(Fe,Co)₁₄B 相粒界近傍で行った STEM-EDS 分 析結果を示す. Fig. 3-5(a)に示す主相粒界における TEM 明視野の粒界近傍から得た EDS ス ペクトル(Fig. 3-5(b))に示すように、磁石内の Tb 濃度が極めて低いため、Tb の特性 X 線 強度は非常に低い. そのうえ, Tb-L_{al}(6.27 keV)と Tb-L_{bl}(6.98 keV)はそれぞれ Fe-K_{al 2} (6.40 keV)と Co-K_{al} (6.93 keV)に重なっていることがわかる.そこで,他の含有元素と重なりのな いように Tb-L_{B2} (7.37 keV)と Co-K_{B1} (7.65 keV)を選択して, Fig. 3-5(a)の TEM 明視野像の白 破線領域から取得した STEM-EDS ラインプロファイルを Fig. 3-5(c)-(h)に示す. Fig. 3-5(c)-(h) には, Fig. 3-7(d)の Nd-L_{α1,2} プロファイルのピーク半値幅を灰色で色付けして粒界相の領域 として表している. Fig. 3-5(e)の Tb-L_{B2}プロファイルよりピーク強度は小さいものの, Tb が 磁石表面から内部にまで粒界を通して拡散している可能性があることが示唆される.ただ し、磁石内部における Tb 拡散の有無については次節の EELS 分析結果にて明らかにする. また, Tb の他にも, 粒界相には Al と Cu がわずかながら濃縮していることがわかる. この 粒界相に EDS 組成分析を行ったところ、おおよその化学組成は Nd25 Tb05 Fe69 Co2 Cu1 Al2 であ ることが判明した.未処理磁石の滑らかな粒界相の平均組成(Nd₁₉Fe₇₈Co₁Cu₁Al₁)と比較す ると、Tb スパッタ改質処理後の粒界相組成は Nd 濃度が高くなり、Fe 濃度が減少している. また, Tb スパッタ改質磁石の粒界近傍の Nd₂(Fe,Co)₁₄B 相の平均組成は Nd₁₅Fe₈₄Co₁ であり, 主相においては STEM-EDS で検出可能な濃度では Tb は分布していないことがわかった. なお, Tb スパッタ改質磁石の主相粒界領域に HRTEM 観察を行い, 2 nm 程度の薄いアモル ファス粒界相が形成されていたことを確認している.以上の結果より、Tb スパッタ改質処 理を施すと、未処理磁石の Nd 粒界析出物、結晶およびアモルファス構造の粒界相が存在す る不均質な粒界部から磁石全体に滑らかなアモルファス粒界相が形成した均質な粒界部に 変化したことがわかった.Nd の融点は 1021 ℃¹¹⁷⁾ であり, Tb スパッタ改質処理の熱処理 温度は 900 ℃よりも高い.しかしながら, Fig. 3-6 の擬 Nd-Fe-B 状態図¹¹⁸⁾ に示すように, Nd は Nd₂Fe₁₄B 相と 665 ℃で反応して液相になることが報告されている. Nd₂Fe₁₄B 相の融 点は約 1250 ℃¹¹⁷⁾ であり, Nd₂(Fe,Co)₁₄B 相全体が融解しているとは考えにくいため, 熱処 理によって粒界近傍の Nd₂(Fe,Co)₁₄B 相と Nd が反応するものと推察される. この Nd と Nd₂(Fe,Co)₁₄B 相の反応は主に焼結後熱処理によって生じるとされており、市販磁石ではす でに焼結後熱処理は施されている.したがって、Tb スパッタ改質処理が焼結後熱処理で残

Fig. 3-5 (a)TEM-BF image of the GB in the Tb-sputtered magnet, (b) STEM-EDS spectra and (c)-(f) STEM-EDS line profiles acquired from the white dotted line in Fig. 3-5(a): (c)Nd- L_{α} , (d)Fe- K_{α} , (e)Tb- L_{β} , (f)Al- K_{α} , (g)Cu- K_{α} and (h)Co- K_{β} .

った Nd 粒界析出物と粒界近傍の Nd₂(Fe,Co)₁₄B 相の融解反応を促進して, 滑らかな粒界に 変化させたものと推察される.

次に, 未処理磁石と Tb スパッタ改質磁石における Nd-rich 相の TEM 明視野像を Fig. 3-7(a) と(b)にそれぞれ示す. Fig. 3-7(a)に示すように,未処理磁石では Nd-rich 相と Nd₂(Fe,Co)₁₄B 相は接していることが観察できる.一方,Tbスパッタ改質磁石では,Fig.3-7(b)に示すよう に、明るいコントラストの粒界相が Nd-rich 相と Nd₂(Fe,Co)₁₄B 相の間に存在することが明 瞭に確認できる. 粒界相のコントラストは試料を傾けても変わらなかったため, Nd-rich 相 と Nd₂(Fe,Co)₁₄B 相の界面に存在する粒界相もアモルファス構造を有していることが示唆さ れる. したがって、Nd₂(Fe,Co)₁₄B 粒の全周囲に薄いアモルファス粒界相が覆った構造が形 成されたことが明らかになった. Nd-rich 相のコントラストを比較すると、未処理磁石の Nd-rich 相は一様なコントラストを呈しているが、Tb スパッタ改質磁石の Nd-rich 相のコン トラストは一様ではなく、黒矢印で示すような暗いコントラスト領域を含んでいる.この 結果は Tb スパッタ改質前後で Nd-rich 相が変化したことを示している.そこで,Fig. 3-7 に 両磁石の Nd-rich 相から取得した SAD 図形を示す.未処理磁石の Nd-rich 相の SAD 図形(Fig. 3-8(a))を解析したところ, Nd-rich 相は fcc 構造(a=0.55 nm)を有しており, 単結晶から 構成されていることがわかる. この Nd-rich 相に STEM-EDS 点分析を行って化学組成を求 めたところ, Nd₄₄Fe₅Co₃O₄₈ であることが判明した. 注目すべきは, Nd-rich 相は O と Nd の 他に Fe と Co を含んでいることである.そこで,Co-Fe-Nd-O 化合物のなかで,観察された Nd-rich 相に近い格子定数を有する fcc 構造の化合物を Table 3-1 にまとめた. 同じ空間群 ($Fm\bar{3}m$)を持つ NaCl 型 NdO, CaF₂型 NdO₂ と NaCl 型 FeO は SAD パターンでは区別がで

Fig. 3-7 TEM-BF images obtained from the areas around Nd-rich phase in (a) the original and (b) the Tb-sputtered magnets. White and black arrows indicate the GB phase and areas with dark contrast in the Nd-rich phase in the Tb-sputtered magnet, respectively.

Fig. 3-8 SAD patterns from Nd-rich phase in (a) the original and (b) the Tb-sputtered magnets. White arrow denotes the halo-ring (d=0.31 nm).
	Structure	Prototype	Space group	Lattice constant (nm)
NdO	fcc	NaCl	Fm3m	a = 0.507
NdO ₂	fcc	CaF ₂	Fm3m	a = 0.542
FeO (Wustite)	fcc	NaCl	Fm3m	<i>a</i> = 0.430

Table 3-1 Structures, prototypes, space groups and lattice constants of Co-Fe-Nd-O compounds which have fcc structure¹¹⁷⁾.

きないが,見積もられた格子定数を考えると、Nd-rich 相は CaF₂型 NdO₂構造を有している 可能性が高い.また、Nd-rich 相の組成における O/(Nd+Fe)比は NdO₂相の化学量論組成の ものより低いため、NdO₂構造を基本として酸素空孔が存在しているものと示唆される.そ こで、本研究では、この Nd-rich 相の構造を fcc-(Nd,Fe)O_xと表記することにする.これに対 して、Fig. 3-8(b)より、Tb スパッタ改質磁石の Nd-rich 相も fcc 構造 (a=0.55 nm) を有して おり、少なくとも 2 つ以上の結晶からなる多結晶であることが明らかになった.そのうえ、 Fig. 3-8(b)には白矢印で示す散漫なリング (d=0.31 nm) が現れており、これはアモルファ スに由来するものと考えられる.したがって、Tb スパッタ改質磁石の Nd-rich 相には多結晶 とアモルファスが混在していることがわかった.すなわち、Tb スパッタ改質処理を施すと、 Nd-rich 相の(Nd,Fe)O_xはその一部が融解して多結晶とアモルファスに変化することが判明し た.この(Nd,Fe)O_x構造の Nd-rich 相に STEM-EDS 点分析を行い、化学組成を求めたところ、 Nd₃₀Tb_{0.3}Fe₁₂Co₆O₅₂ と見積もられた.Tb スパッタ改質処理前後の(Nd,Fe)O_x構造の Nd-rich 相 の組成を比較すると、O 濃度が増加し、Nd 濃度が減少していることがわかる.この結果は、 Tb スパッタ処理によって(Nd,Fe)O_x構造の Nd-rich 相の Nd が粒界相に移動した可能性があ ることを示している.

3.2 EELS 分析による微量 Tb の計測

EELS 分析では Fe-*L₃*=710 eV, Nd-*M*=978 eV, Nd-*M₄*=1000 eV, Tb-*M₅*=1242 eV および Nd-*M₃*=1298 eV のエネルギー損失端を観測した.未処理磁石の組成は Nd_{12.9} (Dy, Tb)_{0.5} Fe_{bal}. Co_{1.5} B_{6.0} Al_{0.5} Cu_{0.1} Zr_{0.05} であり, Nd の不純物レベルの Tb が含まれている. そこで, Tb スパッ ッタ改質処理により導入される Tb 分布を明確に区別するために,未処理磁石と Tb スパッ タ磁石の両磁石について EELS 分析を行った. Fig. 3-9 に未処理磁石の(Nd,Fe)O_x 構造の Nd-rich 相から取得した EELS スペクトルに示す. この EELS スペクトルを見てわかるよう に,未処理磁石に含まれる Tb は非常に微量である上に,スペクトル強度が低くなる高エネ ルギー側に位置するため, Tb-*M₅*端は全く観察されない. 一方, Li ら ¹¹⁹ は Dy を 3 at%程 度含有した焼結磁石の微細構造解析を行い,重希土類元素である Dy が Nd₂(Fe,Co)₁₄B 相よ りも Nd-rich 相に優先的に分布することを報告している. したがって,未処理磁石では試料 全体にわたって, EELS 分析でさえも検出できないほど Tb 濃度が低いものと考えられる.

Tb スパッタ改質磁石における EELS スペクトル分析結果を Fig. 3-10 に示す. ここでの EELS 分析は, Fig. 3-7(b)と同一領域において行った. Fig. 3-10(a)と(b)に(Nd,Fe)O_x 構造の Nd-rich 相と Nd₂(Fe,Co)₁₄B 相から得た EELS スペクトルをそれぞれ示す. Fig. 3-10(a)に示す Nd-rich 相中から得た EELS スペクトルから, Tb- M_5 端は強度が低いものの観察できる. し たがって, Tb スパッタ改質処理によって Tb が磁石表面から十分に内部まで Tb が拡散した ことがわかる. また, Fig. 3-10(b)に示す(Nd,Fe)O_x相近傍の Nd₂(Fe,Co)₁₄B 相から得た EELS スペクトルにおいても, Tb- M_5 端を観察することができた. この結果は, スパッタにより導

Fig. 3-9 EELS spectrum obtained from theNd-rich phase in the original magnet. Nd- M_5 edge (978 eV), Nd- M_4 edge (1000 eV), Tb- M_5 edge (1276 eV) and Nd- M_3 edge (1298 eV).

Fig. 3-10 EELS spectra (a)-(b) and elemental maps of the Tb-sputtered magnet(c)-(f): (a)the Nd-rich and (b) the Nd₂(Fe,Co)₁₄B phase in Fig. 3-7(b). (c)Tb- M_5 , (d)Nd- M_5 , (e)Fe- $L_{2,3}$, (f)enlarged Fe- $L_{2,3}$. White arrows indicate the GB phase.

入された Tb が磁石内部の粒界三重点に存在する(Nd,Fe)O_x 構造の Nd-rich 相だけでなく, Nd₂(Fe,Co)₁₄B 粒の粒界近傍領域にも拡散して主相の Nd を置換した(Nd,Tb)₂(Fe,Co)₁₄B 層を 形成したことを示唆している.Fig. 3-10(c)に示す Tb- M_5 端を用いて取得した Tb マップでは, Tb が Nd₂(Fe,Co)₁₄B 相よりも Nd-rich 相に優先して拡散しており, Nd-rich 相中に均一に分布 していることがわかる.また,Fig. 3-10(f)の拡大 Fe マップに示すように,Fig. 3-7(b)で観察 された Nd-rich 相と主相との境界部分に存在するアモルファス粒界相が最も暗いコントラス トを呈している.この結果は Tb スパッタ改質磁石の粒界相が Nd-rich 相よりも重希土類元 素に富んでいることを示唆している.すなわち,スパッタ改質処理によって導入された Tb は主相粒界に沿って磁石内部まで浸透していき、大部分の Tb が主相を取り囲む粒界相に分 布していることを示している.

この結果は Table 3-2 の構成元素間の液相における 2 元系混合エンタルピー¹²⁰⁾の大小によって説明できる. 第 3.1 節で示したように, Tb スパッタ改質の熱処理温度においては, Nd₂(Fe,Co)₁₄B 粒の粒界部はほぼ液相に近い状態となっていると考えられる. Table 3-2 より, Tb は粒界相に偏在している Al, Cu と大きな負の混合エンタルピー (ΔH_{mix} = -38 kJ/mol, ΔH_{mix} = -23 kJ/mol) を有する. それに対して, Nd-rich 相の(Nd,Fe)O_x および Nd₂Fe₁₄B 主相に分布する Nd および Fe との混合エンタルピーはそれぞれ 0 kJ/mol, -3 kJ/mol であり, 絶対値が 1 桁 小さい値になっている. したがって, Tb は液相状態では Nd や Fe よりも Al と Cu と混合し やすいため, Tb 改質処理中には Al と Cu に富んだ主相を取り囲む粒界相に最も多く分布したものと考えられる. 粒界を通して磁石内部まで拡散した Tb のごく一部が Nd₂(Fe,Co)₁₄B 主相に分布し, 主相粒表面に(Nd,Tb)₂(Fe,Co)₁₄B 層を形成させるものと推察される. なお, Tb-Fe 系の混合エンタルピーが Tb-Nd 系のものよりも若干小さいのにも関わらず, Nd₂(Fe,Co)₁₄B 主相よりも Nd-rich 相に分布していたのは, Tb が Nd よりも酸化されやすい ¹²¹⁾ことに起因しているものと推論できる.

	Nd	Tb	Dy	Fe	Со	AI	Cu	Ga	Zr	В
Nd		0	0	1	-20	-38	-22	-40	10	-34
Tb			0	-3	-23	-38	-23	-40	8	-36
Dy				-3	-23	-38	-22	-40	8	-36
Fe					-1	-11	13	-2	-25	-11
Co						-10	6	-11	-41	-9
AI							-1	1	-44	15
Cu								1	-23	-5
Ga									-48	21
Zr										-58
В										

Table 3-2 Calculated heats of mixing for binary liquid systems ΔH_{mix} (kJ/mol)¹²⁰⁾.

Fig. 3-11 Schematic illustrations: (a) the original magnet, (b) the magnet during Tb-treatment process and (c) the Tb-sputtered magnet.

以上の結果を基にして描いた Tb スパッタ改質処理による Nd₂(Fe,Co)₁₄B 主相粒の粒界近 傍における微細構造変化の模式図を Fig. 3-11 に示す.未処理磁石の粒界部は微細な Nd 粒界 析出物,結晶構造とアモルファス構造の粒界相が存在する不均質な粒界であった (Fig. 3-11(a)). Tb スパッタ改質処理を施すと,微量な Tb が磁石表面から磁石中心部まで主相粒 界を通して拡散する. Fig. 3-11(b)に示すように,粒界拡散した Tb は,微細な Nd 粒界析出 物,粒界三重点の(Nd,Fe)O_x さらに主相粒の表面領域と共晶反応を起こして液状になる. こ のとき,主相同士の粒界近傍よりも(Nd,Fe)O_x 相と主相と粒界近傍の方が,主相の液状領域 が大きくなっているものと推察される. このように, Tb 粒界拡散と主相粒界部の液状反応 が同時に生じて、一部の Tb が主相に取り込まれる. その結果, Fig. 3-11(c)に示すように, Nd₂(Fe,Co)₁₄B 粒の粒界には滑らかな 2 nm 程の厚みのアモルファス粒界相が形成されるとと もに, Nd₂(Fe,Co)₁₄B 粒の表面部に Tb が一部の Nd を置換した(Nd,Tb)₂(Fe,Co)₁₄B 層が形成さ れたものと考えられる.

次に, Tb スパッタ改質処理が保磁力に及ぼす影響について考察する. 高保磁力化の要因 として以下の点を提案する(Fig. 3-12).

Fig. 3-12 Schematic illustrations of changes improving coertcivity by Tb-sputtered treatment: (a) the original magnet and (b) the Tb-sputtered magnet.

(1) 未処理磁石の逆磁区の発生サイトを低減させる.

未処理磁石の粒界に存在していた Nd 粒界析出物と厚みの不均一な粒界相は Tb スパ ッタ改質処理によって低減された. Nd は非磁性であるため, Nd 粒界析出物が磁性 を示すことは考えにくい. したがって,磁性を有していなくとも,粒界に存在する 不均質な箇所が逆磁区の発生サイトとなって保磁力低下の原因となるものと考えら れる. Tb スパッタ改質処理はこれらの逆磁区の反転サイトを消失させて,逆磁区の 発生確率を減少させる.

(2) 2 nm 程の厚みのアモルファス粒界相でNd₂(Fe,Co)₁₄B 主相粒を滑らかに覆う構造を形成 させたことによって、Nd₂(Fe,Co)₁₄B 相粒を磁気的に分断させる.

未処理磁石における不均質な主相粒界から 2 nm 程のアモルファス粒界相が形成された均質な粒界に変化したことは磁気分断の強化を導いたものと考えられる.また, 粒界相の構造が結晶とアモルファスの混合したものから, Tb スパッタ改質処理によってアモルファス構造のみに変化したことで,主相粒の周囲を滑らかに取り囲むことが容易になったものと推察される.

(3) 粒界相に磁気異方性の大きな Tb が含まれることで、粒界相の磁気異方性が高まって主 相粒の磁気的分断を強める.

粒界相における Tb 濃度は 0.5 at%と極微量である. R-Fe 系アモルファス薄膜の磁気

特性を調査した Takahashi ら¹²²⁾の報告を参考にすると、Tb 含有による粒界相の磁 気異方性の増加分は 0.1 %程度と見積もられる.

 (4) Nd₂(Fe,Co)₁₄B 相粒表面に磁気異方性の大きな(Nd,Tb)₂(Fe,Co)₁₄B 層が形成され,主相粒 表面領域の逆磁区の伝搬を抑制する.

Nd₂(Fe,Co)₁₄B 相粒表面領域における Tb 濃度は STEM-EDS 分析では検出できないほ ど極微量である. 仮に粒界相と同程度の Tb が粒界近傍の Nd₂(Fe,Co)₁₄B 相に分布し て(Nd,Tb)₂(Fe,Co)₁₄B 層を形成したとすると, 磁気異方性増加分は 5 %程度と計算さ れる.

したがって、Tb スパッタ改質処理では逆磁区の核発生サイトを低減するとともに、 Nd₂(Fe,Co)₁₄B 主相粒を滑らかな極薄いアモルファス粒界相と薄い(Nd,Tb)₂(Fe,Co)₁₄B 層とで 2 重に覆う組織を形成することによって主相粒間の磁気的な分断を高めて高保磁力を発現 させるものと結論できる.高保磁力化の要因となった微細組織変化の中でも、(1)逆磁区の 核発生サイトとなる Nd 粒界析出物を低減したことと、(2)滑らかな粒界相で Nd₂(Fe,Co)₁₄B 主相粒を覆う構造を形成して逆磁区の核発生抑制を強めると共に主相粒の磁気的分断を高 めたことの寄与は大きいものと考えられる.

以上の考察より、焼結磁石では、微細な粒界析出物が逆磁区の反転サイトになり、保磁 力機構はニュークリエーション型が支配的になるものと推察される.しかし、粒界に存在 する逆磁区の発生サイトが低減して粒界近傍の組織が磁気的分断に十分な形態になれば、 粒界相がピンニングサイトとして働き、磁気的分断が強まって、高保磁力が発現するもの と考えられる.一方、Tb スパッタ改質処理前後で粒界相と(Nd,Fe)O_x構造の Nd-rich 相の組 成の変化も観察されたが、これらが保磁力に及ぼす影響に関しては次章で検討する.

3.4 小括

本章では、Tb スパッタ改質処理が微細構造に及ぼす影響について調査し、以下の結論を 得た.

- Tb スパッタ改質処理によって磁石表面にスパッタ蒸着された Tb が磁石内部まで主 相粒界を通して拡散し、未処理磁石に存在した Nd 粒界析出物および不均質な粒界相 は消失し、主相周囲に滑らかな厚み 2 nm 程度のアモルファス粒界相 (Nd₂₅Tb_{0.5}Fe₆₉Co₂Cu₁Al₂)が形成される.これが、逆磁区の発生を抑制すると共に主 相粒の磁気的分断を強めることにより、高保磁力化させる.
- 2. 磁石内部まで拡散した Tb は粒界近傍の主相粒の Nd と置換して,主相粒表面に極薄 い(Nd,Tb)₂(Fe,Co)₁₄B 層を形成し,これが逆磁区伝搬の抑制に寄与する.
- 3. Tb スパッタ改質処理は、逆磁区の核発生サイトを低減するとともに、Nd₂(Fe,Co)₁₄B 主相粒を滑らかな極薄アモルファス粒界相と薄い(Nd,Tb)₂(Fe,Co)₁₄B 層とで2重に覆 う構造を形成することによって、逆磁区の核発生を抑制し、主相粒の磁気的分断を 高めることで保磁力を向上させる.

4章 Tb フッ化物塗布改質 Nd-Fe-B 系焼結磁石

第3章ではTbスパッタ改質処理を施したNd-Fe-B系焼結磁石の保磁力向上メカニズムについて検討した.Tbスパッタ改質処理を施すと、微量のTbがNd₂(Fe,Co)₁₄B 主相粒界部に沿って拡散し、処理前のNd析出物が存在する不均質な主相粒界部が極薄アモルファス粒界相で連続的に覆われた滑らかな粒界部へと変化することによって、逆磁区の発生を抑制すると共に主相粒の磁気的分断を高めて、高保磁力化させることが明らかとなった.また、一部のTbは主相粒表面に極薄いTb置換層を形成し、これが逆磁区伝搬の抑制に寄与することを見出した.本章では、Tbスパッタ改質処理よりもはるかに簡便であるTbフッ化物改 質処理を施したNd-Fe-B系焼結磁石を扱う.Tbフッ化物改質処理磁石の微細構造を第3章 と同様の解析手法で調査し、Tbスパッタ改質磁石の結果と併せて、高保磁力発現に適した焼結磁石の微細組織について考察する.

4.1 Tb フッ化物塗布改質処理による微細構造変化

Fig. 4-1 に Tb フッ化物塗布改質磁石の EsB 像を示す.未処理磁石に存在していた微細な Nd 粒界析出物は観察されない.また,白破線で囲んだ厚みが不均一な粒界相が多く存在し ており,Tb スパッタ磁石に比べて極薄粒界相の形成頻度が低下している.したがって,Tb フッ化物塗布改質処理によって粒界相で覆われた滑らかな粒界部が増すものの,不均質な 粒界部が一部に残存してしまうことが判明したことがわかった.続いて,第3章と同様に 粒界と Nd-rich 相に着目して TEM 観察を行った.

Fig. 4-2 に Tb フッ化物塗布改質磁石における Nd₂(Fe,Co)₁₄B 主相粒同士の粒界の TEM 明 視野像を示す. 粒界には未処理磁石で観察された歪みコントラストを呈する Nd 粒界析出物 は存在しない. しかしながら, 主相粒界には粒界相が不連続に形成されており, 最も厚い 箇所ではその厚みが 10 nm 程度にも達する. そのうえ, 厚い粒界相中には, 黒矢印で示す 微細な暗いコントラストを示す箇所が確認できるため, 厚い粒界相は多結晶であることが 示唆される. このような結晶構造を有した粒界相が不連続に形成された粒界部が Fig. 4-1 の SEM-EsB 像で観察された白破線で示す粒界部と一致するものと考えられる. 次に粒界三重 点の Nd-rich 相の TEM 明視野像を Fig. 4-3(a)に示す. Nd-rich 相は 200-500 nm 程度の微細な 結晶とグレーの領域から構成される. Fig. 4-3(b)と(c)に Fig. 4-3(a)中の微細な結晶領域とグレ ーの領域から取得した SAD 図形をそれぞれ示す. Fig. 4-3(b)の基本格子反射は fcc 構造 (*a*=0.55 nm)に起因し, この格子定数は Tb スパッタ磁石の(Nd,Fe)O_x構造の Nd-rich 相と同

Fig. 4-1 SEM backscattered electron (BSE) images taken with an energy selective BSE (EsB) detector of the TbF₃-coated Nd-Fe-B sintered magnet. White ellipses indicate regions of an inhomogeneous grain boundary (GB) phase.

Fig. 4-2 TEM bright field (BF) images of the GBs in the TbF_3 -coated magnet. White and black arrows show the GBs and area with dark contrast in the GB phase, respectively.

様に CaF2型 fcc-NdO2¹¹⁷⁾のものに近い. この他に基本格子反射の 1/2 位置に弱い反射が存在 している.この構造に近いものとして、NdO,構造から規則的に酸素が欠けたNd,O3(Ia3, a=1.108 nm)¹¹⁷⁾が報告されている. さらに, STEM-EDS 分析の結果, Tb スパッタ改質磁石で 観察された Nd-rich 相と同様に, この Nd-rich 相中の結晶からも Fe が 10 at%程度検出された た. このため, Nd-rich 相中の結晶の構造も fcc-(Nd,Fe)O_x とする. 一方, Fig. 4-3(c)は隣接す る Nd₂(Fe,Co)₁₄B 粒, 2 つの(Nd,Fe)O_x結晶と黒矢印で示す散漫なリングから構成されており、 複雑なパターンを呈している. 散漫なリングは(Nd,Fe)O_x結晶の SAD パターン (Fig. 4-3(b)) には現れていないことから, TEM 試料表面に形成されたダメージ層に起因するものではな く、グレーの領域にアモルファスが存在していることを示している.さらに、グレーの領 域のコントラストは TEM 試料を傾斜させても変化しなかったことから、グレーの領域がア モルファス構造を有しているものと考えられる.したがって,Nd-rich 相には(Nd,Fe)O_x結晶 とアモルファスが存在していることが明らかとなった. この結果は Tb スパッタ改質磁石で 観察された結果と一致するものである. Fig. 4-3(a)における Nd₂(Fe,Co)₁₄B 主相粒, Nd-rich 相中の(Nd,Fe)Or 結晶粒とアモルファスの分布を描いた模式図(Fig. 4-3(d))に示すように, アモルファスは(Nd,Fe)O_x結晶粒間だけでなく、(Nd,Fe)O_x結晶粒と Nd₂(Fe,Co)₁₄B 粒の間に も存在している. このアモルファスの組成を調べるために Fig. 4-3 (a)の破線四角領域におい て STEM-EDS マッピング分析を行った. Fig. 4-4(a)と(b)-(g)に TEM 明視野像と元素マップを それぞれ示す. Fig. 4-4(g)の Tb マップより, Tb はわずかながらアモルファスに濃縮してい ることがわかる. また, アモルファスは Fe が少なく, Nd と Co を多く含有している. Co のアモルファスへの濃縮傾向は, Table 3-1 に示した混合エンタルピー¹²⁰⁾から説明できる. Co-Nd 系(ΔH_{mix} = -20 kJ/mol)と Co-Tb 系(ΔH_{mix} = -23 kJ/mol)は Co-Fe 系(ΔH_{mix} = -1 kJ/mol)よりも 大きな負の混合エンタルピーを有している.したがって Tb フッ化物塗布改質処理過程にお いて, 粒界近傍の Nd₂(Fe,Co)₁₄B 相から Co が Nd と Tb に富むアモルファス相に移動したも のと推察される. Nd-rich 相中の(Nd,Fe)Ox 結晶粒とアモルファスで行った STEM-EDS 点分 析の結果,平均化学組成はそれぞれ Nd40Tb0.1Fe8Co4O48, Nd26Tb0.5Fe3Co26Cu9O36 であると見 積もられた. 未処理磁石における(Nd,Fe)O_x構造の Nd-rich 相組成は平均 Nd₄₇Fe₂Co₁O₄₀であ ったことから、Tb フッ化物塗布改質処理によっても(Nd,Fe)Ox構造の Nd-rich 相における O 濃度が増加し, Nd 濃度が減少したことがわかる.次に,前章の未処理磁石, Tb スパッタ改 質磁石の主相同士の粒界と比較するために、比較的滑らかな粒界部分において HRTEM 観 察と STEM-EDS 分析を行った.Fig. 4-5(a)と(b)に主相同士の粒界を含む領域の TEM 明視野 像と HRTEM 像をそれぞれ示す.HRTEM 像(Fig. 4-5(b))には両側の Nd₂(Fe,Co)₁₄B 粒の格 子フリンジが及んでいない領域が連続的に存在することが明瞭である。そのため、この領

Fig. 4-3 (a) TEM-BF image of the Nd-rich phase at the triple junction of the TbF₃-coated magnet, (b)-(c) selected area electron diffraction from the area indicated as a black and a white circles in panel Fig. 4-3(a) and (d) schematic illustration of Fig. 4-3 (a). A black arrow in Fig. 4-3(a) denotes a halo ring (d=0.31 nm).

Fig. 4-4 (a)TEM-BF image of the black dotted area Fig. 4-3(a). (b)-(g) STEM-EDS elemental maps of white dotted rectangular region in Fig. 4-4 (a). (b)Nd- L_{α} , (c)Fe- K_{α} , (d)Co- K_{β} , (e)Cu- K_{α} , (f)Al- K_{α} and (g)Tb- L_{β} .

Fig. 4-5 (a) TEM-BF image of a triple junction of Nd₂(Fe,Co)₁₄B grains, (b) a high resolution (HR) TEM image from the region marked with a white quadrilateral and the corresponding selected area diffraction pattern, and (c)-(f) the EDS line profiles taken from a white dotted line in Fig. 4-5(a): (c)Fe- K_{α} , (d)Nd- L_{α} , (e)Co- K_{β} and (f)Tb- L_{β} .

域に粒界相が2nm程度の厚みを持って存在することがわかる. さらに、粒界相中には格子 フリンジや格子点は確認できないため、粒界相はアモルファス構造を有することが示唆さ れる.また、右側の Nd₂(Fe,Co)₁₄B 粒の格子フリンジをよく観察すると、粒の表面に凹凸が 見られる. このような凹凸のある主相粒表面では Nd には隣接するはずの Fe 原子や Nd 原子 が存在しないため,Nd2Fe14B 相の磁気異方性に最も重要な Nd の 4f 軌道分布が変化し,磁 気異方性が低下しているものと推察される.したがって、主相粒表面が凹凸になっている 箇所は、逆磁区の核発生サイトになり保磁力低下の原因になると推察される。この凹凸の ある主相粒表面をアモルファス粒界相が滑らかに覆っていることに注意したい、次に、粒 界相の組成を調べるために行った STEM-EDS ライン分析結果を Fig. 4-5(c)-(f)に示す. Fig. 4-5(d)-(f)より,アモルファス粒界相は Nd, Co, Tb に富んでいることがわかる.この特徴は Nd-rich 相中の(Nd,Fe)Ox 粒間に存在していたアモルファスのものと一致する. EDS 組成分析 の結果, 粒界相の組成は Nd₂₀Tb_{0.1}Fe₇₄Co₃Cu₁Al₂ であると見積もられた. 粒界相の組成が (Nd,Fe)O_x相中のアモルファス相の組成よりも Nd 濃度が低く, Fe 濃度が高く見積もられた のは、粒界相が数 nm 幅で薄いため両側の主相粒由来の X 線の影響を受けやすくなったた めであると考えられる.したがって、アモルファス粒界相は前述の Nd-rich 相中の(Nd,Fe)Or 粒間で観察されたアモルファスとほぼ同一の組成を有しており、主相粒間だけでなく、主 相粒と Nd-rich 相中の(Nd.Fe)O,粒間にも存在していることがわかった. すなわち、Tb フッ 化物塗布改質処理磁石の主な主相粒界部ではアモルファス粒界相が主相粒を滑らかに覆っ た均質な粒界が形成されたことが示唆された.

4.2 高保磁力化に及ぼす Tb フッ化物塗布改質処理の影響

第4.1節でTbフッ化物塗布改質処理により,Nd粒界析出物が融解して粒界相の一部になり,Nd2(Fe,Co)₁₄B 粒が粒界相で滑らかに覆われた構造が増加するものの,一部の粒界部では不均一な厚みの粒界相が残存してしまうことを明らかにした.Fig. 4-6 にTbフッ化物塗 布改質処理による保磁力への影響を示す.

Fig. 4-6 Schematic illustrations of changes improving coercivity by TbF_3 -coating treatment: (a) the original magnet, (b) the TbF_3 -coated magnet.

(1) Nd 粒界析出物を消失させることによって、逆磁区の反転サイトを減少させる.

(2) 磁気異方性の大きな Tb を含む 2 nm の厚みのアモルファス粒界相で覆われる構造が 増加して主相粒間の磁気分断を強める.

(3) 粒界相に磁気異方性の大きな Tb が含まれることで、粒界相による主相粒間の磁気的な分断をさらに強める.

さらに、Tbスパッタ拡散磁石と同様に、以下の効果も生じる可能性がある.

(4) ごく微量の Tb が主相表面に拡散し,磁気異方性の高い(Nd,Tb)₂(Fe,Co)₁₄B 層を形成 させて逆磁区の伝搬を抑制する.

したがって、Tb フッ化物塗布改質処理を施すと、基本的には Tb スパッタ改質磁石と同様 の粒界微構造を形成させて保磁力を向上したものと考えられる.しかしながら、一部の粒 界では不均質な粒界部が残存してしまう.その結果として、Tb フッ化物塗布改質処理は Tb スパッタ改質処理よりも低い保磁力に留まったことがわかった.

4.3 粒界近傍の微細組織変化に及ぼす Tb の役割と最適構造

本節では第3章で述べた未処理磁石とTbスパッタ改質磁石の結果と第4章Tbフッ化物 塗布改質磁石の結果を併せて,(1)粒界相と(2)Nd-rich相に及ぼすTbの役割ついて議論する. これらの議論より,高保磁力発現に適した焼結磁石の最適構造について提案する.

(1)粒界相

STEM-EDS 分析によって、磁石の中心領域の比較的滑らかな Nd₂(Fe,Co)₁₄B 相粒界に存在 する粒界相の平均化学組成は、未処理(Hc=1.20 MA/m), Tb フッ化物塗布改質(Hc=1.42 MA/m)および Tb スパッタ改質磁石(Hc=1.98 MA/m)においてそれぞれ Nd₁₉Fe₇₈Co₁Cu₁Al₁, Nd₂₀Tb_{0.1}Fe₇₄Co₃Cu₁Al₂, Nd₂₅Tb_{0.5}Fe₆₉Co₂Cu₁Al₂ であることを明らかした. 保磁力が大きな磁 石ほど、Nd 濃度が増加し、Fe 濃度が低下していることがわかる. 一方で、粒界相中の Cu と Al 濃度は 3 磁石において大きな変化は見られない. Tb 濃度は極めて少ないものの Tb フ ッ化物改質磁石の粒界相の Tb 濃度が Tb スパッタ改質磁石よりも低い. この事実は、Tb フ ッ化物塗布改質処理における Tb 導入量が Tb スパッタ改質処理よりも少ないことを示して いる. その要因としては、Tb スパッタ改質法が真空状態で Tb 金属を磁石表面に蒸着するの に対して、フッ化物塗布改質法が TbF₃ と CaH₂を塗布するという Tb 被覆法違いが挙げられ る. すなわち、Tb スパッタ改質法の方が磁石の単位表面積における Tb 金属の被覆率が高く、 磁石内部に導入される Tb 量そのものが大きいものと推察される.

また,保磁力の大きな Tb スパッタ改質磁石では最も均一な粒界相の形成が観察されたことから,Tb 改質処理における均一な粒界相の形成には Nd と Tb 濃度の上昇が鍵となっているものと考えられる.これは,Nd と Tb は磁石の構成元素である Fe,Co,Cu および Al といずれも Nd もしくは Tb-rich 側で Tb 改質処理の熱処理温度よりも低い共晶点を有する¹²³[例えば,685 °C(Fe₂₂Nd₇₈),856 °C(Co₃₆Nd₇₃),459 °C(Cu₃₀Nd₇₀)および 690 °C(Al₂₂Nd₇₈)]ことに起因すると考えられる.粒界相の Nd と Tb 濃度の上昇は粒界相の融点を下げ,熱処理中における流動性を大きくして,粒界相が主相粒界への毛管的かつ均一に広がりやすくしたものと推察される.さらに,粒界相の融点の低下はアモルファス構造をとりやすくさせ,凹凸のある主相粒表面においてでさえも粒界相を滑らかに形成させることができたものと考えられる.ただし,Tb の融点(1356 °C)は Nd(1021 °C)よりも高い¹¹⁷⁾ため,Tb と他の含有元素の共晶温度は,Nd との共晶温度よりも高い値を示す.そのため,粒界相の Tb 濃度が高まり過ぎると,粒界相の流動性が低下して,均一な形成が返って妨げられることも考えられる.

一方, 粒界相の Nd 濃度の増加は均一な形成に寄与するだけでなく, 粒界相中の強磁性元素である Fe 濃度の低下をもたらした.第 1.2 節で示したように, 焼結磁石の保磁力機構は ニュークリエーション型であると考えられており, 係数α^{nuc}は以下の式で表される⁷³⁾.

$$\alpha_K^{nuc} = 1 - \frac{1}{4\pi^2} \frac{\delta_0^2}{r_0^2} \left[-1 + \sqrt{1 + \frac{4\Delta K r_0^2}{A}} \right]^2 \dots (3)$$

ここで、*A*、*K*および δ_0 は Nd₂(Fe,Co)₁₄B 相の交換スティフネス定数、結晶磁気異方性 定数および磁壁幅である. $\Delta K \ge r_0$ は Nd₂(Fe,Co)₁₄B 相と粒界相の磁気異方性定数の差、 粒界相の厚みである. 粒界相が強磁性を示すとすると、Nd 濃度の増加と Fe 濃度の低 下は粒界相の磁気異方性を向上させ、 ΔK が低下する¹²³⁾ものと推察される.すなわち、 Tb 改質処理による Nd 濃度の高い粒界相は逆磁区の核発生を抑制し、 α_K^{nuc} が増加して 高保磁力化に寄与することが示唆される. さらに、第 1.2.1 節で述べたように、焼結 磁石の保磁力機構はピンニング型と明確な区別はできていないため、粒界相のピンニ ング力についても検討する. ピンニング力を表す係数 α_K^{Pin} は以下の式で表される⁷³⁾.

 $\alpha_K^{Pin} = \frac{1}{3\sqrt{3}} \frac{\pi r_0}{\delta_0} \left(\frac{A}{A'} - \frac{K'}{K} \right) \dots \tag{4}$

ここで, *A*'と*K*'は粒界相の交換スティフネス定数,磁気異方性定数である. 粒界相の Nd 濃度の増加と Fe 濃度の低下は粒界相の *A*'を増加させ, *K*'を向上させる¹²³. すなわち, Nd 濃度が高いほど,粒界相のピンニング力は弱くなる. しかしながら,粒界相は不連続 的なものから連続的なものへと変化したため,磁石全体的には粒界相による主相粒の磁 気的分断は強まったものと考えられる. 以上より, Tb 改質処理による Nd 濃度の高い連 続的な粒界相の形成が逆磁区の核発生を抑制し,主相粒間の磁気的分断を強めることが 判明した.

49

(2) Nd-rich 相

未処理焼結磁石, Tb スパッタ改質磁石および Tb フッ化物塗布改質磁石において観察され た Nd-rich 相の構造は fcc-(Nd,Fe)O_x である. この(Nd,Fe)O_xは CaF₂型 NdO₂に近い構造を有 していることが SAD 解析によって明らかになった.また, STEM-EDS 分析の結果, (Nd,Fe)O_x が酸素空孔を有する相であることが示唆された. さらに一部の Nd-rich 相には NdO₂ から周 期的に酸素が欠損した*Ia* $\overline{3}$ -Nd₂O₃の構造に近いものも存在していた. (Nd,Fe)O_xの組成は未処 理, Tb フッ化物塗布改質および Tb スパッタ改質磁石においてそれぞれ Nd₄₄Fe₅Co₃O₄₈, Nd₄₀Tb_{0.1}Fe₈Co₄O₄₈ および Nd₃₀Tb_{0.3}Fe₁₂Co₆O₅₂ と見積もられた. この結果より, Tb 改質処理 によって(Nd,Fe)O_xの Nd 濃度が低下しており, この Nd 濃度低下は保磁力が大きな Tb スパ ッタ改質磁石の方が Tb フッ化物塗布改質磁石よりも大きいことがわかった. したがって, Tb 改質処理過程において, (Nd,Fe)O_x構造の Nd-rich 相は Nd を粒界相に提供し, Nd 濃度の 高い粒界相の形成を助けて高保磁力化に寄与するものと推察される.

一方, (Nd,Fe)O_xの他に, 微細な粒界析出物として dhcp-Nd も存在しており, Tb 改質処理 によって融解して均一な粒界相の一部となったことが明らかになった. この結果は, Nd だ けでは滑らかな粒界相を形成できず, むしろ一部の粒界に微細な析出物となって保磁力に 悪い影響を与えることを意味している.

Table 4-1 に今までに報告されている Nd-rich 相の構造, プロトタイプ, 空間群, 格子定数 および安定性をまとめた. dhcp-Nd 相は常温での安定相であるのに対して, NdO₂ 相と $Ia\bar{3}$ -Nd₂O₃ 相は準安定相である. これらの本研究で観察された化合物以外に, 一酸化物の

\square	Structure	Prototype	Space group	Lattice constant (nm)	stability
dhcp-Nd	dhcp	αLa	P63/mmc	a = 0.366 c = 1.180	Room temperature phase
NdO	fcc	NaCl	Fm3m	<i>a</i> = 0.507	metastable
Nd ₂ O ₃ (C-type)	bcc	Mn ₂ O ₃	Ia 3	<i>a</i> = 1.108	metastable
Nd ₂ O ₃ (A-type)	trigonal*	La ₂ O ₃	P3m	a =0.383 c =0.600	stable (7 _m =2272°C)
NdO ₂	fcc	CaF ₂	Fm3m	a = 0.542	metastable

Table 4-1 Structures, prototypes, space groups, lattice constants and stability of Nd-rich phase compounds^{79-82,117,121)}.

*trigonal-Nd₂O₃ is called as hcp-Nd₂O_{3.}

Fig. 4-7 Polymorphic transformation for the lanthanoid sesquioxides.¹²¹⁾.

NdO, 二三酸化物の trigonal-Nd₂O₃ が報告されている. 希土類の二三酸化物として A (trigonal), B (monoclinic), C (cubic)の三種類の型が知られており, trigonal-Nd₂O₃と*Ia*3-Nd₂O₃はA 型あるいは C 型酸化物とも表記される.また,trigonal-Nd₂O₃は Nd-Fe-B 磁石の微細構造解 析に関する論文では hcp-Nd₂O₃と表記されることが多い^{79,81,82)}.これは, trigonal-Nd₂O₃単位 胞中のNdが六方晶系のような配置をとることに注目した表記であるものと思われる.Table 4-1 に示すように、以上の Nd-Fe-B 系磁石の Nd-rich 相として報告されている Nd 酸化物のう ち、安定に存在するのは trigonal-Nd₂O₃相のみとなっている.これに対して、Tb 酸化物も同 様の構造をとるが、Tb酸化物では安定に生成されるのは trigonal-Tb₂O₃相でなく、Ia3-Tb₂O₃ 相である(Fig. 4-7).さらに、重希土類元素である Tb は軽希土類元素の Nd よりもイオン半 径が小さく容易に酸化されることが知られている¹²¹⁾. これらの事実は, Tb が fcc-Nd 酸化 物相の一部の Nd を置換すると,酸化数の高い fcc-酸化物の安定性が増すことを示唆してい る.したがって、粒界拡散した Tb が粒界三重点に存在する fcc-(Nd,Fe)O_xに分布すると、余 剰となった Nd が粒界相に追い出されて、Nd 濃度の高い粒界相形成に寄与することが推察 される. また, fcc-(Nd,Fe)O,も粒界相と同様に Nd と Fe を含んでおり,磁壁のピンニング 効果を有する可能性も有しているが、その効果の有無は不明であるため更なる研究が必要 である.

(1), (2)より,磁石内部に導入する Tb 量を高めることによって,Nd 濃度の高い粒界相を 連続的に形成することができ,保磁力が向上することが明らかになった.したがって,Tb フッ化物改質処理条件の改善(例えば,処理の繰り返し,還元剤や温度等のプロセス条件 最適化)ができれば,更なる保磁力向上が期待できる. 以上の考察より、Nd-Fe-B系焼結磁石において、できるだけ微量の重希土類元素を用いて 高保磁力化するための粒界微構造として次に示す特徴が考えられる.本研究では、高保磁 力発現には、まず、逆磁区の発生サイトを低減することが肝要であることが明らかになっ た.現在、焼結磁石の主相粒の粒径は5µm程度であり、Nd₂Fe₁₄B主相の単磁区粒径である 250 nm⁵⁾と比較して1桁ほど大きいことは、このことを支持するものと考えられる.核発生 サイトとしては、非磁性と考えられる微細なNd粒界析出物も核発生サイトになり得ること が本研究で明らかとなった.さらに、主相表面に凹凸のある箇所も逆磁区の発生サイトと なると考えられるため、凹凸が少なくなるように、できるだけ低次の結晶面(例えば、{100}、 {001}、{110})が主相粒表面に形成されることが望ましい.また、主相粒周囲にNd濃度の 高い粒界相を形成することによっても逆磁区の発生を抑制することができる.この際、主 相粒の凹凸ある表面を滑らかに覆うために、粒界相が結晶構造ではなくアモルファス構造 をとる方が有利である.

このようにして逆磁区の発生を十分抑制した組織では,発生した逆磁区を主相粒界近傍 でピンニングすることが重要になってくる. 粒界相の厚みが磁気分断に十分な値に達さな い領域では逆磁区の伝搬を止めることができない、そこで、十分な厚みを有する粒界相で 主相を連続的に覆った構造を形成する必要がある.磁気分断に必要な厚み($\sqrt{(\mu_0 A/I_s^2)}$)は 2 nm 程度 ⁵⁾ と計算されている.この計算では、粒界相は非磁性であることが前提である. 実際の粒界相には強磁性の Fe や Co が含まれるため、粒界相の厚みは 2 nm よりも大きくな るものと考えられる.連続的な粒界相形成のためには、熱処理過程における粒界相の流動 性を向上させることが好ましい. 粒界相の流動性を向上させるためには粒界相の Nd 濃度を 高めることが有効である. しかしながら, Nd 濃度を高めすぎると返って流動性が妨げられ ることが考えられるため、Nd 濃度には適正値が存在するものと思われる. この Nd 濃度の 高い粒界相を形成に寄与する点で,fcc-(Nd,Fe)O_xは高保磁力発現に適した Nd-rich の構造で あると言える. (Nd,Fe)Ox構造の Nd-rich 相からの粒界相への Nd 供給効率を高めるためには, (Nd,Fe)O, 構造の Nd-rich 相を磁石内に微細に分散させることが挙げられる. (Nd,Fe)O, から Nd が粒界相に移動するためには、高酸化数の(Nd,Fe)O、の安定性が向上することが必要であ るため, Tb 等の重希土類元素の Nd 置換が有効である. また, (Nd,Fe)O_x構造の Nd-rich 相 を磁石内に微細に分散させることは,Nd 濃度の高い粒界相を形成させるだけでなく,磁壁 のピンニング効果を高める可能性もある. さらに, 主相粒表面に磁気異方性の高い Tb₂Fe₁₄B 層を薄く形成することによっても逆磁区伝搬の抑制を強めることが可能である.しかしな がら, Tb スパッタ改質磁石の保磁力向上を考えると, TbゥFeլ₄B 層の形成なしでも, 特に高 保磁力が必要な HEV/EV 用磁石程度の保磁力(H_{ci}=2.4MA/m)に達することができる可能性 があると考えられる.これらの特徴を併せて、微量な重希土類元素添加量で高保磁力発現 させる焼結磁石の微細構造として Fig. 4-8 に示すような構造を提案する.

Fig. 4-8 Schematic illustration of a suitable microstructure for achieving high coercivity in Nd-Fe-B sintered magnet with small amount of Tb addition.

4.4 小括

本章では、Tbフッ化物改質処理が微細構造に及ぼす影響について調査した.第3章のTb スパッタ改質磁石の結果とも併せて焼結磁石を高保磁力化させる粒界構造について考察し、 以下の結論を得た.

- 1. Tb フッ化物塗布改質処理を施すと,基本的には Tb スパッタ改質磁石と同様の粒界微構 造を形成させて保磁力を向上させる.ただし,一部に不連続な粒界部が残存してしま うため,スパッタ改質法よりも低い保磁力に留まった.
- 2. 磁石内部への Tb 導入量が多いほど, Nd が濃縮した粒界相を形成できる.
- Tb が fcc-(Nd,Fe)O_x構造の Nd-rich 相の Nd を置換すると、粒界相に追い出された Nd が 移動して、Nd 濃度の高い粒界相の生成を助ける.
- 焼結磁石における重希土類元素添加量を低減した高保磁力化に最適な組織は、逆磁区 発生サイトを低減し、Nd-rich 相を微細に分散させ、磁気的分断に十分な厚みの粒界相 で主相粒を滑らかに覆った粒組織であると考えられる。

5章 高保磁力 Nd-Fe-B 系熱間加工磁石

熱間加工磁石は,第3章と第4章で述べる焼結磁石よりも1桁ほど微細な Nd₂Fe₁₄B 主相 粒から構成されるため,高保磁力化の観点でははるかに有利なはずである.しかしながら, 粒径から見積もられる保磁力よりもはるかに小さい値に留まっており,保磁力向上が急務 である.また,磁化に関しても焼結磁石よりも劣っており,微細な主相粒の磁化容易軸(*c* 軸)をより配向させることも望まれている.そこで,最近の市販品に近い高保磁力 Nd-Fe-B 系熱間加工磁石について最新の SEM および TEM を用いた微細構造解析を行い,高保磁力 を発現させる粒界構造ならびに磁化を改善させるための知見を得た.

5.1 熱間加工磁石の微細構造

Fig .5-1(a)と(b) に Nd-Fe-Co-B-Ga 熱間加工リング磁石の概略図と縦断面から得た低倍 SEM 2次電子像をそれぞれ示す. 白い微細な粒子で縁取られた押出方向に伸びた黒い粗大 な粒子が観察される.この黒い粗大粒が原料の超急冷薄帯フレークの一粒に相当するので. 原料フレーク粒同士の境界部分に白い微細粒が集中的に生成していることがわかる.この 原料フレーク粒の内部および境界部分を高倍率で観察した SEM 像を Fig .5-1(c)と(d)にそれ ぞれ示す. Fig. 5-1(c)には暗いコントラストを呈する微細な粒子が非常に薄い白い界面相で 区切られて生成しているのが観察される.この暗い粒子は主相の Nd₂(Fe,Co)₁₄B 粒であり, 押出方向に伸びた平板状を有し、その長軸方向がよく揃っていることがわかる.また、ご く一部の粒界三重点には粒界相がわずかに留まった部分も認められるが、その量は非常に 少ないこともわかる. このようなごく薄い界面相で均一に覆われた平板状の Nd₂(Fe,Co)₁AB 粒組織からなる領域が全体の約 9 割を占めていた.一方,原料フレークの境界近傍の Fig.5-1(d)では、150 nm 程の白い析出物が連なって生成しており、これらが Fig.5-1(b)で観 察された白い微粒子に対応している. Fig. 1(d)をよく見ると, これらの白い析出物には粒状 のもの(S)とやや角張った形状のもの(P)の2種類が存在し、S 析出物のコントラストの 方が P 析出物のものよりわずかに明るくなっている.SEM-EDS 分析の結果,S 相の組成は Nd₅₃O₄₇と求まった.一方, P相は Feを 10 at%程度含んでおり,しかも O濃度に 55~70at% 程度の揺らぎがあった. すなわち, 原料フレーク粒の境界付近には形態の異なる 2 種類の Nd 酸化物相が生成していることがわかった.この境界付近では内部領域に比べて幅が太く 成長した Nd₂(Fe,Co)₁₄B 粒が多く観察され、これらの主相間では薄い粒界相が不明瞭な箇所 が増えている.ただし,Fig. 5-1(d)に矢印で示すように,粒界三重点近傍には 50 nm 程もあ る大きな粒界相の溜まりが認められる.

Fig. 5-1 Cross-section SEM images of a vertical plane of the die-upset Nd-Fe-Co-Ga-B magnet: (a) a schematic illustration of the magnet, (b) low magnification secondary electron (SE) image. (c) and (d) enlarged backscattered electron (BSE) image of the regions indicated by two points in (b), respectively, taken with an energy selective BSE (EsB) detector. Letters S and P in (d) denote spherical and polygonal Nd-oxide grains, respectively. Arrows indicate pools of the GB phase.

フレーク粒の内部領域と境界領域における典型的組織の TEM 明視野像をそれぞれ Fig. 5-2(a)と(b)に示す. Fig. 5-2(a)の内部領域における Nd₂(Fe,Co)₁₄B 粒は幅 50 nm で長さ 300 nm の押出方向に伸びた平板状であり、それらの粒界は非常にシャープなことがわかる.ただ し、粒界のごく一部には矢印で示すような歪みコントラストがわずかに観察される.これ に対して,Fig. 5-2(b)の境界領域では Fig. 5-1 の SEM 像で観察された 2 種類の Nd 酸化物 S と P が認められる. SAD 解析の結果, S 相は fcc 構造 (a=0.51 nm) を有していたため, NaCl 型の NdO (a=0.4994 nm)¹¹⁷⁾であることがわかった.一方, P 相もまた fcc 構造 (a=0.56 nm) であり、CaF2型の NdO2(a=0.5542 nm)¹¹⁷⁾と格子定数が近い.しかしながら、P相には O 濃度の大きな揺らぎがあるため, 焼結磁石で観察された Nd-rich 相と同様に fcc-(Nd,Fe)O_x とする. また, この領域での Nd₂(Fe,Co)₁₄B 粒は幅 80 nm で長さ 200 nm 程となり, その形 態は内部領域での平板状から丸みを帯びた形状へと変化している. また, Nd2(Fe,Co)14B 粒 の長軸方向が押出方向からずれたものが多くなり, c 軸配向度の低下が示唆される. これに 伴って、粒界の一部に観察される歪みコントラストが顕著になり、その数も急激に増えて いることがわかる.この歪みコントラストを呈する領域にビームを絞って取得したナノビ ーム電子回折図形(Fig. 5-2(c))を解析した結果, DO11型構造のNd3Co相(a=0.7107 nm, b=0.950 nm, *c*=0.6386 nm)¹²⁴⁾の微細な析出物が生成していることが判明した.

超急冷フレークの内部領域と境界領域における Nd₂(Fe,Co)₁₄B 粒の c 軸配向度を調べるた めに, SAD 解析を行った. その一例を Fig. 5-3 に示す. これらの SAD 図形は, Fig. 5-2(a) 中の A~F で示す Nd₂(Fe,Co)₁₄B 粒から試料傾斜角を変えずに取得している. すべての SAD 図形に Nd₂(Fe,Co)₁₄B 粒の c 面に由来する hkl=00l 系列の反射が現れており, 各粒の c 軸方向 を容易に見積もることができる.ここで, Fig. 5-3の SAD 図形から求められる c 軸と Fig. 5-2(a)の各粒の外形を比較すると、いずれも Ndゥ(Fe,Co)₁4B 粒の長軸に対して垂直方向、すな わち短軸方向,と c 軸方向がほぼ平行であることがわかる.但し, Nd₂(Fe,Co)₁₄B 粒の a 軸 方向は押出方向から若干傾いていることが確認できる. そこで, 超急冷フレークの内部領 域と境界領域における広範囲の明視野像中の Nd₂(Fe,Co)₁₄B 粒の短軸方向の分布を見積もっ た結果を Fig. 5-4(a),(c)と(b),(d)にそれぞれ示す. 各粒の横軸方向は画像処理ソフト(ImageJ windows ver. 1.44¹²⁵⁾)を用いた楕円近似によって求めた. また, 粒のアスペクト比が 3 以上 のものを平板状粒,3未満の粒を丸い粒として区分し,それらの分布を Fig. 5-4(a)(b)に Fig. 5-4(c)(d)に示している. 各ヒストグラムの横軸は押出方向の直角を基準として粒の横方向の ずれを 5°間隔でプロットしている. Fig. 5-4(a)と(d)に示すように, 超急冷フレークの内部領 域と境界領域の両領域において、平板状粒の横軸方向は極めて良く配向しており、おおよ そ±20°以内に分布している.一方, Fig. 5-4(c)と(d)から,丸い粒の横軸方向は内部領域より

Fig. 5-2 TEM bright field (BF) images of typical texture in (a) interior and (b) interface regions of the original melt-spun flake for the die-upset Nd-Fe-Co-Ga-B magnet. (c) Nano-beam diffraction obtained from a portion with a strain contrast. White arrows in (a) and (b) indicate the small portions with a strain contrast. Letters S and P denote spherical and polygonal Nd-oxide grains, respectively. Black arrows in (a) indicate crystallographic *c*-axis orientations obtained from selected area diffraction (SAD) analyses in Fig. 5-3.

Fig. 5-3 SAD patterns taken from the $Nd_2(Fe,Co)_{14}B$ grains marked by letters A-F in Fig. 2(a). Arrows indicate the crystallographic *c*-axis directions of grain.

Fig. 5-4 Histograms of the minor axis distributions of (a)(b) the platelet and (c)(d) the globular $Nd_2(Fe,Co)_{14}B$ grains in (a)(c) the interior and (b)(e) the interface regions. Number of grains is denoted as N.

も顕著に幅の広い分布を有しているのがわかる. さらに,境界領域では丸い粒の割合が約45%を占め,内部領域(約20%)の2倍以上に増加している. これらの結果は,超急冷フレークの界面領域で Nd₂(Fe,Co)₁₄B粒の短軸方向,すなわち*c*軸方向の配向度が低下していることを示唆している.

5.2 残留磁化と保磁力に及ぼす粒界近傍の微細構造の影響

Fig. 5-5 に内部領域における典型的な Nd₂(Fe,Co)₁₄B 粒同士の境界部分の HRTEM 像を示す. 境界部分には 2-3 nm 程の均一な厚みの粒界相が存在していることが明瞭に観察できる. 粒 界相部分には格子縞が観察されず,非晶質特有のコントラストが現れており,アモルファ ス構造を有することが直接理解できる. Kishner ら¹⁰²⁾の報告に比べると粒界相の幅が若干厚 くなっているが,より均一な幅のものが形成されていることがわかる.

次に、内部領域と境界領域における典型的な Nd₂(Fe,Co)₁₄B 粒について詳細な STEM-EDS 元素マッピング行った結果を Fig. 5-6 と Fig. 5-7 にそれぞれ示す. 配向度の高い内部領域で は、非常に薄い粒界相が押出方向によく伸びた平板状の Nd₂(Fe,Co)₁₄B 粒周囲を均一な厚み で取り囲んでいることがこれらの元素マップ像からも理解できる.また,主相に比べて粒 界相は Nd と Ga に富んでおり、Fe が少ないことがわかる. 組成解析の結果, 均一な粒界相 の組成は Nd₄₄Fe₃₉Co₁₀Ga₇ と求まった. 粒界相の Nd 濃度は焼結磁石(25~30 at%Nd^{81.126)}) や HDDR 磁石(15~25 at%Nd¹²⁷⁾)と比較して非常に高い.焼結磁石の粒界相は 500 ℃程度 の焼結後熱処理過程で主相粒界に濡れ広がるとされていることから、本研究で調査した粒 界相は熱間加工過程(800 ℃)において高い流動性を示すものと考えられる. 一方, 境界 近傍の丸い主相粒から得た Fig. 5-7 では, Nd₂(Fe,Co)₁₄B 粒周囲に存在する粒界三重点の多く に粒界相の溜まりが認められ、これに伴って粒界相の幅が場所ごとに大きく変化している ことがわかる. 粒界相の比較的薄い部分から得た組成は Nd₃₆Fe₅₀Co₉Ga₅と求まった. すなわ ち,内部領域に比べると Nd 濃度が大幅に低下し,替わりに Fe 濃度が増加していることが 明らかとなった.Nd 濃度の低下は粒界相の流動性の低下を招き、粒界相の大きな溜まりを 形成させたものと考えられる. また, Fig. 5-7(d)からわかるように, 白破線円で囲む粒界三 重点付近の溜まりの部分は Co を多く含んでいる.このような Co を多く含む粒界からは, Fig. 5-7(a)で見られるように歪みコントラストが現れており,粒界の一部に微細な Nd₃Co 析 出物が生成していることを支持している.一方, Fig. 5-7(e)では, Nd₃Co 析出物の領域に Ga が検出されているのがわかる.これは,Nd₃Co 析出物が Ga に富む粒界相に埋まるように存 在していることを示している. また, 第 5.1 節で述べたように, 境界領域では多量の NdO 粒と(Nd,Fe)Or 粒が生成し、これらの Nd 酸化物生成に伴って粒界相の Nd 濃度が低下するも のと考えられる. その結果, 粒界相中の Co 濃度が相対的に増加して Nd₃Co 相が形成され易 くなるものと推察される.Nd₃Coは室温では常磁性である¹²⁸⁾ことが知られているので、こ の相が磁気的に悪影響を及ぼすとは考えにくい.しかしながら, Nd₃Co はセメンタイト(Fe₃C) と同じ結晶構造を有するので、硬い析出物であることが予想される. このことは Nd₂(Fe,Co)₁₄B 粒側に歪みコントラストが現れていることからも理解できる. このような高

Fig. 5-5 High resolution (HR) TEM image of a typical platelet $Nd_2(Fe,Co)_{14}B$ grains in the interior region the die-upset Nd-Fe-Co-Ga-B magnet.

Fig. 5-6 (a) TEM-BF image and (b)-(e) STEM-EDS elemental maps of a platelet Nd₂(Fe,Co)₁₄B grain in the interior region. (b) Nd- L_{α} (c) Fe- K_{α} (d) Co- K_{β} and (e) Ga- K_{α} .

Fig. 5-7 (a) TEM-BF image and (b)-(e) STEM-EDS elemental maps of a globular Nd₂(Fe,Co)₁₄B grain in the interface region. (b) Nd- L_{α} (c) Fe- K_{α} (d) Co- K_{β} and (e) Ga- K_{α} . White arrow in (a) indicate the small portions with a strain contrast. White dotted circles in (d) show Co-enriched areas.

硬度の微細析出物が熱間加工過程で粒界相中に生成されることで、粒界相の流動性を大き く阻害しているものと思われる.したがって、原料の超急冷フレークの境界領域では、NdO と(Nd,Fe)O_x相に加えて多数のNd₃Co相が生成することによって、粒界相を形成するNdが 一部消費されてNd 濃度の低い粒界相になってしまう.その結果、粒界相の流動性が悪化し て粒界滑りを伴った粒成長が抑制され、Nd₂(Fe,Co)₁₄B 粒の異方的成長を妨げて配向度が低 下するものと考えられる.粒界相の流動性の低下は残留磁化の低下だけでなく、不均一な 粒界相の形成を招く.不均一な粒界相はNd₂(Fe,Co)₁₄B 粒間の磁気的分断を弱め、保磁力低 下の要因となることが示唆される.なお、原料フレークの内部と境界領域において主相粒 のアスペクト比の違いも観察されたが、形状異方性はせいぜい 10⁴ J/m³ オーダーの大きさで あり¹²⁹、主相の結晶磁気異方性(5.36×10⁶ J/m³)よりも十分小さいため無視できる.以上 の結果より、熱間加工磁石においては、Nd に富んだ粒界相を形成させることが、残留磁化 と保磁力を向上させる鍵を握っていることが明らかとなった.

5.3 小括

本章では,熱間加工磁石の微細構造が残留磁化および保磁力に及ぼす影響について調査 し,以下の結論を得た.

- 磁石の約9割を占める典型的な組織は、押出方向に垂直に c 軸配向した幅 50 nm 長さ 300 nm 程の平板状 Nd₂(Fe,Co)₁₄B 微細粒を幅 2 nm のアモルファス粒界相が連続的に取 り囲んだ組織から構成される.
- 主相粒の周囲には 2 nm 幅のアモルファス粒界相(Nd44Fe39Co10Ga7)が均一に取り囲んでいるため、熱間加工中に高い流動性を示す.
- 3. 原料フレーク境界近傍組織は多量の Nd 酸化物相(NdO と(Nd,Fe)O_x相)および微細な Nd₃Co 析出物が生成している.これらに伴って主相粒覆う粒界相の Nd 濃度は低下して, 主相粒の c 軸配向度の低下ならびに粒界相の不均質化が生じる.
- 熱間押出中における流動性の低下は、c軸配向、すなわち残留磁化を低下させる.さらに、流動性の低い粒界相は主相粒を不均一な厚さで覆うため、主相粒の磁気分断を弱め、保磁力の低下を招く.
- 5. 磁気特性の優れた Nd-Fe-B 系熱間加工磁石を得るには、粒界相の流動性、すなわち、 Nd 含有量の高い粒界相を形成させることが重要である.

6章 Dy 改質 Nd-Fe-B 系熱間加工磁石

第5章でNd-Fe-B系熱間加工磁石では流動性の高い粒界相の形成が残留磁化だけでなく, 保磁力の向上にも寄与するという知見を得た.本章では,焼結磁石にも匹敵する保磁力を 有し,実用的な価値が高い Dy 改質熱間加工磁石に着目する.Dy 改質熱間加工では粒界相 は残留磁化,保磁力に影響するだけでなく,Dy 拡散経路としての役割も有する.そこで, Dy 改質熱間加工による微細組織変化を粒界相と Dy 拡散に注目して調査することにより, Dy 改質処理が高保磁力化に及ぼす影響を議論し,さらなる保磁力向上への指針を得た.

6.1 Dy 改質処理による微細構造変化

Fig. 6-1(a)と(b)にDy改質熱間加工磁石の横断面の概略図と典型的なSEM-EsB像をそれぞ れ示す.Fig. 6-1 (b)より,幅 50 μm 長さ 300 μm の暗いコントラストの押出方向に伸びた粒 とその粒を囲む明るいコントラストを有する粒の列が観察される. 第5章で述べた未処理 磁石と同様に,押出方向に伸びた粒と明るいコントラストの粒は,それぞれ磁石原料であ る超急冷フレークと Nd 酸化物相に相当する. 原料フレークの界面付近から取得した拡大 SEM-EsB 像を Fig. 6-1(c)に示す. 原料フレーク粒の内部領域では Nd₂(Fe,Co)₁₄B 微細粒から なる組織を形成している. それに対して, 界面近傍では 1 μm 程度の粗大化した Nd₂(Fe,Co)₁₄B 粒が存在し,約5 µm 幅の帯を形成している.一方,Dy 改質熱間加工処理の 熱処理温度は 750 ℃であり, Nd₂Fe₁₄B 相の再結晶温度よりも高いため, 熱処理中に Nd₂(Fe,Co)₁₄B 粒の再結晶が起こるものと推察される. 粗大化した Nd₂(Fe,Co)₁₄B 粒の帯の位 置は、未処理熱間加工磁石の原料フレーク境界領域に存在する低配向領域のものと一致す る. さらに, 原料フレークの界面近傍では Nd₂(Fe,Co)₁₄B 粒の周囲に厚みの不均一な粒界相 が形成されているのに対して、内部領域では均一な厚みの粒界相が形成されていた.した がって,原料フレークの境界付近では Nd₂(Fe,Co)14B 粒成長を抑制する粒界相によるピンニ ング力が内部領域よりも弱いため、熱間加工後の熱処理によって Nd₂(Fe,Co)₁₄B 粒の異常成 長もしくは 2 次再結晶が生じて,粗大粒の帯が形成されたものと考えられる.また,粗大 化した Nd₂(Fe,Co)₁₄B 粒間には黒矢印で示す明るいコントラストを有する多角形状の粒界相 の溜まりが多数観察される.未処理磁石と比較すると、これらの粒界相の溜まりの数が増 えていることがわかった. これは, Nd2(Fe,Co)14B 粒の粗大化によって粒の総表面積が減少 したため、余剰となった粒界相が粒界三重点に集まったためと推察される. Fig. 6-1(c)には、 粗大化した Nd₂(Fe,Co)₁₄B 粒付近には S で示す球状の Nd 酸化物(NdO)粒も観察される.

Fig.6-1 Cross-section SEM images of the die-upset Nd-Fe-Co-Ga-B magnet treated by Dy grain boundary diffusion: (a) a schematic illustration of the magnet, (b) and (c) backscattered electron (BSE) images, respectively, taken with an energy selective BSE (EsB) detector. Letters S in (c) and black arrows denote NdO grains and pools of the grain boundary (GB) phase, respectively.

Fig.6-2 (a) SEM-EsB image of a dispersed texture in the Dy treated die-upset Nd-Fe-Co-Ga-B magnet. The texture is edged with a black line.

一部の原料フレークの境界領域には粒界相の未処理磁石で観察された多角形状のNd酸化物 ((Nd,Fe)O_x) 粒も存在していた.これらの Nd 酸化物の分布は未処理磁石と比較して大きな 差異は観察されなかった.一方, Fig.6-1 のような組織の他に, Fig. 6-2(a)の SEM-EsB 像に 示す黒線で囲んだ明るいコントラストを呈する粒が集合した組織が磁石中に分散している のが観察された. この分散組織は Nd 酸化物や粒界相の溜まりに類似した明るいコントラス トを有することから、希土類元素に富んでいることが示唆される.また、分散組織は直径 20 µm 程度の大きさで、1 mm² あたり 35 個の頻度で存在していた. さらに、分散組織の周 辺には多くの Nd 酸化物の列が観察されるため、分散組織は原料フレークの境界付近に存在 することがわかる.なお、分散組織中に暗いコントラストを示す領域が観察されるが、こ の暗いコントラストの領域は試料の凹みに起因していることをSEM-BSE像によって確認し ている.これは,分散組織が非常にもろいため SEM 観察試料作製時の Ar⁺ミリングによっ て一部が脱離した結果であるものと思われる. SEM-EDS 分析より, 組織 A の Dy 濃度は 40 wt%であり, Nd 酸化物(20 wt%Dy)と粒界相の溜まり(5 wt%Dy)より Dy に富んでいる ことがわかった.したがって,分散組織は Dy 改質熱間加工によって Dy 合金片と原料フレ ーク界面付近の組織が反応して生成された組織であり、Dy 拡散源の役割を果たしたものと 推察される.

Dy 改質熱間加工磁石の原料フレーク内部領域の典型的な TEM 明視野像を Fig. 6-3(a)に示 す. Dy 改質熱間加工磁石の微細組織は幅 80 nm 長さ 400 nm の平板状の Nd₂(Fe,Co)₁₄B 粒か ら構成されていることがわかる.また、未処理磁石に比べると Nd₂(Fe,Co)₁₄B 粒は若干粗大 化して,幅が厚くなり等方的な形状に変化したことが判明した.Nd₂(Fe,Co)₁₄B 粒の長軸方 向は熱間加工の圧縮方向にほぼ垂直に配向しているものの、左右にわずかに傾いて入れ子 のような構造を形成している.また、粒界には黒矢印で示す歪みコントラストが認められ る. 第5章の結果より、この歪みコントラストは粒界に存在する微細な Nd₃Co 構造の析出 物に起因するものと考えられる. TEM 明視野像中の微細析出物数は、未処理磁石と Dy 改 質熱間加工磁石において,それぞれ 2 /μm²,13 /μm² であった.したがって,Dy 改質処理に よって微細析出物の数が増加したことがわかった. Fig. 6-3(b)に Fig. 6-3(a)の TEM 明視野像 に対応する SEM-EsB 像を示す. 暗いコントラストを呈する Nd₂(Fe,Co)₁₄B 粒の周囲に明る いコントラストの粒界相が形成されている. さらに, Fig. 6-3(a)中の Nd₃Co 構造の析出物と ほぼ同じ位置に 50 nm 程度の粒界相の小さな溜まりが存在している. このため, 小さな粒 界相の溜まりには微細な Nd₃Co 構造の析出物が埋まって存在しているものと考えられる. Fig. 6-3(b)のSEM-EsB像における粒界相の面積割合は4.0%と求められ,未処理磁石(1.5%) と比較して2倍以上に増加したことがわかった.

Fig.6-3 (a) Typical TEM bright field (BF) image of the die-upset magnet with Dy-treatment and (b) SEM-EsB images of the identical area of Fig. 6-3(a). Black arrows denote small precipitates at triple junctions.

Fig. 6-4 (a) Enlarged TEM-BF image and (b)-(f) selected area diffraction patterns taken from the $Nd_2(Fe,Co)_{14}B$ grain marked by b-f in Fig. 4(a). The black arrows indicate the crystallographic *c*-axes directions of the $Nd_2(Fe,Co)_{14}B$ grains.

Fig. 6-5 Histogram of the minor axes distributions of the platelet (a) and the globular (b) $Nd_2(Fe,Co)_{14}B$ grains in the typical area of the Dy-treated die-upset magnet. Total number of grains is denoted as N.

次に未処理磁石と同じ方法で Nd₂(Fe,Co)₁₄B 粒の *c* 軸配向度評価を行った.配向度を見積も るにあたって,行った SAD 解析の一例を Fig. 6-4 に示す.SAD 図形 (Fig. 6-4(b)-(f)) は Fig. 6-4(a)中の b-f で示す Nd₂(Fe,Co)₁₄B 粒から試料を傾斜させずに取得した.粒 c 以外の SAD 図形に *hkl=00l* 系列反射が観察され,Nd₂(Fe,Co)₁₄B 粒の *c* 軸はおおよそ粒の短軸方向に平行 かつリング磁石のラジアル方向に平行に配向している.ただし,粒 c の SAD 図形において は,*c* 軸方向は粒の短軸方向にほぼ平行に配向しているものの,リング磁石の径方向から 35° 程ずれている.このような *c* 軸方向がラジアル方向からずれた粒は,Dy 改質熱間加工磁石 で多く観察された.次に,画像処理ソフト (ImageJ¹²⁵⁾)を用いて各主相粒に楕円近似を行 って,平板状の粒 (アスペクト比≥3) と丸い粒 (アスペクト比<3) に分別して作成した横 軸方向分布のヒストグラムを Fig. 6-5 に示す.Fig. 6-5(a)からわかるように,平板状の粒の横 軸方向はよく揃っており,未処理磁石と同様におおよそ±20 ◎以内に配向している.それに 対して,Fig. 6-5(b)に示すように,丸い粒の横軸はバラバラな方向を向いている.また,丸 い粒の割合は全体の約 40 %を占め,未処理磁石(約 20 %)の約 2 倍程度に増加している. さらに Fig. 5 で観察されたラジアル方向からずれた粒の存在を考慮に入れると,Dy 改質熱 間加工によって横軸方向の配向,すなわち*c* 軸配向が著しく低下したものと推測される.

Fig. 6-6(a)と(b)-(d)に Nd₂(Fe,Co)₁₄B 粒界周辺の高倍の TEM 明視野像と HRTEM 像をそれ ぞれ示す. Fig. 6-6(a)の Nd₂(Fe,Co)₁₄B 粒 a の右側の粒界近傍から取得した HRTEM 像 (Fig. 6-6(b))から, Nd₂(Fe,Co)₁₄B 粒界に約 2 nm の均一な厚さのアモルファス粒界相が存在して いることがわかる. それに対して, Fig. 6-6(a)の Nd₂(Fe,Co)₁₄B 粒 a の左側の粒界近傍から取 得した HRTEM 像 (Fig. 6-6(c))では Nd₂(Fe,Co)₁₄B 粒間に厚さ 20 nm 程度の粒界相の溜ま

Fig. 6-6 (a) TEM BF image of a typical platelet $Nd_2(Fe,Co)_{14}B$ grains and (b)-(d) high resolution (HR) TEM image acquired from white rectangular areas B-D in Fig. 6-6(a).

Fig. 6-7 (a)-(c) Inverted fourier transformation images of the $Nd_2(Fe,Co)_{14}B$ grain a, b and the GB pool in Fig. 6-6(c), and (d)schematic relationships of Fig. 6-7 (c).

りが存在する. 粒界相の溜まりには 2 次元の格子像が明瞭に観察できることから, 粒界相の溜まりは結晶質の領域を有することが判明した. Fig.6-6(d)に示す主相粒 a と粒 b 間の距離が 1-2 nm 幅と狭くなっているところでは, 粒界相はアモルファスに近い構造に変化していることがわかる. 一方, 未処理磁石の原料フレークの内部領域に存在する粒界相と粒界相の溜まりは, アモルファス構造を有していることを HRTEM 観察によって確認している. したがって, Dy 熱間加工処理によって粒界相の溜まりはアモルファス構造から結晶構造への変化したことがわかった. Fig. 6-7(a)-(c)に Fig.6-6(c)中の Nd₂(Fe,Co)₁₄B 粒 a, b および粒界相の溜まり領域における同一面積領域から得たフーリエ変換図形の階調を反転させた図形を示す. Fig. 6-7(c)のフーリエ変換図形には複雑な格子パターンが現れているため, 粒界相の溜まりは多結晶構造を有することがわかる. Fig. 6-7(a)-(c)を比較すると, 粒界相の溜まりから得たフーリエ変換図形のバックグラウンド強度が Nd₂(Fe,Co)₁₄B 粒 a, b のものよりも高いことから, 粒界相の溜まりが結晶だけでなくアモルファス相も含んでいることが示唆される. さらに, Nd₂(Fe,Co)₁₄B 粒 a, b と粒界相の溜まりは結晶学的な方位関係を有してる可能性もある. Fig. 6-7(d)に Fig. 6-7(c)を解析した模式図形を示す. Nd₃Co と dhcp-Nd 構造に

由来する二次元のパターンを白丸と黒丸で、両パターンが重なる点を二重丸で示している. 灰色の丸で示す点は二次元のパターンを形成していないものの、全て *d*=0.318 nm の位置に 存在している. 灰色の丸で示す点は dhcp-Nd {1010} (*d*=0.315 nm) に近いため、dhcp-Nd 構造に起因するものと考えられる. したがって、粒界相の溜まりには Nd₃Co と dhcp-Nd の 構造を有する多結晶とアモルファスが混在していることが明らかになった. Dy 改質処理に よる、粒界相の溜まりにおける結晶質の増加は、熱間加工中の粒界相を介した粒滑りに悪 影響を与えたものと考えられる.

6.2 EDS 分析による Dy 拡散の調査

Dy 分布を検討するために、マクロスケールでの SEM-EDS 分析とミクロスケールでの STEM-EDS 分析を行った. Fig. 6-8(a)と(b)-(e)に第 6.1 節で示した Dy 拡散源となる分散組織 周辺の SEM-EsB 像と EDS 元素マッピング像をそれぞれ示す. Fig. 6-8(a)の SEM-EsB 像と Fig. 6-8(e)の Dy マップを比較すると、Dy は Fig. 6-8(a)中の暗いコントラスト領域 (Nd₂(Fe,Co)₁₄B 粒からなる領域)よりも Fig. 6-8(a)中の明るいコントラスト粒の列付近 (Nd 酸化物の列付近) に存在していることがわかる. この結果は、Dy が拡散源から原料フレー クの内部領域よりも境界領域に優先的に拡散することを示している. Dy などの重希土類元 素は Nd などの軽希土類元素よりも酸化されやすいことが知られている¹²¹⁾. したがって、 Dy 拡散源から拡散した Dy はまず原料フレーク境界領域に存在する Nd 酸化物の酸素と反応 して、(Dy,Nd)酸化物を形成してしまうため、境界領域に優先して拡散して留まったものと 推察される. なお、本 SEM-EDS 分析では、磁石の含有元素である Co と Cu の固有 X 線 (Co- L_a =0.776 keV, Cu- L_a =0.881 keV) はそれぞれ Fe と Nd の固有 X 線 (Fe- L_a =0.615 keV, Nd- L_a =0.978 keV) に重なるため、元素マップは取得できなかった.

続いて,原料フレーク内部領域に存在する典型的な Nd₂(Fe,Co)₁₄B 粒において STEM-EDS 分析を行った. Fig. 6-9(a)および(b)-(g)に Fig. 6-3(a)の白枠領域の STEM 暗視野像および STEM-EDS マップ像を示す. Fig. 6-9(c)の Fe マップより,Nd₂(Fe,Co)₁₄B 粒は不均一な厚み の粒界相で覆われていることがわかる. Fig. 6-9(b),(d)-(g)より,粒界相には Nd, Ga だけでな く Co, Cu および Dy が濃縮していることが確認できる. したがって,Dy は Dy 拡散源から 原料フレークの境界部分に拡散し,その後 Nd₂(Fe,Co)₁₄B 粒周囲の粒界相に拡散していくこ とが判明した. EDS 組成分析の結果,薄い粒界相の化学組成は Nd₁₈Dy₅Fe₆₆Co₉Ga₁Cu₁ と見 積もられた. Co は Nd₂(Fe,Co)₁₄B 粒に分布しているが,粒界相にかすかに濃縮している. 粒

Fig. 6-8 (a) SEM-EsB image of the dispersed texture and (b)-(g) SEM-EDS elemental mapping images obtained from the area of Fig. 6-8(a), respectively. (b) Nd- M_{α} (c) Fe- L_{α} (d) Ga- L_{α} and (e) Dy- M_{α} .

Fig. 6-9 (a) STEM dark field (DF) image taken the white rectangular region in Fig. 6-2 (a) and (b)-(g) STEM-EDS elemental mapping images obtained from the area of Fig. 4(a), respectively. (b) Nd- L_{α} (c) Fe- K_{α} (d) Co- K_{β} (e) Ga- K_{α} (f) Dy- M_{α} and (g)Cu- K_{α} .

Fig. 6-10 (a) Overlaid image of Dy and Fe, and (b)-(c) STEM-EDS line analyses obtained from the dotted line B and C in Fig. 6-10(a).

界相の Co 濃度の増加は Nd₃Co 構造の微細析出物増加の要因になったものと推察される. 小 さな粒界相の溜まりにおいても Dy が分布していることから, 微細析出物は(Nd,Dy)₃Co とな っており、粒界相の溜まりは(Nd,Dy)₃Co 微細析出物と dhcp-(Dy,Nd)から構成されていると 考えられる.また,未処理熱間加工磁石の結果では,Coは粒界相およびNd₂(Fe,Co)₁₄B粒に 一様に分布していたことを考えると、Dy 粒界改質処理によって Co は粒界相に濃縮する傾 向を示すようである. Co の粒界相への濃縮傾向は第 3・4 章で述べた Tb 改質焼結磁石でも 観察されたため,重希土類改質処理に特徴的な現象である可能性がある.また,未処理磁 石の粒界相(Nd44Fe39C010Ga7)と Dy 改質磁石の粒界相組成を比較すると, Nd 濃度が顕著 に減少し、Fe 濃度が増加したことがわかる.この粒界相の Nd 濃度の低下は、Tb 改質焼結 磁石における粒界相の Nd 濃度増加とは相違している. Tb 改質焼結磁石では, Tb の粒界拡 散に伴って, 粒界近傍の Nd₂(Fe,Co)₁₄B 相の融解と Nd-rich 相である Nd 酸化物から粒界相へ の Nd 供給が生じていた. これに対して,熱間加工磁石の典型的組織では Nd-rich 相である Nd 酸化物が存在しないため、粒界近傍の Nd₂(Fe,Co)₁₄B 相の融解のみが起こる結果として、 粒界相の Nd が低下したものと考えられる. さらに, この現象は, Dy-Fe 系の混合エンタル ピー¹²⁰⁾ (ΔH_{mix} = -3 kJ/mol) が Nd-Fe 系 (ΔH_{mix} = 1 kJ/mol) よりも若干小さいため, Dy 粒界 拡散によって, Nd₂(Fe,Co)₁₄B相を形成するはずの Feの一部が粒界相に留まった結果である とも理解することができる.また,Dy 改質処理によって粒界相の融点を下げる役割をする Gaの濃度も大きく低下している. Ga濃度の低下は Dyの拡散によって粒界相の割合が増加 して相対的に薄まったことに起因すると考えられる. Dy の融点 (1412 ℃) は Nd (1021 ℃) よりも高く, Dy と他の含有元素 (Fe, Co, Ga, Cu)の共晶点も Nd とのものより高い¹²³⁾. し たがって、粒界相の Nd と Ga 濃度の減少と Dy の含有は、熱間加工中の粒界相の流動性を 低下させ, 第6.1節で示した主相粒の c 軸配向の悪化を招いたものと示唆される. また, Fig. 6-9(e)-(g)の Ga, Dy および Cu マップを詳細に比較すると,Dy の濃縮領域は Ga と Cu のも のよりも若干幅広い.この結果より、Dyは粒界相だけでなくNd2(Fe,Co)14B粒の表面から内 部にも拡散していることが示唆される.一方,Nd2(Fe,Co)14B 粒の中心領域で行った STEM-EDS より, Nd₂Fe₁₄B 粒の中心部分では Nd₁₅Fe₈₀Co₅の化学組成を有していた.したが って、STEM-EDS で検出可能な濃度範囲においては、Dy の拡散が Nd₂(Fe,Co)₁₄B 粒中心部 に及んでいないことが判明した. Dyの Nd₂(Fe,Co)₁₄B 粒への拡散について, さらに調査する ために Fig. 6-10(a)に Dy と Fe マップを重ねた像を示す. 緑と紫色を呈した領域がそれぞれ Nd₂(Fe,Co)₁₄B 主相と粒界相におおよそ対応している.ピンク色を呈した領域は, Nd₂(Fe,Co)₁₄B 主相に Dy が拡散して(Nd,Dy)₂(Fe,Co)₁₄B 層が形成された領域である. したが って, Fig. 6-10 より Dy が Nd₂(Fe,Co)₁₄B 粒の表面から深さ 5-10 nm まで拡散していることが

Ga, Cu, B-rich phase Nd/Fe/B layer σ layer

Fig. 6-11(a) High resolution STEM high-angle annular dark field (HAADF) image acquired from the white rectangular area in Fig. 6-9 (a), corresponding SAD pattern and (b) projected structure around GB in Fig. 6-11(a)

確認できる. STEM-EDS 組成分析より, (Nd,Dy)2(Fe,Co)14B 層は Nd11Dy4Fe78Co7の化学組成 を有していた. 上述したように Nd₂(Fe,Co)₁₄B 主相の Nd 濃度は 15 at%と求められたことか ら, Dy は Nd₂(Fe,Co)₁₄B 粒の表面領域の Nd をおおよそ 25 at %を置換した(Nd,Dy)₂(Fe,Co)₁₄B 層を形成していることが判明した.この結果を用いると、添加される Dy 量のうち約 60 % が主相粒界近傍に効果的に分布したことがわかった. さらに, Fig. 6-10(a)を詳細に見てみる と、破線 B の周辺では Dy は粒表面から 10 nm 程度の深さまで拡散しているが、破線 C 周 辺では粒表面から 5 nm 程度の深さまでしか拡散していないことがわかる. このように Dy の拡散深さは一つの Nd₂(Fe,Co)₁₄B 粒周囲でさえも、領域によって大きく異なることがわか る. そこで, Fig. 6-10(a)中の Nd₂(Fe,Co)₁₄B 粒界をまたぐ破線 B と C から取得した STEM-EDS ライン分析結果を Fig. 6-10(b)と(c)にそれぞれ示す. Fig. 6-10(b)では, Dy プロファイルは比 較的急峻なピークを呈しており, Dy ピーク位置は Fe と Nd ピーク位置と一致している.さ らに, Nd プロファイルと比較すると Dy プロファイルは若干ブロードなピークを有してい る. これらの結果は,破線 B の粒界付近では Dy が左右の Nd₂(Fe,Co)₁₄B 粒におおよそ対称 的に拡散していることを示している. 一方, Fig. 6-10(c)では, Dy プロファイルのピークは, さらにブロードな形状に変化しているのに加え、その位置は Fe と Nd のピーク位置に比べ 大きく右側にシフトしている. さらに, Dy プロファイルのピーク位置周辺では Nd カウン ト数の低下が認められる. したがって, 破線 C の粒界付近では Dy は右側の Nd2(Fe,Co)14B 粒に優先的に分布して、左側の粒にはほとんど分布していないことが判明した.これは、 一部の Nd₂(Fe,Co)₁₄B 粒の結晶面と Dy が優先的に反応することを示唆している. Fig.6-10(a) の破線 C 付近の詳細な粒界微構造を観察するために STEM-HAADF 観察を行った. Fig.

6-11(a)に Fig.6-10(a)の白枠領域から取得した STEM-HAADF 像と対応する SAD パターンを 示す. SAD パターンに示すように, hkl=001 系列反射を励起させて像を取得した. HAADF 像では質量の重い原子ほど明るいコントラストで観察されることから、Nd₂(Fe,Co)₁₄B 粒中 に明るいコントラストで観察される格子フリンジは Nd₂(Fe,Co)₁₄B 単位胞の(001)面と(002) 面に存在する Nd/Fe/B 層であり,暗いコントラストで観察されるフリンジが Fe から構成さ れる σ 層に相当する. また, Nd₂(Fe,Co)₁₄B 粒と粒界相との間に暗いコントラストを呈する 層が1 nm 程度の幅をもって一様に観察される. この層のコントラストは Fe のみからなる σ層のものよりも暗いため、Fe よりも軽い元素である B を多く含んでいるものと推察され る. 粒界近傍に Ga, Cu が富んでいた Fig. 6-9 の STEM-EDS 元素マッピング結果を考慮に入 れると、この層は Ga、Cu、B に富んだ層であるものと考えられる. この Ga、Cu、B-rich 層の 生成過程や磁気的な効果については不明であるため、さらなる解析が必要である. Fig. 6-11(b)に Fig. 6-11(a)の白枠領域における投影図を示す. 粒界の左方向に位置する粒の Nd/Fe/B 層の格子フリンジは粒表面と平行に位置しているのに対して、右の粒では粒表面と Nd/Fe/B 層の格子フリンジは平行でなく、Nd/Fe/B 層の格子フリンジがステップ状になって いる. すなわち, Nd/Fe/B 層の格子フリンジのステップの先端では Nd₂(Fe,Co)₁₄B 相の a 面 が Ga, Cu, B-rich 層と接しているものと推察される. Fig. 6-10の STEM-EDS 結果で述べたよ うに、C領域では右側の粒に優先して Dy が分布していたことから、Dy の Nd₂(Fe,Co)₁₄B 粒 の Nd 置換は c 面よりも a 面に優先して生じる. すなわち, Dy の拡散の活性エネルギーが c 軸方向よりも a 軸方向の方が低いことを示している. このことは, Nd₂Fe₁₄B 相の構造から 説明できる. Nd/Fe/B 層の Nd の Wigner-Seitz volume は 0.031 nm³程度であるのに対して, σ 層における Fe の Wigner-Seitz volume は 0.011 nm³程度と非常に小さい¹³⁰⁾. したがって, Nd-Fe-B 相に比べて σ 層は原子が非常に密な構造となっている. さらに Dy イオン半径 (0.09 nm 程度¹³¹⁾)は Fe イオン半径(0.06 nm 程度¹³¹⁾)よりも大きいため, Nd₂Fe₁₄B 相の *c* 軸方 向における Dy 拡散は σ 層の Fe が大きな障壁となり生じにくく, a 軸方向に優先して Dy が 拡散したものと考えられる. また, 主相粒表面がステップ状となっている箇所では, 主相 粒表面では Nd には隣接するはずの Fe 原子や Nd 原子が存在しないため,Nd2Fe14B 相の磁 気異方性に最も重要な Nd の 4f 軌道分布が変化し,磁気異方性が低下しているものと推察 される. したがって, 主相粒表面がステップ状となっている箇所は磁気異方性が低下して いるため, 逆磁区の発生サイトになりやすい. この磁気異方性の低下した箇所の Nd を磁気 異方性の大きな Dy が置換することによって, 主相粒表面の磁気異方性が強化されるものと 推測される.

78

6.3 高保磁力化に及ぼす Dy 改質処理の影響と最適構造

Fig. 6-12 Schematic illustrations of the die-upset magnets: (a) the original (b) the Dy treated magnet.

Fig. 6-12(a)と(b)に未処理, Dy 改質熱間加工磁石の典型的組織の概略図をそれぞれ示す. Dy は Dy 片から粒界相を通して原料フレーク境界領域,内部領域へと拡散していき,磁石 全体に分布した. Dy 拡散によって,粒界相の体積は増加し,その組成は Nd, Ga 濃度が低 下して相補的に Fe, Co 濃度が増加した.この粒界相の組成変化と(Nd,Dy)₃Co 微細析出物の 増加によって熱間加工中の流動性が悪化して,主相の *c* 軸配向度が著しく低下した.さらに, Dy 改質処理の熱処理によって Nd₂(Fe,Co)₁₄B 粒は粗大化し,より等方的な形状に変化した. また,粒界相を通してフレーク内部領域に拡散した Dy は Nd₂(Fe,Co)₁₄B 粒表面近傍領域と 反応して, 5-10 nm 幅の磁気異方性の高い(Nd,Dy)₂(Fe,Co)₁₄B 層を形成させた.

Nd-Fe-B 磁石では主相粒径の低下とともに、対数的に保磁力が増加する. Dy 改質処理で 生じた粗大化によって、保磁力はわずかに低下したものと考えられる. 粒粗大化による保 磁力低下分を Li らの式⁸¹⁾ ($H_{cj}[kOe] = 24 - 2.6ln(D^2)$, D:粒径[μ m])で計算すると、およ そ5 %程度と見積もられる.

熱間加工磁石の保磁力はピンニング型であるとされてきたため、まずピンニング力 α_K^{pin} について検討する. Dy 改質熱間加工磁石における Nd₂(Fe,Co)₁₄B 粒表面の結晶磁気異方性の高い(Nd,Dy)₂(Fe,Co)₁₄B 層形成は粒界近傍の $A \ge K$ を増加させ、逆磁区伝搬の抑制を強めると考えられる. 保磁力向上に効果的な Dy₂Fe₁₄B 層の厚みは 4 nm 程度であることが磁気モーメントシュミレーション計算を用いた研究¹³²⁾によって報告されており、Dy 改質処理によって形成された(Nd,Dy)₂(Fe,Co)₁₄B 層の厚みは理想値に近いものと思われる. 未処理磁石と比較して粒界相の組成は Nd 濃度が低下し、強磁性元素(Fe と Co) 濃度は増加しており、Dy

を含有したものに変化した.強磁性元素濃度の増加はキュリー温度を増加させる¹²²⁾ため, *A*'は増加するものと推察される.また,粒界相の Nd, Dy 濃度範囲においては, Nd 濃度の 減少と Dy 濃度の増加により, *K*'は大きく低下する¹²²⁾.したがって,粒界相は軟磁性的な 挙動を示し,粒界相のピンニング力は低下することが示唆される.しかしながら,組織全 体としては(Nd,Dy)₂(Fe,Co)₁₄B 層形成による逆磁区反転の抑制が粒粗大化の影響に勝って粒 界近傍のピンニング力は増加するものと考えられる.一方,ニュークリエーション型の係 数α^{*nuc*}は,粒界相組成の変化と(Nd,Dy)₂(Fe,Co)₁₄B 層形成によるΔ*K*の増加によって低下する ものと示唆される.したがって,Dy 改質処理熱間加工磁石はピンニング型の保磁力機構が 強く働いて,高保磁力化したものと考えられる.

したがって、Dy 改質熱間加工処理には粒粗大化、粒界相組成変化等の保磁力に悪い影響 を及ぼす要因が生じるものの、磁気異方性の高い極薄の(Nd,Dy)₂(Fe,Co)₁₄B 層に覆われた微 細な主相粒が配向した組織が形成されることによって焼結磁石に匹敵する保磁力が実現で きたと結論できる.一方、残留磁化は、(Nd,Dy)₂(Fe,Co)₁₄B 層形成, *c* 軸配向度の低下およ び粒界相の体積増加によって若干低下したものと推察される.

Dy 片の細分化による Dy の効率的な拡散,熱間加工後の熱処理温度の低下による主相粒の粗大化抑制,構成元素組成の最適化による *c* 軸配向度の低下の抑制ができれば,さらに磁気特性を高めることが期待できる.

以上の考察より、Nd-Fe-B系焼結磁石において、できるだけ微量の重希土類元素を用いて 高保磁力化するための粒界微構造として次に示す特徴が考えられる.本研究によって,熱 間加工磁石では、保磁力機構はピンニング型が支配的になることが示唆された.これは、 主相粒径が単磁区粒径 ($72\mu_0\sqrt{(AK/I_s^2)}=250 \text{ nm}^{3}$ 程度) に近いため, 焼結磁石よりも粒界の 影響が強くなると推察されることにも合致する. 粒界近傍のピンニング力を強めるには, 粒の逆磁区が反転するとすぐに磁壁が粒界に接するように、主相粒の長軸を単磁区粒径程 度にすることが望ましい. さらに,磁気異方性が低下すると考えられる主相粒 a 面に,特 に主相粒の曲率が高い箇所に,磁気異方性の高い Dy2Fe14B 層が形成されることが望ましい. また,この Dy₂Fe₁₄B 層の形成により,粒表面の磁気異方性 K,交換スティフネス定数 A が 増加し, 磁化 L が低下するため, 単磁区粒径が若干大きくなるものと推測される. したが って、Dy を添加すると、主相粒の長軸は無添加のものよりもわずかに大きくなっても許容 されるだろう. さらに, 主相粒の a 面を磁気的分断に十分な厚み r_aの粒界相で覆うことが 重要である.主相粒表面領域における Dy₂Fe₁₄B 層の形成により,粒界相の磁気的分断に必 要な粒界相の厚み r₀は4nm 程度まで増加する.そのため,重希土類無添加磁石よりもさら に厚い粒界相を形成する必要がある.一方,主相粒の c 面に接する粒界相も主相粒を磁気的 に分断する役割を有するものと思われるが、この役割は隣接する粒の a 面に厚く形成され た粒界相によっても十分達成できる.したがって、逆磁区伝搬の抑制という点において、 主相粒の c 面に接する粒界相が磁気的分断に十分な厚みを有する必要性は低いものと考え られる.ただし,熱間加工磁石では,熱間加工中に c 面上に形成された粒界相を介して主相 粒が粒滑りをすることによって, c 軸配向した組織になる. そのため, c 軸配向, すなわち 磁化向上のために c 面上に形成された粒界相の存在が重要である.また, 逆磁区の発生サイ トを減少させるために, 主相粒の a 面の面積を低減することも有効であると考えられる. このためには、主相粒の c 軸方向を良く揃え、主相粒のアスペクト比を高めつつ、粒の曲率 をできるだけ大きくすることが挙げられる.それには、粒界相の Nd 濃度の向上、もしくは Nd と低い温度の共晶反応を示す元素の添加による流動性を高めることが必要である.これ らの特徴を併せて、微量の重希土類添加で高保磁力を発現させる組織として Fig. 6-13 に示 すような組織を提案する.

81

Fig. 6-13 Schematic illustration of a suitable microstructure for enhancing the coercivity of the die-upset magnet with small amount of Dy-addition.

6.4 小括

本章では, Dy 改質処理が熱間加工磁石の微細構造に及ぼす影響について調査し, 以下の 結論を得た.

- Dy 改質処理によって, Dy が主相粒界部を通して拡散し, Nd₂(Fe,Co)₁₄B 主相粒表面に Nd を置換した(Nd,Dy)₂(Fe,Co)₁₄B 層が 5-10 nm 程度まで形成される. 主相における Dy の Nd 置換は *a* 軸方向に優先して生じるため, 主相表層部の磁気異方性が低い領域を重 点的に強化する.
- 2. 粒界相の組成は Nd₄₄Fe₃₉Co₁₀Ga₇から Nd₁₈Dy₅Fe₆₆Co₉Ga₁Cu₁に変化し,熱間加工中の流 動性が低下して, *c* 軸配向度が低下するとともに厚みが不均一になる
- 3. Nd₂(Fe,Co)₁₄B 粒は幅 80 nm 長さ 400 nm 程度まで粗大化する.
- 粒粗大化と不均一な厚みの粒界相形成等の保磁力低下の要因となる組織変化が生じる ものの、主相粒の表面に(Nd,Dy)₂(Fe,Co)₁₄B 層が形成されることによって、逆磁区伝搬 の抑制が強まり高保磁力化する.
- 5. *c* 軸配向度低下および(Nd,Dy)₂(Fe,Co)₁₄B 層形成により残留磁化が低下してしまう.
- 6. 熱間加工磁石における重希土類添加量を低減した高保磁力化に最適な微細組織は c 軸 配向した主相粒の a 面上に薄い Dy₂Fe₁₄B 層,さらに薄い粒界相で覆った微細粒組織で あると考えられる.

7章 総括

本研究では、重希土類元素を粒界近傍のみに効果的に導入する粒界改質処理により高保 磁力化させた Nd-Fe-B 系焼結磁石および熱間加工磁石について、最新の電子顕微鏡法を駆 使した詳細な微細構造解析を行い、高保磁力発現に及ぼす重希土類元素の役割ならびに保 磁力発現に適した粒界近傍構造についての知見を得た.

- 1. Nd-Fe-B 系焼結磁石に Tb スパッタ改質処理を施すと,磁石表面に被覆された Tb が Nd₂(Fe,Co)₁₄B 主相粒同士の粒界を通って磁石内部にまで拡散する. Tb は粒界三重点に 存在する(Nd,Fe)O_x相の Nd と置換し,主相から追い出された Nd と共に主相粒界部に濡 れ広がって,幅 2 nm 程の薄いアモルファス粒界相を連続的に形成させる. アモルファ ス粒界相は逆磁区の核発生を抑制すると共に主相粒の磁気的分断を強めて高保磁力化 する.
- 2. 以上のように、導入された Tb の一部は粒界近傍の主相粒中の Nd と置換して、主相粒 表面に極薄い(Nd,Tb)₂(Fe,Co)₁₄B 層を形成させる.これが逆磁区の伝搬をさらに抑制し て、保磁力を向上させる. Tb スパッタ改質処理は、主相粒表面を極薄いアモルファス 粒界相、さらに薄い(Nd,Tb)₂(Fe,Co)₁₄B 層で覆った粒界微構造を形成させることで、極 めて微量の Tb の導入で高保磁力化する優れた処理法である.
- 3. Tb フッ化物塗布改質法は, 基本的には Tb スパッタ改質法と同様の微細組織を形成させ て保磁力を向上させる.ただし, 焼結磁石の高保磁力発現には主相粒界を Nd に富んだ 粒界相で連続的に覆うことが重要なので, Tb を均一かつ多量に導入できるスパッタ改 質処理の方が高保磁力化に有利である.
- 4. Nd-Fe-B 系熱間加工磁石は、押出方向に垂直に c 軸配向した幅 50 nm 長さ 300 nm 程の 平板状の Nd₂(Fe,Co)₁₄B 主相粒を 2 nm 幅の Nd-Ga を主体とするアモルファス粒界相が 連続的に取り囲んだ組織から構成される.この粒界相は主相粒間の磁気分断を強めて 比較的高い保磁力を発現させる.ただし、原料フレーク界面近傍の一部の領域では、 Nd 酸化物相の生成により Nd 濃度が低下し、粒界相の流動性が悪化して c 軸配向度が 低下すると共に、粒界相も不均一な厚さのものに変化して磁気特性を悪化させる.

- 原料フレークに微量の Dy を加えて熱間加工した Dy 改質処理 Nd-Fe-B 系熱間加工磁石 では、導入された Dy は微細な平板状 Nd₂(Fe,Co)₁₄B 主相粒の粒界相を通して拡散し、 主相粒の表層の Nd を置換して、5-10 nm の(Nd,Dy)₂(Fe,Co)₁₄B 層を形成する. Dy の Nd 置換は主相の *a* 軸方向に優先して生じるため、磁気的に弱い箇所に磁気異方性の高い (Nd,Dy)₂(Fe,Co)₁₄B 層が重点的に生成される. この(Nd,Dy)₂(Fe,Co)₁₄B 層が逆磁区の伝搬 を抑制することで、極微量の Dy 導入で高保磁力化する.
- 6. Dy 粒界改質処理においては、主相粒は幅 80 nm 長さ 400 nm 程度まで粗大化する. さらに、主相粒を覆う粒界相の Nd 濃度は低下し、主相粒の c 軸配向度が著しく低下してしまう. Dy 改質処理温度や構成元素組成の最適化を行うことで、主相粒の粗大化や c 軸配向度の低下を抑制できれば、さらなる高保磁力化が期待できる.

参考文献

- M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura: J. Appl. Phys. 55, 2083 (1984).
- (2) 佐川眞人:永久磁石-材料化学と応用-,アグネ技術センター (2007).
- (3) N. Ishigaki and N. Yamamoto: Magnet Japan. 3, 525 (2008) (in Japanese).
- (4) N. Ishigaki: Kinzoku. **79**, 682 (2009) (in Japanese).
- (5) 佐川眞人: ネオジム磁石のすべて-レアアースで地球を守ろう-, アグネ技術セン ター (2011).
- S. Sinnema, R. J. Radwanski, J. J. M. Franse, D. B. de Mooij and K. H. J. Buschow:J. Magn. Magn. Mater. 44, 333 (1984).
- (7) E. B. Boltich and W. E. Wallace: Solid State Commun. 63, 3964 (1985).
- (8) J. F. Herbst and J. J. Croat: J. Appl. Phys. 55, 3023 (1984).
- (9) H. Yamamoto, Y. Matsuura, S. Fujirnura and M. Sagawa: Appl. Phys. Lett. 45, 1141 (1984).
- M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura and K. Hiraga: IEEE Trans. Magn.
 MAG-20, 1584 (1984).
- D. Fruchart, F. Vaillant, A. Yaouanc, J. M. D. Coey, R. Fruchart, P. L'Heritier, T. Riesterer,
 J. Osterwalder and L. Schlapbach: J. Less-Common Met. 130, 97 (1987).
- (12) C. D. Fuerst, J. F. Herbst and E. A. Alson: J. Magn. Magn. Mater. 54-57, 567 (1986).
- (13) A. T. Pedziwiatr and W. E. Wallace: J. Magn. Magn. Mater. 65, 139 (1987).
- (14) 日立金属: http://www.hitachi-metals.co.jp/prod/prod0/pdf/hg-a22-b.pdf
- (15) S. Sugimoto: J. Phys. D: Appl. Phys. 44, 064001 (2011).
- N. Oono, M. Sagawa, R. Kasada, H. Matsui and A. Kimura: J. Magn. Magn. Mater. 323, 297 (2011).
- (17) J. J. Croat, J. F. Herbest, R. W. Lee and F. E. Pinkerton: Appl. Phys. 55, 2078 (1984).
- (18) J. F. Herbst and J. J. Croat: J. Appl. Phys. 55, 3023 (1984).
- (19) J. F. Herbst, J. J. Croat, F. E. Pinkerton and W. B. Yelon: Phys. Rev. B 29, 4176 (1984).
- (20) D. Givord, H. S. Li and J. M. Moreau: Solid State Commun. 50, 497 (1984).

- (21) C. B. Shoemaker, D. P. Shoemaker and R. Fruchart: Acta. Crystallogr. C40, 1665 (1984).
- (22) K. H. J. Buschow, D. B.de Mooij and H. M. van Noort: Philips J. Res. 40, 227 (1985).
- (23) K. H. J. Buschow, D. B. de Mooij, J. L. C. Daams and H. M. van Noort: J. Less-Common Met. 115, 357 (1986).
- (24) J. F. Herbst: Rev. Mod. Phys. 63, 819 (1991).
- (25) S. Hirosawa: Kinzoku **79**, 69 (2009) (in Japanese).
- (26) S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa and H. Yamauchi: J. Appl. Phys. 59, 873 (1986).
- (27) M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura and S. Hirosawa: J. Appl. Phys. 57, 4094 (1985).
- (28) N. C. Koon, B. N. Das, M. Rubinstein and J. Tyson: J. Appl. Phys. 57, 4091 (1985).
- M. Q. Huang, E. Oswald, E. Boltich, S. Hirosawa, W. E. Wallace and E. Schwab: Physica 130B, 319 (1985).
- R. Grossinger, R. Krewenka, X. K. Sun, R. Eibler, H. R. Kirchmayr and K. H. J. Buschow:J. Less-Common Met. 124, 165 (1986).
- (31) J. Ormerod: J. Less-Common Met. 117, 49 (1985).
- (32) M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, and Y. Matsuura: Jpn. J. Appl. Phys. 26, 785 (1987).
- K. H. J. Buschow: Ferromagnetic Materials (edited by E. P. Wohlfarth and K. H. J. Buschow) Amsterdam 4, (1988).
- (34) E. Burzo and H. R. Kirchmayr: Handbook on the Physics and Chemistry of Rare Earths (edited by K. A Gschneidner Jr., and L. Eyring), Amsterdam 12, (1989).
- (35) J. S. Cook and P. L. Rossiter: CRC Critical Reviews in Solid State and Materials Sciences, Florida 15, (1989).
- (36) Y. Kaneko: IEEE Trans. Magn. **36**, 3275 (2000).
- (37) Y. Kaneko, K. Tokuhara and Y. Sasakawa: J. Jpn. Soc. Powder Powder Metallurgy 47, 139 (2000).

- (38) W. Rodewald, B. Wall, M. Katter, K. U stunera and S. Steinmetz: IEEE Trans. Magn. 38, 2956 (2002).
- (39) F. Kuniyoshi, K. Nakahara and Y. Kaneko: J. Jpn. Soc. Powder Powder Metallurgy 51, 698 (2004).
- (40) J. Fidler, C. Groiss and M. Tokunaga: IEEE Trans. Magn. 26, 1948 (1990).
- S. Hirosawa, K. Tokuhara, S. Mino, T. Matsui, K. Morii and Y. Nakayama: Mater. Res. Soc.
 Proc. 232, 275 (1991).
- (42) S. Szymura, H. Bala, Yu. M. Rabinovich, V. V. Sergeev and G. Pawlowska: J. Magn. Magn. Mater. 94, 113 (1991).
- (43) J. Bernardi, J. Fidler, M. Seeger and H. Kronmüller: IEEE Trans. Magn. 29, 2773 (1993).
- (44) J. Bernardi and J. Fidler: J. Appl. Phys. 76, 6241 (1994).
- (45) J. Fidler, K. G. Knoch, H. Krönmuller and G. Schneider: J. Mater. Res. 4, 806 (1989).
- (46) S. F. Parker, P. J. Grundy and J. Fidler: J. Magn. Magn. Mater. 66, 74 (1987).
- (47) J. Fidler and J. Bernardi: J. Appl. Phys. **70**, 6456 (1991).
- (48) J. Bernardi, J. Fidler and F. Fodermayr: IEEE Trans. Magn. 28, 2127 (1992).
- (49) W. Rodewald and B. Wall: J. Magn. Magn. Mater. 80, 57 (1989).
- (50) Y. Kotano, J. Shimomura and M. Shimotomai: J. Appl. Phys. 69, 6055 (1991).
- (51) C. N. Christodoulou, J. Schlup and G. C. Hadjipanayis: J. Appl. Phys. 61, 3760 (1987).
- (52) R. Ramesh, G. Thomas and B. M. Ma: J. Appl. Phys. 64, 6417 (1988).
- (53) R. Ramesh and K. Srikrishna: J. Appl. Phys. 64, 6406 (1988).
- (54) I. Sakai, A. Tsutai, M. Sahashi and K. Inomata: IEEE Trans. Magn. 26, 2616 (1990).
- (55) P. Nothnagel, K. H. Müller, D. Eckert and A. Handstein: J. Mag. Mag. Mater. 101, 379 (1991).
- (56) D. W. Scott, B. M. Ma, Y. L. Liang and C. O. Bounds: J. Appl. Phys. 79, 5501 (1996).
- (57) K. Uestuener, M. Katter and W. Rodewald: IEEE Trans. Magn. 42, 2897 (2006).
- (58) M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura and Y. Matuura: J. J. Appl. Phys. 26, 785 (1987).

- (59) 俵 好夫, 大橋 健: 希土類磁石, 森北出版 (2005).
- (60) U.S. Geological Survey: Mineral Commodity Summaries: http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/
- (61) 南 博史: レアメタル 37, 127 (2007).
- (62) 財務省: 貿易統計 (2008).
- (63) 中村繁夫: 文藝春秋 89, 178 (2011).
- (64) Y. Watanabe: Kinzoku **78**, 748 (2008).
- (65) M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura: J. Appl. Phys. 55, 2083 (1984).
- (66) A. Handstein, J. Schneider, D. Stephan, W. Fischer, U. Heinecke, R. Grössinger, H. Sassik and H. R. Kirchmayr: Mater. Lett. 3, 200 (1985).
- (67) U. Heinecke, A. Handstein and J. Schneider: J. Magn. Magn. Mater. 53, 236 (1985).
- (68) K. D. Durst and H. Kronmüller: J. Magn. Magn. Mater. 68, 63 (1987).
- (69) E. C. Storner and E. P. Wohlfarth: Phil. Trans. Roy. Soc. 240, 599 (1948).
- (70) W. F. Brown: Rev. Mod. Phys. 17, 15 (1945).
- (71) W. F. Brown: J. Appl. Phys. **30**, 1305 (1959).
- (72) H. Kronmüller: Phys. Status. Solidi. B 144, 385 (1987).
- (73) H. Kronmüller, K. D. Durst and M. Sagawa: J. Mag. Mag. Mater. 74, 291 (1988).
- (74) J. Fidler and T. Schrefl: J. Appl. Phys. 79, 5029 (1996).
- (75) J. Fidler and T. Schrefl: J. Phys. D.: Appl. Phys. 33, R135 (2000).
- (76) 播本大祐, 松浦 裕: 日立金属技法 23, 69 (2007).
- (77) K. Kobayashi, Y. Ochiai, K. Hayakawa and M. Sagawa: J. Phys. IOP Conf. Ser. Mater. Sci. Eng. 1, 012035 (2009).
- (78) R. Ramesh, J. K. Chen, and G. Thomas: J. Appl. Phys. 61, 2993 (1987).
- (79) K. Makita and O. Yamashita: Appl. Phys. Lett. 74, 2056 (1999).
- (80) Y. Shinba, T. J. Konno, K. Ishikawa and K. Hiraga: J. Appl. Phys. 97, 053504 (2005).
- (81) W. F. Li, T. Ohkubo, K. Hono and M. Sagawa: J Magn. Magn. Mater. 3211, 700 (2009).

- (82) W. Mo, L. Zhang, Q. Liu, A. Shan, J. Wu and M. Komuro: Scripta Mater. 59, 179 (2008).
- (83) F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga and K. T. Park: J. Magn. Magn. Mater.
 242-245, 1329 (2002).
- (84) W. F. Li, T. Ohkubo, T. Akiya, H. Kato and K. Hono: J. Mater. Res. 24, 414 (2009).
- (85) M. Velicescu, P. Scherey and W. Rodewald: IEEE Trans. Magn. 31, 3623 (1995).
- (86) C. H. de Groot, K. H. J. Buschow, F. R. de Boer and K. de Kort: J. Appl. Phys. 83, 388 (1998).
- (87) V. P. Menushenkov and A.G. Savchenko: J. Magn. Magn. Mater. 300, e522 (2006).
- (88) D. Givord, P. Tenaud and T. Viadieu: J. Appl. Phys. 60, 3265 (1986).
- (89) H. Nakamura, K. Hirota, M. Shimao, T. Minowa and M. Honshima: IEEE Trans. Magn. 41, 3844 (2005).
- (90) K. T. Park, K. Hiraga and M. Sagawa: Proc. 6th Int'l Workshop on Rare-Earth Magnets and Their Applications (edited by. H. Kaneko, M. Homma and M. Okada) 1, 257 (2000).
- (91) S. Suzuki and K. Machida: Material Integration 16, 17 (2003).
- (92) 鈴木俊治,町田憲一,石垣尚幸:第 27 回日本応用磁気学会学術講演概要集 386
 (2003).
- (93) 町田憲一,北森輝明,中村一也,河合昭平,福島絵里,鈴木俊治:第27回日本応用磁 気学会学術講演概要集 137 (2003).
- (94) 町田憲一,鈴木俊治,石垣尚幸,茎田照喜,坂口英二,北森輝明,清水幸春,中村一
 也,福島絵里:日本応用磁気学会第142回研究会資料25 (2005).
- (95) D. S. Li, S. Suzuki, T. Kawasaki and K. Machida: J. J. Appl. Phys. 47, 7876 (2008).
- (96) D. S. Li, M. Nishimoto, S. Suzuki, K. Nishiyama, M. Itoh and K. Machida: J. Phys. IOP Conf. Ser: Mater. Sci. Eng. 1, 012020 (2009).
- (97) R. K. Mishra and R. W. Lee: Appl. Phys. Lett. 48, 733 (1986).
- (98) R. K. Mishra: J. Appl. Phys. 62, 967 (1987).
- (99) R. K. Mishra, T. Y. Chu and L. K. Rabenberg: J. Magn, Magn. Mater. 84, 88 (1990).
- (100) R. K. Mishra, V. Panchanathan and J. J. Croat: J. Appl. Phys. 73, 6470 (1993).

- (101) T. D. Nguyen, K. M. Krishnan, L. H. Lewis, Y. Zhu and D. O. Welch: J. Appl. Phys. 79, 4848 (1996).
- (102) A. Kirchner, J. Thomas, O. Gutfleisch, D. Hinz, K.-H. Müller and L. Schultz: J. Alloy. Compd. 365, 286 (2004).
- (103) L. H. Lewis, T. R. Thurston, V. Panchanathan, U. Wildgruber and D. O. Welch: J. Appl. Phys., 82 (1997), 3430-3442.
- (104) F. E. Pinkerton and D. J. Van Wingerden: J. Appl. Phys. 60, 3685 (1986).
- (105) M. Sagawa and S. Hirosawa: J. Mater. Res. 3, 45 (1988).
- (106) C. D. Fuerst and E. G. Brewer: J. Appl. Phys. 73, 5751 (1993).
- (107) W. Grünberger, D. Hinz, A. Kirchner, K.-H. Mtiller and L. Schultz: J. Alloy. Compds. 257, 293 (1997).
- (108) Y. Yoshida, N. Yoshikawa, T. Nishio, Y. Kasai, V. Panchanathan and J. J. Croat: J. Appl. Phys. 70, 6363 (1991).
- (109) A. Kirchner, D. Hinz, V. Panchanathan, O. Gutfleisch, K. H. Müller and L. Schultz: IEEE Trans. Magn. 36, 3288 (2000).
- (110) H. W. Kwon and J. H. Yu: IEEE Trans. Magn. 45, 4435 (2009).
- (111) P. Yi, M. Lin, R. Chen, D. Lee and A. Yan: J. Alloy. Compd. 491, 605 (2010).
- (112) Y. Ma, Y. Liu, J. Li, C. Li and L. Chu: J. Magn, Magn. Mater. 322, 2419 (2010).
- (113) Private Communication.
- (114) 大同特殊鋼:http://www.daido.co.jp/about/release/2010/0713_shr.html
- (115) M. Itakura, N. Kuwano, K. Sato and S. Tachibana: J. Electron Microsco. 59, S165 (2010).
- (116) S. Hata, H. Sosiati, N. Kuwano, M. Itakura, T. Nakano and Y. Umakoshi: J. Electron Microsco. 55, 23 (2006).
- (117) Powder Diffraction File Sets 1-47 (edited by the Joint Committee on Powder Diffraction Standards), International Center for Diffraction Data, Swarthmore, Pennsylvania (1996).
- (118) Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa and K. Osamura: Jpn. J. Appl. Phys. 24, L635 (1995).

- (119) W. F. Li, T. Okubo and H. Hono: Acta Mater. 48 1337 (2009).
- (120) F. R. de Boer, Cohesion in Metals: Transition Metal Alloys. Elsevier Science Publishers, Amsterdam (1988).
- (121) G. Adachi and N. Imanaka: Chem. Rev. 98, 1479 (1998).
- T. Miyazaki, K. Hayashi, S. Yamaguchi, M. Takahashi, A. Yoshihara, T. Shimamori and T. Wakiyama: J. Magn. Magn. Mater. 75, 243 (1988).
- (123) H. Okamoto: Desk handbook phase diagrams for binary alloys. ASM Int. Ohio (2000).
- (124) K. H. J. Buschow and A. S. van der Goot: J. Less-Common Met. 18, 309 (1969).
- (125) M. D. Abramoff, P. J. Magelhaes and S. J. Ram: Biophot. Int. 11, 36 (2004).
- (126) H. Sepehri-Amin, Y. Une, T. Ohkubo, K. Hono and M. Sagawa: Scripta Mater. 65, 396 (2011).
- (127) H. Sepehri-Amin, W. F. Li, T.Ohkubo, T. Nishiuchi, S. Hirosawa and K. Hono: Acta Mater.58, 1309 (2010).
- (128) C. P. Wong, K. Gudimetta, B. Dale and G. C. Hadjipanayis: J. Appl. Phys. 57, 4155 (1985).
- (129) 近角聡信: 強磁性体の物理(下) 一磁気特性と応用一, 裳華房 (1984).
- (130) C. D. Fuerst, G. P. Meisner, F. E. Pinkerton and W. B. Yelon: J. Less-Common Met. 133, 255 (1987).
- (131) R. D. Shannon: Acta Cryst. A32, 751 (1976).
- (132) C. Mitsumata, H. Tsuchiura and A. Sakuma: Appl. Phys. Exp. 4, 113002 (2011).

謝辞

本論文は,筆者が九州大学大学院 総合理工学府において板倉賢准教授のご指導のもと 行った研究をまとめたものです.その間の厳しく親身な御教授と御援助に心から感謝しま す.同所属 西田稔教授には,本研究の遂行にあたって懇切丁寧なご指導とご鞭撻を賜り, 深く感謝します.

同大学院 産学連携センター 桑野範之教授には,本論文の執筆や研究を進めるにあた り適切なご助言を頂くとともに,数々の実験装置を使用させて頂きました.同大学院 エ 学府 松村晶教授には,本学位論文の提出にあたって有意義なご意見を頂きました.さら に,松村晶教授が室長をされている超高圧電顕室開催の研究会で幾度となく勉強させて頂 くと共に,所有装置を利用させて頂きました.両先生方に深く御礼を申し上げます.

本研究の遂行には多くの方々にお世話になりました. 同大学 超高圧電子顕微鏡室 友 清芳次特任教授には非常に有益な御教授を頂き,研究者としての心構えを賜りました. ま た,同大学 総合理工学府 中島英治教授には中島・波田研究室所有の電子顕微鏡を使用さ せて頂きました. 同大学 総合理工学府 波多聴准教授,池田賢一助教,光原昌寿助教, S. Farjami 助教には,研究全般にわたる丁寧な御指導を頂きました. それぞれの先生方に深 く感謝します. 大阪大学 先端科学イノベーションセンター 町田憲一教授,鈴木俊治博 士には試料を提供して頂いただけでなく,数々の御教授を頂きました. アントワープ大学 D. Shrivers 教授には海外インターンシップを受け入れて頂くと共に,高分解能観察を支援し て頂きました. 物質・材料研究機構 原徹主幹研究員と SII ナノテクノロジー 田中啓一氏 には元素分析に関して,ご意見とご協力を得ました. 静岡理工科大学 理工学部 物質生 命科学科 小林久理眞 教授には,磁区構造と微細構造の関連に関するご助言を頂きまし た. 九州大学 薬学部 古賀登教授には,学部から博士時代まで親身なご指導を受けまし た. 皆様に併せて御礼申し上げます.

西田・板倉研究室の卒業生である富松修司氏(現古河電工),石丸雅大氏(現コベルコ科研),梅本博史氏(現日立金属),冨田雄二朗氏(現日立ケーブル),太田周一氏(現JFEス チール)には,研究結果を幾度となく参考にさせて頂くと共に研究活動の助言を頂きまし

93

た. また,現修士課程の学生である上野誠太郎君,橋口俊太郎君には研究活動を支援して 頂きました.その他にも,西田・板倉研究室の良き先輩,同輩,後輩として私を支えてくれ た方々,西田・板倉研究室事務 和田郁代さんのおかげで有意義な学生生活を送ることがで きました.誠にありがとうございます.また,これまで長きにわたって,私を支え,激励 してくれた私の家族に心より感謝しております.

本論文は、上記の方々をはじめとする多くのご助力とご支援によって完成したものであることを特記し、重ねて深くお礼申し上げます.

平成 24 年

渡邊 奈月