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Abstract

Given a finite graph G = (V,E) and a probability distribution π = (πv)v∈V on
V , Metropolis walks, i.e., random walks on G building on the Metropolis-Hastings
algorithm obey a transition probability matrix P = (puv)u,v∈V defined by, for any
u, v ∈ V ,

puv =





1
du

min{duπvdvπu
, 1} if v ∈ N(u),

1−∑w 6=u puw if u = v,

0 otherwise,

and guarantee to have π as the stationary distribution, where N(u) is the set of
adjacent vertices of u ∈ V and du = |N(u)| is the degree of u. This paper shows that
the hitting and the cover times of Metropolis walks are O(fn2) and O(fn2 logn),
respectively, for any graph G of order n and any probability distribution π such
that f = maxu,v∈V πu/πv <∞. We also show that there are graph G and stationary
distribution π such that any random walk on G realizing π attains Ω(fn2) hitting
and Ω(fn2 log n) cover times. It follows that the hitting and the cover times of
Metropolis walks are Θ(fn2) and Θ(fn2 logn), respectively.
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1 Introduction

Given a finite undirected graph G = (V,E) and a transition probability matrix
P = (puv)u,v∈V such that puv > 0 only if (u, v) ∈ E, a random walk ω on G
starting at a vertex u ∈ V under P is an infinite sequence ω = ω0, ω1, · · · of
random variables ωi whose domain is V , such that ω0 = u with probability 1
and the probability that ωi+1 = w provided that ωi = v is pvw for i = 0, 1, · · · .
Random walks have attracted the attention of researchers in many fields (see
general surveys e.g., [3,12,15,16]).

Let N(u) and du = |N(u)| be the set of vertices adjacent to a vertex u ∈ V ,
and the degree of u, respectively. Also we denote the closed neighborhood of u
by N [u], that is, N [u] = N(u)∪{u}. We define a transition probability matrix
P0 = (puv)u,v∈V by puv = d−1

u for any u, v ∈ V . Standard random walks that
select the vertex to be visited next at random with the same probability, i.e.,
random walks under P0, are a particularly popular research target because of
their simplest nature. The hitting time HG(P ;u, v) from u ∈ V to v ∈ V is
the expected number of transitions necessary for random walk ω starting at
u to reach v for the first time and the hitting time HG(P ) of G is defined to
be HG(P ) = maxu,v∈V HG(P ;u, v). The cover time CG(P ;u) from u ∈ V is
the expected number of transitions necessary for random walk ω starting at
u to visit all vertices in V and the cover time CG(P ) of G is defined to be
CG(P ) = maxu∈V CG(P ; u). Then CG(P0) ≤ 2m(n− 1) holds for any graph G
of order n and size m [1,2], whose result was later refined by Feige [6,7]:

(1− o(1))n log n ≤ CG(P0) ≤ (1 + o(1))
4

27
n3.

Since there is a graph L (called a Lollipop) such that

HL(P0) = (1− o(1))
4

27
n3,

both the hitting and cover times of standard random walks are Θ(n3) [4].

However, standard random walks are by no means the only random walks
that are frequently used in applications. Markov chain Monte Carlo (MCMC)
methods, which have been grown explosively since early 1990, are algorithms
for sampling from probability distributions using random walks that have the
target probability distributions as their stationary distributions [8]. Given a
probability distribution π = (πu)u∈V on a set V , typical MCMC methods
first consider a graph G = (V,E) such that edge set E represents a natural
topology among the elements in V , and next design a transition probability
matrix P = (puv)u,v∈V on G such that πP = π holds. Then the vertex visited
after a sufficiently long random walk under P is used as a sample from π.
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The Metropolis-Hastings algorithm produces such a transition probability ma-
trix P , given π: For any u, v ∈ V ,

puv =





quv min{ qvuπv
quvπu

, 1} if v ∈ N(u),

1−∑w 6=u puw if u = v,

0 otherwise,

where Q = (quv)u,v∈V is an arbitrary transition probability matrix [9,14]. Since
P satisfies the detailed balance condition πupuv = πvpvu for any u, v ∈ V , its
stationary distribution is π. 1 When we take Q = P0, the resulting transition
probability matrix P ∗ = (puv)u,v∈V is

puv =





1
du

min{duπv
dvπu

, 1} if v ∈ N(u),

1−∑w 6=u puw if u = v,

0 otherwise,

and random walks under P ∗ are called Metropolis walks, which are typical
random walks used in MCMC. In what follows, we reserve symbol P ∗ to denote
the transition probability matrix defined above. 2

Let f = maxu,v∈V πu/πv and assume that f < ∞, i.e., πu > 0 for all u ∈
V . This paper shows that the hitting and cover times of Metropolis walks
are respectively O(fn2) and O(fn2 log n), for any graph G of order n and
probability distribution π such that f <∞.

It is worth emphasizing that Metropolis walks use the degrees of adjacent
vertices and improve the upper bounds on the hitting and cover times of
standard random walks mentioned above. This impact of using local degree
information was first observed by Ikeda et al. [11]. They proposed a transition
probability matrix P1 = (puv)u,v∈V defined by, for any u, v ∈ V ,

puv =





d
−1/2
v∑

w∈N(u)
d
−1/2
w

if v ∈ N(u),

0 otherwise,

and showed that the hitting and cover times are respectively O(n2) and
O(n2 log n), for any graph G of order n. Metropolis walks, which are more
flexible than Ikeda et al.’s walks (since their method cannot specify a target
stationary distribution), still attain the same upper bounds on the hitting and
cover times when f = 1.

1 We can assume without loss of generality that the Markov chain defined by P
is ergodic; if the chain does not include a self-loop, we can add self-loops at every
vertex at a small constant probability.
2 Since P ∗ depends on G and π, we could have denoted it as P ∗(G, π) for example.
We however omit G and π, since they are obvious from context.
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We then show that for any f , the upper bounds on the hitting and cover
times of Metropolis walks are tight; Metropolis walks on a glitter star attain
Ω(fn2) hitting time and Ω(fn2 log n) cover time. Thus the hitting and cover
times of Metropolis walks are respectively Θ(fn2) and Θ(fn2 log n). It should
be noted that this is shown by a much stronger result: there are stationary
distributions π such that any random walk on a glitter star graph realizing π
attains Ω(fn2) hitting time and Ω(fn2 log n) cover time.

The paper is organized as follows: Section 2 shows upper bounds on the hitting
and cover times of Metropolis walks, and Section 3 presents general lower
bounds of random walks. Section 4 concludes the paper.

2 Upper Bounds

The following three lemmas are due to Ikeda et al [10,11]. Let G = (V,E)
and P = (puv)u,v∈V be a graph and a transition probability matrix for G,
respectively.

Lemma 1 [11] For any two vertices u ∈ V and v ∈ N(u) adjacent each other,

HG(P ; u, v) ≤ (pvuπv)
−1,

where π = (πu)u∈V is the stationary distribution of P .

For any subset U ⊆ V and vertex u ∈ U , let CG(P ;U, u) be the expected
number of transitions necessary for a random walk obeying P to visit all ver-
tices in U starting at u, and let CG(P ;U) = maxu∈U CG(P ;U, u). By definition
CG(P ;u) = CG(P ;V, u) and CG(P ) = CG(P ;V ). The following lemma is thus
a generalization of a famous theorem by Matthews, which relates the hitting
and cover times [13].

Lemma 2 [10]

h(`− 1) min
u,v∈U,u6=v

HG(P ;u, v) ≤ CG(P ;U) ≤ h(`− 1) max
u,v∈U,u6=v

HG(P ; u, v),

where ` = |U | and h(k) denotes the k-th harmonic number, i.e., h(k) =∑k
i=1 i

−1.

Lemma 3 [11] For any two vertices u, v(u 6= v) ∈ V , let x0(= u), x1, · · · , x`(=
v) be a shortest path connecting u and v. Then

∑̀

i=0

deg(xi) ≤ 3n.

4



Let πmin = minu∈V πu and πmax = maxu∈V πu. Since 1 =
∑
u∈V πu ≤

∑
u∈V fπmin =

fnπmin, π−1
u ≤ fn for any u ∈ V .

Theorem 4 For any graph G = (V,E) with order n and probability distri-
bution π on V , 1) HG(P ∗) = O(fn2), and 2) CG(P ∗) = O(fn2 log n), where
f = maxu,v∈V πu/πv.

PROOF. If HG(P ∗) = O(fn2) then CG(P ∗) = O(fn2 log n) by Lemma 2.
We thus concentrate on showing HG(P ∗) = O(fn2). That is, for any graph
G = (V,E), two vertices u0 and v0 in V , and probability distribution π on V ,
we show HG(P ∗;u0, v0) = O(fn2).

Let u ∈ V and v ∈ N(u). By the definition of P ∗, p−1
vu = max{duπv

πu
, dv}. By

Lemma 1, HG(P ∗;u, v) ≤ max{ du
πu
, dv
πv
}. Since π−1

u ≤ fn and π−1
v ≤ fn as

observed, HG(P ∗; u, v) ≤ fnmax{du, dv}. Let x0(= u0), x1, · · · , x`(= v0) be
any shortest path connecting u0 and v0. Then

HG(P ∗;u0, v0) ≤
`−1∑

i=0

HG(P ∗;xi, xi+1) ≤ fn
`−1∑

i=0

max{dxi , dxi+1
},

which implies
HG(P ∗;u0, v0) ≤ 6fn2 = O(fn2)

by Lemma 3. 2

3 Lower Bounds

A glitter star (see Figure 1) is a graph constructed from a star by inserting a
vertex in each of the edges. Formally, a glitter star S = (V,E) of order n =

2`+1 is defined by V = {v(0)}∪{v(1)
i : i = 1, 2, · · · , `}∪{v(2)

i : i = 1, 2, · · · , `},
and E = {(v(0), v

(1)
i ) : i = 1, 2, · · · , `} ∪ {(v(1)

i , v
(2)
i ) : i = 1, 2, · · · , `}.

Fig. 1. Glitter-Star
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We show that a glitter star graph S has Ω(fn2) hitting time and Ω(fn2 log n)
cover time for any transition probability (i.e., it is not necessarily to be the
one of Metropolis walks) of some probability distribution π on V with f =
maxu,v∈V πu/πv.

Theorem 5 There exists a stationary distribution π such that for any tran-
sition probability P realizing π, HS(P ) = Ω(fn2) and CS(P ) = Ω(fn2 log n)
hold.

Before proving this theorem, we first show reversibility of a random walk on a
tree. For a transition probability P of a random walk on a graph, its stationary
distribution π is called reversible if it satisfies the detailed balanced condition:

puvπu = pvuπv

holds for any u, v ∈ V . Also, a random walk is called reversible if its sta-
tionary distribution is reversible for its transition probability. It is known
that a reversible random walk is characterized by conductance (cuv)(u,v)∈E,
where cuv = cvu holds for each (u, v) ∈ E, as follows: Given a conductance
(cuv)(u,v)∈E, a random walk defined by puv = cuv/cu has stationary distribution
πu = cu/c, where cu =

∑
w∈N [u] cuw and c =

∑
u∈V cu [5]. Conversely, a random

walk defined by puv = cuv/cu for some conductance (cuv)(u,v)∈E is reversible.

We show the following lemma.

Lemma 6 Any random walk on a tree is reversible.

PROOF. We show that, from any transition probability matrix P on a tree,
a conductance (cuv)(u,v)∈E satisfying puv = cuv/cu is constructed, which proves
the lemma. For an arbitrary vertex r, suppose that T is rooted at r, which
defines parent-child relations through the tree structure. We define a con-
ductance (cuv)(u,v)∈E as follows: First let crv := prv for every v ∈ N [r]. We
define the other conductance values along the rooted tree structure. For a
vertex v and its parent u, let us assume that cuv has been determined. We
then define the other conductance values on v by cvw = cuvpvw/pvu for every
w ∈ N [v]\{u}. By going down to child vertices and continuing this procedure
until reaching leaves, we obtain conductance (cuv)(u,v)∈E. It is easy to see that
puv = cuv/cu holds for any (u, v) ∈ E indeed. 2

PROOF of Theorem 5. Suppose that a transition probability matrix
P = (puv)u,v∈V for S. Let us introduce the following abbreviations. For any

u = v(0) and v = v
(1)
i , puv (resp. pvu) is denoted by p

(0→1)
i (resp. p

(1→0)
i ) and

HS(P ;u, v) (resp. HS(P ; v, u)) by H
(0→1)
i (resp. H

(1→0)
i ). For any u = v

(h)
i and
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v = v
(k)
i (h 6= k), puv is denoted by p

(h→k)
i and HS(P ;u, v) by H

(h→k)
i . By

definition, we have the following equalities.

H
(2→1)
i = p

(2→1)
i + (1− p(2→1)

i )(1 +H
(2→1)
i ),

H
(1→0)
i = p

(1→0)
i + p

(1→2)
i (1 +H

(2→1)
i +H

(1→0)
i ) + (1− p(1→0)

i − p(1→2)
i )(1 +H

(1→0)
i ),

H
(0→1)
i = p

(0→1)
i +

∑

j 6=i
p

(0→1)
j (1 +H

(1→0)
j +H

(0→1)
i ) + (1− p(0→1)

i −∑
j 6=i

p
(0→1)
j )(1 +H

(0→1)
i ),

H
(1→2)
i =

1

p
(1→2)
i

(1 + p
(1→0)
i H

(0→1)
i ).

From these equalities, we obtain the following:

H
(2→1)
i =

1

p
(2→1)
i

,

H
(1→0)
i =

1

p
(1→0)
i


1 +

p
(1→2)
i

p
(2→1)
i


 ,

H
(0→1)
i =

1

p
(0→1)
i


1 +

∑

j 6=i

p
(0→1)
j

p
(1→0)
j


1 +

p
(1→2)
j

p
(2→1)
j




 , (1)

H
(1→2)
i =

1

p
(1→2)
i


1 +

p
(1→0)
i

p
(0→1)
i


1 +

∑

j 6=i

p
(0→1)
j

p
(1→0)
j


1 +

p
(1→2)
j

p
(2→1)
j






 .

We denote πv(0) by π(0), and π
v

(k)
i

by π
(k)
i for i = 1, . . . , ` and k = 1, 2. We prove

this theorem by showing that the following stationary distribution π attains
the lower bounds Ω(fn2) and Ω(fn2 log n) on the hitting and cover times,
respectively: π(0) = πmin and πw = πmax for any other vertices w ∈ V \ {v(0)}.

As shown in Lemma 6, for any transition probability P of a random walk on
glitter star S, its stationary distribution π is reversible. Thus from the detailed
balanced condition and (1), we obtain

H
(0→1)
i =

1

p
(0→1)
i


1 +

∑

j 6=i

π
(1)
j

π(0)


1 +

π
(2)
j

π
(1)
j




 .

Then, we have

H
(0→1)
i =

1

p
(0→1)
i


1 +

∑

j 6=i
2f


 =

1

p
(0→1)
i

(1 + 2f(`− 1)) . (2)

Here, let us consider U = {v(1)
i | p(0→1)

i ≤ 2/`}. Note that U is not empty, and
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actually |U | > `/2 holds, otherwise
∑`
i=1 p

(0→1)
i > 1. Thus, for any v

(1)
i ∈ U ,

(2) is estimated as

H
(0→1)
i ≥ `

2
(1 + 2f(`− 1)) ≥ f(n− 3)2

4
= Ω(fn2),

which shows the first part of the theorem.

As for the cover time, we consider CS(P ;U). By Lemma 2, we have

CS(U ;P )≥ min
v

(1)
i ,v

(1)
j ∈U

H(v
(1)
i , v

(1)
j )h(|U | − 1).

Since |U | > `/2 and H(v
(1)
i , v

(1)
j ) ≥ H(v(0), v

(1)
j ) = f(n− 3)2/4, we have

CS(U ;P )≥ f(n− 3)2

4
h

(
`

2
− 1

)
= Ω(fn2 log n),

which completes the proof. 2

By combining Theorems 5 with Theorem 4, we obtain the following corollary.

Corollary 7 HG(P ∗) = Θ(fn2) and CG(P ∗) = Θ(fn2 log n).

4 Conclusion

In this paper, we have shown that for any graph G = (V,E) and probability
distribution π = (πu)u∈V on V , Metropolis walks, i.e., random walks obeying
the transition probability matrix P ∗, guarantee that the hitting time is Θ(fn2)
and the cover time is Θ(fn2 log n), where f = maxu,v∈V πu/πv. Also we show
that a glitter star graph has Ω(fn2) hitting time and Ω(fn2 log n) cover time
for any random walk realizing the stationary distribution π.
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