省燃費のためのモデル予測型隊列走行制御系の設計

郭, 亜南 九州大学大学院統合新領域学府オートモーティブサイエンス専攻博士後期課程

向井, 正和

九州大学大学院システム情報科学研究院電気システム工学部門

川邊,武俊 九州大学大学院システム情報科学研究院電気システム工学部門

https://doi.org/10.15017/26517

出版情報:九州大学大学院システム情報科学紀要.18(1), pp.9-17, 2013-01-25.九州大学大学院シス テム情報科学研究院 バージョン: 権利関係:

省燃費のためのモデル予測型隊列走行制御系の設計

郭 亜南*・ 向井 正和**・ 川邊 武俊**

A Design of Ecological Vehicle Platooning Control System Using Model Predictive Control

Anan KAKU*, Masakazu MUKAI** and Taketoshi KAWABE**

(Received November 2, 2012)

Abstract: We propose an ecological vehicle platooning control system using centralized model predictive control. A model of the vehicles in the platoon considering vehicular aerodynamic drag is established. In the proposed control system, fuel consumption of the vehicles is considered in the performance index, and information of the curve is used for prediction to reduce the fuel consumption of the vehicles. The proposed control system was simulated in the case of platoon formation and driving with variable target velocity. The significant improvement in fuel economy was achieved by the proposed control system.

Keywords: Ecological vehicle platooning, Aerodynamic drag, Road information, Model predictive control, Vehicle control

1. はじめに

近年,自動車社会の発展に伴い環境問題や資源枯渇など の世界的な課題が懸念されている.特に、省エネの対策は 社会的な問題として注目されている. こうした課題の解決 策として様々なアプローチが挙げられる¹⁾. 自動車のエン ジンの改良, ハイブリッド化や電気自動車化など, 各メーカ は自動車の省燃費化に取り組んでいる.一方,燃費向上の ために運転方策を一変させる「エコドライビング」に対する 研究も盛んに行われている²⁾³⁾. 頻繁な加減速を控えてなる べく一定速度での走行、道路情報の活用による交通流の円 滑化,運転支援システムを利用して走行抵抗となる要素の 低減などが研究されている4)5). 高速走行時には自動車の空 気抵抗が増大するため,隊列走行による空気抵抗を減らす ことで、省燃費化をはかる手法が期待されている⁶⁾. Fig.1 に示すように,隊列走行の場合には隣接する車の間に低気圧 領域が広がる.この領域は車間距離によって変化する.後 続車が短い車間距離で先行車に追従すれば、空気抵抗は空 気の流れで低減される.また,先頭車の空気抵抗も後続車 の整流効果により減少する7). 真ん中の車は前面と後部に 低気圧領域が形成されるので、空気抵抗がさらに低減され る.一方、カーブの情報を有効に利用すれば、適切な加減 速パターンで燃料を節約することができる⁸⁾. 隊列走行の ための様々な車間距離制御系が研究されている.

従来の制御系は分散制御方式と集中制御方式に分類でき

る.分散制御系では、車群内の各車がそれぞれに備えた制御 系で、全車両の走行情報の一部だけを利用して個別に制御さ れる⁹⁾¹⁰⁾¹¹⁾¹²⁾¹³⁾¹⁴⁾.集中制御系では、一つの制御系で、走 行情報を統括して全車両を制御する¹⁵⁾¹⁶⁾.文献 13)では、 モデル予測制御(MPC)を用い、中間ドライバの追従特性の 相違を考慮した隊列走行の分散制御系を提案した.文献 15) では、MPC集中制御系を用い、平坦道路で所望の隊列走行 が早く達成でき、省燃費の効果も確認できた.一方、MPC は道路の地図情報を用いて予測を行えるため、一台の車が 道路の勾配に応じて燃費のよくなる走行パターンを求める ことができた⁸⁾.

本稿では、省燃費のための MPC 集中制御系を提案する. 車間距離により変化する空気抵抗を考慮した車群の縦方向 運動モデルを構築する. 道路の情報を使って将来の目標車 速の変化を予測し、省燃費化を目的とした制御系とする. 計 算機シミュレーションでは、車群形成と目標速度変化の二 つのケースを選び、従来の制御系の省燃費化の効果と比較 することで提案した制御系の性能が優れていることを確認 する.

以下,第2章で車両および車群のモデル,第3章で MPC 集中制御系の構成,第4章で空気抵抗係数,燃料消費モデ

平成 24 年 11 月 2 日受付

^{*}統合新領域学府オートモーティブサイエンス専攻博士後期課程 **電気システム工学部門

	Table 1 Nomenclature.
N :	車両の台数
添え字 <i>i</i> :	車両の番号
m_i :	<i>i</i> 台目の車の質量
ρ :	空気密度
g:	重力加速度
A_i :	i 台目の車の前面投影面積
l_i :	<i>i</i> 台目の車の長さ
μ_i :	i 台目の車の転がり抵抗係数
$ au_i$:	i 台目の車の駆動トルク制御系の遅れ定数
x_i :	<i>i</i> 台目の車の位置
v_i :	i 台目の車の速度
F_i :	<i>i</i> 台目の車の駆・制動力
u_i :	<i>i</i> 台目の車の駆・制動力の制御入力
$d_{i-1 \ i}$:	i-1 台目と i 台目の車の車間距離
θ :	道路勾配
C_i :	i 台目の車の空気抵抗係数
f_{ai} :	<i>i</i> 台目の車の空気抵抗
f_{gi} :	i 台目の車の勾配抵抗
$f_{\mu i}$:	i台目の車の転がり抵抗

ルと計算機シミュレーションの結果について述べ,第5章 でまとめとする.

2. 車群のモデル

Fig.2のような,*N*台の車からなる車群を考える. 各記 号は **Table 1**のように与える. 縦方向の各車両の運動は次 式で表現する.

$$\begin{aligned} \dot{x}_{i}(t) &= v_{i}(t) ,\\ m_{i}\dot{v}_{i}(t) &= F_{i}(t) - f_{ai}(t) - f_{gi}(t) - f_{\mu i} ,\\ f_{ai}(t) &= \frac{1}{2}\rho A_{i}C_{i}(d_{i-1\ i}(t), d_{i\ i+1}(t))v_{i}^{2}(t) ,\\ f_{gi}(t) &= m_{i}g\sin\theta(x_{i}(t)) ,\\ f_{\mu i} &= \mu_{i}m_{i}g , \quad (i = 1, 2, ..., N) \end{aligned}$$
(1)

車間距離は次式とする.

$$d_{i-1} i(t) = x_{i-1}(t) - x_i(t) - l_{i-1} , (i = 2, 3, ..., N)$$
 (2)

ここで、道路勾配 θ は車両位置に依存し、道路情報から得られるとする.空気抵抗係数 C_i は車間距離に依存する.車両の駆動トルク系の遅れを一次遅れ系と考え、入力の指令値から加減速への応答の関係を次式とする.

$$\dot{F}_{i}(t) = -\frac{1}{\tau_{i}}F_{i}(t) + \frac{1}{\tau_{i}}u_{i}(t) .$$
(3)

車群の状態方程式は(4),(5)式で表す.

$$\dot{x}(t) = f(x(t), u(t)) ,$$

$$x(t) = \begin{bmatrix} x_1 & v_1 & F_1 & x_2 & v_2 & F_2 & \dots & x_N & v_N & F_N \end{bmatrix}^T ,$$

$$u(t) = \begin{bmatrix} u_1 & u_2 & \dots & u_N \end{bmatrix}^T ,$$
(4)

$$f(x(t), u(t)) = \begin{bmatrix} v_1 \\ \frac{1}{m_1} \left(F_1 - f_{a1} - f_{g1} - f_{\mu 1}\right) \\ -\frac{1}{\tau_1} F_1 + \frac{1}{\tau_1} u_1 \\ v_2 \\ \frac{1}{m_2} \left(F_2 - f_{a2} - f_{g2} - f_{\mu 2}\right) \\ -\frac{1}{\tau_2} F_2 + \frac{1}{\tau_2} u_2 \\ \vdots \\ v_N \\ \frac{1}{m_N} \left(F_N - f_{aN} - f_{gN} - f_{\mu N}\right) \\ -\frac{1}{\tau_N} F_N + \frac{1}{\tau_N} u_N \end{bmatrix} .(5)$$

ここで,x, u は状態ベクトル,入力ベクトルである. 先頭 車の C_1 ,最後尾車の C_N ,およびその中に挟まれる車両の C_m (m = 2, 3, ..., N - 1) は次式で表す.

$$C_{1}(d_{12}(t)) = \sum_{k=0}^{r_{1}} a_{k} d_{12}^{k}(t) ,$$

$$C_{m}(d_{m-1\ m}(t), d_{m\ m+1}(t)) = \sum_{k=0}^{r_{2}} \sum_{l=0}^{r_{2}} b_{(r_{2}+1)k+l+1} \ d_{m-1\ m}^{k}(t) d_{m\ m+1}^{l}(t) ,$$

$$C_{N}(d_{N-1\ N}(t)) = \sum_{k=0}^{r_{3}} c_{k} d_{N-1\ N}^{k}(t) , \qquad (6)$$

ここで, r_1 , $r_2 \geq r_3$ は多項式の次数, a_i $(i = 0, 1, ..., r_1)$, b_i $(i = 1, 2, ..., (r_2+1)^2) \geq c_i$ $(i = 0, 1, ..., r_3)$ はパラメー タである. a_i , $b_i \geq c_i$ の設定の一例は第4章で紹介する.

3. 制御系の構成

車群の各車の状態量が観測可能と仮定する.省燃費化を 目的とした隊列走行のため,以下の制御目的を考える.

- C1 各車は目標速度で走行すること.
- C2 目標車間距離を維持すること.
- **C3** 前方車との衝突を防ぐこと.
- C4 走行に要する燃料をできるだけ低減すること.
- **C5** 急な加減速を抑えること.

これらの目的を達成するための評価関数は次式とする.

$$J = \int_{t}^{t+T} L(x(t'), u(t'), t') dt' , \qquad (7)$$

ここで,T,は評価区間の長さ,t'は仮想時間である.Lは 次式で表されるペナルティー関数である.

$$L(x, u, t) = \omega_v L_v(t) + \omega_d L_d(t) + \omega_c L_c(t) + \omega_u L_u(t) + \omega_a L_a(t) , \qquad (8)$$

$$L_{v}(t) = \frac{1}{2} \Big(v_{1}(t) - v^{*}(t) \Big)^{2} + \frac{1}{2} \Big(v_{2}(t) - v^{*}(t) \Big)^{2} \\ + \dots + \frac{1}{2} \Big(v_{N}(t) - v^{*}(t) \Big)^{2} ,$$

$$L_{d}(t) = \frac{1}{2} \Big(d_{12}(t) - d^{*} \Big)^{2} + \frac{1}{2} \Big(d_{23}(t) - d^{*} \Big)^{2} \\ + \dots + \frac{1}{2} \Big(d_{N-1} _{N}(t) - d^{*} \Big)^{2} ,$$

$$L_{c}(t) = -\log(d_{12}(t) - l_{d1}) - \log(d_{23}(t) - l_{d1}) \\ - \dots - \log(d_{N-1} _{N}(t) - l_{d1}) + l_{d2} ,$$

$$L_{u}(t) = \hat{f}_{1}(t) + \hat{f}_{2}(t) + \dots + \hat{f}_{N}(t) ,$$

$$L_{a}(t) = \frac{1}{2} \Big(\dot{v}_{1}(t) + g \sin \theta(x_{1}(t)) \Big)^{2} \\ + \frac{1}{2} \Big(\dot{v}_{2}(t) + g \sin \theta(x_{2}(t)) \Big)^{2} ,$$

$$\vdots \\ + \frac{1}{2} \Big(\dot{v}_{N}(t) + g \sin \theta(x_{N}(t)) \Big)^{2} ,$$

(9)

ここで, L_v , L_d , L_c , L_u , L_a は上述の制御目的 C1 ~ C5 にそれぞれ対応する各評価項, ω_v , ω_d , ω_c , ω_a , ω_u は設計 者が設定するそれぞれの評価項の重みである. v^* は目標速 度, d^* は目標車間距離, $l_{d1} \geq l_{d2}$ はバリア関数を調整す るためのパラメータ, \hat{f}_i は 4.2 節で紹介する燃料消費量で ある.入力の振幅を抑えるため,次式のような不等式拘束 を設定する.

$$u_1^2(t) \leq u_{max}^2$$
, $u_2^2(t) \leq u_{max}^2$, ...,
 $u_N^2(t) \leq u_{max}^2$. (10)

ここで、*u_{max}* は設計者が設定する定数である. ダミー入力 *u_{di}* を導入し、(10) 式を等式拘束に変換すると次式となる.

$$G(u,t) = \begin{bmatrix} u_1^2(t) + u_{d1}^2(t) - u_{max}^2 \\ u_2^2(t) + u_{d2}^2(t) - u_{max}^2 \\ \vdots \\ u_N^2(t) + u_{dN}^2(t) - u_{max}^2 \end{bmatrix} = 0.$$
(11)

次のような最適制御問題を考える.

$$\min_{u} J, \qquad \text{subject to} \ (4), (5), (11) \ . \tag{12}$$

最適入力が満たす必要条件は次式のようになる.

$$H(x, u, \lambda, \psi, t) = L(x, u, t) + \lambda^T f(x, u)$$

+ $\psi^T G(u, t)$, (13)

$$\dot{x} = \frac{\partial H}{\partial \lambda} , \quad \dot{\lambda} = -\frac{\partial H}{\partial x} , \quad \frac{\partial H}{\partial u} = 0 ,$$

$$\lambda(t+T) = 0 , \quad G = \frac{\partial H}{\partial \psi} = 0 , \qquad (14)$$

ここで, H はハミルトニアン, λ は随伴変数, ψ はラグラ ンジュ乗数である.

最適制御を基に MPC を構築する. MPC では,各サン

プリング時刻における状態量を初期値とし、上記の最適制 御問題を解く.状態量 x(t) は (14) 式の初期条件として評 価区間 $t \le t' \le t + T$ にわたって用いられる.最適な制御 入力 $u_{opt}(t')(t \le t' \le t + T)$ は $t \ge x(t)$ に依存する評価区 間上の関数である.実際の制御入力 u(t) は、時刻 t での最 適な制御入力 $u_{opt}(t) \ge t \le t^{17)18}$.つまり、 $u(t) = u_{opt}(t)$ とする.サンプリング周期が経過するたびに制御入力を更 新する.

4. 計算機シミュレーション

2.0L のエンジンを搭載した CVT 車で構成された車群を 考え,各制御方法の燃費性能を比較する.各パラメータは $m_i = 1480$ kg, $A_i = 2.87$ m², $l_i = 4.3$ m, $\tau_i = 0.1$, $\rho = 1.2$ kg/m³, $\mu = 0.01$ と設定した.

4.1 空気抵抗係数の近似

車群の各車の C_i はその車の前方と後方の車間距離と関係 し、それ以外の車間距離の影響を受けない¹⁹⁾.風洞実験で 得られた空気抵抗係数と車間距離との関係を示すデータ⁷⁾¹⁹⁾ を整理して用いる. C_1 , $C_N \ge C_m \ge 3$ 種類の手法で計算 する. $d_{12} = d_{23}$ の場合に、三台の車からなる車群のデータ を Fig. 3 に示す.二台の車からなる車群のデータを Fig. 4 に示す. $C_1 \ge C_N$ は一変数の関数なので、Fig. 3 の一台目 と三台目のデータを用いて Fig. 5 の曲線近似で表現する. C_m は二変数の関数なので、次の五つのステップで構築し、

Fig. 3 Relation between the spacings and the aerodynamic drag coefficients in 3-vehicles platoon.⁷⁾

Fig. 4 Relation between the spacing and the aerodynamic drag coefficients in 2-vehicles platoon.⁷

10

 $d_{12}\,\mathrm{[m]}$

15 0

Fig.6 の曲面近似で表現する.

5

ステップ1: **Fig.3** の二台目の車の C_2 データを整理し, **Fig.7**の三次元座標で $d_{12} = d_{23}$ の平面上にプロットする.

ステップ2: Fig. 8 の場合を考え, Fig. 3 の C₂(0,0) の データを用いて Fig.7 にプロットする.

ステップ3: Fig. 9 の場合を考え、一台目と二台目の車 は車間距離がゼロの二台の車群で、二台目は後続車とみな せる. d₂₃ が 15 m 以上になった場合は Fig. 9 の状況と考 え, Fig. 4 の $C_2(0,\infty)$ のデータを用いて Fig. 7 にプロッ トする. 同様の手法で, Fig. 10 の場合を考え, Fig. 4 の $C_2(\infty, 0)$ のデータを用いて **Fig. 7** にプロットする.

ステップ4: 文献19) の風洞実験で求められたデータに合わ せる. Fig. 11 の場合を考え, d₂₃ を三つの値 (d₂₃ =0.25l₂,

Fig. 13 Data of the C_2 for the case of $d_{12} \neq d_{23}$.

0.5l₂, 0.72l₂)のような一定値にし、d₁₂を任意に変化する と設定する. 同様に, Fig. 12 の場合を考え, d12 を三つの 値 (d₁₂ =0.25l₂, 0.5l₂, 0.72l₂) のような一定値にし, d₂₃ を任意に変化すると設定する.これらの場合の C2 のデー タを Fig. 13 にプロットする.

ステップ5: Fig. 13 の全部データを用い,二変数の関数 として曲面近似を行う.

 $r_1 = r_3 = 6$, $r_2 = 3$ と設定し, $a_0 - a_6$, $b_1 - b_{16}$ と $c_0 - c_6$ の数値を Table 2 に示す.

4.2 燃料消費量のモデル化

i 台目の車両が走行する時に必要なエンジン出力 Pi は次 式で表せる.

$$P_{i}(t) = \left(m_{i}\dot{v}_{i}(t) + f_{ai}(t) + f_{gi}(t) + f_{\mu i}\right)v_{i}(t) + P_{c}, \qquad (15)$$

ここで、 $P_c = 845.825$ W は補機を動かすのに必要なパワー である. 採用した CVT 車のエンジン性能線図は Fig. 14 に示す²⁰⁾²¹⁾²²⁾. エンジンの最高効率 η_i とエンジン出力 P_i との関係を次式の多項式関数で近似する.結果は Fig. 15 に示す.

a_0	1.907×10^{-1}	b_1	1.680×10^{-1}
a_1	7.631×10^{-2}	b_2	3.260×10^{-2}
a_2	-1.540×10^{-2}	b_3	-3.812×10^{-3}
a_3	1.329×10^{-3}	b_4	1.418×10^{-4}
a_4	-3.017×10^{-5}	b_5	2.058×10^{-2}
a_5	-1.925×10^{-6}	b_6	-5.196×10^{-3}
a_6	8.510×10^{-8}	b_7	8.881×10^{-4}
c_0	2.472×10^{-1}	b_8	-4.299×10^{-5}
c_1	4.953×10^{-2}	b_9	-2.325×10^{-3}
c_2	-9.297×10^{-3}	b_{10}	9.774×10^{-4}
c_3	7.038×10^{-4}	b ₁₁	-1.729×10^{-4}
c_4	-5.054×10^{-6}	b ₁₂	8.293×10^{-6}
c_5	-1.828×10^{-6}	b ₁₃	8.047×10^{-5}
c_6	6.315×10^{-8}	b_{14}	-5.108×10^{-5}
		b ₁₅	8.924×10^{-6}
		b ₁₆	-4.173×10^{-7}

Table 2 The parameters of C_i .

Fig. 14 Engine characteristic map.

Fig. 15 Approximate engine efficiency η_i .

Table 3 Parameter of the maximum efficiency.

e_1	-1.508×10^{-28}	e_5	-2.908×10^{-9}
e_2	3.448×10^{-23}	e_6	3.197×10^{-5}
e_3	-3.050×10^{-18}	e_7	0.127
e_4	1.313×10^{-13}		

$$\eta_i(P_i(t)) = \sum_{k=1}^7 e_k P_i^{7-k}(t) , \qquad (16)$$

ここで、 e_1-e_7 はパラメータで、数値は **Table 3** に示す. 単位時間あたりの燃料消費量 f_i は次式で表す.

$$f_i(t) = \begin{cases} \frac{P_i(t)}{\eta_i(P_i(t))Q_c} & \text{for } u_i \ge 0\\ 0 & \text{for } u_i < 0 \end{cases},$$
(17)

ここで、 $Q_c = 34.5 \text{ KJ/L}$ はガソリンの発熱量である.

 Table 4
 Parameter of the fuel consumption function.

h_1	-5.119×10^{-7}	h_{10}	1.359×10^{-5}
h_2	6.650×10^{-6}	h_{11}	7.488×10^{-6}
h_3	-4.025×10^{-7}	h_{12}	2.096×10^{-6}
h_4	4.512×10^{-5}	h_{13}	-3.032×10^{-4}
h_5	-9.257×10^{-5}	h_{14}	-1.059×10^{-4}
h_6	2.934×10^{-5}	h_{15}	8.819×10^{-5}
h_7	-5.725×10^{-4}	h_{16}	1.346×10^{-3}
h_8	5.018×10^{-4}	h_{17}	-3.166×10^{-4}
h_9	4.112×10^{-5}	h_{18}	2.705×10^{-4}

 f_i は不連続関数であり、最適化に使いやすくするため、 (17)式を次式のような多項式で近似する.

$$\hat{f}_{i}(t) = \left(f_{cruise\ i}(t) + f_{accel\ i}(t)\right) W_{i}(u_{i}(t)),$$

$$f_{cruise\ i}(t) = \sum_{k=0}^{2} \sum_{l=0}^{2} h_{9-3k-l} v_{i}^{\ k}(t) C_{i}^{\ l}(d_{i-1\ i}(t), d_{i\ i+1}(t)),$$

$$f_{accel\ i}(t) = \left(\dot{v}_{i}(t) + g\sin\theta(x_{i}(t))\right) \times \sum_{k=0}^{2} \sum_{l=0}^{2} h_{18-3k-l} v_{i}^{\ k}(t) C_{i}^{\ l}(d_{i-1\ i}(t), d_{i\ i+1}(t)),$$

$$W_{i}(u_{i}(t)) = \frac{1}{1 + e^{-w_{1}u_{i}(t)}},$$
(18)

ここで, \hat{f}_i は f_i の近似, $f_{cruise i}$ は定速走行時に要する 燃料, $f_{accel i}$ は加速走行時に要する燃料, W_i は f_i を連続 化するためのシグモイド関数である. h_1 - h_{18} はパラメータ で, 数値を Table 4 に示す. $w_1 = 120$ とする.

4.3 比較する制御系4.3.1 LQR 集中制御

以下,LQR 集中制御系をLQR と略す.車両の縦方向の 運動モデルは目標走行状態 ($v_i = v^*$, $d_{i-1 i} = d^*$)の近傍 で線形化する.速度,駆動力・制動力,入力及び車間距離 と各目標値との誤差は δv_i , δF_i , δu_i , $\delta d_{i-1 i}$ とし,次式 で表す.

$$\delta v_i(t) = v_i(t) - v^* ,$$

$$\delta F_i(t) = F_i(t) - f_{ai}^* - f_{gi}(t) - f_{\mu i} ,$$

$$\delta u_i(t) = u_i(t) - f_{ai}^* - f_{gi}(t) - f_{\mu i} ,$$

$$\delta d_{i-1 \ i}(t) = d_{i-1 \ i}(t) - d^* ,$$
(19)

ここで、f^{*}_{ai}は目標走行状態の時の空気抵抗で、次式とする.

$$f_{ai}^* = \frac{1}{2} \rho A_i C_i(d^*, d^*) v^{*2} , \qquad (20)$$

勾配抵抗を無視し, (20) 式より δv_i , δF_i , δd_{i-1} *i* を時間 で微分すると次式となる.

$$\frac{d}{dt}\delta v_i(t) = \frac{1}{m_i} \Big(F_i(t) - f_{ai}(t) - f_{\mu i} \Big) ,$$

$$\frac{d}{dt}\delta F_i(t) = -\frac{1}{\tau_i}\delta F_i(t) + \frac{1}{\tau_i}\delta u_i(t) ,$$

$$\frac{d}{dt}\delta d_{i-1\ i}(t) = \delta v_{i-1}(t) - \delta v_i(t) .$$
(21)

 f_{ai} を三変数 v_i , d_{i-1} , d_i , i+1の関数とみなし, テイラー 展開して二次以上の項を無視すると次式となる.

$$f_{ai}(v_{i}, d_{i-1 \ i}, d_{i \ i+1}) = f_{ai}^{*}(v^{*}, d^{*}, d^{*}) + \alpha_{i} \ \delta v_{i} + \beta_{i} \ \delta d_{i-1} \ i + \gamma_{i} \ \delta d_{i \ i+1} \ ,$$

$$\alpha_{i} = \frac{\partial f_{ai}}{\partial v_{i}} \Big|_{v_{i}=v^{*}, \ d_{i-1} \ i=d^{*}, \ d_{i \ i+1}=d^{*}},$$

$$\beta_{i} = \frac{\partial f_{ai}}{\partial d_{i-1} \ i} \Big|_{v_{i}=v^{*}, \ d_{i-1} \ i=d^{*}, \ d_{i \ i+1}=d^{*}},$$

$$\gamma_{i} = \frac{\partial f_{ai}}{\partial d_{i \ i+1}} \Big|_{v_{i}=v^{*}, \ d_{i-1} \ i=d^{*}, \ d_{i \ i+1}=d^{*}}.$$
(22)

(20) 式の δF_i , (22) 式を (21) 式の $\frac{d}{dt} \delta v_i$ に代入すると, 次 式が得られる.

$$\frac{d}{dt}\delta v_i(t) = \frac{1}{m_i} \Big(\delta F_i(t) - \alpha_i \delta v_i(t) - \beta_i \delta d_{i-1 \ i}(t) - \gamma_i \delta d_i \ _{i+1}(t) \Big) .$$
(23)

LQR 集中制御系を構築するための線形化した状態方程式は 次式のようになる.

評価関数とそれを最小化する最適入力は次式のようになる.

$$J = \int_0^\infty \left(x^T Q x + u^T R u \right) dt , \qquad (25)$$

$$u_{LQR} = -R^{-1}B^T P x(t) , \quad t \ge 0 ,$$
 (26)

ここで, Q は準正定な対称行列, R は正定な対称行列とする. P は次の代数リカッチ方程式を満たす.

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0. (27)$$

4.3.2 従来の隊列走行制御¹⁴⁾

以下,従来の隊列走行制御系を CVP と略す.一台目の 車両の入力は次の自動速度制御装置(ASCD) で与える.

$$u_{CVP 1}(t) = k_a \Big(v^* - v_1(t) \Big) + \int_0^t k_p \Big(v^* - v_1(t') \Big) dt'.$$
(28)
二台目から N 台目までの車両の入力 $u_{CVP n}$ (n = 2,3,...,N) は次式である¹⁴⁾.

$$u_{CVP\ n}(t) = f_{an}(t) + f_{gn}(t) + f_{\mu n}(t) + m_n u_{sln}(t) ,$$

$$u_{sln}(t) = \frac{1}{1+q_3} \Big[\ddot{x}_{n-1}(t) + q_3 \ddot{x}_1(t) - q_1 \dot{\epsilon}_n(t) - q_4 \Big(v_n(t) - v_1(t) \Big) - \lambda S_n(t) \Big] ,$$

$$S_n(t) = \dot{\epsilon}_n(t) + q_1 \epsilon_n(t) + q_3 \Big(v_n(t) - v_1(t) \Big) + q_4 \sum_{k=1}^n \epsilon_k(t) ,$$

$$\epsilon_n(t) = d^* - d_{n-1\ n}(t) ,$$

(29)

ここで, k_a , k_p , q_1 , q_3 , q_4 , λ は定数, u_{sln} , S_n は中間変数, ϵ_n は車間距離とその目標値との差である.

4.4 計算機シミュレーションの結果

ここでは、三台の車からなる車群を制御対象とする.目 標値追従と省燃費性能とのトレードオフを考え、各制御系 のパラメータを設定した.MPCの各重みは次式のように 設定した.

$$\omega_v(t) = 96 + 5000 |\theta(x_1(t))|, \quad \omega_d = 18,$$

$$\omega_c = 0.006, \ \omega_u = 10000, \ \omega_a = 2000.$$
(30)

また, u_{max} は3 m/s²,評価区間 T は 10 s, サンプリング 周期 Δt は 0.01 s と設定した.最適制御問題は C/GMRES 法を用いて解いた²³⁾. LQR の重み行列は次式とした.

$$Q = \text{diag}[1.00\ 1.13\ 0.15\ 1.13\ 1.44\ 0.15\ 1.25\ 1.75\],$$
$$R = \text{diag}[1.88\ 8.75\ 15.63\]. \tag{31}$$

CVP のパラメータは $k_a = 473.6$, $k_p = 44.4$, $q_1 = 0.6$, $q_3 = 3.8$, $q_4 = 0.35$, $\lambda = 1.0$ と設定した.

各制御則による車の燃料消費の差は過渡状態(速度や車 間距離が変化する場合)に現れる.そこで,(1)車群形成の ための走行,(2)目標速度が変化する時の走行の二つの設定 の問題を考える.

4.4.1 車群形成

道路は平坦かつ直線とする. 車の初期状態 (t=0) は $v_1(0) = v_2(0) = v_3(0) = 90$ km/h, $d_{12}(0) = d_{23}(0) = 10$

Fig. 16 Computer simulation results of the MPC in 4.4.1.

Fig. 17 Computer simulation results of the LQR in 4.4.1.

Fig. 18 Computer simulation results of the CVP in 4.4.1.

m とし, 目標状態は $v^* = 100$ km/h, $d^* = 2$ m と設定 した.

MPC, LQR および CVP を用いた各車の速度,車間距 離,入力を Fig. 16, Fig. 17, Fig. 18 に示す. Fig. 16

Fig. 19 Fuel consumption in 0–850 m.

と Fig. 17 を比べると,各車の速度パターンはほぼ同じで ある.一台目の車は減速した後加速する.二台目と三台目 の車は加速する.これは,MPC と LQR は集中制御であ るため,各車が車間距離を目標値に収束させるために,協 調的に運動するからである.Fig. 16 と Fig. 18 を比べる と,各車の速度パターンは明白に違う.CVP の各車は目標 速度に収束するために単に加速する.この現象は集中制御 と分散制御の特徴の違いを表していると考えられる.集中 制御である MPC では各車が協調的に目標走行状態に至る が,分散制御である CVP では各車の走行状態は目標走行 状態に個別に収束する.そのため,MPC と比べて CVP の 各車の車間距離の収束の速さはほぼ同じであるが,初期入 力は大きい.

850 m の距離を走行する場合の,各制御を用いた各車の 燃料消費量を Fig. 19 に示す.各棒グラフの上のパーセン テージは LQR, CVP の i 台目車の燃料消費が MPC の i 台目車の燃料消費に対して何パーセント増加したかを示す. MPC の各車の燃料消費は LQR と比べて少し低いが,著し い差がないことが確認できる.その理由は,LQR は燃料消 費を陽に考慮していないためである.MPC の各車の燃料 消費は CVP と比べて顕著な差がある.その理由は,MPC では評価関数に燃費の最小化を考慮する制御を実行したと 考えられる.

4.4.2 目標速度変化

目標速度の変化を予測する効果を確認する. 道路は平坦で カーブがあると設定する. 車の初期状態 (t=0) は $v_1(0) = v_2(0) = v_3(0) = 90$ km/h, $d_{12}(0) = d_{23}(0) = d^* = 2$ m とする. カーブでは直線道路より低い目標速度を設定する 必要があるため, 目標速度は直線道路で $v^* = 100$ km/h, カーブで $v^* = 90$ km/h と設定し,車両位置 x_i の関数と して表現した.

各制御を用いた各車の速度,車間距離,入力を Fig. 20, Fig. 21, Fig. 22 に示す. Fig. 20 と Fig. 21 を比べると, MPC を用いた各車は目標車速の変化に対して速く速度調 節を行い,加減速度は小さい. その理由は, MPC ではカー ブ情報を利用し,目標速度が変化することを予測し,燃費 最適な速度パターンを生成するからである. LQR では予測 を用いていないので,各車は目標速度の変化に対して遅れ

Fig. 20 Computer simulation results of the MPC in 4.4.2.

Fig. 21 Computer simulation results of the LQR in 4.4.2.

Fig. 22 Computer simulation results of the CVP in 4.4.2.

て加減速する.そのため,MPCと比べてLQRの各車の 車間距離と入力の振幅が大きく,運動エネルギーを浪費す るブレーキングが見られる. Fig. 20と Fig. 22 を比べる と,CVPの各車は目標速度に追従し,大きい加減速が見ら

Fig. 23 Fuel consumption in 0–1600 m.

れる. それは予測を用いていないことと,車群内の一部の 情報だけを使っていることが原因と考えられる. そのため, MPC と比べて CVP の各車の入力の振幅は大きく,ブレー キングが見られる.

1600 m の距離を走行する場合に,各制御系を用いた各車 の燃料消費量を Fig. 23 に示す. MPC の各車の燃料消費 は LQR と CVP の各車の燃料消費と比べて小さい. その 理由は, LQR と CVP では単に変化する目標速度に追従す るだけであるが, MPC は道路前方のカーブ情報を用い,目 標速度が変化することを予測し,制御を行うので,ブレー キングを用いていないためと考えられる.

5. まとめ

本論文では、省燃費のための MPC 集中制御系を提案した. 車群中の各車の空気抵抗係数を考慮した車群の縦方向 運動モデルを構築した. 計算機シミュレーションを行い、提 案した MPC 集中制御系は、従来の LQR 集中制御系およ び分散制御系より優れた省燃費の特徴を示すことが確認で きた. 今後の課題として、評価関数の改良、道路の勾配情 報のモデル化、エンジン特性を考慮した燃料計算法の改良 などが考えられる.

参考文献

- ITS 技術による自動車交通の環境負荷低減に関する調査専 門委員会, ITS 技術による自動車交通の環境負担低減に関す る調査, 電気学会技術報告, No.1143, pp.12-17, 2009.
- 2) 車外情報を利用する自動車交通の高効率化と安全性向上制 御に関する調査専門委員会,情報化と制御による自動車交通 の高効率化と安全性向上に関する調査報告,電気学会技術報 告, No.1002, pp.66-70, 2005.
- 加藤秀樹,小林伸治,交通流シミュレーションを用いたエコド ライブ普及効果の評価,自動車技術, Vol.64, No.3, pp.51-56, 2010.
- 川邊武俊,知的運転支援系の実現に向けた自動車の最適経 路生成,電子情報通信学会技術研究報告,Vol.104, No.506, pp.31-36, 2004.
- 5) Y.Zhang, Elias B. Kosmatopoulos, Petros A. Ioannou, Fellow, IEEE, and C. C.Chien, Autonomous Intelligent Cruise Control Using Front and Back Information for Tight Vehicle Following Maneuvers, IEEE Transactions on Ve-hicular Technology, Vol.48, No.1, pp.319-328, 1999.

- 山崎穂高,岡本邦明,隊列走行トラックの高速道路における 走行抵抗・燃費低減効果の検討, JARI Research Journal, Vol.32, No.3, pp.25-29, 2010.
- Michael Zabat, Nick Stabile, Stefano Frascaroli, Frederick Browand, The Aerody-namic Performance of Platoon: Final Report, California PATH Research Report UCB-ITS-PRR-95-35, pp.A1-A7, 1995.
- 8) M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, Ecological Vehicle Control on Roads with Up-Down Slopes, IEEE Transactions on Intelligent Transportation Systems, Accepted and available online, DOI: 10.1109/TITS.2011.2112648, 2011.
- 9) 川邊武俊,知的交通システム (ITS) における自動操縦制御 - 車間距離制御と車群安定性-,日本機械学会誌,Vol.104, No.989, pp.228-231, 2001.
- P A. Ioannou, and C. C. Chien, Autonomous Intelligent Cruise Control, IEEE Transactions on Vehicular Technology, Vol.42, No.4, pp.657-672, 1993.
- D. Swaroop, J. K. Hedrick, C. C. Chien, and P. Ioannou, Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles, Vehicle System Dynamics, Vol.23, pp.597-625, 1994.
- 12) 山村吉典,瀬戸陽治,永井正夫,車車間通信を利用した車 群安定 ACC の研究,日本機械学会論文集 (C 編), Vol.73, No.726, pp.379-384, 2007.
- 13) 山村吉典, 瀬戸陽治, 永井正夫, 車車間通信を利用した車群安定 ACCの研究(第2報, モデル予測制御を用いた ACC 設計法), 日本機械学会論文集(C編), Vol.73, No.731, pp.1917-1922, 2007.
- 14) D. Swaroop and J. K. Hedrick, String Stability of Interconnected Systems, IEEE Transactions on Automatic Control, Vol.41, No.3, pp.349-357, 1996.
- 15) 郭亜南,カマルモハマド,向井正和,川邊武俊,省燃費化のための空力特性に基づいたモデル予測制御型隊列走行制御,第十一回「運動と振動の制御」シンポジウム講演論文集, pp.234-237, 2009.
- 16) W. S. Levine, M. Athans, On the Optimal Error Regulation of a String of Moving Vehicles, IEEE Transactions on Automatic Control, AC-11-3, 1966.
- Jan M. Maciejowski, 足立修一・管野政明(訳), モデル予測 制御-制約のもとでの最適制御, 東京電機大学出版局, 2005.
- 18) 大塚敏之, 非線形最適制御入門, コロナ社, 2011.
- B. Marcu, F. Browand, Aerodynamic Forces Experienced by a 3-Vehicle Platoon in a Crosswind, SAE Paper, 1999-01-1324, 1999.
- 20) 黒木正大,向井正和,川邊 武俊,カマル モハマド,エンジン 性能線図に基づくモデル予測制御を用いた自動車の省燃費走 行の研究,計測自動制御学会第28回九州支部学術講演会, pp.29-30, 2009.
- 21) 井上政雄,鈴村浩二,瀬尾宣英,宮脇俊一郎,山川正尚,和 田隆志,自動車技術ハンドブック,第一分冊第四章,1990.
- 22) R. Pfiffner, L. Guzzella, and C. H. Onder, Fuel-optimal control of CVT powertrains, Control Engineering Practice, Vol.11, No.3, pp.329-336, 2003.
- 23) T. Ohtsuka, A continuation/GMRES method for fast computation of non-linear receding horizon control, Automatica, Vol.40, pp.563-574, 2004.