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Abstract
Some statistics in common use take a form of a ratio of two statistics, such

as sample correlation coefficient, Pearson’s coefficient of variation, cumulant es-
timators and so on. In this paper, using an asymptotic representation of the
ratio statistics, we will obtain an Edgeworth expansion and a normalizing trans-
formation with remainder term o(n−1/2). The Edgeworth expansion is based on
a studentized ratio statistic, which is studentized by a consistent variance esti-
mator. Applying these results to the sample correlation coefficient, we obtain
the normalizing transformation and an asymptotic confidence interval of the
correlation coefficient without assuming specific underlying distribution. This
normalizing transformation is an extension of the Fisher’s z-transformation.
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1 Introduction

Let X1, · · · , Xn be independently and identically distributed random vectors
with distribution function F . Let Tn = Tn(X1, · · · , Xn), Sn = Sn(X1, · · · , Xn)
∈ R be real valued statistics related to parameters λ, θ ∈ R. Some statistics in
common use take a form of a ratio of two statistics, Tn/Sn, such as sample corre-
lation coefficients, cumulant estimators, Pearson’s coefficient of variation, odds
ratio, etc. Maesono (2005) obtained an asymptotic representation of Tn/Sn and
discussed asymptotic mean squared errors. In this paper, using the asymptotic
representation and a variance estimator, we will obtain an asymptotic represen-
tation of a studentized ratio statistic with remainder term (log n)Rn where

P{|Rn| ≥ n−1/2(log n)−3/2} = o(n−1/2).
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It is easy to see that if the approximation of the distribution of Tn has a finite
differential function, we have

|P{Tn ≤ x + (log n)Rn} − P{Tn ≤ x}| = o(n−1/2).

Thus we can ignore (log n)Rn when we discuss the Edgeworth expansion until
the order n−1/2. Using this asymptotic representation, an Edgeworth expansion
and a normalizing transformation with remainder term o(n−1/2) are established.
Applying the results to the sample correlation coefficient, we propose an exten-
sion of the Fisher’s z-transformation.

Let us assume that

Tn = λ + n−1δT + n−1
n∑

i=1

τ1(Xi) + n−2
∑
Cn,2

τ2(Xi, Xj) + n−1/2Rn (1)

and

Sn = θ + n−1δS + n−1
n∑

i=1

ζ1(Xi) + n−2
∑
Cn,2

ζ2(Xi, Xj) + n−1/2Rn (2)

where δT and δS are constants. Since we consider the ratio λ/θ, we assume

θ �= 0. (3)

τ1(·), ζ1(·), τ2(·, ·) and ζ2(·, ·) are real-valued functions which satisfies

E[τ1(X1)] = E[ζ1(X1)] = 0, (4)
E[τ2(X1, X2)|X1] = E[ζ2(X1, X2)|X1] = 0 a.s. (5)∑

Cn,k
indicates that the summation is taken over all integers i1, · · · , ik satisfying

1 ≤ i1 < i2 < · · · < ir ≤ n. Many statistics satisfy these assumptions (1)∼(5),
and Lai and Wang (1993) called them asymptotic U -statistics.

A typical example of the ratio statistic Tn/Sn is the correlation coefficient
rn which is constituted from a covariance estimator and variance estimators.
Maesono (2005) obtained an asymptotic representation of the ratio statistic
Tn/Sn and discussed the asymptotic mean squared errors. In this paper we will
discuss variance estimation of the ratio statistic and obtain an asymptotic repre-
sentation of a studentized ratio statistic. Using the asymptotic representation,
we will establish an Edgeworth expansion and a normalizing transformation,
which improves coverage probabilities of confidence intervals and is an exten-
sion of the Fisher’s z-transformation.

In Section 2, we will discuss the estimation of the asymptotic variance of
Tn/Sn, and obtain asymptotic representations of the variance estimator and the
studentized ratio statistic. We will also establish the Edgeworth expansion of the
studentized ratio statistic and the normalizing transformation with remainder
term o(n−1/2). In Section 3, we will discuss estimators of unknown parameters,
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which appear in the Edgeworth expansion and the normalizing transformation.
In Section 4, we will study an application to the sample correlation coefficient,
and discuss coverage probabilities of confidence intervals, based on the Fisher’s
z-transformation and normalizing transformation by simulation in Section 5.

2 Asymptotic representation and Edgeworth ex-
pansion

Using H-decomposition and the moment evaluation, Maesono (2005) has ob-
tained the asymptotic representation of Tn/Sn. Let us assume the following
moment conditions

E[|τ1(X1)|4+ε + |τ2(X1, X2)|4 + |ζ1(X1)|4+ε + |ζ2(X1, X2)|4] < ∞ (6)

for some ε > 0.

Let us define

δ =
δT

θ
− λδS + E[τ1(X1)ζ1(X1)]

θ2
+

λE[ζ2
1 (X1)]
θ3

,

η1(x) =
τ1(x)

θ
− λζ1(x)

θ2
,

η2(x, y) =
τ2(x, y)

θ
− τ1(x)ζ1(y) + τ1(y)ζ1(x) + λζ2(x, y)

θ2

+
2λζ1(x)ζ1(y)

θ3

and

Un =
λ

θ
+ n−1δ + n−1

n∑
i=1

η1(X i) + n−2
∑
Cn,2

η2(Xi, Xj). (7)

When we obtain an asymptotic representation of the ratio statistic, we use a
large deviation probability for a U -statistic (see Helmers (1991), and Malevich
and Abdalimov (1979)). For instance, we can show that

P
{∣∣∣n−1/2

n∑
i=1

τ1(X i) + n−3/2
∑
Cn,2

τ2(Xi, Xj)
∣∣∣|Rn| ≥ n−1/2(log n)−1

}

≤ P
{∣∣∣n−1/2

n∑
i=1

τ1(X i) + n−3/2
∑
Cn,2

τ2(Xi, Xj)
∣∣∣ ≥ (log n)1/2

}

+P{|Rn| ≥ n−1/2(log n)−3/2} = o(n−1/2).

Modifying the result of Maesono (2005), under the conditions (1) ∼ (6), we have
the following representation

Tn

Sn
= Un + n−1/2(log n)1/2Rn.
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Un is an approximation of the ratio statistic Tn/Sn, and we can study the
asymptotic properties of the ratio statistic. It follows from the conditions (4)
and (5) that

E[η1(X1)] = 0, and E[η2(X1, X2)|X1] = 0 a.s.

The asymptotic variance of
√

n(Tn/Sn − λ/θ) is given by

ξ2 = E[η2
1(X1)] =

m1

θ2
− 2λm3

θ3
+

λ2m2

θ4

where

m1 = E[τ2
1 (X1)], m2 = E[ζ2

1 (X1)] and m3 = E[τ1(X1)ζ1(X1)].

For studentization, there are several variance estimators of ξ2. Maesono (1998)
has obtained Edgeworth expansions of studentized statistics with residual term
o(n−1). He discusses the studentizations based on several variance estimators,
and has shown that the difference of each expansions appears in n−1 order term.
Here we discuss the Edgeworth expansion of the studentized ratio statistic until
the order n−1/2, and it is relatively easy to get an asymptotic representation of
the jackknife variance estimator. So, we will discuss a jackknife type variance
estimator in the next section. We assume the estimator ξ̂2 satisfies

ξ̂2 = ξ2 + n−1
n∑

i=1

b(Xi) + Rn (8)

where
b(x) = η2

1(x) − ξ2 + 2E[η1(X2)η2(x,X2)].

As shown in the following sections, some variance estimators satisfy the assump-
tion (8). Let us consider the studentized ratio statistic

√
n(Tn/Sn − λ/θ)

ξ̂
.

Let us define

g1(x) =
1
ξ
η1(x),

g2(x, y) =
1
ξ
η2(x, y) − 1

2ξ3
[η1(x)b(y) + η1(y)b(x)]

and ν = E[η1(X1)b(X1)]. Then, similarly as Maesono (1999), we have an
asymptotic representation of the studentized ratio statistic as follows.
[Theorem 1]. Assume the conditions (1)∼(6) and (8) are satisfied, and E[η2

1

(X1)] = ξ2 > 0.
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(i) We have
√

n(Tn/Sn − λ/θ)
ξ̂

= n−1/2
(δ

ξ
− ν

2ξ3

)
+ n−1/2

n∑
i=1

g1(Xi)

+n−3/2
∑
Cn,2

g2(X i, Xj) + (log n)Rn.

(ii) If lim sup|t|→∞ |E[exp{itη1(X1)}]| < 1, we have

sup
x

∣∣∣∣∣P
{√

n(Tn/Sn − λ/θ)
ξ̂

≤ x

}
− Qn(x)

∣∣∣∣∣ = o(n−1/2)

where

Qn(x) = Φ(x) + n−1/2φ(x)
[ 1
6ξ3

{
(2x2 + 1)E[η3

1(X1)]

+3(x2 + 1)E[η1(X1)η1(X2)η2(X1, X2)]
}
− δ

ξ

]
.

Proof. Similarly as the proof of Lemma 4 of Maesono (1999), using the Taylor
expansion, we get

ξξ̂−1 = 1 − n−1
n∑

i=1

b(Xi)
2ξ2

+ (log n)1/2Rn.

Under the conditions (1)∼(6) and (8), it is easy to show that

n−1/2 δ

ξ̂
= n−1/2 δ

ξ
ξξ̂−1 = n−1/2 δ

ξ
+ (log n)1/2Rn.

Furthermore, similarly as the proof of Theorem 1 of Maesono (1999), we can
obtain the asymptotic representation (i) of the studentized ratio statistic.

Since the ratio of two statistics is the asymptotic U -statistic, using the Edge-
worth expansion for U -statistics, we can obtain the Edgeworth expansion of the
studentized ratio statistic with remainder term o(n−1/2) in (ii).

Based on the asymptotic representation (i) of Theorem 1, we will obtain
a normalizing transformation of the ratio statistic. Hall (1992) and Fujioka
and Maesono (2000) discussed the normalizing transformation. Applying their
results to the studentized ratio statistic, we will obtain the normalizing trans-
formation with remainder term o(n−1/2). Let us define

p = −1
6
E[g3

1(X1)] − 1
2
E[g1(X1)g1(X2)g2(X1, X2)]

and

q =
1
6
E[g3

1(X1)] +
1
2
E[g1(X1)g1(X2)g2(X1, X2)] −

(δ

ξ
− ν

2ξ3

)
.
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Then we have the normalizing transformation

π(s) = s +
p̂√
n

s2 +
q̂√
n

+
p̂2

3n
s3 (9)

where p̂ and q̂ are consistent estimator of p and q. From Fujioka and Maesono
(2000), we have the following theorem.
[Theorem 2]. Assume the same conditions of (ii) in Theorem 1. If

p̂√
n

=
p√
n

+ (log n)1/2Rn and
q̂√
n

=
q√
n

+ (log n)1/2Rn,

we have

sup
x

∣∣∣∣∣P
{

π

(√
n(Tn/Sn − λ/θ)

ξ̂

)
≤ x

}
− Φ(x)

∣∣∣∣∣ = o(n−1/2).

From direct computation, we get

p =
1

3ξ3
E[η3

1(X1)] +
1

2ξ3
E[η1(X1)η1(X2)η2(X1, X2)] (10)

and
q =

1
6ξ3

E[η3
1(X1)] +

1
2ξ3

E[η1(X1)η1(X2)η2(X1, X2)] − δ

ξ
. (11)

Further, let us define

m4 = E[τ3
1 (X1)], m5 = E[ζ3

1 (X1)], m6 = E[τ2
1 (X1)ζ1(X1)],

m7 = E[τ1(X1)ζ2
1 (X1)], m8 = E[τ1(X1)τ1(X2)τ2(X1, X2)],

m9 = E[ζ1(X1)ζ1(X2)ζ2(X1, X2)], m10 = E[τ1(X1)τ1(X2)ζ2(X1, X2)],
m11 = E[ζ1(X1)ζ1(X2)τ2(X1, X2)], m12 = E[τ1(X1)ζ1(X2)τ2(X1, X2)]

and
m13 = E[τ1(X1)ζ1(X2)ζ2(X1, X2)].

Then, from direct computation, we have

δ =
δT

θ
− λδS + m3

θ2
+

λm2

θ3
,

E[η3
1(X1)] =

m4

θ3
− 3λm6

θ4
+

3λ2m7

θ5
− λ3m5

θ6

and

E[η1(X1)η1(X2)η2(X1, X2)]

=
m8

θ3
− 1

θ4
(2λm12 + 2m1m3 + λm10)

+
λ

θ5
(λm11 + 2m1m2 + 6m2

3 + 2λm13) − λ2

θ6
(9m2m3 + λm9) +

4λ3m2
2

θ7
.

In the next section, we will discuss the jackknife type estimators of the variance
ξ2 and these unknown parameters.
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3 Jackknife type estimators

Let T
(i)
n and S

(i)
n denote corresponding statistics computed from a sample of

n − 1 points with Xi left out. Let us define

t̂1(i) = T (i)
n − Tn and ŝ1(i) = S(i)

n − Sn.

Then jackknife estimators of m1, m2 and m3 are given by

m̂1 = (n − 1)
n∑

i=1

t̂21(i), m̂2 = (n − 1)
n∑

i=1

ŝ2
1(i)

and

m̂3 = (n − 1)
n∑

i=1

t̂1(i)ŝ1(i).

Using these estimators, we have the jackknife type variance estimator

ξ̂2 =
m̂1

S2
n

− 2Tnm̂3

S3
n

+
T 2

nm̂2

S4
n

.

In order to satisfy the condition (8), we have to assume the stronger conditions
as follows. Let us assume

Tn = λ + n−1δT + n−2
n∑

i=1

τ0(Xi) + n−1
n∑

i=1

τ1(Xi) + n−2
∑
Cn,2

τ2(X i, Xj)

+n−3
∑
Cn,3

τ3(Xi, Xj , Xk) + n−1/2R̃n (12)

and

Sn = θ + n−1δS + n−2
n∑

i=1

ζ0(X i) + n−1
n∑

i=1

ζ1(X i) + n−2
∑
Cn,2

ζ2(Xi, Xj)

+n−3
∑
Cn,3

ζ3(Xi, Xj , Xk) + n−1/2R̃n (13)

where

E[τ0(X1)] = E[ζ0(X1)] = E[τ1(X1)] = E[ζ1(X1)] = 0, (14)
E[τ2(X1, X2)|X1] = E[ζ2(X1, X2)|X1] = 0 a.s., (15)
E[τ3(X1, X2, X3)|X1, X2] = E[ζ3(X1, X2, X3)|X1, X2] = 0 a.s.(16)

Further we assume that for some d > 0

E|R̃n|2(1+d) = O(n−3(1+d)), (17)
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E[|τ0(X1)|2+ε + |ζ0(X1)|2+ε] < ∞, (18)
E[|τ1(X1)|4+ε + |τ2(X1, X2)|4 + |τ3(X1, X2, X3)|8/3] < ∞ (19)

and
E[|ζ1(X1)|4+ε + |ζ2(X1, X2)|4 + |ζ3(X1, X2, X3)|8/3] < ∞ (20)

for some ε > 0.

Similarly as Maesono (1999), we have the following lemma.
[Lemma 1]. Assume the conditions (12)∼(20). Then the jackknife type vari-
ance estimator ξ̂2 satisfies the equation (8).
Proof. Let X denote an independent random vector of {Xi}, and have same
distribution of Xi. Then, it follows from Maesono (1999) that

m̂1 = m1 + n−1
n∑

i=1

{τ2
1 (Xi) − m1 + 2E[τ1(X)τ2(X i, X)|Xi]} + Rn,

m̂2 = m2 + n−1
n∑

i=1

{ζ2
1 (X i) − m2 + 2E[ζ1(X)ζ2(X i, X)|Xi]} + Rn

and

m̂3 = m3 + n−1
n∑

i=1

{τ1(Xi)ζ(X i) − m3 + E[τ1(X)ζ2(Xi, X)|Xi]

+E[ζ1(X)τ2(X i, X)|Xi]} + Rn.

From direct computation, we can show that

S2
n = θ2 + n−1

n∑
i=1

2θζ1(X i) + Rn,

S3
n = θ3 + n−1

n∑
i=1

3θ2ζ1(X i) + Rn,

S4
n = θ4 + n−1

n∑
i=1

4θ3ζ1(X i) + Rn,

T 2
n = λ2 + n−1

n∑
i=1

2λτ1(X i) + Rn,

2Tnm̂3 = 2λm3 + n−1
n∑

i=1

(
2m3τ1(X i) + 2λ

{
τ1(Xi)ζ(X i) − m3

+E[τ1(X)ζ2(Xi, X)|Xi] + E[ζ1(X)τ2(Xi, X)|Xi]
})

+ Rn

and

T 2
nm̂2 = λ2m2 + n−1

n∑
i=1

(
2λm2τ1(X i) + λ2

{
ζ2(Xi) − m2

+2E[ζ1(X)ζ2(X i, X)|Xi]
})

+ Rn.
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Note that ξ̂2 is a linear combination of the ratio statistics of the above statistics.
Applying the asymptotic representation of the ratio statistic in (7), we have

m̂1

S2
n

=
m1

θ2
+ n−1

n∑
i=1

{τ2
1 (Xi) − m1

θ2
+

2E[τ1(X)τ2(Xi, X)|Xi]
θ2

−2m1

θ3
ζ1(X i)

}
+ (log n)1/2Rn,

2Tnm̂3

S3
n

=
2λm3

θ3
+ n−1

n∑
i=1

(
2λ
{τ1(X i)ζ1(Xi) − m3

θ3

+
E[τ1(X)ζ2(X i, X)|Xi]

θ3
+

E[ζ1(X)τ2(Xi, X)|Xi]
θ3

}
+

2m3

θ3
τ1(X i) − 6λm3

θ4
ζ1(Xi)

)
+ (log n)1/2Rn

and

T 2
nm̂2

S4
n

=
λ2m2

θ4
+ n−1

n∑
i=1

(λ2{ζ2
1 (X i) − m2}

θ4
+

2λ2E[ζ1(X)ζ2(Xi, X)|Xi]
θ4

+
2λm2

θ4
− 4λ2m2

θ5
ζ1(Xi)

)
+ (log n)1/2Rn.

Combining the above evaluation, we have the desired result.

Assuming the existence of the moments of the symmetric statistic, Maesono
(1999) has obtained the asymptotic representation of the jackknife variance
estimator. It is too restrictive to assume the existence of the moments of the
ratio statistic, and then we assume the conditions (12)∼(20).

Similarly as t̂1(i) and ŝ1(i), let us define

t̂2(i, j) = −[nTn − (n − 1)(T (i)
n + T (j)

n ) + (n − 2)T (i,j)
n ]

and
ŝ2(i, j) = −[nSn − (n − 1)(S(i)

n + S(j)
n ) + (n − 2)S(i,j)

n ]

where T
(i,j)
n and S

(i,j)
n are computed from a sample of n−2 points with Xi and

Xj lef out. Then jackknife estimators of unknown parameter m4 ∼ m13 are
given by

m̂4 =
(n − 1)3

n

n∑
i=1

t̂31(i), m̂5 =
(n − 1)3

n

n∑
i=1

ŝ3
1(i),

m̂6 =
(n − 1)3

n

n∑
i=1

t̂21(i)ŝ1(i), m̂7 =
(n − 1)3

n

n∑
i=1

t̂1(i)ŝ2
1(i),
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m̂8 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

t̂1(i)t̂1(j)t̂2(i, j),

m̂9 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

ŝ1(i)ŝ1(j)ŝ2(i, j),

m̂10 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

t̂1(i)t̂1(j)ŝ2(i, j),

m̂11 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

ŝ1(i)ŝ1(j)t̂2(i, j),

m̂12 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

t̂1(i)ŝ1(j)t̂2(i, j)

and

m̂13 =
(n − 1)2

n

n∑
i=1

n∑
j �=i

t̂1(i)ŝ1(j)ŝ2(i, j).

Jackknife estimators of the biases δT and δS are also given by

δ̂T = n(n − 1)(T n − Tn) and δ̂S = n(n − 1)(Sn − Sn)

where

Tn = n−1
n∑

i=1

T (i)
n and Sn = n−1

n∑
i=1

S(i)
n .

Substituting these values to p and q, we can obtain the normalizing trans-
formation π(s). Alternatively, if we know more precise structures of ξ2, p and
q, it is possible to make another estimators ξ̂2, p̂ and q̂. In the next section, we
will discuss another estimators in the case of the sample correlation coefficient.

4 Correlation coefficient

Let {Xi}i≥1 be two dimensional random vectors, and putting Xt
i = (Yi, Zi),

we denote

V ar(X1) = V ar
[( Y1

Z1

)]
=
(

σ2
y ρσyσz

ρσyσz σ2
z

)
.

Let us consider the sample correlation coefficient. Define

Tn = (n − 1)−1
n∑

i=1

(Yi − Ȳ )(Zi − Z̄)

and

Sn = {(n − 1)−2
n∑

i=1

(Yi − Ȳ )2
n∑

i=1

(Zi − Z̄)2}1/2
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where Ȳ = n−1
∑

Yi and Z̄ = n−1
∑

Zi. Then rn = Tn/Sn is the sample
correlation coefficient. Fujisawa (2000) discussed the normalizing transforma-
tion of the coefficient rn. He obtained the transformation when the underlying
distributions are a bivariate normal and an elliptical distribution. His trans-
formation deeply depends on the underlying distribution. Here applying the
Theorem 2 and 3, we will obtain an Edgeworth expansion and a normalizing
transformation without assuming the specific underlying distribution. Let us
define ỹi = yi − E(Y1), z̃i = zi − E(Z1),

τ1(X1) = ỹ1z̃1 − ρσyσz , τ2(X1, X2) = −(ỹ1z̃2 + ỹ2z̃1),

δS = −E[(σ2
z Ỹ 2

1 − σ2
yZ̃2

1 )2]
8σ3

yσ3
z

,

ζ1(X1) =
σ2

z ỹ2
1 + σ2

y z̃2
1 − 2σ2

yσ2
z

2σyσz

and

ζ2(X1, X2) = − (σ2
z ỹ2

1 − σ2
y z̃2

1)(σ2
z ỹ2

2 − σ2
y z̃2

2)
4σ3

yσ3
z

− σz ỹ1ỹ2

σy
− σy z̃1z̃2

σz
.

Maesono (2005) obtained the following representation.
[Lemma 2]. If E[|Y1|4+ε + |Z1|4+ε] < ∞ for some ε > 0, we have

Tn = ρσyσz + n−1
n∑

i=1

τ1(Xi) + n−2
∑
Cn,2

τ2(Xi, Xj) + n−1/2Rn

and

Sn = σyσz + n−1δS + n−1
n∑

i=1

ζ1(X i) + n−2
∑
Cn,2

ζ2(Xi, Xj) + n−1/2Rn.

Let us define

μk� =
E[{Y1 − E(Y1)}k{Z1 − E(Z1)}�]

σk
yσ�

z

, k = 0, 1, · · · , 6; � = 0, 1, · · · , 6.

Then from direct computation, we have

δ = −μ31

2
− μ13

2
+
(3μ40

8
+

3μ04

8
+

μ22

4

)
ρ. (21)

Similarly, we can get

E[η3
1(X1)] = μ33 −

(3ρ

2
+

3ρ3

8

)
(μ42 + μ24)

+
3ρ2

2
μ33 +

3ρ2

4
(μ51 + μ15) − ρ3

8
(μ60 + μ06) (22)
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and

E[η1(X1)η1(X2)η2(X1, X2)]

= −
(
2 +

5ρ2

2

)
μ21μ12 +

(
2ρ +

ρ3

4

)
(μ2

21 + μ2
12)

+
(
ρ +

ρ3

2

)
(μ30μ12 + μ21μ03) − 3ρ2

2
(μ30μ21 + μ12μ03) − ρ2

2
μ30μ03

+
ρ3

4
(μ2

30 + μ2
03) +

(
ρ +

ρ3

2
)μ2

22 +
3ρ

2
μ31μ13 +

ρ3

8
μ40μ04

−
(
1 +

3ρ2

2

)
(μ22μ31 + μ22μ13) +

(ρ

2
+

ρ3

2

)
(μ40μ22 + μ22μ04)

+
5ρ

4
(μ2

31 + μ2
13) − ρ2(μ40μ31 + μ13μ04)

−ρ2

2
(μ40μ13 + μ31μ04) +

3ρ3

16
(μ2

40 + μ2
04). (23)

It is easy to make estimators of the above unknown parameters. An esti-
mator of the correlation ρ is sample correlation coefficient, and estimators of
μk,�, (k = 0, 1, · · · , 6; � = 0, 1, · · · , 6) are given by

μ̂k,� =
n−1

∑n
i=1(Yi − Ȳ )k(Zi − Z̄)�

σ̂k
y σ̂�

z

, k = 0, 1, · · · , 6; � = 0, 1, · · · , 6 (24)

where

σ̂2
y = (n − 1)−1

n∑
i=1

(Yi − Ȳ )2 and σ̂2
z = (n − 1)−1

n∑
i=1

(Zi − Z̄)2.

5 Simulation

Here we will compare confidence intervals based on the Fisher’s z-transformation
and the normalizing transformation. Substituting the estimators in (24) to δ,
E[η3

1(X1)] and E[η1(X1)η1(X2)η2(X1, X2)] in (21), (22) and (23), we can get
the estimators p̂ and q̂ in (10) and (11). Then we can construct normalizing
transformation π(s) in (9).

Using the inversion of Hall (1992), we can get the confidence interval based
on the normalizing transformation i.e.

1 − α ≈ P
{
π−1(−zα/2) ≤ ρ ≤ π−1(zα/2)

}
(25)

where

π−1(t) =
√

n

p̂

{
1 +

3p̂√
n

(
t − q̂√

n

)}1/3

−
√

n

p̂
.

The confidence intervals based on simple normal approximation and the
Fisher’s z-transformation are given by

1 − α ≈ P
{
rn − n−1/2ξ̂zα/2 ≤ ρ ≤ rn + n−1/2ξ̂zα/2

}
(26)
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and

1 − α ≈ P
{e2z1 − 1

e2z1 + 1
≤ ρ ≤ e2z2 − 1

e2z2 + 1

}
(27)

where

z1 =
1
2

log
1 + rn

1 − rn
− zα/2√

n − 3
and z2 =

1
2

log
1 + rn

1 − rn
+

zα/2√
n − 3

.

Here we consider the random vector Xt
i = (Yi, Zi) with

Yi = Vi + Ki and Zi = Wi + Ki

where {Vi}, {Wi} and {Ki} are all independently and identically distributed
random variables, i.e. the underlying distributions of {Vi}, {Wi} and {Ki} are
same. Thus the correlation coefficient ρ = 0.5. Here we consider the cases
that the underlying distributions of Vi are normal, χ2 with 2-dgrees of freedom
and log-normal. Table 1 shows the estimated coverage probability based on
1,000,000 times repetition when underlying distribution is normal. ”Simple”
denotes the simple normal approximation in (26). ”N-T” and ”Fisher” mean
the confidence intervals (25) and (27).

Table 1. Normal distribution
1 − α n = 20 n = 50 n = 100

Simple 0.90 0.846 0.879 0.889
Fisher 0.901 0.900 0.900
N-T 0.849 0.877 0.888

Simple 0.95 0.897 0.929 0.939
Fisher 0.950 0.950 0.949
N-T 0.915 0.934 0.941

Simple 0.99 0.951 0.976 0.983
Fisher 0.989 0.990 0.990
N-T 0.973 0.984 0.987

Table 2 and 3 are simulation results when the underlying distributions are
χ2 with 2-degrees of freedom and log-normal, respectively.

Table 2. χ2 with 2-degrees of freedom
1 − α n = 20 n = 50 n = 100

Simple 0.90 0.735 0.753 0.756
Fisher 0.796 0.777 0.768
N-T 0.818 0.844 0.859

Simple 0.95 0.802 0.826 0.832
Fisher 0.870 0.854 0.845
N-T 0.886 0.912 0.921

Simple 0.99 0.881 0.912 0.921
Fisher 0.952 0.943 0.938
N-T 0.953 0.974 0.979
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Table 3. Log-normal distribution
1 − α n = 20 n = 50 n = 100

Simple 0.90 0.605 0.557 0.513
Fisher 0.654 0.570 0.517
N-T 0.739 0.795 0.806

Simple 0.95 0.682 0.639 0.593
Fisher 0.743 0.655 0.598
N-T 0.808 0.872 0.888

Simple 0.99 0.785 0.762 0.722
Fisher 0.866 0.789 0.731
N-T 0.885 0.945 0.962

In the case of the normal distribution, the Fisher’s z-transformation is su-
perior to the other methods, but the normalizing transformation (N-T) method
works well. The asymptotic variance of the Fisher’s z-transformation is ξ2/[n(1−
ρ2)2]. So if the underlying distribution is normal, ξ2 = (1 − ρ2)2 and then
the asymptotic variance does not depend on unknown parameter. If the un-
derlying distribution is not normal, the asymptotic variance of the Fisher’s
z-transformation depends on unknown parameters and the approximation (27)
does not work. For any underlying distributions, the normalizing transforma-
tion works well, and so we recommend the normalizing transformation method
for constructing confidence intervals of the correlation coefficient.
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