Water-soluble doubly N-confused hexaphyrin: a near-IR fluorescent Zn(II) ion sensor in water

Ikawa, Yoshiya
PRESTO, Japan Science and Technology Agency (JST)

Takeda, Mari
Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University

Suzuki, Masaaki
Department of Chemistry, Graduate School of Science, Kyoto University

Osuka, Atsuhiro
Department of Chemistry, Graduate School of Science, Kyoto University

他

http://hdl.handle.net/2324/26434

出版情報: Chemical Communications. 46 (31), pp. 5689-5691, 2010-08
バージョン: accepted
権利関係: (C) The Royal Society of Chemistry 2010
A water-soluble doubly N-confused hexaphyrin (N₂CH) having two octa-arginine peptide arms displays an enhanced near-infrared (NIR) emission around 1050 nm in the presence of Zn²⁺ in aqueous solution.

In the biomedical/bioanalytical fields, NIR-light technology has been of growing importance since the interferance by biomolecules could be minimized in the NIR region. Among a variety of targets for NIR-biosensing, Zn²⁺ ion gathers wide attention because of its importance as one of the most essential metal ions in the human body and the interest for the neurochemical functions. Particularly, in a series of studies on N-confused porphyrinoids, we have shown doubly N-confused hexaphyrin (N₂CH, 1, Chart 1), a kind of expanded porphyrin, forms bis-metal complexes with various divalent and trivalent metal ions such as Cu²⁺, Ni²⁺, Zn²⁺, Mn³⁺, and Fe³⁺, and displays an intensified near-infrared (NIR) emission with <i>λ</i>_{em} > 1000 nm in CH₂Cl₂ when Zn²⁺ ions are coordinated. Since then, we have been interested in synthesizing a water-soluble derivative, which serves as a NIR fluorescent sensor molecule, especially, for Zn²⁺ in aqueous media. Herein, we report the synthesis of a water-soluble derivative of N₂CH possessing two highly hydrophilic octa-arginine peptides (N₂CH-R8, 4) and its emission behaviour in the presence of various metal ions in aqueous media. A largely enhanced NIR emission around 1050 nm in water by Zn²⁺ coordination was demonstrated for the first time.

Synthesis of N₂CH-R8 was performed by conjugation of two peptides and N₂CH via a Cu(I)-catalyzed "click reaction," between azide groups and terminal alkynes (Scheme 1), which are installed in the peptide and N₂CH, respectively. At first, N₂CH derivative possessing two ethynylaryl groups (3), which was derived from meso-aryl N₂CH having two 2,3,5,6-tetrafluoro-4-iodophenyl groups, was synthesized through Sonogashira coupling reactions with Pd(PPh₃)₄Cl₂ and CuI in 49% yield. The counterpart, octa-arginine (R8) peptide derivative (5), in which the arginine side-chains were protected with 2,2,4,6,7-pentamethyldihydro-benzofuran-5-sulfonyl (Pbf) groups and its N-terminus bears an azide.

Scheme 1 Synthesis of N₂CH-R8 via conjugation of N₂CH (3) and protected octa-arginine peptide (5) by a Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition.

moiety, was prepared by the solid-phase synthesis, which started from fluoren-9-ylmethoxycarbonyl (Fmoc) protected aminooxanthen-3-yloxy-polystyrene resin (Sieber Amide resin). Then, N₂CH derivative 3 was conjugated with peptide 5 by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions between the terminal alkynes in 3 and the azide moiety at the N-terminus of 5 (Scheme 1). The reaction mixture was treated with trifluoroacetic acid (TFA) to remove Pbf groups and Cu²⁺ ions from the arginine side-chains and the macrocycle, affording the desired freebase N₂CH-peptide.

¹ Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan. E-mail: hfuruta@csf.kyushu-u.ac.jp; Fax: +81-92-802-2865
²PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
³Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
[†] Electronic Supplementary Information (ESI) available: Details of the experiments, theoretical calculations and spectroscopic measurements.
conjugate, \(\text{N}_2\text{CH-R8} \). The resulting conjugate was purified by a reverse phase HPLC with \(\text{CH}_3\text{CN/H}_2\text{O} \) and obtained as a TFA salt (46% yield based on 3). By partition experiments between ultrapure water and \(\text{CH}_3\text{Cl}_2 \), \(\text{N}_2\text{CH-R8} \) was selectively extracted to the aqueous phase.

At first, we examined \(\text{Zn}^{2+} \) complexation of \(\text{N}_2\text{CH 1} \) in organic solvent by spectroscopic methods. In \(\text{CH}_3\text{Cl}_2 \), UV-vis-NIR spectrum of 1 with excess \(\text{Zn(OAc)}_2 \) (ca. 500 equiv) was nearly identical to that of isolated 2.\(^5\) For 4.0 \(\mu \text{M} \) of 1, completion of the spectral changes required 200 \(\mu \text{M} \) (50 equiv) of \(\text{Zn(OAc)}_2 \). The observation of isosbestic points at 591, 652, 764 and 830 nm suggests the coordination of second \(\text{Zn}^{2+} \) is rather fast to afford bis-\(\text{Zn}^{2+} \) complex, spontaneously.\(^6\) NIR-fluorescence spectra of 1, 2, and 1 treated in \textit{in situ} with excess \(\text{Zn(OAc)}_2 \) were compared at ambient temperature.

Upon adding \(\text{Zn(OAc)}_2 \), fluorescence of 1 was enhanced approximately 10-fold,\(^5\) exhibiting a sharp emission band around 1047 nm, which was nearly identical to that of 2. This result indicates that \textit{in situ} formation of bis-\(\text{Zn}^{2+} \) complex of 1 proceeds almost quantitatively in \(\text{CH}_3\text{Cl}_2 \) at ambient temperature.

The structure of bis-\(\text{Zn}^{2+} \) complex 2 was revealed by X-ray crystallography (Fig. 1).\(^3\) The complex shows a slightly distorted structure with a mean plane deviation of 0.0798 \(\text{Å} \) defined by 36 heavy atoms without oxygen in the macrocycle. The displacement of \(\text{Zn}^{2+} \) ion is 0.0572 \(\text{Å} \) and the Zn-Zn distance is 4.806 \(\text{Å} \). One \(\text{H}_2\text{O} \) molecule is coordinated at the axial position of each \(\text{Zn} \) atom with a \(\text{Zn}-\text{O} \) distance of 2.038 \(\text{Å} \). The water molecule might come from the adventitious moisture in the solvent and such coordination would be usual for a water-soluble derivative of 2 in aqueous media.

![Fig. 1 ORTEP structure of 2: a) top view, b) side view. Pentfluorophenyl groups are omitted for clarity in (b). Thermal ellipsoids are shown at the 30% probability level.](image)

Then, \(\text{N}_2\text{CH-R8} \) was subjected to the spectroscopic measurements in aqueous solution (Fig. 2). The absorption \(\lambda_{\text{max}} \) values of the Soret-like (566 nm) and Q-like bands (730, 807, 902, 1040 nm) were similar to the spectrum of 1 in DMF, indicating that neither attachment of octa-arginine peptides via triazole linkers to \(\text{N}_2\text{CH} \) nor aqueous media intrinsically perturbs the absorption property of \(\text{N}_2\text{CH} \) macrocycle. Furthermore, in the fluorescence spectrum of \(\text{N}_2\text{CH-R8} \) in aqueous solution, an emission band at 1047 nm was observed similar to 1 in \(\text{CH}_3\text{Cl}_2 \) (1053 nm) as well as 1 and \(\text{N}_2\text{CH-R8} \) in DMF (1053 nm). The fluorescence efficiency of \(\text{N}_2\text{CH-R8} \) in \(\text{H}_2\text{O} \) appears similar or even better than 1 in \(\text{CH}_3\text{Cl}_2 \),\(^6\) indicating that the aqueous media do not affect the fluorescence property of \(\text{N}_2\text{CH} \) macrocycle adversely.

With addition of an excess \(\text{Zn(OAc)}_2 \) to the aqueous solution of \(\text{N}_2\text{CH-R8} \), the absorption \(\lambda_{\text{max}} \) of the Soret-like band shifted to 600 nm, which is identical to that of 1 with \(\text{Zn(OAc)}_2 \) in \(\text{CH}_3\text{Cl}_2 \). Relative fluorescence quantum yield increased 14-fold without shifting the emission maximum \((\lambda_{\text{em}}) \). Therefore, both the changes in the absorption and fluorescence spectra indicate that the \(\text{N}_2\text{CH} \) macrocycle spontaneously captures \(\text{Zn}^{2+} \) ions in aqueous solution and its coordination mode is very similar to that of 1 in organic solvent (Fig. 2b, see also Supporting Information). The fluorescence spectra also indicate that \(\text{N}_2\text{CH-R8} \) is significantly responsive to \(\text{Zn}^{2+} \) in a \(\text{pH} \) region under neutral to weakly alkaline conditions (Fig. 2c). An excess amount of \(\text{Zn(OAc)}_2 \) (800 \(\mu \text{M} \), 200 equiv) was insufficient for rapid completion of the spectral changes with \(\text{N}_2\text{CH-R8} \) (4.0 \(\mu \text{M} \) (Fig. 2d), suggesting that the sensitivity of \(\text{Zn}^{2+} \) complexation of \(\text{N}_2\text{CH-R8} \) in \(\text{H}_2\text{O} \) is several fold lower than that of 1 in \(\text{CH}_3\text{Cl}_2 \).

Next, to gain insights into the complexation of other metals, absorption spectra of \(\text{N}_2\text{CH-R8} \) were investigated in aqueous solution upon addition of 19 metal ions. Besides \(\text{Zn}^{2+} \), eight metal ions \(\text{[Cd}^{2+}, \text{Co}^{2+}, \text{Cr}^{3+}, \text{Cu}^{2+}, \text{Fe}^{3+}, \text{Hg}^{2+}, \text{Pd}^{2+}, \text{Sn}^{2+}] \) were coordinated by the macrocycle judging from the changes of the absorption spectra.\(^6\) Among coordinated metals, only \(\text{Zn}^{2+} \) showed a marked enhancement in emission. On the other hand, the fluorescence spectra of \(\text{N}_2\text{CH-R8} \) in the presence of \(\text{Cd}^{2+}, \text{Co}^{2+}, \text{and Fe}^{3+} \) were similar to that of freebase. In contrast, remaining five metal ions, \(\text{Cu}^{2+}, \text{Cr}^{3+}, \text{Hg}^{2+}, \text{Pd}^{2+}, \text{and Sn}^{2+} \) quenched the emission (Figs. 2b and 3a).\(^6\)
Then, the effect of metal ions on the fluorescence property of Zn$^{2+}$ bis[CH-R8] complex was examined. Metal ions (1000 equiv) that cause no effect on the absorption spectra of bis[CH-R8] also did not show any change in the fluorescence spectra of bis[CH-R8] with 1000 equiv Zn$^{2+}$. The fluorescence was not affected by Cd$^{2+}$ or Co$^{2+}$, whereas it was partially quenched by Cr$^{3+}$, Fe$^{3+}$, or Sn$^{2+}$ and strongly quenched by 1000 equiv Cu$^{2+}$, Hg$^{2+}$, or Pb$^{2+}$, suggesting that the affinity of the last three metal ions to bis[CH-R8] is comparable to or higher than that of Zn$^{2+}$. The strong inhibitory effect of Cu$^{2+}$ ion is demonstrated by the experiment, in which 0.53 μM Cu$^{2+}$ quenched the fluorescence of same molar concentration of bis[CH-R8] complex nearly completely within 30 min (Fig. 3b, Fig. S13). This observation suggests that the Zn$^{2+}$ complex of bis[CH-R8] is also capable of serving as a "switch-off" fluorescent sensor to detect Cu$^{2+}$ ions in aqueous environment.

![Fig. 3](image-url) (a) Relative fluorescence intensity of bis[CH-R8] (0.53 μM, λ$_{ex}$ = 600 nm) in H$_2$O with 1000 equiv of metal ions of interest. (b) Fluorescence quenching of bis[CH-R8] (0.53 μM, λ$_{ex}$ = 600 nm) with 1000 equiv Zn$^{2+}$ ions by 1.0, 2.0 or 20 equiv of metal ions.

In summary, we have synthesized a water-soluble derivative of doubly N-confused hexaphyrin (bis[CH-R8]), which exhibits enhanced NIR fluorescence around 1050 nm only by Zn$^{2+}$ ion coordination in aqueous solution. Thus, bis[CH-R8] is a promising platform to develop a "switch-on" NIR fluorescent sensor for Zn$^{2+}$ in aqueous solution albeit further improvement of coordination affinity and specificity, as well as emission efficiency would be necessary. Furthermore, Zn$^{2+}$ complex of bis[CH-R8] can also serve as a promising platform for a "switch-off" NIR fluorescent sensor for Cu$^{2+}$ ion, a similarly important metal ion involved in a number of biological processes in living cells. As octa-arginine (R8) is known as a member of peptides showing a cell penetrating property that enables various molecules to be introduced into mammalian cells, in vivo application of bis[CH-R8] would be of interest. Because bis[CH-R8] would be applicable directly to in vivo analysis, investigation of its photophysical and coordination properties in cultured cells is now underway.

This work was supported by Grant-in-Aids on Innovative Areas (No. 21108518 to H.F. and No. 21111518 to Y.I.), and for the Global COE program, "Science for Future Molecular Systems" (to H.F.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Notes and references