Vasodilating dipeptide Trp–His can prevent atherosclerosis in apo E-deficient mice

Matsui, Toshiro
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University

Sato, Masao
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University

Tanaka, Mitsuru
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University

Yamada, Yasuna
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University

http://hdl.handle.net/2324/26415

バージョン: published
権利関係: (C) The Authors 2009

Short Communication

Vasodilating dipeptide Trp-His can prevent atherosclerosis in apo E-deficient mice

Toshiro Matsui*, Masao Sato, Mitsuru Tanaka, Yasuna Yamada, Shimpei Watanabe, Yumiko Fujimoto, Katsumi Imaizumi and Kiyoshi Matsumoto

Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 812-8581, Japan

(Received 23 March 2009 – Revised 5 May 2009 – Accepted 20 May 2009 – First published online 4 September 2009)

Most of the investigations for an alternative medicinal treatment on atherosclerosis have been focused on natural or dietary compounds including phytochemicals. So far, few studies regarding anti-atherosclerotic small peptides except for tetrapeptide of Lys-Arg-Glu-Ser have been reported.

The present study was, thus, to investigate whether dipeptide Trp-His, which is one of vasodilating small peptides, could reduce atherosclerotic lesions in apo E-deficient mice fed a high-fat diet. The animal study involved a 9-week-successive administration of Trp-His at a dose of 0, 10 or 100 mg/kg per d. After 9-week administration, en face analyses provided the first direct evidence that the atherosclerotic lesion area was significantly reduced by 27 and 38 % for Trp-His dosed at 10 and 100 mg/kg per d, respectively, compared with the control group. Administration of Trp-His did not affect growth parameters such as body weight and feeding efficiency ($P > 0.1$). Total serum cholesterol and HDL-cholesterol as well as lipid profiles in the liver did not differ between the tested groups. Taken together, the anti-atherosclerotic effect of dipeptide Trp-His should be addressed into physiological functions of bioactive peptides, in which the dipeptide may elicit the power by alternative mechanism(s), not by the regulation of lipid metabolism.

Dipeptides: Atherosclerosis: Vasodilation: Hypertension

Clinical evidence in human studies provides useful information that small peptides attribute preventive properties with regard to hypertension disease; in particular, the intake of anti-hypertensive foods containing Val-Tyr or Ile-Pro-Pro, which have been accepted as a food for specific health use product in Japan, was proven to be benefit for improving blood pressure in mild hypertensive subjects. These beneficial properties are thought to be due to the suppression of renin–angiotensin system, since anti-hypertensive peptides showed a power to inhibit in vitro angiotensin I-converting enzyme (ACE) that is a key player to produce potent pressor peptide, angiotensin II. However, some conflicting results such as weak ACE inhibitory activity at micro molar level of IC$_{50}$ value, no significant decrease in plasma ACE activity and no increase in plasma renin activity in human study allowed us to exclude the predominant involvement of ACE inhibition of anti-hypertensive peptides in lowering blood pressure and to include alternative mechanism(s) underlying the regulation of blood pressure.

In a series of our studies regarding underlying mechanism(s) of anti-hypertensive peptides, we have reported useful findings of dipeptides on (1) a favourable aortic ACE inhibition in transgenic mice bearing both human renin and angiotensinogen genes, (2) a significant anti-proliferative action in angiotensin II- or Ca$^{2+}$ channel agonist-stimulated vascular smooth muscle cells, and (3) an endothelium-independent relaxation effect in KCl-induced constrictive rat aorta rings. A possible involvement of anti-hypertensive peptides in the regulation of vessel functions has also been reported by some researchers, who demonstrated accumulation of Ile-Pro-Pro into abdominal aorta and stimulation of soluble guanylyl cyclase/cyclic GMP vasodilation pathway by Met-Tyr via haem oxygenase-1 activation in endothelial cells. These in vitro and ex vivo observations raise the speculation that the intake of vasoactive small peptides could reduce vascular dysfunctions including atherosclerosis.

The aim of the present study was, thus, to demonstrate the in vivo anti-atherosclerotic effect of dipeptide Trp-His in apo E-deficient (ApoE$^{-/-}$) mice. The selection of Trp-His in the present study was based on the finding that it evoked the most potent vasodilation activity in a 50 mM KCl-contracted Sprague–Dawley rat thoracic aorta ring among sixty-seven
synthetic dipeptides in an endothelium-independent manner. The anti-atherosclerotic effect of peptides has been reported for the first time by Navab et al., who demonstrated tetrapeptide of Lys-Arg-Glu-Ser reduced the atherosclerosis in ApoE−/− through the reduction in LPL hydroperoxides. However, no evidence was reported that the smaller dipeptides alone could attenuate the development of atherosclerotic onsets, except for a report on prevention of atherosclerosis by a mixture of diverse peptides of soya protein isolate.

Experimental methods

Materials

Trp-His was synthesised using an Fmoc solid-phase synthesis method according to the manufacturer's instructions (Kokusan Chemicals, Osaka, Japan), and the sequence was confirmed on a PPSQ-21 amino acid sequencer (Shimadzu Co., Ltd, Kyoto, Japan). All other chemicals were of analytical reagent grade and used without further purification.

Animal experiment

Apo E-deficient (ApoE−/−) mice purchased from Jackson Laboratory (Bar Harbor, ME, USA) in 1994 were used. Mice were bred and maintained at the Laboratory of Animal Experiments in Kyushu University School of Medicine (Fukuoka, Japan). Male ApoE−/− mice (8–18 weeks old) were divided into three groups, and were fed the following diets for 9 weeks. Diets were based on the AIN-76 formulation as described previously. The diet contained (g/kg) sucrose 449.0, casein 200.0, maize starch 150.0, olive oil 100.0, cellulose 50.0, mineral mixture (AIN-76) 35.0, vitamin mixture (AIN-76) 10.0, DL-methionine 3.0, choline bitartrate 2.0 and cholesterol 1.0.

A 9-week-successive administration of Trp-His sample was performed daily in each mouse, in which the dosage of 10 or 100 mg/kg per day dissolved in 1 ml deionised water was injected by intubation with nutritional catheter. Control mice were administered with the same volume of deionised water. The animals were individually housed at 22 °C with a 12 h light–dark cycle (lights on, 08.00–20.00) and given free access to the diet and deionised water throughout the experimental period. The age before experiment was not determined as previously described with a slight modification of the method described by Paigen et al.

Statistical analyses

Results are expressed as the mean and standard error of the mean. Statistical significance was estimated using a one-way ANOVA followed by Tukey–Kramer’s multiple comparison post hoc tests. Value of $P < 0.05$ was considered to be statistically significant. All analyses were performed with Stat View J 5.0 software (SAS Institute, Cary, NC, USA).

Results

Body weight and feeding efficiency

After 9-week administration, body weight, organ weight, food intake and feeding efficiency did not differ between the three groups (Table 1). Though data were not shown, body fat content (control: 8.9 % (SEM 1.2), control: 8.9 % (SEM 1.2), n 8; 10 mg/kg Trp-His: 7.1 % (SEM 0.7), n 7; 100 mg/kg Trp-His: 7.5 % (SEM 0.6), n 8) as well as fat contents of mesenteric, testicles and hypodermis also did not differ between groups.

Blood lipids and monocyte chemoattractant protein-1

In the blood analysis, no significant differences were found in total cholesterol, HDL-cholesterol and MCP-1 concentrations among the three groups (Table 1). Relatively high serum cholesterol (≥10,000 mg/l) may be due to a high cholesterol diet for the mice. Lipid profiles in the liver were not affected by Trp-His intake.

Aortic sinus and en face analyses

After 9-week administration, en face analyses of aortic tree showed that the atherosclerotic lesion was less in both Trp-His groups than in control group (Fig. 1(a)). As shown in Fig. 1(b), the lesion areas for both Trp-His groups were significantly different between three groups (control: 15.0 ± 2.3, control: 15.0 ± 2.3, n 8; 10 mg/kg Trp-His: 14.6 ± 1.3, 10 mg/kg Trp-His: 14.6 ± 1.3, n 7; 100 mg/kg Trp-His: 14.3 ± 1.2, 100 mg/kg Trp-His: 14.3 ± 1.2, n 8).

table 1. Growth parameters, serum and liver lipid levels and monocyte chemoattractant protein (MCP-1) concentrations

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>10 mg/kg</th>
<th>100 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (n 8) SEM</td>
<td>Mean (n 7) SEM</td>
<td>Mean (n 8) SEM</td>
</tr>
<tr>
<td>Initial body weight (g)</td>
<td>28·2 0·8</td>
<td>26·6 1·3</td>
<td>28·4 0·8</td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>34·4 2·1</td>
<td>30·2 0·8</td>
<td>33·1 1·0</td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>6·2 1·7</td>
<td>3·6 1·0</td>
<td>4·7 0·8</td>
</tr>
<tr>
<td>Food intake (g/d)</td>
<td>4·0 0·2</td>
<td>4·1 0·2</td>
<td>4·1 0·1</td>
</tr>
<tr>
<td>Food efficiency (mg weight gain/g food intake)</td>
<td>23·9 5·9</td>
<td>14·9 4·4</td>
<td>18·3 3·4</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1·76 0·29</td>
<td>1·30 0·14</td>
<td>1·67 0·10</td>
</tr>
<tr>
<td>Relative liver weight (g/100 g body weight)</td>
<td>4·97 0·52</td>
<td>4·37 0·39</td>
<td>5·10 0·38</td>
</tr>
<tr>
<td>Heart weight (g)</td>
<td>0·21 0·01</td>
<td>0·23 0·01</td>
<td>0·23 0·01</td>
</tr>
<tr>
<td>Relative heart weight (g/100 g body weight)</td>
<td>0·63 0·04</td>
<td>0·75 0·05</td>
<td>0·69 0·02</td>
</tr>
<tr>
<td>Serum (mg/l)</td>
<td>Total cholesterol 12 380 1410</td>
<td>11 260 1 320</td>
<td>13 280 1 920</td>
</tr>
<tr>
<td></td>
<td>HDL-cholesterol 271 70</td>
<td>306 62</td>
<td>305 40</td>
</tr>
<tr>
<td></td>
<td>TAG 3370 490</td>
<td>3610 550</td>
<td>3820 930</td>
</tr>
<tr>
<td></td>
<td>MCP-1 (pg/ml) 47·4 1·4</td>
<td>47·9 2·7</td>
<td>46·4 3·7</td>
</tr>
<tr>
<td>Liver (mg/g liver)</td>
<td>Cholesterol Total 12·5 0·55</td>
<td>13·6 0·55</td>
<td>12·9 0·42</td>
</tr>
<tr>
<td></td>
<td>Non-esterified 4·85 0·40</td>
<td>4·56 0·56</td>
<td>3·09 0·23</td>
</tr>
<tr>
<td></td>
<td>Esterified 7·60 0·66</td>
<td>9·05 0·84</td>
<td>9·86 0·45</td>
</tr>
<tr>
<td></td>
<td>TAG 104 21</td>
<td>94 29</td>
<td>89 7</td>
</tr>
</tbody>
</table>
concerning endothelial-independent vasodilation action of stimulation (25) in endothelial events. Our recent report oligopeptides showing vasorelaxation via bradykinin receptor

Ca2+ cells could be inhibited through a suppression of extracellular the proliferation or migration of vascular smooth muscle
suppressing an expression of inflammatory cytokines (20), a direct regulation of vessel functions, like soya protein of male ApoE2 mice. (a) Male ApoE2 mice were daily administered Trp-His (10 mg/kg per d, n 7 or 100 mg/kg per d, n 8) or not (control group, n 8) for 9 weeks. Atherosclerotic plaques in the aorta tree were visualised by en face Sudan IV staining. (b) The extent of straining positive areas was measured and expressed as percentage. (c) Atherosclerotic plaques in the aorta sinus were visualised by Van Gieson and haematoxylin. (d) The extent of straining positive areas was measured and expressed as percentage. A total of five slides per mouse were analysed. Values are means with the standard errors depicted by vertical bars. Mean values were significantly different from those of control group: * P < 0.05.

present protocol may diminish the anti-atherosclerotic effect against developed atherosclerosis onsets at the aortic sinus cannot be ruled out (27). The involvement of suppression of peripheral sympathetic nervous system (28) would be excluded for a role of Trp-His, because of no change in growth parameters and feeding efficiency among the tested groups. In the present study, we observed no change in serum MCP-1 level in the groups, which is a biomarker of monocyte-related inflammation in response to developing atherosclerosis (29,30), as Nakano et al. (31) have demonstrated that a Ca channel blocker azelnidipine showing anti-atherosclerotic effect in cynomolgus monkeys affected less serum MCP-1 level. However, the suppression of local MCP-1 expression or platelet-derived growth factor, like azelnidipine, should be also taken into consideration for underlying anti-atherosclerotic mechanism of Trp-His. Collectively, further studies must be needed to clarify the Trp-His-induced anti-atherosclerotic mechanism(s) and are now in progress regarding intact absorption of Trp-His, anti-atherosclerotic effect of the constituent amino acids and expression of atherosclerosis-related mRNAs or proteins in another set of ApoE2 mice. Additionally, it may also be of benefit to examine whether Trp-His ingestion to ApoE2/+ mice possesses the preventive potential of vascular dysfunctions, since in the anti-hypertension study of dipeptide, Val-Tyr, in borderline hypertensives, the ingestion did not affect the blood pressure of normotensives (1).

In conclusion, we provided the first direct evidence that dipeptide Trp-His possessing vasodilation activity has an ability to inhibit the development of atherosclerosis onsets in ApoE2/− mice at a dose of 10 mg/kg per d not by the regulation of lipid metabolism, but by alternative mechanism(s). The effect of Trp-His should be addressed into potential physiological functions of small peptides as a candidate for preventing atherosclerosis onsets.

Acknowledgements

The present study was supported by a grand-in-aid for the Ministry of Education, Science, Sports and Culture of Japan (no. 19208012) to T. M. The authors have no conflicts of interest. Each authors made an important scientific contribution to the study: T. M. and M. S. planned and researched the data, and all the authors contributed to the discussion, wrote and reviewed/edited the manuscripts.

References

action of an angiotensin I-converting enzyme inhibitory
peptides, Val-Tyr, via an L-type Ca2+ channel inhibition in
545–552.
of di-peptides in thoracic aortas from spontaneously hypertensive
independent vasodilation effect of di- and tri-peptides in thor-
peptides are present in aorta after oral administration of sour
milk containing these peptides to spontaneously hypertensive
inhibitory dipeptide Met-Tyr diminished free radical formation
in human endothelial cells via induction of heme oxygenase-1
small peptides render HDL anti-inflammatory in mice and mon-
524–532.
isolate, compared with casein, reduces atherosclerotic lesion
1884–1889.
fats reduce atherosclerosis development beyond its oxidative
and inflammatory stress-increasing effect in apolipoprotein
E-deficient mice in comparison with saturated fatty acid-rich
assessment of atherosclerotic lesions in mice. *Atherosclerosis*
68, 231–240.
atherosclerosis in murine models: correlation between lesions in
the aortic origin and in the entire aorta, and differences in the
extent of lesions between sexes in LDL. *J Lipid Res* **36**,
2320–2328.
lowering effect of dietary fiber: a meta-analysis. *Am J Clin
sols and fibers attenuate atherosclerosis in apolipoprotein
human prostate cancer cells by flavonoids from lowbush
blueberry (*Vaccinium angustifolium*): possible roles for protein
kine C and mitogen-activated protein-kinase-mediated
polyphenolic compounds strongly inhibit pro-matrix metallo-
protease-2 expression and its activation in response to
thrombin via direct inhibition of membrane type-1-matrix
metalloproteinase in vascular smooth muscle cells. *Circulation*
110, 1861–1867.
tered eicosapentaenoic acid reduces and stabilizes atherosclerotic
soy protein isolate ameliorates atherosclerotic lesions in
apolipoprotein E-deficient mice potentially by inhibiting
332–337.
mechanism of soybean protein hydrolysate. *J Agric Food
novel hypolipidemic peptides derived from bovine
11–17.
and nerotensin rapidly reduce serum cholesterol via NT2 recep-
against smooth muscle cell proliferation by upregulating heme
effects of peptides derived from egg white proteins. *Regulatory
deficient mice develop lesions of all phases of atherosclerosis
133–140.
Circulating levels of ICAM-1, VCAM-1, and MCP-1 are
increased in haemodialysis patients: association with
inflammation, dyslipidaemia, and vascular events. *Am J
monocyte chemotactant protein-1 in human atherosclerotic
lesions by an anti-monocyte chemotactant protein-1
anti-atherosclerotic effects independent of its blood pressure-
lowering actions in monkeys and mice. *Atherosclerosis* **196**,
172–179.