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We study a modified model of the Kardar-Paris-Zhang equation with quenched disorder, in which the driving
force decreases as the interface rises up. A critical state is self-organized, and the anomalous scaling law with

roughness exponent «~ (.63 is numerically obtained.
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Nonequilibrium interface growth and its scaling proper-
ties have intensively been studied [1]. There are a number of
applications of random interface-growth problems in mo-
lecular beam epitaxy, bacteria-colony growth, and fluid inva-
sion in porous media. In many rough interfaces, the root-
mean-square (rms) width W(/,7) obeys a dynamic scaling
law,

((h(x,0) = (e, )Y ~ 1°h(11F), (1)

where h(x,t) is the surface height at time ¢, z=a/B is a
dynamic exponent, / is an interval size, and the scaling func-

W(l,1)

tion h(u) satisfies asymptotically h(u)~u? for u<1 and
h(u)—1 for u>1. The exponent « is called the roughness
exponent and B is the growth exponent. It has been widely
believed that many systems lie in the same universality class
as the Kardar-Parisi-Zhang (KPZ) equation [2]. The (1+1)
KPZ equation has a form,
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where v and \ are constants, and 7(x,7) denotes the Gauss-
ian white noise satisfying (7)=0 and {(7(x,)n(x’,t"))
=2D&8(x—x")8(t—1t"). The roughness exponent « is 1/2 and
the growth exponent B=1/3 in the (1+1) KPZ equation.
However, many experiments give larger values of « in the
range 0.6-0.9 [3-6]. To explain the anomalous exponent,
some authors studied modified models of the KPZ equation,
in which the noise was assumed to have a power-law distri-
bution [7], although the physical origin of such a noise re-
mains unclear. The randomness is quenched in space in many
experiments. Thus, the KPZ equation with quenched disorder
(KPZQ equation) was also studied theoretically [8,9]. The
KPZQ equation in one dimension is written as
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where 7(x,h) denotes the quenched disorder satisfying (7)
=0 and {(7(x,h) n(x',h')y=2D8(x—x")S(h—h"). The nonlin-
ear coefficient N is proportional to the average velocity v
from the kinematic origin in most case, however, such a
nonlinear term appears in anisotropic media even for v=0
[10].

The KPZQ equation exhibits a pinning transition when

the driving force f is decreased. When the driving force f is
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larger than a critical value f,, the interface grows with an
average velocity. When f is below f,, the interface is pinned
in the quenched random medium. At the critical driving force
f., the scaling law W([) ~[“ is satisfied, and the exponent «
is evaluated at a~0.63. The exponent « is related to two
exponents v, and v, in the directed percolation problem as
a=v)/v,, where y is the exponent for the longitudinal cor-
relation length & and v, is the exponent for the transverse
correlation length &, [11]. The exponent @=0.63 is close to
the experimental exponents in paper wetting [11]. The scal-
ing law is theoretically satisfied only at the critical driving
force f.. However, the scaling law is observed even if the
parameter is not precisely controlled to be the critical value.
The critical condition might be to be self-organized by a
certain unclear mechanism. An interface-growth model
which exhibits the self-organized criticality (SOC) was pro-
posed by Sneppen [12]. In his algorithm (the model B in
[12]), the site with the smallest random force 7(x,h) is se-
lected, and the updating #—h+1 is done at the site. Then,
neighboring sites are sequentially updated as h—h+1, if
|h(x)—h(x—1)|=1 is satisfied. Such a chain reaction rule is
used in many models exhibiting the self-organized criticality
[13]. A self-organized random interface with a=0.63 was
obtained in the model of Sneppen, but the physical origin of
the updating rule is not clear. Thus, we think that the prob-
lem of the anomalous exponent in random interfaces is not
completely solved yet. In this brief report, we propose an-
other simple mechanism of the self-organized criticality in a
modified model of the KPZQ equation.

We consider an experiment of paper wetting as performed
in [11]. The driving force in this problem is the surface ten-
sion F. The paper is dipped into a basin filled with suspen-
sions of ink or coffee. When the interface rises up, the up-
ward driving force decreases owing to the gravity as f=F
—dyh, where dj is proportional to the density p multiplied by
the gravitational acceleration g, because the gravitational po-
tential increases with the square of the interface height [14].
Furthermore, the evaporation from the surface of the paper
needs to be taken into consideration, if the humidity is low.
As a rough approximation, the interface height decreases on
the average by —eh, because the volume of the liquid is pro-
portional to ALw where w is the average thickness and L is
the side length of the paper, the evaporation rate is propor-
tional to the area 2hL of two surfaces of the paper, and the
evaporation rate is proportional to the decrease rate of the
liquid volume. That is, the evaporation effect also decreases
the upward driving force as f=F—eh as a first order approxi-
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mation. Thus, our model equation is written as

oh_ T A(ah)z F—-dh h 4
ot o ox) T +xh), @
where d=d+e. If the term dh is approximated at the spatial
average d(h), where (h(r)) is the spatial average of the inter-
face height in system size L: (h(1))=(1/L)[5h(x,t)dx, our
model equation is expressed as
oh & h on'\?
P V&xz + 7\( &x) + F—d{h) + n(x,h). (5)
This model equation is closely related to the KPZQ equation,
or it can be interpreted as a modified KPZQ equation with a
feedback term. If F'> f, the interface grows upward from the
flat initial condition /(x,0)=0. The driving force becomes
weaker, as the average height (k) increases. The interface
growth is expected to stop when F—d(h)=f. is satisfied ow-
ing to the pinning transition in the KPZQ equation. After the
interface is pinned, the critical condition F-d{h)=f, is
maintained forever, because (/) is constant in time. Thus, the
self-organized criticality can be realized by this very simple
mechanism.
We have performed direct numerical simulations of Eq.
(3) and (5) using a simple Euler method. The KPZQ Eq. (3)
is discretized as

h(x,t+ Af) = h(x,t) + A v{h(x + 1,1) = 2h(x,1) + h(x - 1,1)}
+ MaG+ 1,0 = h(x = 1,0}/4 + f+ n(x,h)].
(6)
The modified model Eq. (5) is discretized as
h(x,t+ Ar)
=h(x,t) + A v{h(x + 1,1) = 2h(x,t) + h(x = 1,1)}
+ NG+ 1,0) = h(x = 1,0}%/4 + F — d{h) + 5(x,h)].
(7)

The parameters are fixed to be v=>5 and Ar=0.01. We have
used quenched disorder #(x,n) which is uniformly distrib-
uted between 0 and 3 [9].

Figure 1 shows a critical curve f. (solid line) of the dis-
crete KPZQ Eq. (6) as a function of N. The system size is
L=10 000 and periodic boundary conditions #(L,t)=h(0,1)
are assumed in the numerical simulation. The pinning phe-
nomenon is observed below the critical curve. The critical
driving force f,. decreases with A.

Figure 2(a) shows the time evolution of h(x,r) for L
=10 000, A\=1, d=0.000 05 and F=0.17 by Eq. (7). Snap-
shot profiles of h(x,7) at 1000 X n (n=1,2,...,12) are shown
in Fig. 2(a). The initial condition is &(x,0)=0. For small ¢,
the interface rises up randomly. As the interface rises up, the
driving force becomes weak and finally the interface is
pinned. Near the pinning transition, the interface growth oc-
curs intermittently both in space and time, that is, the inter-
face is pinned in most positions and the interface growth
occurs locally. Figure 2(b) shows the time evolution of F
—d(h) for the numerical simulation shown in Fig. 2(a). The
driving force F—d(h) decreases and finally takes a constant
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FIG. 1. Critical driving force f. (solid line with rhombi) in the
discrete KPZQ Eq. (6) at v=5 and L=10 000 for A=0, 0.25, 0.5,
0.75, 1, 1.25, and 1.5. The marks+denote the average values of F'
—d(h) for the same values of \ in the time evolution of Eq. (7).

value by the pinning. The final value is 0.157 in this
quenched disorder. The final values slightly depend on the
quenched disorder. We have calculated the average value us-
ing 50 random quenched media. The average values of F
—d(h) at the stationary state for various values of \ are plot-
ted by+marks in Fig. 1. The stationary values of F—d(h)
almost locate on the critical curve f,.(\) of the KPZQ equa-
tion. This implies that the self-organized criticality is realized
in our model. We have calculated numerically the rms width
W(L) after the interfaces are pinned for various values of L at
A=1, F=0.17 and d=0.000 05. Figure 3 shows a relation of
W(L) as a function of the system size L. The exponent « is
evaluated by the least-squares method as a=0.64, which is
close to 0.63 for the KPZQ equation at the critical point. The
anomalous critical exponent is realized at the stationary state
in our model, even if the initial driving force F is not pre-
cisely controlled to be f,.

To check the validity of the mean-field approximation
[Eq. (5)] to Eq. (4), we have performed direct numerical
simulation of the discretized model of Eq. (4) with d
=0.000 05. Figure 4(a) shows the time evolution of F—d(h)
at v=5, A=1, FF'=0.17 and L=10 000. The time evolution is
very close to the one shown in Fig. 2(b). Figure 4(b) shows
the relation of W(L) vs L. The exponent « is evaluated by the
least-squares method as a=0.64. These numerical results
show that the approximation by Eq. (5) is rather good in our
simulation at sufficiently small d. However, it is expected
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FIG. 2. (a) Successive snapshot profiles of h(x,7) at 1000 X n
(n=1,2,...,12) by Eq. (7) at v=5, A=1, F=0.17, d=0.000 05 and
L=10000. (b) Time evolution of F—d(h) for the numerical simu-
lation shown in (a).
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FIG. 4. (a) Time evolution of F—d(h) by the discretized model
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FIG. 3. Relation of W(L) as a function of L after the interfaces
are pinned for Eq. (7) at v=5, A=1, F=0.17 and d=0.000 05. The
dashed line is the fitting curve W(L)=0.0907L%%*? by the least-
squares method.

that the scaling properties on very large length scales in Eq.
(4) are different from the ones with the roughness exponent
@=0.63. The crossover length is expected to be O(\v/d),
above which the linear damping term —dk in Eq. (4) becomes
dominant compared to the diffusion term v#*h/dx>. On the
other hand, in the mean-field model [Eq. (5)], the damping
term acts only for the spatial average (h), and does not have
a direct effect for the spatial fluctuation of A(x,?).

To summarize, we have found a very simple mechanism
of self-organized criticality in a modified model of the KPZQ
equation. The critical pinning state is naturally realized by
decreasing the driving force. Both the gravitational effect
and the evaporation effect are considered to decrease of the
driving force effectively. The gravitational effect is con-
trolled by changing the inclination angle of the paper and the
evaporation effect is controlled by the humidity. This might

of Eq. (4) at v=5, A=1, F=0.17, d=0.000 05 and L=10 000. (b)
Relation of W(L) as a function of L after the interfaces are pinned
for Eq. (4) at v=5, A=1, F=0.17 and d=0.000 05. The dashed line
is the fitting curve W(L)=0.0917L%%° by the least-squares method.

be a mechanism of the anomalous scaling in paper wetting
experiments. Similar mechanisms might work even for other
experiments of interface growth in quenched random media.
For example, there is another feedback mechanism for the
self-organized criticality in the paper wetting problem where
the paper is set horizontally and the gravitational effect does
not work, and the evaporation effect is neglected. The aver-
age growth velocity v of the interface decreases as ¢!/
(Washburn’s law) because of the viscous resistance force in
proportion to (k) [14,15]. Then, the N parameter decreases
effectively in time owing to the kinematic effect, and the
self-organized critical pinned state will be realized, because
the critical driving force f, is a decreasing function of X\ in
the KPZQ equation as shown in Fig. 1. Furthermore, in gen-
eral, there might exist other systems, in which critical states
are self-organized by some feedback terms. We would like to
study such self-organized criticality by the feedback effect in
the future.
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