Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer

Tatsugami, Katsunori
Department of Urology, Graduate School of Medical Sciences, Kyushu University

Kuroiwa, Kentaro
Department of Urology, Graduate School of Medical Sciences, Kyushu University

Kamoto, Toshiyuki
Department of Urology, Faculty of Medicine, Miyazaki University

Nishiyama, Hiroyuki
Department of Urology, Graduate School of Medicine, Kyoto University

他

https://hdl.handle.net/2324/26365

出版情報：Journal of Endourology. 24 (11), pp.1807-1811, 2010-11-03. Mary Ann Liebert
バージョン：
権利関係：(C) 2010 Mary Ann Liebert, Inc.
Evaluation of Narrow-Band Imaging as a Complementary Method for the Detection of Bladder Cancer

Katsunori Tatsugami, M.D., Ph.D.1 Kentaro Kuroiwa, M.D., Ph.D.1 Toshiyuki Kamoto, M.D., Ph.D.1
Hiroyuki Nishiyama, M.D., Ph.D.2 Jun Watanabe, M.D., Ph.D.3 Satoru Ishikawa, M.D., Ph.D.4
Nobuo Shinozawa, M.D., Ph.D.5 Ataru Sazawa, M.D., Ph.D.5
Shoji Fukushima, M.D., Ph.D.6 and Seiji Naito, M.D., Ph.D.1

Abstract

Purpose: We evaluated the use of narrow-band imaging (NBI) cystoscopy for the detection of bladder cancer and analyzed its diagnostic efficacy in cases of carcinoma in situ (CIS) and in cases with known urine cytology results.

Patients and Methods: A prospective controlled study of NBI was conducted in 104 consecutive patients with definite or suspected bladder cancer. Transurethral targeted biopsies were performed after white light imaging (WLI) and NBI cystoscopy, and the histologic outcomes were compared.

Results: A total of 313 biopsies were taken, including 161 from sites identified as potentially abnormal by NBI and/or WLI cystoscopy, and 152 from apparently normal sites. The percentage of malignancies in the sites identified only by NBI was 55.7% (39/70 places). In 26.9% of patients (28/104), bladder tumors were detected only by NBI. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and likelihood ratio of a negative test (NLR) for the detection of bladder tumors using NBI in all patients were 92.7%, 70.9%, 63.4%, 94.7%, and 0.10, respectively. The sensitivity, specificity, PPV, NPV, and NLR for the detection of CIS using NBI were 89.7%, 74.5%, 78.8%, 87.2%, and 0.14, respectively. The sensitivity, specificity, PPV, NPV, and NLR for the detection of bladder tumors using NBI in patients with positive vs negative urine cytology were 85.4% vs 98.4%, 75.7% vs 66.3%, 61.2% vs 64.5%, 92.0% vs 98.5%, and 0.19 vs 0.02, respectively.

Conclusions: NBI is a simple and effective method for identifying bladder tumors including CIS without the need for dyes because of its high sensitivity, high NPV, and low NLR.

Introduction

Approximately 75% to 85% of bladder tumors initially were diagnosed as nonmuscle-invasive bladder cancer (NMIBC), but 50% to 70% of them recur, with 10% to 30% showing grade and stage progression. Some previous reports suggested that many cases of early recurrence were because of incomplete excision of the tumors during transurethral resection.1-3 Carcinoma in situ (CIS) of the urinary bladder is particularly difficult to diagnose by conventional cystoscopy. The early and definitive detection of CIS is important for an effective therapeutic outcome of NMIBC because of the increased risk of stage progression and reduced survival.4,5 Several novel endoscopic imaging techniques have been developed for the detection of bladder tumors, and the efficacy of fluorescence cystoscopy using dyes, such as 5-aminolevulinic acid (ALA),6,7 hexamethylelevulinic 5-ALA (HAL),7,8 or hypericin,7,8 has been reported. These studies showed that significantly more tumor lesions could be detected by fluorescence cystoscopy using dyes than by conventional cystoscopy using white light imaging (WLI) cystoscopy. Fluorescence cystoscopy demonstrated a sensitivity of >90% and a specificity ranging from 40% to 90% for the detection of tumor lesions.6-9

The narrow-band imaging (NBI) technique, in which modified optical filters are used in the light source of a video

1Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
2Department of Urology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan.
3Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
4Department of Urology, Hitachi General Hospital, Hitachi, Japan.
5Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
6Japan Bioassay Research Center, Iwaki, Japan.
endoscopy system, narrows the bandwidth of the spectral transmittance. NBI enhances the differences in penetration depth between wavelengths, because light penetration depth within the tissue is highly dependent on the wavelength; the shorter the wavelength, the more superficial the penetration. Blue light therefore penetrates most superficially, while red light penetrates deepest. In the NBI system, the relative intensity of the blue and green light is increased while the intensities of red light are decreased to a minimum. This enhances contrast in images of capillaries in the surface layers of the mucosal membranes and the detailed patterns on the mucosal membranes, without the use of dyes. Recent reports have suggested that NBI cystoscopy is more effective than standard WLI cystoscopy for the detection of bladder tumors.\(^{10,11}\)

The aim of this study was to examine the relationship between morphology and malignancy in the sites that are identified by NBI and to investigate the efficacy of this technique for the detection of malignancies in patients with suspected bladder cancer, using a prospective controlled study design.

Patients and Methods

Patients and study design

From July 2007 to January 2009, 104 consecutive patients with definite or suspected bladder tumor were enrolled in a prospective multicenter controlled study. The exclusion criteria included evidence of active bladder infection or exposure to radiation therapy or intravesical bacille Calmette-Guérin instillation therapy. Characteristics of the patients are shown in Table 1. In the patients with definite or suspected bladder tumor on cystoscopy, the average number of lesions is 1.7, ranging from 1 to 7. The patients were entered into the study after giving informed consent. This study was approved by the Institutional Review Board of each hospital involved.

Endoscopy equipment

The NBI system was equipped with a red, green, blue (RGB) sequential illumination light source unit (VISERA Pro, Olympus, Tokyo, Japan) and a video processor (CV-240, Olympus, Tokyo, Japan). NBI can be performed by using a light source with an option filter of NBI (CV-180). The light source contained two sets of rotating RGB filters; a WLI set for white light endoscopy and an additional set for NBI. The band-pass ranges of the RGB colors in the RGB filters designated for NBI were 600 to 620 nm, 530 to 550 nm, and 400 to 430 nm, respectively. In addition, the band-pass ranges of the red components of white light were narrowed, and the relative intensity of the blue and green light was increased. Switching between WLI and NBI was achieved by pushing a button on the video processor or using a foot switch.

Endoscopic procedure and histologic assessment

A total of 104 consecutive patients with definite or suspected bladder tumors were enrolled at four hospitals and treated according to the protocol. Biopsies were performed under anesthesia after observation by WLI and NBI rigid cystoscopy under the senior surgeons who had the experience of more than 20 cases of NBI cystoscopy. Initial observations were performed using WLI, followed by NBI. Abnormal-looking areas detected using either method were mapped and captured on image. Biopsies of definite or suspected tumor lesions were then obtained for pathologic examination. All patients received at least one biopsy from normal looking mucosa. The biopsies, which sites were decided before the biopsy, were performed under observation by both NBI and WLI to take a tissue sample accurately. To reduce potential variables, the WLI and NBI procedures for each patient were performed sequentially by the same surgeon, and all pathologic specimens were evaluated by a central pathologist.

Results

A total of 313 biopsies were obtained, including biopsies from sites identified by NBI and/or WLI as apparently normal (152 sites) or abnormal (161 sites). Seventy of the 161 (43.5%) abnormal-looking sites were identified only by NBI, while 91 (56.5%) sites were identified by both NBI and WLI (Table 2). All sites identified by WLI were also detected by NBI. Many of the sites identified only by NBI appeared as enhanced red or dark brown lesions against pale white normal mucosa, as shown in Figure 1, while many cases identified by both NBI and WLI appeared as red or dark brown, or tangible lesions, such as papillary tumors. In the sites identified only by NBI, malignancies such as CIS (25 sites) or pTa stage tumors (13 sites) were identified as red, edematous, or enhanced lesions. Inflammation (5 sites) and normal tissue (24 sites) were also

\[\text{TABLE 1. CHARACTERISTICS OF THE PATIENTS}\]

<table>
<thead>
<tr>
<th>Mean age (range)</th>
<th>70.6 (38-90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (men/female)</td>
<td>88/16</td>
</tr>
<tr>
<td>Primary/recurrent</td>
<td>45/59</td>
</tr>
<tr>
<td>Cytology (positive/negative/NE)</td>
<td>40/63/1</td>
</tr>
<tr>
<td>Cystoscopy findings (cytology: positive/negative/NE)</td>
<td></td>
</tr>
<tr>
<td>Definite BT</td>
<td>65 (18/46/1)</td>
</tr>
<tr>
<td>Papillary</td>
<td>52 (8/43/1)</td>
</tr>
<tr>
<td>Nonpapillary</td>
<td>13 (10/3/0)</td>
</tr>
<tr>
<td>Suspected BT</td>
<td>30 (13/17/0)</td>
</tr>
<tr>
<td>No lesion</td>
<td>9 (9/0/0)</td>
</tr>
<tr>
<td>Multiplicity on cystoscopy</td>
<td>9/52/43</td>
</tr>
</tbody>
</table>

\[\text{Table 2. Abnormal Sites Identified by Narrow-Band Imaging and White Light Imaging}\]

<table>
<thead>
<tr>
<th>NBI (+) WLI (-) (n = 70)</th>
<th>NBI (+) WLI (+) (n = 91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillary</td>
<td>Papillary, Nonpapillary</td>
</tr>
<tr>
<td>Papillary pedunculated</td>
<td>Papillary pedunculated</td>
</tr>
<tr>
<td>Papillary sessile</td>
<td>Papillary sessile</td>
</tr>
<tr>
<td>Redness</td>
<td>Nonpapillary sessile</td>
</tr>
<tr>
<td>Redness</td>
<td>Redness</td>
</tr>
<tr>
<td>Redness + edematous</td>
<td>Redness + edematous</td>
</tr>
<tr>
<td>Enhanced lesion</td>
<td>Enhanced lesion</td>
</tr>
<tr>
<td>Enhanced + edematous</td>
<td>Enhanced + redness</td>
</tr>
<tr>
<td>Edematous</td>
<td>Edematous</td>
</tr>
</tbody>
</table>

NE = not evaluated; BT = bladder tumor.
identified (Table 3). The percentages of malignancies in the sites that were identified only by NBI and those identified by both NBI and WLI were 55.7% (39/70 sites) and 69.2% (63/91 sites), respectively. In 28 of 104 (26.9%) patients, bladder tumors were identified only by NBI.

The detection of bladder tumors using NBI and WLI cystoscopy is compared in Table 4. The sensitivities for detecting bladder tumors in all 104 patients (313 biopsies) were 92.7% for NBI and 57.3% for WLI ($P < 0.01$), while the specificities were 70.9% and 86.2% ($P < 0.01$), positive predictive values (PPVs) were 63.4% and 69.2% (not significant), negative predictive values (NPVs) were 94.7% and 78.8% ($P < 0.01$), and the negative likelihood ratios (NLRs) were 0.10 and 0.50, respectively. There were more NBI-positive malignant lesions than WLI-positive malignant lesions (true positive; 102 vs 63). Conversely, there were fewer NBI-negative malignant lesions than WLI-negative malignant lesions (false negative; 8 vs 47).

The detection of CIS using NBI and WLI cystoscopy in 30 patients with CIS (113 biopsies) is shown in Table 5.

Table 3. Pathological Examination of Sites Identified as Abnormal by Narrow-Band, but not White Light Imaging

<table>
<thead>
<tr>
<th>NBI (+) sites</th>
<th>Pathology: No. of sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillary</td>
<td>$pT_a (G_2)$ 3</td>
</tr>
<tr>
<td>Papillary pedunculated</td>
<td>pT_{in} 2, $pT_a (G_2)$ 1, normal 1</td>
</tr>
<tr>
<td>Papillary wide-based Redness</td>
<td>pT_{in} 12, $pT_a (G_2)$ 4, dysplasia 2, normal 14, inflammation 4</td>
</tr>
<tr>
<td>Redness + edematous</td>
<td>pT_{in} 2</td>
</tr>
<tr>
<td>Enhanced lesion</td>
<td>pT_a 6, pT_{in} (G1) 1, normal 8</td>
</tr>
<tr>
<td>Enhanced + edematous</td>
<td>pT_a 1, $pT_1 (G_2 > G_3)$ 1</td>
</tr>
<tr>
<td>Edematous</td>
<td>pT_{in} 2, $pT_a (G_2)$ 4, normal 1, inflammation 1</td>
</tr>
</tbody>
</table>

NBI = narrow-band imaging; WLI = white light imaging.

Table 4. Detection of Bladder Tumors Using Narrow-Band Imaging and White Light Imaging Cystoscopy in 313 Biopsies from 104 Patients

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>NBI</th>
<th>WLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>102</td>
<td>63</td>
</tr>
<tr>
<td>-</td>
<td>59</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
<td>91</td>
</tr>
</tbody>
</table>

Sensitivity 92.7% (102/110)*
Specificity 70.9% (144/203)*
PPV 63.4% (102/161)
NPV 94.7% (144/152)*
NLR 0.10

NBI = narrow-band imaging; WLI = white light imaging; PPV = positive predictive value; NPV = negative predictive value; NLR = likelihood ratio of a negative test: specificity/(1-sensitivity).

($P < 0.01$).

* $P < 0.01$.

FIG. 1. Examples of the differences between tumors visualized with white light imaging (WLI) (left) and narrow-band imaging (NBI) cystoscopy (right). (a) Redness area around the primary tumor on NBI (right) was diagnosed as urothelial carcinoma, pT_a, G2. (b) Carcinoma in situ on WLI (left) appears more clearly as an enhanced lesion.
High-grade tumor (1 patient) that were detected only by NBI. Since the development of the NBI system, several studies have demonstrated its ability to display enhanced images of mucosal and vascular patterns in the bladder. This preliminary investigation provided experience of NBI and helped to determine the design of the current prospective study. The visibility of cystoscopy using NBI is reduced in patients with bleeding or inflammation because enhanced images are generated by emission of light from target areas in two narrow wavebands that are strongly absorbed by hemoglobin. Our earlier experiences suggested that bleeding or active inflammation in the surface layers made it difficult to detect abnormal lesions. In these cases, NBI might not be a suitable auxiliary method to WLI, because WLI has better visibility than NBI.

The results of the current study, however, suggest that NBI can provide a useful complementary method to standard cystoscopy, with the ability to detect abnormal lesions missed by WLI. Furthermore, because NBI is a simple procedure that allows accurate detection without the need for agents such as 5-ALA or HAL, it is suitable for the detection of bladder tumors in outpatients.

It is important to evaluate patients for recurrent bladder cancer was minimal, and concluded that there does not appear to be a learning curve of NBI cystoscopy.

We performed a pilot study in 98 outpatients at four hospitals between November 2006 and January 2007, to determine if NBI was able to produce visually satisfactory results for the diagnosis of bladder tumors and to determine if there were any features that clinically interfered with cystoscopic examinations. These preliminary experiments failed to detect any significant differences that hindered cystoscopic diagnosis using NBI, except in the case of one patient who had bleeding and inflammation in the bladder. This preliminary investigation was limited by the small number of patients and the lack of a control group. However, it suggested that NBI might be a useful tool for the detection of bladder tumors.

Table 5. Detection of Carcinoma In Situ Using Narrow-Band Imaging and White Light Imaging Cystoscopy in 113 Biopsies from 30 Patients with Carcinoma In Situ

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>NBI</th>
<th>WLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>47</td>
</tr>
</tbody>
</table>

Table 6. Results of Narrow-Band and White Light Imaging Cystoscopy in Cytology-Negative or -Positive Patients

<table>
<thead>
<tr>
<th>Cytology positive (n = 155)</th>
<th>Cytology negative (n = 157)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NBI</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>85.4%</td>
</tr>
<tr>
<td>Specificity</td>
<td>75.7%</td>
</tr>
<tr>
<td>PPV</td>
<td>61.2%</td>
</tr>
<tr>
<td>NPV</td>
<td>92.0%</td>
</tr>
<tr>
<td>NLR</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*P < 0.01.
red or enhanced lesions detected by NBI in the current study were inflammation pathologically, as shown in Table 3. The specificity of NBI for detecting bladder tumors, however, was high in patients with CIS (Table 5). The narrow waveband is unable to distinguish between a malignant cell and a normal cell but enhances the appearance of thick or inflamed mucosal layers. NBI can therefore detect increased thickness or inflammation of the urothelium associated with CIS. Furthermore, early recurrence of bladder tumors can result from incomplete resection of the tumor or growth of coexisting microscopic lesions not detected endoscopically during surgery. NBI provides better visualization of lesions by precise delineation of the surface layer, and may thus be useful when making decisions regarding the excision site of the tumor.

Conclusions

NBI is an effective method for the identification of abnormal lesions and can provide a useful auxiliary method to standard cystoscopy. It can be valuable for excluding a diagnosis of bladder tumors, including CIS, because of its high sensitivity, high NPV, and low NLR.

Acknowledgments

This work was supported in part by a grant from the Japanese Foundation for Research and Promotion of Endoscopy (JFE-2007).

Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:
Seiji Naito, M.D., Ph.D.
Department of Urology
Graduate School of Medical Sciences
Kyushu University
3-1-1 Maidashi, Higashi-ku
Fukuoka 812-8582
Japan

E-mail: naito@uro.med.kyushu-u.ac.jp

Abbreviations Used

ALA = 5-aminolevulinic acid
CIS = carcinoma in situ
HAL = hexaminolevulinate
NMIBC = nonmuscle-invasive bladder cancer
PPV = positive predictive value
NBI = narrow-band imaging
NLR = negative likelihood ratio
NPV = negative predictive value
RGB = red, green, blue
WLI = white light imaging