
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Solving open job-shop scheduling problems by
SAT encoding

Koshimura, Miyuki
Kyushu University

Nabeshima, Hidetomo
University of Yamanashi

Fujita, Hiroshi
Kyushu University

Hasegawa, Ryuzo
Kyushu University

https://hdl.handle.net/2324/26359

出版情報：IEICE Transactions on Information and Systems. E93-D (8), pp.2316-2318, 2010-08. 電
子情報通信学会
バージョン：
権利関係：(C) 2010 The Institute of Electronics, Information and Communication Engineers



2316
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

LETTER

Solving Open Job-Shop Scheduling Problems by SAT Encoding

Miyuki KOSHIMURA†a), Hidetomo NABESHIMA††, Hiroshi FUJITA†, and Ryuzo HASEGAWA†, Members

SUMMARY This paper tries to solve open Job-Shop Scheduling Prob-
lems (JSSP) by translating them into Boolean Satisfiability Testing Prob-
lems (SAT). The encoding method is essentially the same as the one pro-
posed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1,
YN2, YN3, and YN4. We proved that the best known upper bounds 678
of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper
bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
key words: combinatorial problem, scheduling, SAT encoding, job-shop
scheduling, makespan

1. Introduction

A job-shop scheduling problem (JSSP) is a combinatorial
optimization problem. There are several reports solving
JSSP [1]. They are divided into approximation methods and
exact methods. This paper tries to solve open JSSPs by SAT
encoding which is one of the exact methods.

In recent years, the propositional satisfiability (SAT)
problem has been studied intensely. The state-of-the-art
SAT solvers can solve a SAT problem which consists of mil-
lions of clauses in a few minutes. SAT is the prototypical
NP-complete problem, and every instance π of a problem in
NP can be translated into an instance of SAT. The birth of
high-speed SAT solvers motivates the translation approach
which encodes a certain problem π into a SAT problem and
solves it by a fast SAT solver. In this paper, we call this
problem solving technique the SAT encoding approach. It
seems to be promising to solve open problems with the SAT
encoding approach. There are several reports on succeeding
in solving open problems [2], [3].

This paper tries to solve six open JSSPs with the SAT
encoding approach. The six are ABZ8, ABZ9 [4], YN1,
YN2, YN3, and YN4 [5]. ABZ8 and ABZ9 are also known
as one of ten tough problems. The encoding is based on
Crawford and Baker [6].

2. SAT Scheduling

In this section, we introduce a job shop scheduling prob-
lem (JSSP) which is a typical scheduling problem, and ex-
plain the SAT encoding approach proposed by Crawford and
Baker [6]. We call this encoding Crawford encoding.

Manuscript received March 8, 2010.
†The authors are with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
††The author is with University of Yamanashi, Kofu-shi, 400–

8511 Japan.
a) E-mail: koshi@inf.kyushu-u.ac.jp

DOI: 10.1587/transinf.E93.D.2316

We represent a SAT problem in conjunctive normal
form (CNF). This form consists of the logical AND of one
or more clauses, which in turn consist of the logical OR of
one or more literals. A literal is a propositional variable or
its complement. We represent a clause as a set of literals.
The solution of a SAT problem is a truth assignment satis-
fying all clauses in the problem. When such an assignment
exists, we call the SAT problem satisfiable, otherwise, un-
satisfiable.

A JSSP consists of a set of n jobs {J1, · · · , Jn} and a
set of m machines {M1, · · · ,Mm}. Each job Jl is a sequence
of operations 〈Ol

1, · · · ,Ol
ql
〉. Each operation Ol

i requires the
exclusive use of a machine MOl

i
(1 ≤ Ol

i ≤ m) for an uninter-

rupted duration pl
i, its processing time. A schedule is a set of

start times for each operation Ol
i. The time required to com-

plete all the jobs is called the makespan L. The objective of
the JSSP is to determine the schedule which minimizes L.

We introduce three kinds of propositional variables:

• prl,k
i, j means that Ol

i precedes Ok
j.

• sal
i,t means that Ol

i starts at time t or later.
• ebl

i,t means that Ol
i ends by time t or before.

We translate the JSSP into a SAT problem by the fol-
lowing rules [7]. We make the Crawford encoding some-
what more precise. In this translation, we assume that the
makespan is at most L.

1. Ol
i precedes Ol

i+1:
prl,l

i,i+1 (1 ≤ l ≤ n, 1 ≤ i < ql)
2. If Ol

i and Ok
j require the same machines, then Ol

i pre-

cedes Ok
j or Ok

j precedes Ol
i. That is, if MOl

i
= MOk

j
,

then we add the clause:

prl,k
i, j ∨ prk,l

j,i
(1 ≤ l < k ≤ n)
(1 ≤ i ≤ ql, 1 ≤ j ≤ qk)

3. Ol
i is not able to start before all previous operations

Ol
1, · · · , and Ol

i−1 end. It requires at least t =
∑i−1

u=1 pl
u.

That is, Ol
i starts at time t or later:

sal
i,t (1 ≤ l ≤ n, 1 ≤ i ≤ ql, t =

i−1∑

u=1

pl
u)

4. Reversely, in order to complete all the jobs by L, it is
necessary for Ol

i to end by time t or before:

ebl
i,t (1 ≤ l ≤ n, 1 ≤ i ≤ ql, t = L −

ql∑

u=i+1

pl
u)

5. If Ol
i starts at or after time t, it starts at or after t − 1:

sal
i,t → sal

i,t−1 (1 ≤ l ≤ n, 1 ≤ i ≤ ql, 1 ≤ t ≤ L)

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



LETTER
2317

6. If Ol
i ends by t, then it ends by t + 1:

ebl
i,t → ebl

i,t+1 (1 ≤ l ≤ n, 1 ≤ i ≤ ql, 0 ≤ t < L)
7. If Ol

i starts at or after time t, then it cannot end before
time t + pl

i − 1:

sal
i,t → ¬ebl

i,t+pl
i−1

(1 ≤ l ≤ n, 1 ≤ i ≤ ql)
(0 ≤ t < L − pl

i + 1)
8. If Ol

i starts at or after t and Ok
j follows Ol

i, then Ok
j can-

not start until Ol
i is finished. That is, for prl,k

i, j added by
rule 1 and 2, we add the clause:
sal

i,t ∧ prl,k
i, j → sak

j,t+pl
i

(0 ≤ t ≤ L − pl
i)

Let S be the SAT problem translated by the above
Crawford encoding. If S is satisfiable, then JSSP can com-
plete all the jobs by the makespan L. Let M be the truth
assignment satisfying S . The start time tl

i of each operation
Ol

i is given by extracting the last sal
i,t which is assigned as

true in M. More precisely, tl
i is given by t which satisfies the

following expression:

(M |= sal
i,t) ∧ (¬∃u > t (M |= sal

i,u))

where M |= x indicates x is assigned true in M.
Let S L be a SAT problem generated by the Crawford

encoding under the assumption that the makespan is at most
L. If we find a positive integer k such that S k−1 is un-
satisfiable and S k is satisfiable, then we conclude that the
minimum makespan is k. Such a k divides SAT problems
S i (1 ≤ i) into an unsatisfiable part S i (1 ≤ i < k) and a
satisfiable part S i (k ≤ i).

3. Experimental Results

We tried to solve six open JSSPs: ABZ8, ABZ9, YN1, YN2,
YN3, and YN4. These problems are obtained from the OR-
Library†. ABZn consists of 20 jobs and 15 machines, and
YNn consists of 20 jobs and 20 machines. Table 1 shows
the best known lower bounds (LB) and upper bounds (UB)
indicated in the literature [1], [8], [9].

For each problem P, we generate UB − LB + 2 SAT
instances S P

LB−1, S P
LB, . . ., and S P

UB with the Crawford en-
coding and solve them with the SAT solver MiniSat [10].
Even though we know S P

LB−1 is unsatisfiable because of the
lower bound LB and S P

UB is satisfiable because of the upper
bound UB, we solve them in order to verify the values. We
use MiniSat version 2.

All experiments were conducted on the cluster machine
A of CFV (Collaborative Facilities for Verification) SAT-
SUKI in AIST (National Institute of Advanced Industrial
Science and Technology). The cluster machine A consists of

Table 1 LB and UB.

Problem LB UB
ABZ8 646 665
ABZ9 662 678
YN1 846 884
YN2 870 907
YN3 840 892
YN4 920 968

112 nodes. Each node is a Xeon X5260 3.3 GHz machine
with 8 GB memory on Linux 2.6.26-2-amd64.

3.1 Solving ABZ9 and YN1

We succeeded to solve ABZ9 and YN1. We showed that
the optimum solutions of ABZ9 and YN1 are 678 and 884
respectively. This means that the best known upper bounds
of ABZ9 and YN1 are really optimal.

Tables 2 and 3 show the experimental results of
S ABZ9

N (N = 661, . . . , 678) and S YN1
N (N = 875, . . . , 884)

respectively. The second and third columns show the size of
the SAT instance. The second shows the number of propo-
sitional variables and the third shows the number of clauses
in the corresponding SAT instance. As N increases, the size
of SAT instances increases linearly, while the CPU time in-
creases exponentially. This reflects NP-hardness of JSSP.

The only exception is the result of S ABZ9
678 , which is

much easier than S ABZ9
677 . The main reason is that S ABZ9

678 is
satisfiable while S ABZ9

677 is unsatisfiable. We finish solving
S ABZ9

678 when a truth assignment satisfying S ABZ9
678 is found.

Therefore, we need not examine the whole search space
of S ABZ9

678 while we must examine the whole search space

Table 2 Results of S ABZ9
N (N = 661, . . . , 678).

Number of CPU Satis-
N Variables Clauses (secs) fiable

661 403180 4402236 6595 no
662 403780 4409116 8946 no
663 404380 4415996 10363 no
664 404980 4422876 12673 no
665 405580 4429756 14279 no
666 406180 4436636 16616 no
667 406780 4443516 21905 no
668 407380 4450396 26847 no
669 407980 4457276 39692 no
670 408580 4464156 42939 no
671 409180 4471036 64439 no
672 409780 4477916 104448 no
673 410380 4484796 119798 no
674 410980 4491676 132638 no
675 411580 4498556 240493 no
676 412180 4505436 268354 no
677 412780 4512316 457021 no
678 413380 4519196 10530 yes

Table 3 Results of S YN1
N (N = 875, . . . , 884).

Number of CPU Satis-
N Variables Clauses (secs) fiable

875 708780 7799938 184492 no
876 709580 7809118 296314 no
877 710380 7818298 373687 no
878 711180 7827478 549011 no
879 711980 7836658 620052 no
880 712780 7845838 1058190 no
881 713580 7855018 1166480 no
882 714380 7864198 2007540 no
883 715180 7873378 1912690 no
884 715980 7882558 3149770 yes

†http://people.brunel.ac.uk/˜mastjjb/jeb/info.html



2318
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Table 4 Improvement of LB and UB.

Prob- SAT CPU Satis- New
lem instance (secs) fiable LB UB

ABZ8 S ABZ8
658 7611330 no 659

YN2 S YN2
892 5739010 no 893

YN2 S YN2
905 803983 yes 905

YN3 S YN3
879 3419330 no 880

YN4 S YN4
947 3554680 no 948

Table 5 New LB and UB.

Problem LB UB

ABZ8 659b 665
ABZ9 678a

YN1 884a

YN2 893b 905c

YN3 880b 892
YN4 948b 968

a The optimum solution found by us.
b The new LB found by us.
c The new UB found by us.

of S ABZ9
677 .

3.2 Improving LB and UB

We succeeded to improve LB of ABZ8, YN2, YN3 and
YN4, and UB of YN2. Table 4 shows experimental results
on the SAT instances proof of which gives the best LB or
UB. Solving more difficult problems, for example, S YN2

895 ,
S YN4

950 , etc., needs more than 8 GB memory which is beyond
our machine. Table 5 summarises the new LB and UB.

4. Concluding Remarks

We tried to solve six open JSSPs with the SAT encoding
approach. The new optimum solutions are 678 of ABZ9
and 884 of YN1. For all other problems new lower bounds
are obtained; and for YN2 a new upper bound is obtained.
These results show the effectiveness of the SAT encoding
approach for solving open combinatorial problems.

Four problems (ABZ8, YN2, YN3, and YN4) remain
open. Solving these problems needs more than several
months and 8 GB memory if we follow the current approach.
In order to tackle these hard problems, parallel comput-
ing seems to be a promising approach [11], [12]. Therefore,

future work includes parallelisation of SAT solving. We will
also tackle other open problems and investigate new SAT
encoding methods.

Acknowledgements

We are most grateful to SATSUKI in AIST for letting us
use the cluster machine. This work was supported by JSPS
KAKENHI (20240003).

References

[1] A.S. Jain and S. Meeran, “Deterministic job-shop scheduling: Past,
present and future,” Eur. J. Oper. Res., vol.113, pp.390–434, 1999.

[2] H. Zhang, Combinatorial Designs by SAT Solvers, Handbook of
Satisfiability, ch. 17, pp.533–568, IOS Press, 2009.

[3] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling fi-
nite linear csp into sat,” Constraints, vol.14, pp.254–272, 2009.

[4] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck proce-
dure for job shop scheduling,” Manage. Sci., vol.34, no.3, pp.391–
401, 1988.

[5] T. Yamada and R. Nakano, “A genetic algorithm applicable to large-
scale job-shop problems,” Proc. PPSN’92: Second International
Conference on Parallel Problem Solving from Nature, pp.281–290,
1992.

[6] J.M. Crawford and A.B. Baker, “Experimental results on the ap-
plication of satisfiability algorithms to scheduling problems,” Proc.
AAAI-94: 12th National Conference on Artificial Intelligence,
pp.1092–1097, 1994.

[7] H. Nabeshima, T. Soh, K. Inoue, and K. Iwanuma, “Lemma reusing
for SAT based planning and scheduling,” Proc. ICAPS 2006: 16th
International Conference on Automated Planning and Scheduling,
pp.103–112, 2006.

[8] W. Brinkkötter and P. Brucker, “Solving open benchmark instances
for the job-shop problem by parallel head-tail adjustments,” J.
Scheduling, vol.4, pp.53–64, 2001.

[9] C.Y. Zhang, P. Li, Y. Rang, and Z. Guan, “A very fast ts/sa algorithm
for the job shop scheduling problem,” Computer & Operations Re-
search, vol.35, pp.282–294, 2008.

[10] N. Eén and N. Sörensson, “Minisat: A sat solver with conflict-clause
minimization,” Proc. SAT-05: 8th International Conference on The-
ory and Applications of Satisfiability Testing, pp.502–518, 2005.

[11] K. Inoue, T. Soh, S. Ueda, Y. Sasaura, M. Banbara, and N. Tamura,
“A competitive and cooperative approach to propositional satisfia-
bility,” Discrete Appl. Math., vol.154, pp.2291–2306, 2006.

[12] K. Ohmura and K. Ueda, “c-sat: A parallel sat solver for clus-
ters,” Proc. SAT 2009: 12th International Conference on Theory
and Applications of Satisfiability Testing, LNCS 5584, pp.524–537,
Springer, 2009.


