九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Improved bounds on Restricted isometry for compressed sensing

Inoue，Hiroshi
Graduate School of Mathematics，Kyushu University
https：／／hdl．handle．net／2324／26120

出版情報：MI Preprint Series．2013－6，2013－03－11．Faculty of Mathematics，Kyushu University バージョン：
権利関係：

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education \& Research Hub

Improved bounds on Restricted isometry for compressed sensing

Hiroshi Inoue

MI 2013-6
(Received March 11, 2013)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Improved bounds on restricted isometry for compressed sensing

Hiroshi Inoue*
* Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

h-inoue@math.kyushu-u.ac.jp

Abstract

This paper discusses new bounds for restricted isometry property in compressed sensing. In the literature, E.J. Candès has proved that $\delta_{2 s}<\sqrt{2}-1$ is a sufficient condition via l_{1} optimization having s-sparse vector solution. Later, many researchers have improved the sufficient conditions on $\delta_{2 s}$ or δ_{s}. In this paper, we have improved the sufficient condition to $\delta_{s}<0.309$ and have given the sufficient condition to $\delta_{k}(s<k)$ using an idea of Q. Mo and S. Li' result. Furthermore, we have improved the sufficient conditions to $\delta_{2 s}<0.593$ and $\delta_{s}<0.472$ in special case.

Key Words and Phrases: Compressed sensing, Restricted isometry constants, Restricted isometry property, Sparse approximation, Sparse signal recovery.

1 Introduction

This paper introduces the theory of compressed sensing(CS). For a signal $\boldsymbol{x} \in \boldsymbol{R}^{n}$, let $\|\boldsymbol{x}\|_{1}$ be l_{1} norm of \boldsymbol{x} and $\|\boldsymbol{x}\|_{2}$ be l_{2} norm of \boldsymbol{x}. Let \boldsymbol{x} be a sparse or nearly sparse vector. Compressed sensing aims to recover high-dimensional signal (for example: images signal, voice signal, code signal...etc.) from only a few samples or linear measurements. Formally, one considers the following model:

$$
\begin{equation*}
\boldsymbol{y}=A \boldsymbol{x}+\boldsymbol{z} \tag{1}
\end{equation*}
$$

where A is a $m \times n$ matrix $(m<n)$ and \boldsymbol{z} is a vector of measurement error.
Our goal is to reconstruct an unknown signal \boldsymbol{x} based on A and \boldsymbol{y} are given. Then we consider reconstructing \boldsymbol{x} as the solution \boldsymbol{x}^{\star} to the optimization problem

$$
\begin{equation*}
\min _{\tilde{\boldsymbol{x}}}\|\tilde{\boldsymbol{x}}\|_{1}, \quad \text { subject to }\|\boldsymbol{y}-A \tilde{\boldsymbol{x}}\|_{2} \leq \varepsilon, \tag{2}
\end{equation*}
$$

where ε is an upper bound on the measurement error.
In fact, we can recover the signal \boldsymbol{x} in noiseless case under sufficient conditions. In CS theory, a crucial issue is to research good conditions in order to achieve our goal. One of the most generally known condition for CS theory is the restricted isometry property(RIP) introduced by E.J. Candès and T. Tao [4]. When we discuss our proposed results, it is an important notion. The RIP needs that the subsets of columns of A for all locations in $\{1,2, \cdots, n\}$ behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of order s if there exists a constant δ with $0<\delta<1$ such that

$$
\begin{equation*}
(1-\delta)\|\boldsymbol{a}\|_{2}^{2} \leq\|A \boldsymbol{a}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{a}\|_{2}^{2} \tag{3}
\end{equation*}
$$

for all s-sparse vectors \boldsymbol{a}. A vector is said to be s-sparse vector if it has at most s nonzero entries. The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is denoted by δ_{s}.

It has been shown that l_{1} optimization can recover an unknown signal in noiseless case and noisy case under various sufficient conditions on δ_{s} or $\delta_{2 s}$. For example, E.J. Candès and T. Tao [4] have proved that if $\delta_{2 s}<\sqrt{2}-1$, then an unknown signal can be recovered. Later, S. Foucart and M. Lai [6] have improved the bound to $\delta_{2 s}<0.4531$. Others, $\delta_{2 s}<0.4652$ is used by S. Foucart [5], $\delta_{2 s}<0.4721$ for cases such that s is a multiple of 4 or s is very large by T. Cai. el.al. [2], $\delta_{2 s}<0.4734$ for the case such that s is very large by S. Foucart [5] and $\delta_{s}<0.307$ by T. Cai el.al. [2]. In a resent paper, Q. Mo and S. Li [7] have improved the sufficient condition to $\delta_{2 s}<0.4931$ for general case and $\delta_{2 s}<0.6569$ in some special case.

In this paper, we propose the sufficient condition of δ_{s} and the sufficient condition to δ_{k} (each number $k>s$) using the idea of Q. Mo and S. Li. Furthermore, we propose the sufficient condition of δ_{s} and $\delta_{k}(k>s)$ in case of $\|A\| \leq 1$, where $\|\cdot\|$ is operator norm. The special case is different from the case $(n<4 s)$ in Q . Mo and S . Li [7].

There are several benefits for considering the bounds of δ_{s} and $\delta_{k}(k>s)$ in case of $\|A\| \leq 1$. First, we suppose that a matrix satisfy the condition to $\|A\| \leq 1$, where $\|\cdot\|$ is operator norm. However, we do not suppose the condition of sparsity. Practically, we can not know the sparsity of \boldsymbol{x} but we can calculate $\|A\|$. Second, it gives better error bounds to recover noisy signal in special case. Thirdly, the assessments of various cases
lead to developments for signal analysis or other analysis.
Our analysis is very simple and elementary. We introduce the proposed results using E.J. Cands̀' idea, T. Cai el.al.' idea and Q. Mo and S. Li' idea. We regard Theorem 3.1, 3.2, 3.3 and 3.4 as the main results in this paper. Otherwise, in Section 2, we prepare some notions and lemmas to prove main theorems. In Section 3, we introduce new bounds of δ_{s} and generalizations of $\delta_{2 s}$ in general cases and new error bounds. In Section 4, we introduce new bounds of δ_{s} and $\delta_{k}(k>s)$ in case of $\|A\| \leq 1$ and new error bounds.

2 Preliminaries and Some Lemmas

In this section, we prepare some lemmas needed for the proofs of Theorem 3.1 and Theorem 3.2.

Lemma 2.1. Take any $t \geq 1$ and positive integers $s^{\prime}, s^{\prime \prime}$ such tha $t s^{\prime}$ is an integer. Suppose that A obeys the RIP of order $\left(t s^{\prime}+s^{\prime \prime}\right)$. Then,

$$
\begin{equation*}
|<A \boldsymbol{a}, A \boldsymbol{b}>| \leq \sqrt{t} \delta_{s^{\prime}+s^{\prime \prime}}\|\boldsymbol{a}\|_{2}\|\boldsymbol{b}\|_{2} \tag{4}
\end{equation*}
$$

for any vectors $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{R}^{n}$ with disjoint supports and sparsity $t s^{\prime}$ and $s^{\prime \prime}$, respectively. In particular, if $\|A\| \leq 1$, then

$$
\begin{equation*}
\left|<A \boldsymbol{a}, A \boldsymbol{b}>\left|\leq \frac{\sqrt{t}}{2} \delta_{s^{\prime}+s^{\prime \prime}}\|\boldsymbol{a}\|_{2}\right| \boldsymbol{b} \|_{2} .\right. \tag{5}
\end{equation*}
$$

Proof. The proof of this lemma can be obtained based on a minor modification of [3].

Lemma 2.2. For any $\boldsymbol{a} \in \boldsymbol{R}^{k}$, we have

$$
\begin{equation*}
\|\boldsymbol{a}\|_{2} \leq \frac{1}{\sqrt{k}}\|\boldsymbol{a}\|_{1}+\frac{\sqrt{k}}{4}\left(\max _{1 \leq i \leq k}\left|a_{i}\right|-\min _{1 \leq i \leq k}\left|a_{i}\right|\right) . \tag{6}
\end{equation*}
$$

Proof. The proof of this lemma can be obtained by [2, Proposition 2.1.].

Suppose \boldsymbol{x} is an original signal we need to recover and \boldsymbol{x}^{\star} is the solution of CS optimization problem (2). Let $\boldsymbol{h} \equiv \boldsymbol{x}^{\star}-\boldsymbol{x}$ and $\boldsymbol{h}=\left(h_{1}, \cdots, h_{n}\right)$. For simplicity, we assume that the index of \boldsymbol{h} is sorted by $\left|h_{1}\right| \geq\left|h_{2}\right| \geq \cdots \geq\left|h_{n}\right|$. Throughout this paper, let T_{0} be an
arbitrary location of $\{1,2, \cdots, n\}$ with $\left|T_{0}\right|=s$ and let $\left\{T_{1}, T_{2}, \cdots, T_{l}\right\}$ be a decomposition of $\{1,2, \cdots, n\}$ with $\left|T_{1}\right|=s,\left|T_{k}\right|=s^{\prime}(2 \leq k \leq l-1)$ and $1 \leq\left|T_{l}\right| \equiv r \leq s^{\prime}$, where $|T|$ is number of elements of T. We consider the decomposition of \boldsymbol{h} as follows:

$$
\begin{aligned}
\boldsymbol{h}_{T_{1}} & =\left(h_{1}^{\left(T_{1}\right)}, h_{2}^{\left(T_{1}\right)}, \cdots, h_{s}^{\left(T_{1}\right)}, 0, \cdots, 0\right) \\
\boldsymbol{h}_{T_{2}} & =\left(0, \cdots, 0, h_{1}^{\left(T_{2}\right)}, \cdots, h_{s^{\prime}}^{\left(T_{2}\right)}, 0, \cdots, 0\right) \\
& \vdots \\
\boldsymbol{h}_{T_{l-1}} & =\left(0, \cdots, 0, h_{1}^{\left(T_{l-1}\right)}, \cdots, h_{s^{\prime}}^{\left(T_{l-1}\right)}, 0, \cdots, 0\right) \\
\boldsymbol{h}_{T_{l}} & =\left(0, \cdots 0, h_{1}^{\left(T_{l}\right)}, \cdots, h_{r}^{\left(T_{l}\right)}\right) .
\end{aligned}
$$

This is due to the T. Cai et.al.' idea [2] in case of $s=s^{\prime}$. We have the following Lemma 2.3-Lemma 2.9 for the decomposition $\left(\boldsymbol{h}_{T_{1}}, \boldsymbol{h}_{T_{2}}, \cdots, \boldsymbol{h}_{T_{l}}\right)$ of \boldsymbol{h}. By definition of CS optimization (2), we have the following

Lemma 2.3. We have

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1} \leq 2\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{0}}\right\|_{1} . \tag{7}
\end{equation*}
$$

Refer to [3] for the proof of Lemma 2.3. T. Cai et.al. [2] have obtained a similar result for the location T_{1}.

Lemma 2.4. For $\left|T_{0}\right|=\left|T_{1}\right|=s$, we have

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1} \leq 2\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{1}}\right\|_{1} . \tag{8}
\end{equation*}
$$

Proof. Since $\left|T_{0}^{c} \cap T_{1}\right|=\left|T_{0} \cap T_{1}^{c}\right|$, we have $\left\|\boldsymbol{h}_{T_{0} \cap T_{1}^{c}}\right\|_{1} \leq\left\|\boldsymbol{h}_{T_{0}^{c} \cap T_{1}}\right\|_{1}$, which implies by (7) that

$$
\begin{aligned}
\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1} & =\left\|\boldsymbol{h}_{T_{0} \cap T_{1}^{c}}^{c}\right\|_{1}+\left\|\boldsymbol{h}_{T_{0}^{c}}\right\|_{1}-\left\|\boldsymbol{h}_{T_{1} \cap T_{0}^{c}}^{c}\right\|_{1} \\
& \leq 2\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{1}}\right\|_{1}+2\left(\left\|\boldsymbol{h}_{T_{0} \cap T_{1}^{c}}\right\|_{1}-\left\|\boldsymbol{h}_{T_{1} \cap T_{0}^{c}}\right\|_{1}\right) \\
& \leq 2\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{1}}\right\|_{1} .
\end{aligned}
$$

Lemma 2.5. We have

$$
\begin{equation*}
\sum_{i \geq 2}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2} \leq \frac{2}{\sqrt{s^{\prime}}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left(\frac{\sqrt{s}}{\sqrt{s^{\prime}}}+\frac{\sqrt{s^{\prime}}}{4 \sqrt{s}}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \tag{9}
\end{equation*}
$$

Proof. By using Lemma 2.2, we have

$$
\left\|\boldsymbol{h}_{T_{i}}\right\|_{2} \leq \frac{1}{\sqrt{s^{\prime}}}\left\|\boldsymbol{h}_{T_{i}}\right\|_{1}+\frac{\sqrt{s^{\prime}}}{4}\left(\left|h_{1}^{\left(T_{i}\right)}\right|-\left|h_{1}^{\left(T_{i+1}\right)}\right|\right), \quad 3 \leq i \leq l-1,
$$

which implies by Lemma 2.3 that

$$
\begin{align*}
\sum_{i \geq 2}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2} & \leq \frac{1}{\sqrt{s^{\prime}}} \sum_{i \geq 2}\left\|\boldsymbol{h}_{T_{i}}\right\|_{1}+\frac{\sqrt{s^{\prime}}}{4}\left|h_{1}^{\left(T_{2}\right)}\right| \tag{10}\\
& \leq \frac{2}{\sqrt{s^{\prime}}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left(\frac{\sqrt{s}}{\sqrt{s^{\prime}}}+\frac{\sqrt{s^{\prime}}}{4 \sqrt{s}}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} .
\end{align*}
$$

Similarly we have the following

Lemma 2.6. Let $T_{1}=\left\{T_{1}^{\prime}, T_{1}^{\prime \prime}\right\}$ be a decomposition of T_{1} with $\left|T_{1}^{\prime}\right|=s^{\prime}$ and $\left|T_{1}^{\prime \prime}\right|=s^{\prime \prime}$. Then, $s^{\prime}=t s, s^{\prime \prime}=(1-t) s$ for some $t \in(0,1)$ and

$$
\begin{equation*}
\sum_{i \geq 2}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2} \leq \frac{2}{\sqrt{s(1-t)}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left(\frac{1}{\sqrt{1-t}}+\frac{\sqrt{1-t}}{4}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \tag{11}
\end{equation*}
$$

We put $\left\|\boldsymbol{h}_{T_{2}}\right\|_{1} \equiv p \sum_{i \geq 2}\left\|\boldsymbol{h}_{T_{i}}\right\|_{1}=p\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}$. Then $0 \leq p \leq 1$ and $\sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{1}=$ $(1-p)\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}$. Then the following Lemma 2.7 is easily shown and Lemma 2.8 is also easily shown by using the inequality (10).

Lemma 2.7. We have

$$
\begin{equation*}
\sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}^{2}<\frac{p(1-p)}{s^{\prime}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} \tag{12}
\end{equation*}
$$

Lemma 2.8. We have

$$
\begin{equation*}
\sum_{i \geq 3}\left\|\boldsymbol{h}_{i}\right\|_{2}<\frac{1-3 p / 4}{\sqrt{s^{\prime}}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1} . \tag{13}
\end{equation*}
$$

Lemma 2.9. We have

$$
\begin{equation*}
\left\|\sum_{i \geq 3} A \boldsymbol{h}_{T_{i}}\right\|_{2}^{2} \leq \frac{1}{s^{\prime}}\left(p(1-p)+\delta_{2 s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}\right)\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} . \tag{14}
\end{equation*}
$$

Proof. By the definition of RIP, Lemma 2.1, Lemma 2.6 and Lemma 2.7, we have

$$
\begin{aligned}
\left\|\sum_{i \geq 3} A \boldsymbol{h}_{T_{i}}\right\|_{2}^{2} & =\sum_{i \geq 3}<A \boldsymbol{h}_{T_{i}}, A \boldsymbol{h}_{T_{i}}>+2 \sum_{3 \leq i<j \leq l}<A \boldsymbol{h}_{T_{i}}, A \boldsymbol{h}_{T_{j}}> \\
& \leq \sum_{i \geq 3}\left(1+\delta_{s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}^{2}+2 \sum_{3 \leq i<j \leq l} \delta_{2 s^{\prime}}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2} \\
& \leq \sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}^{2}+\delta_{2 s^{\prime}}\left(\sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}\right)^{2} \\
& \leq \frac{p(1-p)}{s^{\prime}}\left\|\boldsymbol{h}_{T_{1}}\right\|_{1}^{2}+\frac{\delta_{2 s^{\prime}}}{s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} \\
& =\frac{1}{s^{\prime}}\left(p(1-p)+\delta_{2 s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}\right)\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} .
\end{aligned}
$$

Lemma 2.7, 2.8 and 2.9 are due to the Q. Mo and $\mathrm{S} . \operatorname{Li}[7]$ in case of $s^{\prime}=s$.

3 Main results

In this section, we introduce the main results of the sufficient condition of δ_{s} and generalization of sufficient condition of Q . Mo and S . Li' result in general case.

3.1 New Bound for δ_{s}

We have established the sufficient condition $\delta_{s}<0.309$ for CS optimization problem in general case.

Theorem 3.1. Assume that A obeys the RIP of order s and $\delta_{s}<\frac{1}{1+\sqrt{5}} \approx 0.309$. Then, the solution \boldsymbol{x}^{\star} to (2) obeys

$$
\begin{equation*}
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq C_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+C_{1} \varepsilon \tag{15}
\end{equation*}
$$

where

$$
C_{0}=\frac{3\left(5+(3 \sqrt{5}-5) \delta_{s}\right)}{5\left(1-(\sqrt{5}+1) \delta_{s}\right) \sqrt{s}}, \quad C_{1}=\frac{16 \sqrt{1+\delta_{s}}}{3\left(1-(\sqrt{5}+1) \delta_{s}\right)} .
$$

Proof. Let $T_{1}=\left\{T_{1}^{\prime}, T_{1}^{\prime \prime}\right\}$ be a decomposition of T_{1} with $\left|T_{1}^{\prime}\right|=s^{\prime}$ and $\left|T_{1}^{\prime \prime}\right|=s^{\prime \prime}$. Then, $s^{\prime}=t s, s^{\prime \prime}=(1-t) s$ for some $t \in(0,1)$. By Lemma 2.1, we have

$$
\begin{aligned}
\left(1-\delta_{s}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2} & \leq<A \boldsymbol{h}_{T_{1}}, A \boldsymbol{h}-\sum_{j \geq 2} A \boldsymbol{h}_{T_{j}}> \\
& \leq 2 \sqrt{1+\delta_{s}} \varepsilon\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}+\frac{1}{\sqrt{t}} \delta_{s}\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}\left(\sum_{j \geq 2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2}\right) .
\end{aligned}
$$

Thus, by Lemma 2.5 and the above inequality, we have

$$
\begin{align*}
\left(1-\delta_{s}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq & 2 \sqrt{1+\delta_{s}} \varepsilon+\frac{2 \delta_{s}}{\sqrt{(1-t) t s}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1} \\
& +\frac{1}{\sqrt{t}}\left(\frac{1}{\sqrt{1-t}}+\frac{\sqrt{1-t}}{4}\right) \delta_{s}\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} . \tag{16}
\end{align*}
$$

Here, put $f(t)=\frac{1}{\sqrt{t}}\left(\frac{1}{\sqrt{1-t}}+\frac{\sqrt{1-t}}{4}\right)$. Then, f is increasing when $\frac{5}{9}<t<1$ and decreasing when $0<t<\frac{5}{9}$. Thus, when $t=\frac{5}{9}$, we have

$$
\begin{equation*}
\left(1-\delta_{s}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq 2 \sqrt{1+\delta_{s}} \varepsilon+\frac{9}{\sqrt{5 s}} \delta_{s}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\sqrt{5} \delta_{s}\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}, \tag{17}
\end{equation*}
$$

so that by assumption $\delta_{s}<\frac{1}{1+\sqrt{5}} \approx 0.309$,

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq \frac{1}{1-(\sqrt{5}+1) \delta_{s}}\left(2 \sqrt{1+\delta_{s}} \varepsilon+\frac{9}{\sqrt{5 s}} \delta_{s}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}\right) \tag{18}
\end{equation*}
$$

Furthermore, it follows from Lemma 2.5 that

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{2} \leq \frac{3}{\sqrt{s}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\frac{5}{3}\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}, \tag{19}
\end{equation*}
$$

which implies by (18) that

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}+\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{2} \leq C_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+C_{1} \varepsilon .
$$

This completes the proof.

3.2 Generalization of Q . Mo and S . Li' result

Using the E.J. Candès decomposition $\left\{T_{1}, T_{2}, \cdots, T_{q}\right\}$ of T_{0}^{c} with $\left|T_{k}\right|=s(k=1, \cdots, q)$ and $\left|h_{1}^{\left(T_{1}\right)}\right| \geq\left|h_{2}^{\left(T_{1}\right)}\right| \geq \cdots \geq\left|h_{s}^{\left(T_{1}\right)}\right| \geq\left|h_{1}^{\left(T_{2}\right)}\right| \geq\left|h_{2}^{\left(T_{2}\right)}\right| \geq \cdots$, Q. Mo and S. Li [7] have obtained a new bound of the isometry constant $\delta_{2 s}$. In this section, using the decomposition of $\left\{T_{1}, T_{2}, \cdots, T_{l}\right\}$ stated in Section 2 and taking an arbitrary natural
number s^{\prime}, we have obtained a new bound of the isometry constant $\delta_{k}(s<k)$.

Theorem 3.2. (1) Let $\frac{s}{8}<s^{\prime} \leq s$. We assume A obeys the RIP of order $\left(s+s^{\prime}\right)$ and $\frac{\sqrt{s}}{\sqrt{s^{\prime}}} \theta_{s, s^{\prime}}<1$, equivalently

$$
\delta_{s+s^{\prime}}<\frac{20 s+57 s^{\prime}-\sqrt{656 s^{2}+632 s s^{\prime}+49 s^{\prime 2}}}{2\left(16 s+25 s^{\prime}\right)} .
$$

Then,

$$
\begin{equation*}
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1} \varepsilon \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{s, s^{\prime}} & =\sqrt{\frac{4\left(1+5 \delta_{s+s^{\prime}}-4 \delta_{s+s^{\prime}}^{2}\right)}{\left(1-\delta_{s+s^{\prime}}\right)\left(32-25 \delta_{s+s^{\prime}}\right)}}, \\
D_{0} & =\frac{4 \sqrt{2}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}} \sqrt{\frac{2-\delta_{s+s^{\prime}}}{\left(1-\delta_{s+s^{\prime}}\right)\left(32-25 \delta_{s+s^{\prime}}\right)}}, \\
D_{1} & =\frac{2}{\sqrt{1-\delta_{s+s^{\prime}}}}\left(1+\frac{4 \sqrt{s}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}} \sqrt{\frac{2-\delta_{s+s^{\prime}}}{\left(1-\delta_{s+s^{\prime}}\right)\left(32-25 \delta_{s+s^{\prime}}\right)}}\right) .
\end{aligned}
$$

(2) Let $s^{\prime} \geq s$. We assume that A obeys the RIP of order $2 s^{\prime}$ and $\frac{\sqrt{s}}{\sqrt{s^{\prime}}} \theta_{s^{\prime}}<1$, equivalently

$$
\delta_{2 s^{\prime}}<\frac{20 s+57 s^{\prime}-\sqrt{656 s^{2}+632 s s^{\prime}+49 s^{\prime 2}}}{2\left(16 s+25 s^{\prime}\right)} .
$$

Then,

$$
\begin{equation*}
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}^{\prime}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1}^{\prime} \varepsilon \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{s^{\prime}} & =\sqrt{\frac{4\left(1+5 \delta_{2 s^{\prime}}-4 \delta_{2 s^{\prime}}^{2}\right)}{\left(1-\delta_{2 s^{\prime}}\right)\left(32-2 \delta_{2 s^{\prime}}\right)}}, \\
D_{0}^{\prime} & =\frac{4 \sqrt{2}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s^{\prime}}} \sqrt{\frac{2-\delta_{2 s^{\prime}}}{\left(1-\delta_{2 s^{\prime}}\right)\left(32-25 \delta_{2 s^{\prime}}\right)}}, \\
D_{1}^{\prime} & =\frac{2}{\sqrt{1-\delta_{2 s^{\prime}}}}\left(1+\frac{4 \sqrt{s}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s^{\prime}}} \sqrt{\frac{2-\delta_{2 s^{\prime}}}{\left(1-\delta_{2 s^{\prime}}\right)\left(32-25 \delta_{2 s^{\prime}}\right)}}\right) .
\end{aligned}
$$

Proof. Let $\frac{s}{8}<s^{\prime} \leq s$. By the definition of RIP and Lemma 2.7, we have

$$
\begin{aligned}
\left(1-\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2}= & \left(1-\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{1} \cup T_{2}}\right\|_{2}^{2}-\left(1-\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{2}}\right\|_{2}^{2} \\
\leq & \left\|A \boldsymbol{h}-\sum_{j \geq 3} A \boldsymbol{h}_{T_{j}}\right\|_{2}^{2}-\frac{\left(1-\delta_{s+s^{\prime}}\right.}{s^{\prime}} p^{2}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} \\
\leq & \left(2 \varepsilon+\left\|\sum_{j \geq 3} A \boldsymbol{h}_{T_{j}}\right\|_{2}\right)^{2}-\frac{\left(1-\delta_{s+s^{\prime}}\right)}{s^{\prime}} p^{2}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2} \\
\leq & 4 \varepsilon^{2}+4 \varepsilon \frac{1}{\sqrt{s^{\prime}}} \sqrt{p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1} \\
& +\frac{1}{s^{\prime}}\left(p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}-\left(1-\delta_{s+s^{\prime}}\right) p^{2}\right)\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1} .
\end{aligned}
$$

Since

$$
\begin{gathered}
\sqrt{p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}} \leq \sqrt{\frac{4\left(1+\delta_{s+s^{\prime}}\right)}{16-9 \delta_{s+s^{\prime}}}}, \\
p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}-\left(1-\delta_{s+s^{\prime}}\right) p^{2} \leq \frac{4\left(1+5 \delta_{s+s^{\prime}}-4 \delta_{s+s^{\prime}}^{2}\right)}{32-25 \delta_{s+s^{\prime}}}
\end{gathered}
$$

and

$$
\frac{4\left(1+\delta_{s+s^{\prime}}\right)}{16-9 \delta_{s+s^{\prime}}} \leq 2 \frac{4\left(1+5 \delta_{s+s^{\prime}}-4 \delta_{s+s^{\prime}}^{2}\right)}{32-25 \delta_{s+s^{\prime}}}
$$

we have

$$
\left(1-\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2} \leq\left(2 \sqrt{2} \varepsilon+\sqrt{\frac{1}{s^{\prime}}} \sqrt{\frac{4\left(1+5 \delta_{s+s^{\prime}}-4 \delta_{s+s^{\prime}}^{2}\right)}{32-25 \delta_{s+s^{\prime}}}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}\right)^{2}
$$

which implies by Lemma 2.3 that

$$
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq \frac{2 \sqrt{2}}{\sqrt{1-\delta_{s+s^{\prime}}}} \varepsilon+\frac{\theta_{s, s^{\prime}}}{\sqrt{s^{\prime}}}\left(2\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{T_{1}}\right\|_{1}\right) .
$$

By the assumption $\frac{\sqrt{s}}{\sqrt{s^{\prime}}} \theta_{s, s^{\prime}}<1$, we have

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq \frac{2 \sqrt{2}}{\sqrt{1-\delta_{s+s^{\prime}}}} \frac{\sqrt{s^{\prime}}}{\left(\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}\right)} \varepsilon+\frac{2 \theta_{s, s^{\prime}}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1} . \tag{22}
\end{equation*}
$$

By the above calculations and Lemma 2.7 we have

$$
\begin{aligned}
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2}^{2} \leq & \left\|\boldsymbol{h}_{T_{1} \cup T_{2}}\right\|_{2}^{2}+\sum_{j \geq 3}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2}^{2} \\
\leq & \frac{1}{1-\delta_{s+s^{\prime}}}\left(4 \varepsilon^{2}+\frac{4 \varepsilon}{\sqrt{s^{\prime}}} \sqrt{p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}\right. \\
& \left.+\frac{1}{s^{\prime}}\left(\left(-2+\frac{5}{16} \delta_{s+s^{\prime}}\right) p^{2}+\left(2-\frac{5}{2} \delta_{s+s^{\prime}}\right) p+\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2}\right) \\
\leq & \frac{1}{1-\delta_{s+s^{\prime}}}\left(2 \varepsilon+\frac{1}{\sqrt{s^{\prime}}} \sqrt{\frac{8\left(2-\delta_{s+s^{\prime}}\right)}{32-25 \delta_{s+s^{\prime}}}}\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}\right)^{2},
\end{aligned}
$$

which implies by Lemma 2.4 and (22) that

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1} \varepsilon
$$

Let $s^{\prime} \geq s$. Similarly, we can show that

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}^{\prime}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1}^{\prime} \varepsilon .
$$

This completes the proof.

By taking various numbers s^{\prime}, we have new bounds for $\delta_{s+s^{\prime}}$ and $\delta_{2 s^{\prime}}$.

Example

(1) Let $s^{\prime}=s$, then $\delta_{2 s}<0.4931$. This is due to Q. Mo and $\mathrm{S} . \mathrm{Li}[7]$.
(2) Let $s^{\prime}=\left[\frac{40}{71} s\right]$, then $\delta_{\left(1+\frac{40}{71}\right) s} \approx \delta_{1.56 s}<\frac{1}{3}$.
(3) Let $s^{\prime}=\left[\frac{59}{75} s\right]$, then $\delta_{\left(1+\frac{59}{75}\right) s} \approx \delta_{1.78 s}<\frac{2}{5}$.
(4) Let $s^{\prime}=\left[\frac{40}{39} s+1\right]$, then $\delta_{2\left(1+\frac{40}{39} s\right)}<\frac{1}{2}$.
(5) Let $s^{\prime}=\left[\frac{128}{85} s+1\right]$, then $\delta_{2\left(1+\frac{128}{85} s\right)}<\frac{3}{5}$.

Here [•] is a floor function.

4 Special Case

In this section, we introduce the sufficient condition of Theorem 3.1 and Theorem 3.2 in special case. We suppose that a matrix satisfies the condition $\|A\| \leq 1$, where $\|\cdot\|$ is operator norm. Many researchers have improved the sufficient condition to $\delta_{2 s}$ in special
cases. For example, $\delta_{2 s}<0.4721$ for cases such that s is a multiple of 4 or s is very large by T. Cai. el.al [2], $\delta_{2 s}<0.4734$ for the case such that s is very large by S. Foucart [5]. In a resent paper, Q. Mo and S . Li [7] have improved the sufficient condition to $\delta_{2 s}<0.6569$ in some special cases. Above researches are concerned with sparsity level of \boldsymbol{x}. However, we proposed results about the case of restricted matrix with respect to A. We do not suppose the condition of sparsity. Practically, we can not know the sparsity of \boldsymbol{x} but we can calculate $\|A\|$.

4.1 Theorem 3.1 in Special Case

Theorem 3.3. Assume that $\|A\| \leq 1$ and A obeys the RIP of order s and $\delta_{s}<\frac{2}{2+\sqrt{5}} \approx$ 0.472. Then the solution \boldsymbol{x}^{\star} to (2) obeys

$$
\begin{equation*}
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq C_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+C_{1} \varepsilon \tag{23}
\end{equation*}
$$

where

$$
C_{0}=\frac{2+(14 \sqrt{5}+8) \delta_{s}}{1-\left(\frac{2+\sqrt{5}}{2}\right) \delta_{s}}, \quad C_{1}=\frac{4 \sqrt{1+\delta_{s}}}{1-\left(\frac{2+\sqrt{5}}{2}\right) \delta_{s}}
$$

Proof. The proof of Theorem 3.3 can be obtained based on a modification of the proof of Theorem 3.1. We introduce the modified formulas. By Lemma 2.1, we have

$$
\left(1-\delta_{s}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2} \leq 2 \sqrt{1+\delta_{s}} \varepsilon\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}+\frac{1}{2 \sqrt{t}} \delta_{s}\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}\left(\sum_{j \geq 2}\left\|\boldsymbol{h}_{T_{j}}\right\|_{2}\right)
$$

and

$$
\begin{equation*}
\left(1-\left(\frac{2+\sqrt{5}}{2}\right) \delta_{s}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq 2 \sqrt{1+\delta_{s}} \varepsilon+\frac{9 \sqrt{5}}{\sqrt{s}} \delta_{s}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1} . \tag{24}
\end{equation*}
$$

By assumption $\delta_{s}<\frac{2}{2+\sqrt{5}} \approx 0.472$, we have

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq \frac{1}{1-\left(\frac{2+\sqrt{5}}{2}\right) \delta_{s}}\left(2 \sqrt{1+\delta_{s}} \varepsilon+\frac{9 \sqrt{5}}{\sqrt{s}} \delta_{s}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}\right) \tag{25}
\end{equation*}
$$

which implies by Lemma 2.4 that

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq C_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+C_{1} \varepsilon
$$

This completes the proof.

4.2 Theorem 3.2 in Special Case

Theorem 3.4. Assume that $\|A\| \leq 1$. Then we have the following
(1) Let $\frac{s}{8}<s^{\prime} \leq s$. If A obeys the RIP of order $\left(s+s^{\prime}\right)$ and

$$
\theta_{s, s^{\prime}} \equiv 2 \sqrt{\frac{-3 \delta_{s+s^{\prime}}^{2}+7 \delta_{s+s^{\prime}}+2}{\left(1-\delta_{s+s^{\prime}}\right)\left(64-25 \delta_{s+s^{\prime}}\right)}}<\sqrt{\frac{s^{\prime}}{s}}
$$

then

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1} \varepsilon
$$

where

$$
\begin{aligned}
& D_{0}=\frac{2 \sqrt{6}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}} \sqrt{\frac{3-\delta_{s+s^{\prime}}}{\left(1-\delta_{s+s^{\prime}}\right)\left(48-25 \delta_{s+s^{\prime}}\right)}}, \\
& D_{1}=\frac{2 \sqrt{3}}{\sqrt{1-\delta_{s+s^{\prime}}}}\left(\sqrt{\left.\frac{2}{5}+\frac{2 \sqrt{s}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s, s^{\prime}}} \sqrt{\frac{3-\delta_{s+s^{\prime}}}{\left(1-\delta_{s+s^{\prime}}\right)\left(48-25 \delta_{s+s^{\prime}}\right)}}\right) .} . .\right.
\end{aligned}
$$

(2) Let $s \leq s^{\prime}$. If A obeys the RIP of order $2 s^{\prime}$ and

$$
\theta_{s^{\prime}} \equiv 2 \sqrt{\frac{-3 \delta_{2 s^{\prime}}^{2}+7 \delta_{2 s^{\prime}}+2}{\left(1-\delta_{2 s^{\prime}}\right)\left(64-25 \delta_{2 s^{\prime}}\right)}}<\sqrt{\frac{s^{\prime}}{s}}
$$

then

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}^{\prime}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1}^{\prime} \varepsilon
$$

where

$$
\begin{aligned}
D_{0}^{\prime} & =\frac{2 \sqrt{6}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s^{\prime}}} \sqrt{\frac{3-\delta_{2 s^{\prime}}}{\left(1-\delta_{2 s^{\prime}}\right)\left(48-25 \delta_{2 s^{\prime}}\right)}}, \\
D_{1}^{\prime} & =\frac{2 \sqrt{3}}{\sqrt{1-\delta_{2 s^{\prime}}}}\left(\sqrt{\frac{2}{5}}+\frac{2 \sqrt{s}}{\sqrt{s^{\prime}}-\sqrt{s} \theta_{s^{\prime}}} \sqrt{\frac{3-\delta_{2 s^{\prime}}}{\left(1-\delta_{2 s^{\prime}}\right)\left(48-25 \delta_{2 s^{\prime}}\right)}}\right) .
\end{aligned}
$$

Proof. The proof of Theorem 3.4 can be obtained based on a modification of the proof of Theorem 3.2.
(1) Let $\frac{s}{8}<s^{\prime} \leq s$. Then it follows from Lemma 2.1, 2.7 and 2.8 that

$$
\begin{aligned}
\left\|\sum_{i \geq 3} A \boldsymbol{h}_{T_{i}}\right\|_{2}^{2} & \leq\left(1+\frac{\delta_{s+s^{\prime}}}{2}\right) \sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}^{2}+\frac{\delta_{s+s^{\prime}}}{2}\left(\sum_{i \geq 3}\left\|\boldsymbol{h}_{T_{i}}\right\|_{2}\right)^{2} \\
& \leq \frac{\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2}}{2 s^{\prime}}\left(\left(2+\delta_{s+s^{\prime}}\right) p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}\right)
\end{aligned}
$$

which implies that

$$
\begin{align*}
\left(1-\delta_{s+s^{\prime}}\right)\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2} \leq & 4 \varepsilon^{2}+4 \varepsilon \frac{\left\|\boldsymbol{h}_{T_{1}}\right\|_{1}}{\sqrt{2 s^{\prime}}} \sqrt{\left(2+\delta_{s+s^{\prime}}\right) p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2}} \\
& +\frac{\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}^{2}}{2 s^{\prime}}\left(-\left(4-\frac{25}{16} \delta_{s+s^{\prime}}\right) p^{2}+\left(2-\frac{1}{2} \delta_{s+s^{\prime}}\right) p+\delta_{s+s^{\prime}}\right) \cdot(\tag{26}
\end{align*}
$$

Since

$$
-\left(4-\frac{25}{16} \delta_{s+s^{\prime}}\right) p^{2}+\left(2-\frac{1}{2} \delta_{s+s^{\prime}}\right) p+\delta_{s+s^{\prime}} \leq \frac{8\left(-3 \delta_{s+s^{\prime}}^{2}+7 \delta_{s+s^{\prime}}+2\right)}{64-25 \delta_{s+s^{\prime}}}
$$

and

$$
\begin{aligned}
\left(2+\delta_{s+s^{\prime}}\right) p(1-p)+\delta_{s+s^{\prime}}\left(1-\frac{3}{4} p\right)^{2} & \leq \frac{8\left(\delta_{s+s^{\prime}}^{2}+3 \delta_{s+s^{\prime}}+2\right)}{32+7 \delta_{s+s^{\prime}}} \\
& <2 \cdot \frac{-3 \delta_{s+s^{\prime}}^{2}+7 \delta_{s+s^{\prime}}+2}{64-25 \delta_{s+s^{\prime}}}
\end{aligned}
$$

we have by (26)

$$
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2}^{2} \leq\left(\frac{2 \sqrt{2}}{\sqrt{1-\delta_{s+s^{\prime}}}} \varepsilon+\frac{2 \sqrt{-3 \delta_{s+s^{\prime}}^{2}+7 \delta_{s+s^{\prime}}+2}}{\sqrt{\left(1-\delta_{s+s^{\prime}}\right)\left(64-25 \delta_{s+s^{\prime}}\right)}} \frac{\left\|\boldsymbol{h}_{T_{1}^{c}}\right\|_{1}}{\sqrt{s^{\prime}}}\right)^{2}
$$

which implies by Lemma 2.4 that

$$
\begin{equation*}
\left\|\boldsymbol{h}_{T_{1}}\right\|_{2} \leq \frac{2 \sqrt{2}}{\left(1-\sqrt{\frac{s}{s^{\prime}}} \theta_{s, s^{\prime}}\right) \sqrt{1-\delta_{s+s^{\prime}}}} \varepsilon+\frac{2 \theta_{s, s^{\prime}}}{\sqrt{s^{\prime}}\left(1-\sqrt{\frac{s}{s^{\prime}}} \theta_{s, s^{\prime}}\right)}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1} . \tag{27}
\end{equation*}
$$

Hence it follows from (27) and Lemma 2.7 that

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq D_{0}\left\|\boldsymbol{x}-\boldsymbol{x}_{T_{0}}\right\|_{1}+D_{1} \varepsilon
$$

(2) This is shown similarly to (1).

Example

(1) Let $s^{\prime}>\left[\frac{76}{103} s\right]$, then $\delta_{\left(1+\frac{76}{103}\right) s} \approx \delta_{1.74 s}<\frac{1}{2}$.
(2) Let $s^{\prime}=s$, then $\delta_{2 s}<\frac{117-\sqrt{5177}}{76} \approx 0.59$.
(3) Let $s^{\prime}>\frac{256}{245} s$, then $\delta_{\frac{512}{245} s} \approx \delta_{2.09 s}<0.6$.
(4) Let $s^{\prime}>\frac{724}{465} s$, then $\delta_{\frac{1448}{455} s} \approx \delta_{3.13 s}<0.7$.

We may consider the bound for the other $\delta_{k}(k>s)$.

References

[1] T. Cai, L. Wang, G. Xu, Shifting inequality and recovery of sparse signals, IEEE Trans. Signal Process. 58 (2010) 1300-1308.
[2] T. Cai, L. Wang, G. Xu, New bounds for restricted isometry constants, IEEE Trans. Inform. Theory 56 (2010) 4388-4394.
[3] E.J. Candès, The restricted isometry property and its implications for compressed sensing, C. R. Acad. Sci. Ser. I 346 (2008) 589-592.
[4] E.J. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory 51 (2005) 4203-4215.
[5] S. Foucart, A note on guaranteed sparse recovery via l_{1}-minimization, Appl. Comput. Harmon. Anal. 29 (2010) 97-103.
[6] S. Forcart, M. Lai, Sparsest solutions of underdetermined linear systems via l_{q} minimization for $0<q \leq 1$, Appl. Comput. Harmon. Anal. 26 (2009) 395-407.
[7] Q. Mo, S. Li, New bounds on the restricted isometry constant $\delta_{2 k}$, Appl. Comput. Harmon. Anal. 31 (2011) 460-468.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
 Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity
MI2009-10 Shingo SAITO
Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric T -functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA

Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATAStability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMIFinite element computation for scattering problems of micro-hologram using DtNmap
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN

Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE

A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

