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Abstract

This paper discusses new bounds for restricted isometry property in compressed
sensing. In the literature, E.J. Candès has proved that δ2s <

√
2 − 1 is a suffi-

cient condition via l1 optimization having s-sparse vector solution. Later, many
researchers have improved the sufficient conditions on δ2s or δs. In this paper, we
have improved the sufficient condition to δs < 0.309 and have given the sufficient
condition to δk (s < k) using an idea of Q. Mo and S. Li’ result. Furthermore, we
have improved the sufficient conditions to δ2s < 0.593 and δs < 0.472 in special
case.

Key Words and Phrases: Compressed sensing, Restricted isometry constants, Re-
stricted isometry property, Sparse approximation, Sparse signal recovery.

1 Introduction

This paper introduces the theory of compressed sensing(CS). For a signal x ∈ Rn, let

‖x‖1 be l1 norm of x and ‖x‖2 be l2 norm of x. Let x be a sparse or nearly sparse

vector. Compressed sensing aims to recover high-dimensional signal (for example: images

signal, voice signal, code signal...etc.) from only a few samples or linear measurements.

Formally, one considers the following model:

y = Ax + z, (1)

where A is a m × n matrix(m < n) and z is a vector of measurement error.

Our goal is to reconstruct an unknown signal x based on A and y are given. Then we

consider reconstructing x as the solution x? to the optimization problem

min
x̃

‖x̃‖1, subject to ‖y − Ax̃‖2 ≤ ε, (2)

1



where ε is an upper bound on the measurement error.

In fact, we can recover the signal x in noiseless case under sufficient conditions. In CS

theory, a crucial issue is to research good conditions in order to achieve our goal. One of

the most generally known condition for CS theory is the restricted isometry property(RIP)

introduced by E.J. Candès and T. Tao [4]. When we discuss our proposed results, it is

an important notion. The RIP needs that the subsets of columns of A for all locations in

{1, 2, · · · , n} behave nearly orthonormal system. In detail, a matrix A satisfies the RIP

of order s if there exists a constant δ with 0 < δ < 1 such that

(1 − δ)‖a‖2
2 ≤ ‖Aa‖2

2 ≤ (1 + δ)‖a‖2
2 (3)

for all s-sparse vectors a. A vector is said to be s-sparse vector if it has at most s nonzero

entries. The minimum δ satisfying the above restrictions is said to be the restricted

isometry constant and is denoted by δs.

It has been shown that l1 optimization can recover an unknown signal in noiseless case and

noisy case under various sufficient conditions on δs or δ2s. For example, E.J. Candès and

T. Tao [4] have proved that if δ2s <
√

2 − 1, then an unknown signal can be recovered.

Later, S. Foucart and M. Lai [6] have improved the bound to δ2s < 0.4531. Others,

δ2s < 0.4652 is used by S. Foucart [5], δ2s < 0.4721 for cases such that s is a multiple of 4

or s is very large by T. Cai. el .al . [2], δ2s < 0.4734 for the case such that s is very large by

S. Foucart [5] and δs < 0.307 by T. Cai el .al . [2]. In a resent paper, Q. Mo and S. Li [7]

have improved the sufficient condition to δ2s < 0.4931 for general case and δ2s < 0.6569

in some special case.

In this paper, we propose the sufficient condition of δs and the sufficient condition to

δk(each number k > s) using the idea of Q. Mo and S. Li. Furthermore, we propose the

sufficient condition of δs and δk(k > s) in case of ‖A‖ ≤ 1, where ‖ · ‖ is operator norm.

The special case is different from the case(n < 4s) in Q. Mo and S. Li [7].

There are several benefits for considering the bounds of δs and δk(k > s) in case of

‖A‖ ≤ 1. First, we suppose that a matrix satisfy the condition to ‖A‖ ≤ 1, where ‖ · ‖

is operator norm. However, we do not suppose the condition of sparsity. Practically, we

can not know the sparsity of x but we can calculate ‖A‖. Second, it gives better error

bounds to recover noisy signal in special case. Thirdly, the assessments of various cases
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lead to developments for signal analysis or other analysis.

Our analysis is very simple and elementary. We introduce the proposed results using

E.J. Cands̀’ idea, T. Cai el .al .’ idea and Q. Mo and S. Li’ idea. We regard Theorem 3.1,

3.2, 3.3 and 3.4 as the main results in this paper. Otherwise, in Section 2, we prepare

some notions and lemmas to prove main theorems. In Section 3, we introduce new bounds

of δs and generalizations of δ2s in general cases and new error bounds. In Section 4, we

introduce new bounds of δs and δk(k > s) in case of ‖A‖ ≤ 1 and new error bounds.

2 Preliminaries and Some Lemmas

In this section, we prepare some lemmas needed for the proofs of Theorem 3.1 and The-

orem 3.2.

Lemma 2.1. Take any t ≥ 1 and positive integers s′, s′′ such tha ts′ is an integer. Suppose

that A obeys the RIP of order (ts′ + s′′). Then,

| < Aa, Ab > | ≤
√

tδs′+s′′‖a‖2‖b‖2 (4)

for any vectors a, b ∈ Rn with disjoint supports and sparsity ts′ and s′′, respectively. In

particular, if ‖A‖ ≤ 1, then

| < Aa, Ab > | ≤
√

t

2
δs′+s′′‖a‖2|b‖2. (5)

Proof. The proof of this lemma can be obtained based on a minor modification of [3].

Lemma 2.2. For any a ∈ Rk, we have

‖a‖2 ≤
1√
k
‖a‖1 +

√
k

4

(
max
1≤i≤k

|ai| − min
1≤i≤k

|ai|
)

. (6)

Proof. The proof of this lemma can be obtained by [2, Proposition 2.1.].

Suppose x is an original signal we need to recover and x? is the solution of CS optimization

problem (2). Let h ≡ x? − x and h = (h1, · · · , hn). For simplicity, we assume that the

index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn|. Throughout this paper, let T0 be an
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arbitrary location of {1, 2, · · · , n} with |T0| = s and let {T1, T2, · · · , Tl} be a decomposition

of {1, 2, · · · , n} with |T1| = s, |Tk| = s′ (2 ≤ k ≤ l − 1) and 1 ≤ |Tl| ≡ r ≤ s′, where |T |

is number of elements of T . We consider the decomposition of h as follows:

hT1 = (h
(T1)
1 , h

(T1)
2 , · · · , h(T1)

s , 0, · · · , 0)

hT2 = (0, · · · , 0, h
(T2)
1 , · · · , h

(T2)
s′ , 0, · · · , 0)

...

hTl−1
= (0, · · · , 0, h

(Tl−1)
1 , · · · , h

(Tl−1)
s′ , 0, · · · , 0)

hTl
= (0, · · · 0, h(Tl)

1 , · · · , h(Tl)
r ).

This is due to the T. Cai et .al .’ idea [2] in case of s = s′. We have the following

Lemma 2.3–Lemma 2.9 for the decomposition (hT1 ,hT2 , · · · , hTl
) of h. By definition of

CS optimization (2), we have the following

Lemma 2.3. We have

‖hT c
0
‖1 ≤ 2‖x − xT0‖1 + ‖hT0‖1. (7)

Refer to [3] for the proof of Lemma 2.3. T. Cai et .al . [2] have obtained a similar result

for the location T1.

Lemma 2.4. For |T0| = |T1| = s, we have

‖hT c
1
‖1 ≤ 2‖x − xT0‖1 + ‖hT1‖1. (8)

Proof. Since |T c
0 ∩ T1| = |T0 ∩ T c

1 |, we have ‖hT0∩T c
1
‖1 ≤ ‖hT c

0∩T1‖1, which implies by (7)

that

‖hT c
1
‖1 = ‖hT0∩T c

1
‖1 + ‖hT c

0
‖1 − ‖hT1∩T c

0
‖1

≤ 2‖x − xT0‖1 + ‖hT1‖1 + 2
(
‖hT0∩T c

1
‖1 − ‖hT1∩T c

0
‖1

)
≤ 2‖x − xT0‖1 + ‖hT1‖1.
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Lemma 2.5. We have

∑
i≥2

‖hTi
‖2 ≤

2√
s′
‖x − xT0‖1 +

(√
s√
s′

+

√
s′

4
√

s

)
‖hT1‖2. (9)

Proof. By using Lemma 2.2, we have

‖hTi
‖2 ≤

1√
s′
‖hTi

‖1 +

√
s′

4

(
|h(Ti)

1 | − |h(Ti+1)
1 |

)
, 3 ≤ i ≤ l − 1,

which implies by Lemma 2.3 that

∑
i≥2

‖hTi
‖2 ≤ 1√

s′

∑
i≥2

‖hTi
‖1 +

√
s′

4
|h(T2)

1 | (10)

≤ 2√
s′
‖x − xT0‖1 +

(√
s√
s′

+

√
s′

4
√

s

)
‖hT1‖2.

Similarly we have the following

Lemma 2.6. Let T1 = {T ′
1, T

′′
1 } be a decomposition of T1 with |T ′

1| = s′ and |T ′′
1 | = s′′.

Then, s′ = ts, s′′ = (1 − t)s for some t ∈ (0, 1) and

∑
i≥2

‖hTi
‖2 ≤

2√
s(1 − t)

‖x − xT0‖1 +

(
1√

1 − t
+

√
1 − t

4

)
‖hT1‖2. (11)

We put ‖hT2‖1 ≡ p
∑

i≥2 ‖hTi
‖1 = p‖hT c

1
‖1. Then 0 ≤ p ≤ 1 and

∑
i≥3 ‖hTi

‖1 =

(1 − p)‖hT c
1
‖1. Then the following Lemma 2.7 is easily shown and Lemma 2.8 is also

easily shown by using the inequality (10).

Lemma 2.7. We have

∑
i≥3

‖hTi
‖2

2 <
p(1 − p)

s′
‖hT c

1
‖2

1. (12)

Lemma 2.8. We have

∑
i≥3

‖hi‖2 <
1 − 3p/4√

s′
‖hT c

1
‖1. (13)
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Lemma 2.9. We have

‖
∑
i≥3

AhTi
‖2

2 ≤
1

s′

(
p(1 − p) + δ2s′

(
1 − 3

4
p

)2
)
‖hT c

1
‖2

1. (14)

Proof. By the definition of RIP, Lemma 2.1, Lemma 2.6 and Lemma 2.7, we have

‖
∑
i≥3

AhTi
‖2

2 =
∑
i≥3

< AhTi
, AhTi

> +2
∑

3≤i<j≤l

< AhTi
, AhTj

>

≤
∑
i≥3

(1 + δs′)‖hTi
‖2

2 + 2
∑

3≤i<j≤l

δ2s′‖hTi
‖2‖hTj

‖2

≤
∑
i≥3

‖hTi
‖2

2 + δ2s′

(∑
i≥3

‖hTi
‖2

)2

≤ p(1 − p)

s′
‖hT c

1
‖2

1 +
δ2s′

s′

(
1 − 3

4
p

)2

‖hT c
1
‖2

1

=
1

s′

(
p(1 − p) + δ2s′

(
1 − 3

4
p

)2
)
‖hT c

1
‖2

1.

Lemma 2.7, 2.8 and 2.9 are due to the Q. Mo and S. Li [7] in case of s′ = s.

3 Main results

In this section, we introduce the main results of the sufficient condition of δs and gener-

alization of sufficient condition of Q. Mo and S. Li’ result in general case.

3.1 New Bound for δs

We have established the sufficient condition δs < 0.309 for CS optimization problem in

general case.

Theorem 3.1. Assume that A obeys the RIP of order s and δs < 1
1+

√
5
≈ 0.309. Then,

the solution x? to (2) obeys

‖x − x?‖2 ≤ C0‖x − xT0‖1 + C1ε, (15)

where

C0 =
3
(
5 +

(
3
√

5 − 5
)
δs

)
5
(
1 −

(√
5 + 1

)
δs

)√
s
, C1 =

16
√

1 + δs

3
(
1 −

(√
5 + 1

)
δs

) .
6



Proof. Let T1 = {T ′
1, T

′′
1 } be a decomposition of T1 with |T ′

1| = s′ and |T ′′
1 | = s′′. Then,

s′ = ts, s′′ = (1 − t)s for some t ∈ (0, 1). By Lemma 2.1, we have

(1 − δs)‖hT1‖2
2 ≤ < AhT1 , Ah −

∑
j≥2

AhTj
>

≤ 2
√

1 + δsε‖hT1‖2 +
1√
t
δs‖hT1‖2

(∑
j≥2

‖hTj
‖2

)
.

Thus, by Lemma 2.5 and the above inequality, we have

(1 − δs)‖hT1‖2 ≤ 2
√

1 + δsε +
2δs√

(1 − t)ts
‖x − xT0‖1

+
1√
t

(
1√

1 − t
+

√
1 − t

4

)
δs‖hT1‖2. (16)

Here, put f(t) = 1√
t

(
1√
1−t

+
√

1−t
4

)
. Then, f is increasing when 5

9
< t < 1 and decreasing

when 0 < t < 5
9
. Thus, when t = 5

9
, we have

(1 − δs)‖hT1‖2 ≤ 2
√

1 + δsε +
9√
5s

δs‖x − xT0‖1 +
√

5δs‖hT1‖2, (17)

so that by assumption δs < 1
1+

√
5
≈ 0.309,

‖hT1‖2 ≤
1

1 − (
√

5 + 1)δs

(
2
√

1 + δsε +
9√
5s

δs‖x − xT0‖1

)
. (18)

Furthermore, it follows from Lemma 2.5 that

‖hT c
1
‖2 ≤

3√
s
‖x − xT0‖1 +

5

3
‖hT1‖2, (19)

which implies by (18) that

‖x − x?‖2 ≤ ‖hT1‖2 + ‖hT c
1
‖2 ≤ C0‖x − xT0‖1 + C1ε.

This completes the proof.

3.2 Generalization of Q. Mo and S. Li’ result

Using the E.J. Candès decomposition {T1, T2, · · · , Tq} of T c
0 with |Tk| = s (k = 1, · · · , q)

and |h(T1)
1 | ≥ |h(T1)

2 | ≥ · · · ≥ |h(T1)
s | ≥ |h(T2)

1 | ≥ |h(T2)
2 | ≥ · · · , Q. Mo and S. Li [7]

have obtained a new bound of the isometry constant δ2s. In this section, using the

decomposition of {T1, T2, · · · , Tl} stated in Section 2 and taking an arbitrary natural
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number s′, we have obtained a new bound of the isometry constant δk (s < k).

Theorem 3.2. (1) Let s
8

< s′ ≤ s. We assume A obeys the RIP of order (s + s′) and
√

s√
s′
θs,s′ < 1, equivalently

δs+s′ <
20s + 57s′ −

√
656s2 + 632ss′ + 49s′2

2(16s + 25s′)
.

Then,

‖x − x?‖2 ≤ D0‖x − xT0‖1 + D1ε, (20)

where

θs,s′ =

√
4
(
1 + 5δs+s′ − 4δ2

s+s′

)
(1 − δs+s′) (32 − 25δs+s′)

,

D0 =
4
√

2√
s′ −

√
sθs,s′

√
2 − δs+s′

(1 − δs+s′)(32 − 25δs+s′)
,

D1 =
2√

1 − δs+s′

(
1 +

4
√

s√
s′ −

√
sθs,s′

√
2 − δs+s′

(1 − δs+s′)(32 − 25δs+s′)

)
.

(2) Let s′ ≥ s. We assume that A obeys the RIP of order 2s′ and
√

s√
s′
θs′ < 1, equivalently

δ2s′ <
20s + 57s′ −

√
656s2 + 632ss′ + 49s′2

2(16s + 25s′)
.

Then,

‖x − x?‖2 ≤ D′
0‖x − xT0‖1 + D′

1ε, (21)

where

θs′ =

√
4 (1 + 5δ2s′ − 4δ2

2s′)

(1 − δ2s′) (32 − 25δ2s′)
,

D′
0 =

4
√

2√
s′ −

√
sθs′

√
2 − δ2s′

(1 − δ2s′)(32 − 25δ2s′)
,

D′
1 =

2√
1 − δ2s′

(
1 +

4
√

s√
s′ −

√
sθs′

√
2 − δ2s′

(1 − δ2s′)(32 − 25δ2s′)

)
.
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Proof. Let s
8

< s′ ≤ s. By the definition of RIP and Lemma 2.7, we have

(1 − δs+s′) ‖hT1‖2
2 = (1 − δs+s′)‖hT1∪T2‖2

2 − (1 − δs+s′)‖hT2‖2
2

≤ ‖Ah −
∑
j≥3

AhTj
‖2

2 −
(1 − δs+s′)

s′
p2‖hT c

1
‖2

1

≤

(
2ε + ‖

∑
j≥3

AhTj
‖2

)2

− (1 − δs+s′)

s′
p2‖hT c

1
‖2

1

≤ 4ε2 + 4ε
1√
s′

√
p(1 − p) + δs+s′

(
1 − 3

4
p

)2

‖hT c
1
‖1

+
1

s′

(
p(1 − p) + δs+s′

(
1 − 3

4
p

)2

− (1 − δs+s′)p
2

)
‖hT c

1
‖1.

Since √
p(1 − p) + δs+s′

(
1 − 3

4
p

)2

≤

√
4(1 + δs+s′)

16 − 9δs+s′
,

p(1 − p) + δs+s′

(
1 − 3

4
p

)2

− (1 − δs+s′)p
2 ≤

4(1 + 5δs+s′ − 4δ2
s+s′)

32 − 25δs+s′

and

4(1 + δs+s′)

16 − 9δs+s′
≤ 2

4(1 + 5δs+s′ − 4δ2
s+s′)

32 − 25δs+s′
,

we have

(1 − δs+s′)‖hT1‖2
2 ≤

2
√

2ε +

√
1

s′

√
4(1 + 5δs+s′ − 4δ2

s+s′)

32 − 25δs+s′
‖hT c

1
‖1

2

,

which implies by Lemma 2.3 that

‖hT1‖2 ≤
2
√

2√
1 − δs+s′

ε +
θs,s′√

s′
(2‖x − xT0‖1 + ‖hT1‖1) .

By the assumption
√

s√
s′
θs,s′ < 1, we have

‖hT1‖2 ≤
2
√

2√
1 − δs+s′

√
s′(√

s′ −
√

sθs,s′
)ε +

2θs,s′√
s′ −

√
sθs,s′

‖x − xT0‖1. (22)

9



By the above calculations and Lemma 2.7 we have

‖x − x?‖2
2 ≤ ‖hT1∪T2‖2

2 +
∑
j≥3

‖hTj
‖2

2

≤ 1

1 − δs+s′

(
4ε2 +

4ε√
s′

√
p(1 − p) + δs+s′(1 − 3

4
p)2‖hT c

1
‖1

+
1

s′

((
−2 +

5

16
δs+s′

)
p2 +

(
2 − 5

2
δs+s′

)
p + δs+s′

)
‖hT c

1
‖2

1

)

≤ 1

1 − δs+s′

(
2ε +

1√
s′

√
8(2 − δs+s′)

32 − 25δs+s′
‖hT c

1
‖1

)2

,

which implies by Lemma 2.4 and (22) that

‖x − x?‖2 ≤ D0‖x − xT0‖1 + D1ε.

Let s′ ≥ s. Similarly, we can show that

‖x − x?‖2 ≤ D′
0‖x − xT0‖1 + D′

1ε.

This completes the proof.

By taking various numbers s′, we have new bounds for δs+s′ and δ2s′ .

Example

(1) Let s′ = s, then δ2s < 0.4931. This is due to Q. Mo and S. Li [7].

(2) Let s′ =
[

40
71

s
]
, then δ(1+ 40

71)s ≈ δ1.56s < 1
3
.

(3) Let s′ =
[

59
75

s
]
, then δ(1+ 59

75)s ≈ δ1.78s < 2
5
.

(4) Let s′ =
[

40
39

s + 1
]
, then δ2(1+ 40

39
s) < 1

2
.

(5) Let s′ =
[

128
85

s + 1
]
, then δ2(1+ 128

85
s) < 3

5
.

Here [·] is a floor function.

4 Special Case

In this section, we introduce the sufficient condition of Theorem 3.1 and Theorem 3.2 in

special case. We suppose that a matrix satisfies the condition ‖A‖ ≤ 1, where ‖ · ‖ is

operator norm. Many researchers have improved the sufficient condition to δ2s in special
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cases. For example, δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large

by T. Cai. el .al [2], δ2s < 0.4734 for the case such that s is very large by S. Foucart [5]. In

a resent paper, Q. Mo and S. Li [7] have improved the sufficient condition to δ2s < 0.6569

in some special cases. Above researches are concerned with sparsity level of x. However,

we proposed results about the case of restricted matrix with respect to A. We do not

suppose the condition of sparsity. Practically, we can not know the sparsity of x but we

can calculate ‖A‖.

4.1 Theorem 3.1 in Special Case

Theorem 3.3. Assume that ‖A‖ ≤ 1 and A obeys the RIP of order s and δs < 2
2+

√
5
≈

0.472. Then the solution x? to (2) obeys

‖x − x?‖2 ≤ C0‖x − xT0‖1 + C1ε, (23)

where

C0 =
2 +

(
14
√

5 + 8
)
δs

1 −
(

2+
√

5
2

)
δs

, C1 =
4
√

1 + δs

1 −
(

2+
√

5
2

)
δs

.

Proof. The proof of Theorem 3.3 can be obtained based on a modification of the proof

of Theorem 3.1. We introduce the modified formulas. By Lemma 2.1, we have

(1 − δs)‖hT1‖2
2 ≤ 2

√
1 + δsε‖hT1‖2 +

1

2
√

t
δs‖hT1‖2

(∑
j≥2

‖hTj
‖2

)

and (
1 −

(
2 +

√
5

2

)
δs

)
‖hT1‖2 ≤ 2

√
1 + δsε +

9
√

5√
s

δs‖x − xT0‖1. (24)

By assumption δs < 2
2+

√
5
≈ 0.472, we have

‖hT1‖2 ≤
1

1 − (2+
√

5
2

)δs

(
2
√

1 + δsε +
9
√

5√
s

δs‖x − xT0‖1

)
, (25)

which implies by Lemma 2.4 that

‖x − x?‖2 ≤ C0‖x − xT0‖1 + C1ε

This completes the proof.
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4.2 Theorem 3.2 in Special Case

Theorem 3.4. Assume that ‖A‖ ≤ 1. Then we have the following

(1) Let s
8

< s′ ≤ s. If A obeys the RIP of order (s + s′) and

θs,s′ ≡ 2

√
−3δ2

s+s′ + 7δs+s′ + 2

(1 − δs+s′)(64 − 25δs+s′)
<

√
s′

s
,

then

‖x − x?‖2 ≤ D0‖x − xT0‖1 + D1ε,

where

D0 =
2
√

6√
s′ −

√
sθs,s′

√
3 − δs+s′

(1 − δs+s′)(48 − 25δs+s′)
,

D1 =
2
√

3√
1 − δs+s′

(√
2

5
+

2
√

s√
s′ −

√
sθs,s′

√
3 − δs+s′

(1 − δs+s′)(48 − 25δs+s′)

)
.

(2) Let s ≤ s′. If A obeys the RIP of order 2s′ and

θs′ ≡ 2

√
−3δ2

2s′ + 7δ2s′ + 2

(1 − δ2s′)(64 − 25δ2s′)
<

√
s′

s
,

then

‖x − x?‖2 ≤ D′
0‖x − xT0‖1 + D′

1ε,

where

D′
0 =

2
√

6√
s′ −

√
sθs′

√
3 − δ2s′

(1 − δ2s′)(48 − 25δ2s′)
,

D′
1 =

2
√

3√
1 − δ2s′

(√
2

5
+

2
√

s√
s′ −

√
sθs′

√
3 − δ2s′

(1 − δ2s′)(48 − 25δ2s′)

)
.

Proof. The proof of Theorem 3.4 can be obtained based on a modification of the proof

of Theorem 3.2.

(1) Let s
8

< s′ ≤ s. Then it follows from Lemma 2.1, 2.7 and 2.8 that

‖
∑
i≥3

AhTi
‖2

2 ≤
(

1 +
δs+s′

2

)∑
i≥3

‖hTi
‖2

2 +
δs+s′

2

(∑
i≥3

‖hTi
‖2

)2

≤
‖hT c

1
‖2

1

2s′

(
(2 + δs+s′) p(1 − p) + δs+s′

(
1 − 3

4
p

)2
)

,
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which implies that

(1 − δs+s′)‖hT1‖2
2 ≤ 4ε2 + 4ε

‖hT c
1
‖1√

2s′

√
(2 + δs+s′)p(1 − p) + δs+s′

(
1 − 3

4
p

)2

+
‖hT c

1
‖2

1

2s′

(
−
(

4 − 25

16
δs+s′

)
p2 +

(
2 − 1

2
δs+s′

)
p + δs+s′

)
.(26)

Since

−
(

4 − 25

16
δs+s′

)
p2 +

(
2 − 1

2
δs+s′

)
p + δs+s′ ≤

8
(
−3δ2

s+s′ + 7δs+s′ + 2
)

64 − 25δs+s′

and

(2 + δs+s′)p(1 − p) + δs+s′

(
1 − 3

4
p

)2

≤
8
(
δ2
s+s′ + 3δs+s′ + 2

)
32 + 7δs+s′

< 2 ·
−3δ2

s+s′ + 7δs+s′ + 2

64 − 25δs+s′
,

we have by (26)

‖hT1‖2
2 ≤

 2
√

2√
1 − δs+s′

ε +
2
√

−3δ2
s+s′ + 7δs+s′ + 2√

(1 − δs+s′)(64 − 25δs+s′)

‖hT c
1
‖1√

s′

2

,

which implies by Lemma 2.4 that

‖hT1‖2 ≤
2
√

2(
1 −

√
s
s′
θs,s′
)√

1 − δs+s′
ε +

2θs,s′√
s′
(
1 −

√
s
s′
θs,s′
)‖x − xT0‖1. (27)

Hence it follows from (27) and Lemma 2.7 that

‖x − x?‖2 ≤ D0‖x − xT0‖1 + D1ε

(2) This is shown similarly to (1).

Example

(1) Let s′ >
[

76
103

s
]
, then δ(1+ 76

103)s ≈ δ1.74s < 1
2
.

(2) Let s′ = s, then δ2s < 117−
√

5177
76

≈ 0.59.

(3) Let s′ > 256
245

s, then δ 512
245

s ≈ δ2.09s < 0.6.

(4) Let s′ > 724
465

s, then δ 1448
465

s ≈ δ3.13s < 0.7.

We may consider the bound for the other δk (k > s).
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