RIPless Theory for Compressed Sensing

Inoue, Hiroshi
Graduate School of Mathematics, Kyushu University

http://hdl.handle.net/2324/26119
RIPless Theory for Compressed Sensing

Hiroshi Inoue

MI 2013-5

(Received March 11, 2013)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN
RIPless Theory for Compressed Sensing

Hiroshi Inoue*

* Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

h-inoue@math.kyushu-u.ac.jp

Abstract

This paper discusses the theory for RIPless in compressed sensing (CS). In the literature, E.J. Candès has proved that \(\delta_{2s} < \sqrt{2} - 1 \) is a sufficient condition via \(l_1 \) optimization having \(s \)-sparse vector solution. Later, many researchers have improved the sufficient conditions on \(\delta_{2s} \) or \(\delta_s \). Such researches have supposed that a matrix \(A \) obeys RIP and a signal to recover is sparse. In this paper, we do not suppose that a matrix \(A \) obeys RIP and a signal is sparse. We propose the RIPless theory and the method of any signal recovery for noiseless and noisy cases in CS.

Key Words and Phrases: Compressed sensing, RIPless theory.

1 Introduction

This paper introduces the RIPless theory of compressed sensing (CS). For a signal \(x \in \mathbb{R}^n \), let \(\|x\|_1 \) be \(l_1 \) norm of \(x \) and \(\|x\|_2 \) be \(l_2 \) norm of \(x \). Let \(x \) be not a sparse vector. Compressed sensing aims to recover high-dimensional signal (for example: images signal, voice signal, code signal...etc.) from only a few samples or linear measurements. Formally, one considers the following model in noiseless case:

\[
y = Ax,
\]

where \(A \) is a \(m \times n \) matrix\((m < n)\).

Our goal is to reconstruct an unknown signal \(x \) based on \(A \) and \(y \) are given. Then we consider reconstructing \(x \) as the solution \(x^* \) to the optimization problem

\[
\min_{\tilde{x}} \|\tilde{x}\|_1, \quad \text{subject to} \quad y = A\tilde{x}.
\]

Furthermore, one considers the following model in noisy case:

\[
y = Ax + z,
\]

1
where z is an unknown noise term.

In this context, we consider reconstructing x as the solution x^* to the optimization problem

$$
\min_{\hat{x}} \|\hat{x}\|_1, \quad \text{subject to} \quad \|y - A\hat{x}\|_2 \leq \varepsilon,
$$

where ε is an upper bounded on the size of the noisy contribution.

In CS theory, a crucial issue is to research good conditions in order to achieve our goal. One of the most generally known condition for CS theory is the restricted isometry property (RIP) introduced by E.J. Candès and T. Tao [4]. When we discuss our proposed results, it is an important notion. The RIP needs that the subsets of columns of A for all locations in $\{1, 2, \cdots, n\}$ behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of order s if there exists a constant δ with $0 < \delta < 1$ such that

$$(1 - \delta)\|a\|_2^2 \leq \|Aa\|_2^2 \leq (1 + \delta)\|a\|_2^2$$

for all s-sparse vectors a. A vector is said to be s-sparse vector if it has at most s nonzero entries. The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is denoted by δ_s.

It has been shown that l_1 optimization can recover an unknown signal in noiseless case and noisy case under various sufficient conditions on δ_s or δ_{2s}. For example, E.J. Candès and T. Tao [4] have proved that if $\delta_{2s} < \sqrt{2} - 1$, then an unknown signal can be recovered. Later, S. Foucart and M. Lai [6] have improved the bound to $\delta_{2s} < 0.4531$. Others, $\delta_{2s} < 0.4652$ is used by S. Foucart [5], $\delta_{2s} < 0.4721$ for cases such that s is a multiple of 4 or s is very large by T. Cai. el.al. [2], $\delta_{2s} < 0.4734$ for the case such that s is very large by S. Foucart [5] and $\delta_s < 0.307$ by T. Cai el.al. [2]. In a resent paper, Q. Mo and S. Li [7] have improved the sufficient condition to $\delta_{2s} < 0.4931$ for general case and $\delta_{2s} < 0.6569$ in some special case.

In this paper, we propose the RIPless theory and the method of an unknown signal recovery in CS for noiseless case. There are main benefits for considering the RIPless theory. First, we do not suppose that a matrix satisfies the condition of RIP. Moreover, we do not suppose the condition of sparsity. Practically, it is very difficult to know the condition of RIP and the sufficient condition of isometry constants. Likewise, we can not
know the sparsity of x. Second, the assessments of various cases lead to developments for signal analysis or other analysis.

Our analysis is very simple and elementary. We introduce the proposed results using most simple approach. We expect that more efficient approaches are suggested as developments for many analysis.

In this paper, suppose x is an original signal we need to recover and $x^* = (x^*_1, \ldots, x^*_n)$ is the solution of CS optimization problem (2) or (4). Let $A = (a_1, a_2, \ldots, a_n)$, where $a_1 = (a_{11}, a_{21}, \ldots, a_{m1})'$, $a_2 = (a_{12}, a_{22}, \ldots, a_{m2})'$, $\ldots, a_n = (a_{1n}, a_{2n}, \ldots, a_{mn})'$.

2 RIPless Theory

In this section, we first introduce the RIPless theory in noiseless case. We suppose that x is a s-sparse vector and put $x_s = (x_1, x_2, \ldots, x_s, 0, \ldots, 0)$. We have the following:

Theorem 2.1. Suppose $\{a_1, a_2, \ldots, a_s\}$ is linear independent, and $\{a_1, a_2, \ldots, a_s\}$ and $\{a_{s+1}, a_{s+2}, \ldots, a_n\}$ are orthogonal. Then, the solution x^* to (2) recovers x exactly, i.e., $x = x^*$.

Proof. Since

$$0 = \|Ax^* - Ax\|_2^2 = \|((x^*_1 - x_1)a_1 + \cdots + (x^*_s - x_s)a_s\|_2^2$$

\[= \|x^*_{s+1}a_{s+1} + \cdots + x^*_na_n\|_2^2, \tag{6}\]

we have

$$(x^*_1 - x_1)a_1 + \cdots + (x^*_s - x_s)a_s = 0.$$

Since $\{a_1, a_2, \ldots, a_s\}$ is linear independent, we have $x^*_1 = x_1, \ldots, x^*_s = x_s$. Thus,

$$x^*_s \equiv (x^*_1, x^*_2, \ldots, x^*_s, 0, \ldots, 0) = x \text{ and } Ax^*_s = Ax = y.$$

By the definition of CS optimization, we have

$$\|x^*\|_1 \leq \|x^*_s\|_1.$$

Furthermore, by the notation of x^*_s, we have

$$\|x^*_s\|_1 \leq \|x^*\|_1.$$

Thus, we have $x^* = x^*_s$ and $x^*_{s+1} = \cdots = x^*_n = 0$. By these discussions, we have

$$x^* = x^*_s = x.$$

This completes the proof.

We next discuss a generalization of Theorem 2.1 in noiseless and noisy cases. We first consider in case that we have the knowledges of data, that is, we know a good location T_0. Let $K \equiv \{ x \in \mathbb{R}^n; \| y - Ax \|_2 \leq \varepsilon \}$, $\varepsilon > 0$ and $K_0 \equiv \{ x \in \mathbb{R}^n; y = Ax \}$. Assume that $K_{\varepsilon} \neq \emptyset$.

Theorem 2.2. Let T_0 be a location in $\{1, 2, \cdots, \}$ with $|T_0| = s$. Suppose

(i) $\{a_k; k \in T_0\}$ is linearly independent;

(ii) $\mu_{T_0} = \max\{|a_k, a_j|; k \in T_0, j \in T^c_0\} < \frac{1}{\mu(A^*_0 A_0)^{-1}} = \frac{\lambda_1}{\lambda_s}$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_s > 0$ are eigenvalues of $A^*_0 A_0$.

Then, for every $x \in K_{\varepsilon}$ we have

$$\|x^* - x\|_2 \leq C_{0}(T_0)\|x - x_{T_0}\|_1 + C_{1}(T_0)\varepsilon,$$

where

$$C_{0}(T_0) = \frac{2(1 + \mu_{T_0} s\| (A^*_0 A_0)^{-1}\|)}{1 - \mu_{T_0} s\| (A^*_0 A_0)^{-1}\|},$$

$$C_{1}(T_0) = \frac{2(1 + \sqrt{s})\| (A^*_0 A_0)^{-1}\|}{1 - \mu_{T_0} s\| (A^*_0 A_0)^{-1}\|}.$$ (8)

Proof. Let $x \in K_{\varepsilon}$ and $h \equiv x^* - x$. We may take $T_0 = \{1, 2, \cdots, s\}$ without loss of generality. We have

$$\|Ah_{T_0}\|_2^2 = \left\langle Ah_{T_0}, Ah - \sum_{j \geq 1} Ah_{T_j} \right\rangle$$

$$\leq 2\varepsilon \|Ah_{T_0}\|_2 + \left\langle Ah_{T_0}, \sum_{j \geq 1} Ah_{T_j} \right\rangle$$ (9)
\[
\begin{align*}
\left\langle A h_{T_0}, \sum_{j \geq 1} A h_{T_j} \right\rangle &= \sum_{k=1}^{s} \sum_{j=s+1}^{n} h_k h_j \left\langle a_k, a_j \right\rangle \\
&\leq \mu T_0 \sum_{k=1}^{s} \sum_{j=s+1}^{n} |h_k h_j| \\
&\leq \mu T_0 \|h_{T_0}\|_1 \|h_{T_0}'\|_1 \\
&\leq \mu T_0 \sqrt{s} \|h_{T_0}\|_2 (2\|x - x_{T_0}\|_1 + \sqrt{s} \|h_{T_0}\|_2).
\end{align*}
\]

We also have
\[
\|h_{T_0}\|_2 \leq \sqrt{\| (A_{T_0}^* A_{T_0})^{-1} \| \|A h_{T_0}\|_2}.
\]

Indeed, this follows from
\[
\begin{align*}
\|h_{T_0}\|_2^2 &= \left\langle (A_{T_0}^* A_{T_0})^{-1} (A_{T_0}^* A_{T_0}) h_{T_0}, h_{T_0} \right\rangle \\
&= \left\langle (A_{T_0}^* A_{T_0})^{-1} (A_{T_0}^* A_{T_0})^{1/2} h_{T_0}, (A_{T_0}^* A_{T_0})^{1/2} h_{T_0} \right\rangle \\
&\leq \| (A_{T_0}^* A_{T_0})^{-1} \| \| (A_{T_0}^* A_{T_0})^{1/2} h_{T_0}\|_2^2 \\
&= \| (A_{T_0}^* A_{T_0})^{-1} \| \|A h_{T_0}\|_2^2.
\end{align*}
\]

Using (9), (10), (11), we get
\[
\|A h_{T_0}\|_2 \leq 2\varepsilon + \mu T_0 \sqrt{s} \sqrt{r_{T_0}} \|A h_{T_0}\|_2 (2\|x - x_{T_0}\|_1 + \sqrt{s} \|h_{T_0}\|_2),
\]

where \(r_{T_0} \equiv \| (A_{T_0}^* A_{T_0})^{-1} \| \). By using (11) again, we have
\[
\|h_{T_0}\|_2 \leq 2\sqrt{r_{T_0}} \varepsilon + 2\mu T_0 \sqrt{s} r_{T_0} \|x - x_{T_0}\|_1 + \mu T_0 s r_{T_0} \|h_{T_0}\|_2.
\]

Therefore, we obtain
\[
(1 - \mu T_0 s r_{T_0}) \|h_{T_0}\|_2 \leq 2\sqrt{r_{T_0}} \varepsilon + 2\mu T_0 \sqrt{s} r_{T_0} \|x - x_{T_0}\|_1.
\]

By the assumption (ii), we have
\[
\|h_{T_0}\|_2 \leq \frac{2\sqrt{r_{T_0}} \varepsilon}{1 - \mu T_0 s r_{T_0}} + \frac{2\mu T_0 \sqrt{s} r_{T_0}}{1 - \mu T_0 s r_{T_0}} \|x - x_{T_0}\|_1.
\]

Since
\[
\|h_{T_0}\|_2 \leq \|h_{T_0}'\|_1 \leq 2\|x - x_{T_0}\|_1 + \|h_{T_0}\|_1 \\
\leq 2\|x - x_{T_0}\|_1 + \sqrt{s} \|h_{T_0}\|_2,
\]

5
it follows from (12) that
\[\|x^* - x\|_2 \leq \|h_{T_0}\|_2 + \|h_{T_0}\|_2 \]
\[\leq 2\|x - x_{T_0}\|_1 + (1 + \sqrt{s})\|h_{T_0}\|_2 \]
\[\leq \frac{2(1 + \sqrt{s})\sqrt{T_{T_0}}}{1 - \mu_{T_0}s^r_{T_0}}\varepsilon + \frac{2(1 + \mu_{T_0}\sqrt{s^r_{T_0}})}{1 - \mu_{T_0}s^r_{T_0}}\|x - x_{T_0}\|_1. \]

This completes the proof.

By Theorem 2.2 we have the following:

Corollary 2.1. Suppose that \(A \) satisfies the conditions (i) and (ii) in Theorem 2.2. Then, we have

Noiseless case: If \(x \) is a \(T_0 \)-sparse vector in \(K_0 \), then
\[x = x^* . \]

Noisy case: If \(x \) is a \(T_0 \)-sparse vector in \(K_\varepsilon \), then
\[\|x^* - x\|_2 \leq C_1(T_0)\varepsilon . \]

For case that we do not know any good location we have the following.

Theorem 2.3. Suppose that \(A = (a_1, a_2, \cdots, a_n) \) satisfies the following

(i) \(\{a_k; k \in T\} \) is linearly independent for each \(T \subset \{1, 2, \cdots, n\} \) with \(|T| = s; \)

(ii) \(\mu = \max_T \mu_T = \max_{1 \leq i \neq j \leq n} | < a_i, a_j > | < \frac{1}{s \max(\|A^*_T A_T\|^{-1}, \|T\|s)} = \frac{\lambda_1^T}{s}, \) where
\(\lambda_1^T \geq \lambda_2^T \geq \cdots \geq \lambda_s^T > 0 \) are eigenvalues of \(A^*_T A_T . \)

Then, for any \(x \in K_\varepsilon \) and \(T \subset \{1, 2, \cdots, n\} \) with \(|T| = s \), we have
\[\|x^* - x\|_2 \leq C_0\|x - x_T\|_1 + C_1\varepsilon , \]

where
\[C_0 = \frac{4 + 5\mu rs}{2\sqrt{s}(1 - \mu rs)} ; \]
\[C_1 = \frac{9\sqrt{r}}{2(1 - \mu rs)} . \]

Proof. The proof of this theorem can be obtained based on Theorem 2.2. We show the modifications (13)-(16). For simplicity, we assume that the index of \(h \) is sorted by
$|h_1| \geq |h_2| \geq \cdots \geq |h_n|$. Take an arbitrary location T_0 of $\{1, 2, \cdots, n\}$ with $|T_0| = s$ and let $\{T_1, T_2, \cdots, T_l\}$ be a decomposition of $\{1, 2, \cdots, n\}$ with $|T_1| = s$, $|T_k| = s'$ ($2 \leq k \leq l - 1$) and $1 \leq |T_l| = r \leq s'$, where $|T|$ is number of elements of T. We consider the decomposition of h as follows:

$$h_{T_1} = (h_1^{(T_1)}, h_2^{(T_1)}, \cdots, h_s^{(T_1)}, 0, \cdots, 0)$$

$$h_{T_2} = (0, \cdots, 0, h_1^{(T_2)}, \cdots, h_s^{(T_2)}, 0, \cdots, 0)$$

$$\vdots$$

$$h_{T_{l-1}} = (0, \cdots, 0, h_1^{(T_{l-1})}, \cdots, h_s^{(T_{l-1})}, 0, \cdots, 0)$$

$$h_{T_l} = (0, \cdots, 0, h_1^{(T_l)}, \cdots, h_s^{(T_l)}).$$

This is due to the T. Cai et al. idea [2] in case of $s = s'$. Then we have the following:

$$\|h_{T_1}\|_2 \leq \sqrt{\| (A_{T_1}^T A_{T_1})^{-1} \|} \|Ah_{T_1}\|_2 \leq \sqrt{r}\|Ah_{T_1}\|_2. \quad (13)$$

$$< Ah_{T_1}, \sum_{j \geq 2} Ah_{T_j} > \leq \mu \sqrt{s}\|h_{T_1}\|_2 (2\|x - x_{T_0}\|_1 + \sqrt{s}\|h_{T_1}\|_2) \leq \mu \sqrt{s} \sqrt{r}\|Ah_{T_1}\|_2 (2\|x - x_{T_0}\|_1 + \sqrt{s}\|h_{T_1}\|_2). \quad (14)$$

$$\frac{\|h_{T_1}\|_2^2}{\sqrt{r}} \leq ||Ah_{T_1}\|_2 \leq 2\varepsilon + \mu \sqrt{s} + \mu \sqrt{s} \sqrt{r} (2\|x - x_{T_0}\|_1 + \sqrt{s}\|h_{T_1}\|_2). \quad (15)$$

Therefore, we have

$$(1 - \mu rs)\|h_{T_1}\|_2 \leq 2\sqrt{r}\varepsilon + 2\mu r \sqrt{s}\|x - x_{T_0}\|_1.$$

By the assumption (ii), we have

$$\|h_{T_1}\|_2 \leq \frac{2\sqrt{r}}{1 - \mu rs} \varepsilon + \frac{2\mu r \sqrt{s}}{1 - \mu rs} \|x - x_{T_0}\|_1. \quad (16)$$

Since

$$\|h_{T_1}\|_2 \leq \sum_{j \geq 2} h_{T_j} \|_2 \leq \frac{1}{\sqrt{s}} \sum_{j \geq 2} \|h_{T_j}\|_1 + \frac{\sqrt{s}}{4} |h_1^{(T_2)}| \leq \frac{2}{\sqrt{s}} \|x - x_{T_0}\|_1 + \frac{5}{4} \|h_{T_1}\|_2,$$
we have by using (13)-(16)
\[
\|x^* - x\|_2 \leq \|h_{T_1}\|_2 + \|h_{T_2}\|_2 \\
\leq \frac{2}{\sqrt{s}}\|x - x_{T_0}\|_1 + \frac{9}{4}\|h_{T_1}\|_2 \\
\leq \frac{2}{\sqrt{s}}\|x - x_{T_0}\|_1 + \frac{9}{4} \left(\frac{2\sqrt{r}}{1-\mu rs} + \frac{2\mu r\sqrt{s}}{1-\mu rs}\|x - x_{T_0}\|_1 \right) \\
= \frac{4 + 5\mu rs}{2\sqrt{s}(1-\mu rs)}\|x - x_{T_0}\|_1 + \frac{9\sqrt{r}}{2(1-\mu rs)}\varepsilon.
\]

This completes the proof.

Corollary 2.2. Suppose that \(A\) satisfies the conditions (i) and (ii) in Theorem 2.3. Then, we have

Noiseless case: If \(x\) is a \(T_0\)-sparse vector in \(K_0\), then
\[
x = x^*.
\]

Noisy case: If \(x\) is a \(T_0\)-sparse vector in \(K_\varepsilon\), then
\[
\|x^* - x\|_2 \leq C_1\varepsilon.
\]

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
<table>
<thead>
<tr>
<th>MI2008-14</th>
<th>Takashi NAKAMURA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2008-15</th>
<th>Takashi NAKAMURA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some topics related to Hurwitz-Lerch zeta functions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-1</th>
<th>Yasuhide FUKUMOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global time evolution of viscous vortex rings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-2</th>
<th>Hidetoshi MATSUI & Sadanori KONISHI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regularized functional regression modeling for functional response and predictors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-3</th>
<th>Hidetoshi MATSUI & Sadanori KONISHI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable selection for functional regression model via the L_1 regularization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-4</th>
<th>Shuichi KAWANO & Sadanori KONISHI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonlinear logistic discrimination via regularized Gaussian basis expansions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-5</th>
<th>Toshiro HIRANOUCHI & Yuichiro TAGUCHII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flat modules and Groebner bases over truncated discrete valuation rings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-6</th>
<th>Kenji KAJIWARA & Yasuhiro OHTA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-7</th>
<th>Yoshiyuki KAGEI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-8</th>
<th>Shohe TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonlinear regression modeling via the lasso-type regularization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-9</th>
<th>Takeshi TAKAISHI & Masato KIMURA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase field model for mode III crack growth in two dimensional elasticity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-10</th>
<th>Shingo SAITO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-11</th>
<th>Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-12</th>
<th>Tetsu MASUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypergeometric \mathbb{Q}-functions of the q-Painlevé system of type $E_8^{(1)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-13</th>
<th>Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI2009-14</th>
<th>Yasunori MAEKAWA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Gaussian decay estimates of solutions to some linear elliptic equations and its applications</td>
</tr>
</tbody>
</table>
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (P_m)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type $(A_2 + A_1)$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiro FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queuing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queuing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAIITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAIITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAO, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abuduwali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing