九州大学学術情報リポジトリ Kyushu University Institutional Repository

Response of the reconnection electric field and polar cap potential to the IMF and velocity of solar wind

Fukazawa, Keiichiro

Department of Earth and Planetary Sciences, Kyushu University

Aoyama, Tomoharu

Solar-Terrestrial Environment Laboratory, Nagoya University

Ogino, Tatsuki

Solar-Terrestrial Environment Laboratory, Nagoya University

Yumoto, Kiyohumi

Space Environment Research Center, Kyushu University | Department of Earth and Planetary Sciences, Kyushu University

https://hdl.handle.net/2324/26034

出版情報: Journal of Atmospheric and Solar-Terrestrial Physics. 72 (13), pp.1019-1023, 2010-08. Elsevier

バージョン:

権利関係:(C) 2010 Elsevier Ltd.

Response of the Reconnection Electric Field and Polar Cap

Potential to the IMF and Velocity of Solar Wind

3 Keiichiro Fukazawa 4 Department of Earth and Planetary Sciences, Faculty of Sciences Kyushu University 5 6 6-10-1 Hakozaki Higashi-ku Fukuoka 812-8581, Japan fukazawa@geo.kyushu-u.ac.jp 7 8 Tel +81-92-641-3131 (ext 8387) 9 Tomoharu Aoyama 10 11 Solar-Terrestrial Environment Laboratory, Nagoya University 12 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan 13 Tatsuki Ogino 14 Solar-Terrestrial Environment Laboratory, Nagoya University 15

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

16

Abstract

It is well known that the cross polar cap potential is saturated under a strong interplanetary electric field and is often said to be related to the ionospheric currents. To investigate the other factors influencing this phenomenon, a global magnetohydrodynamics simulation not including the feedback from the ionosphere to the magnetosphere was conducted. The simulation results showed that an increase in the southward IMF causes a smaller increase in the cross polar cap potential than that caused by an increase in the solar wind velocity. This difference was caused by the transportation of reconnected magnetic field lines toward the tail.

Key words

interplanetary electric field, polar cap, MHD simulation

1. Introduction

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

33

The polar regions of the ionosphere reflect the dynamics of the global magnetosphere along the magnetic field lines and are important in determining the coupling of the magnetosphere and ionosphere. It is well known that one of these dynamics, the cross polar cap potential, is saturated under a strong interplanetary electric field (IEF), and there have been many suggestions about the mechanism responsible for this saturation (Shepherd, 2007). Sonnerup (1974) and Hill (1975) suggest theoretically that the imbalance between the intensities of interplanetary magnetic field (IMF) and magnetic field of magnetopause decrease the efficiency of dayside merging. However, Nagatsuma (2002) reports that the degree of saturation does not depend on the intensity of dayside reconnection. In the other theory, some suggest that the coupling between ionosphere and magnetosphere is the cause to decrease the polar cap potential (Hill et al., 1976; Fedder and Lyon, 1987; Weimer et al., 1990). However, it has not yet been fully determined as to which mechanism is dominant. Russell et al. (2001) analyzed several magnetic storm events and reported that the cross polar cap potential increased linearly for an IEF in range of 0-3 mV m⁻¹ and began to

saturate over 4 mV m⁻¹. MacDugall et al. (2006) recently suggest an enhanced region 2 current related to the saturation process of the cross polar cap potential under a strong IMF.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Global magnetohydrodynamics (MHD) simulation is often used to examine polar dynamics because the global configuration of the magnetosphere affects the polar regions of the ionosphere. Using global simulation, Siscoe et al. (2002b) found that it was important for the region 1 current to be limited by the solar wind ram pressure for the cross polar cap potential to become saturated. Merkine et al. (2003) compared the results of using two different values of conductivity in their global simulation and concluded that the saturation effect was likely to increase with conductivity. The empirical model of the mechanism responsible for the cross polar cap potential did not adequately describe the saturation of the cross polar cap potential under strong magnetic storms, but Raeder and Lu (2005) indicated that the MHD model described it well. They suggested that shortening the distance of the dayside magnetopause from the Earth caused the cross polar cap potential to saturate. These MHD simulation models include the effects of the feedback from the ionosphere to the magnetosphere; and this effect seems to act as the key factor influencing the polar dynamics.

This paper presents the results of our study on the cross polar cap potential based

on the interaction of the solar wind with the Earth's magnetosphere, obtained using a three-dimensional global MHD model. We particularly focus on the effects of magnetic field line deformation on the polar dynamics by not using the ionospheric conductivity in our simulation model and not including feedback from the ionosphere.

2. Simulation model

The basic MHD simulation model has been described in detail by Ogino (1986) and Ogino et al. (1992). We briefly review the model in this section and explain how the present method differs from previous calculations.

We launched a magnetized solar wind with a density of $n_{sw} = 20 \text{ cm}^{-3}$ and a temperature of $T_{sw} = 2 \times 10^5 \text{ K}$ from the upstream boundary of a simulation box and solved the normalized resistive MHD equations as an initial value problem. We used a quarter simulation box with the dimensions $-60 \text{ R}_{E} < X < 30 \text{ R}_{E}$, $0 \text{ R}_{E} < Y < 30 \text{ R}_{E}$, and $0 \text{ R}_{E} < Z < 30 \text{ R}_{E}$ in Cartesian solar magnetospheric coordinates, where R_{E} is the radius of the Earth (=6.37 \times 10⁶ m). Thus, the magnetic dipole tilt and IMF By were not included. The number

of grid points was (nx, ny, nz) = (450, 150, 150) with a uniform grid spacing of 0.2 R_E. The magnetic field (**B**), velocity (**v**), mass density (ρ), and thermal pressure (p) were maintained at solar wind values at the upstream boundary in the simulation. Symmetrical boundary conditions were used at the equator (Z = 0) and meridian plane (Y = 0), while free boundary conditions were used at the top, lateral, and downstream boundaries. All the simulation parameters (**B**, **v**, ρ , p) were fixed for r < 2.5 R_E at the inner magnetosphere boundary. The simulation quantities were connected with the inner boundary through a smooth transition region (2.5 < r < 3 R_E) so that we did not treat the ionosphere as a conductor and have to include the ionospheric feedback effect.

We changed two of the solar wind parameters, the velocity of the solar wind and the magnitude of the IMF, to simulate various IEF conditions. The parameters of the solar wind used in the simulation are listed in Tables 1 and 2 along with the magnitude of the IEF calculated from $-V \times B$. Here, the Alfvén Mach number (MA) is the ratio of the solar wind velocity to the Alfvén velocity. In addition, because it is difficult to achieve a stable simulation with very high speed solar wind, we used solar wind velocities up to 900 km s⁻¹ and a constant, high solar wind density of 20 cm⁻³.

The polar cap potential was derived by mapping the results of the global

simulation to the ionosphere in a quasi-steady state, as in Park et al. (2006). There are two ways of evaluating the dayside reconnection electric field ($-V \times B$ and ηJ); however, we used the Y-component of $-V \times B$ to compare the upstream electric field in the solar wind with the dayside reconnection electric field. This method is reasonable as these two electric fields connect smoothly in the dayside reconnection region (Walker et al., 1993 and Park et al., 2006).

3. Cross polar cap potential and electric field

To investigate only the effects of the magnetosphere on the polar dynamics, we carried out an MHD simulation that did not include the ionospheric feedback model, under the conditions listed in Tables 1 and 2. The cross polar cap potential and the dayside reconnection electric field at the subsolar point obtained from the simulation are plotted against increasing solar wind velocity and IMF Bz magnitude in Figs. 1 and 2, respectively. The Y-component of the dayside reconnection electric field (RX Ey) was measured as the maximum Ey in the immediate vicinity of the reconnection site on the Sun-Earth line. In

Figure 1

The range of IEF E_Y is shorter in Fig. 1 than in Fig. 2, as seen in Tables 1 and 2. In these simulation we change the solar wind parameters intermittently as Table 1 and 2, do not change continuously thus the IEF E_Y and potential in Figs 1 and 2 seem to be scattered. In addition, dayside reconnection site moves temporally and spatially when the solar wind is changed thus it is difficult to determine when and where reconnection occurs. In this study the IEF E_Y and potential are represented on the Sun-Earth line after 40 minutes passed.

both figures, the horizontal axis represents IEF Ey; the left vertical axis, the potential; and

the right vertical axis, the electric field. The dashed line is an approximation of the plot.

with solar wind velocity. In the range of IEF Ey values between 3×10^{-3} and 4.5×10^{-3} V m⁻¹, the magnitude of the cross cap potential in Fig. 1 (varying solar wind velocity) is almost twice that in Fig. 2 (varying IMF magnitude). In Fig. 1, the approximated line, which has a gradient of about 70.0, can be drawn to pass through the origin and corresponds well with the simulation results. In this case, RX Ey is enhanced to values

Fig. 1 shows that the cross polar cap potential (black circles) increases linearly

increase in the solar wind velocity causes an increase in the plasma temperature of the

greater than the input E_Y (IEF E_Y) at solar wind velocities greater than 600 km s⁻¹. An

magnetosphere due to shock heating. And this leads to a high plasma velocity in the

Figure 2

magnetosphere, which, in turn, leads to high RX Ey. In addition, high-speed solar winds (which imply a high dynamic pressure) cause variations in the configuration of the magnetopause and shift the site of reconnection away from the subsolar point. This then would affect the variation in RX Ey on the Sun-Earth line, which does not exhibit a monotonic increase. However, it is fair to say that the overall variational trend is clearly growth.

In contrast, Fig. 2 indicates that the cross polar cap potential does not exhibit a similar increase with IEF E_Y. The approximated line has gradient of about 8.9 and cannot pass through the origin. The trend of the potential is similar to that seen in Fig. 2 in Siscoe et al. (2002b); however, the range of potentials is different, and in our simulation, the potential is not completely saturated. The dependency of the cross polar cap potential on M_A is similar to that seen in the results of Ridley (2005). He concluded that the cross polar cap potential is saturated at small M_A . The black triangles in Fig. 2 plot RX E_Y, which also does not exhibit a significant increase. RX E_Y increases gradually until an IEF E_Y of 9 × 10^{-3} V m⁻¹ and then decreases slightly until an IEF E_Y of 15×10^{-3} V m⁻¹. RX E_Y becomes smaller than the input E_Y when increasing the magnitude of the southward IMF. Although the ranges of IEF E_Y used in Figs. 1 and 2 are different, it is quite apparent that the

behaviors of the cross polar cap potential and RX E_Y are unlike.

As the potential and electric field are generally related by $\mathbf{E} = -\nabla \phi$, the potential is not proportional to the electric field. In other words, the scale of the potential is dependent on both the strength and extent of the electric field. The dayside reconnection electric field drives magnetospheric convection and the solar wind then draws the edges of the reconnected magnetic field lines, thereby strengthening the convection. Here, the effect of the convection electric field on the cross polar cap potential is much stronger than that of the reconnection electric field. Thus, the behavior of RX E_Y is not directly linked to the behavior of the cross polar cap potential. The relation between RX E_Y and the cross polar cap potential is discussed in the next section along with the saturation mechanism.

Our simulation results revealed that the cross polar cap potential did not exhibit a significant increase with the magnitude of the southward IMF; however, this was not the case when increasing the velocity of the solar wind. Merkine et al. (2003) suggests that the conductivity of the ionosphere is important in determining the scale and saturation of the cross polar cap potential. Our simulation model did not consider ionospheric conductivity and the feedback from the ionosphere to the magnetosphere. Thus, the magnetospheric dynamics corresponding to a strengthening of the southward IMF inhibit the enhancement

of the cross polar cap potential.

1 7 1

4. Discussion and conclusions

The configurations of the magnetic field lines are illustrated in Figs. 3 and 4 to show the effects of the structural change in the dayside magnetic field lines on the cross polar cap potential. The white lines in both figures represent the magnetic field lines, and the magnitude of the magnetic field in the dayside meridian plane is represented using the color spectrum. The magnetic field lines are drawn from the equally interval points. The closed field lines starts from equator and the open field lines and IMF start from x-line at $z = 16~R_E$. Fig. 3 shows the case when the IMF Bz is -10~nT and Fig. 4 shows that for -45~nT. Comparing the distance of "A" (which indicates the reconnection point) in these figures, the reconnection point comes closer to Earth as the magnitude of the southward IMF increases (9.1 R_E for -10 nT and 7.8 R_E for -45 nT). In addition, the Alfvén Mach number (MA) becomes small then the magnetopauses are flattened in the Z direction (focus on the deep blue region in Figs. 3 and 4), which prevents reconnection from occurring at the subsolar point. When the IMF

becomes stronger, MA becomes smaller so that the magnetosheath region broadens and more magnetic flux lines can exist there. From Fig. 4, it appears that the region with a weak magnetic field (blue colored region in the figure) is not smoothly connected to the cusp. In other words, the strength of the magnetic field, which flows tailward after reconnection on the dayside, suddenly approaches the IMF magnitude around the cusp. To focus on the behavior of reconnected field lines in Figs. 3 and 4, the reconnected field lines are smoothly carried by the solar wind from the subsolar point to the tail for -10 nT case, however those field lines for -45 nT case are not well brought to the tail (see the blue region along the magnetopause in fig. 4). To confirm the effect of solar wind to the transport of reconnected magnetic field, the configurations of the magnetic field lines for the solar wind velocity 600 km s⁻¹ with the IMF B_Z -5 nT are illustrated in Fig. 5. The format of Fig. 5 is the same as Figs. 3 and 4. In Fig. 5 the reconnected field lines are well brought smoothly to the tail (focus on the bending magnetic field lines around z-axis). These bending field lines show that reconnected field lines are brought before the magnetic field lines are tightened.

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

In addition the maximum speed of carrying the reconnected field for -45 nT case is 1.7 times as that for -10 nT case even though the magnitude of southward IMF is different as 4.5 times. These suggest that the reconnected magnetic field does not flow smoothly and

Figure 3
Figure 4

Figure 5

stagnates around the subsolar point, and then next reconnection becomes not likely to occur because there is not enough space to merge, causing a decrease in the reconnection rate.

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Slightly away from the subsolar point, as the magnitude of the southward IMF increases, the velocity of the reconnected flow approaches that of the magnetosheath flow. Thus, if the reconnection jet could connect smoothly to the plasma flow in the magnetosheath, the cross polar cap potential would increase and the reconnection rate would not decrease. That is, there is a relation between the reconnection rate at the subsolar point and the rate at which the magnetic flux lines are drawn away from the reconnection site by the solar wind. The cross polar cap potential is inhibited by that solar wind could not bring the much magnetic flux from dayside to nightside as compared to the reconnected flux. In such a case, the reconnected field lines, whose components are almost southward, remain around the subsolar point and prevent the southward IMF from continually reconnecting with the Earth's magnetic field. This non-reconnected IMF moves to the dawn and dusk sides and flows along the flanks of the magnetopause. The length of the x-line, which indicates broadening of the reconnection region, for variations in the IMF is shown in Fig. 6. The x-line is defined as the line between the open and closed field lines. It is long at low IEF E_Y and short at high E_Y, which also suggests a decrease in the occurrence of reconnection due to the stagnation of reconnected magnetic field lines.

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Figure 6

In the simulation with increasing IMF magnitudes, the dayside reconnected magnetic field lines flowed tailward; however, as the velocity of the solar wind was not sufficient (300 km s⁻¹), the reconnected magnetic field lines were not dragged away from around the reconnection region, thereby inhibiting the cross polar cap potential. This prevented the IMF from merging with the Earth's magnetic field on the dayside. Under such conditions, reconnection became difficult, as evidenced by the saturation of RX Ey. However, in the simulation with increasing solar wind velocities, the reconnected magnetic field lines did not stagnate at the subsolar point and could flow tailward. This was why the cross polar cap potential was not saturated but increased in this case. Considering a kind of criterion for inhibition, it seems that the inhibition start when the M_A becomes 6.1 however it needs more simulation with the combination of solar wind velocity and IMF variations. These results, obtained using the global simulation model, do not disprove the relation between ionospheric conductivity and the cross polar cap potential but indicate a relation between the magneticfield configuration and the saturated cross polar cap potential, without taking ionospheric effects into consideration.

237 Acknowledgement 238 239 240 This work was supported by Grant-in-Aid for JSPS Fellows No.09J01416 (K.F.) and a 241 Grant-in-Aid for Creative Scientific Research, "The Basic Study of Space Weather Prediction" (17GS0208, Head Investigator: K. Shibata), from the Ministry of Education, 242 Science, Sports, Technology, and Culture of Japan and CREST, the Japan Science and 243 Technology Agency (JST). Computing support was provided by the Information 244 Technology Center, Nagoya University, and by the National Institute of Information and 245 Communications Technology (NICT). 246 247 References 248 249 Fedder, J. A., and J. G. Lyon, The solar wind-magnetosphere-ionosphere current-voltage 250 relationship, Geophys. Res. Lett., 14, 880–883, 1987. 251 252 Hill, T. W., Magnetic merging in a collisionless plasma, J. Geophys. Res., 80, 4689-4699, 253

1975. 254 255 256 Hill, T. W., A. J. Dessler, and R. A. Wolf, Mercury and Mars: The role of ionospheric 257 conductivity in the acceleration of magnetospheric particles, Geophys. Res. Lett., 3, 429– 258 432, 1976. 259 MacDougall, J. W. and Jayachandran, P. T., 2006, Polar cap voltage saturation, J. Geophys. 260 Res., 111, A12306, doi: 10.1029/2006JA011741. 261 262 263 Merkine, V. G., Papadopoulos, K., Milikh, G., Sharma, A. S., Shao, X., Lyon, J., and 264 Goodrich, C., 2003, Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling, Geophys. Res. Lett., 30, 265 266 2180, doi: 10.1029/2003GL017903. 267 Nagatsuma, T., Saturation of polar cap potential by intense solar wind electric field. 268

Geophys. Res. Lett., 29, 10.1029/2001GL014202, 2002.

269

- Ogino, T., 1986, A three-dimensional MHD simulation of the interaction of the solar wind
- with the Earth's magnetosphere: The generation of field-aligned currents, J. Geophys. Res.,
- 273 91, 6791-6806.

- Ogino, T., Walker, R. J., and Ashour-Abdalla, M., 1992, A global magnetohydrodynamic
- simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field
- is northward, IEEE Trans. Plasma Sci., 20, 817-828.

278

- Park, K. S., Ogino, T., and Walker, R. J., 2006, On the importance of antiparallel
- reconnection when the dipole tilt and IMF By are nonzero, J. Geophys. Res., 111, A05202,
- 281 doi: 10.1029/2004JA010972.

282

- Raeder, J. and Lu, G., 2005, Polar cap potential saturation during large geomagnetic storms,
- 284 Adv. Space Res., 36, 1804-1808.

- Ridley, A. J., 2005, A new formulation for the ionospheric cross polar cap potential
- including saturation effects, Ann. Geophys., 23, 3533-3547.

288	
289	Russell, C.T., Luhmann, J. G., Lu, G., 2001, Nonlinear response of the polar ionosphere to
290	large values of the interplanetary electric field, J. Geophys. Res., 106, 18495-18504.
291	
292	Siscoe, G. L., Crooker, N. U., and Siebert, K. D., 2002, Transpolar potential saturation:
293	Roles of region 1 current system and solar wind ram pressure, J. Geophys. Res., 107, 1321
294	doi:10.1029/2001JA009176.
295	
296	Siscoe, G., Raeder, J., and Ridley, A. J., 2004, Transpolar potential saturation models
297	compared, J. Geophys. Res., 109, A09203, doi: 10.1029/2003JA010318.
298	
299 300	Sonnerup, B. U. O., Magnetopause reconnection rate, J. Geophys. Res., 79, 1546-1549, 1974.
301	
302	Walker, R. J., Ogino, T., Raeder, J., and Ashour-Abdalla, M., 1993, A global
303	magnetohydrodynamic simulation of the magnetosphere when the interplanetary magnetic
304	field is southward: The onset of magnetotail reconnection, J. Geophys. Res., 98, 17235-

17249.

Weimer, D. R., L. A. Reinleitner, J. R. Kan, L. Zhu, and S.-I. Akasofu, Saturation of the
auroral electrojet current and the polar cap potential, J. Geophys. Res., 95, 18,981–18,987,
1990.
310
311

FIGURES

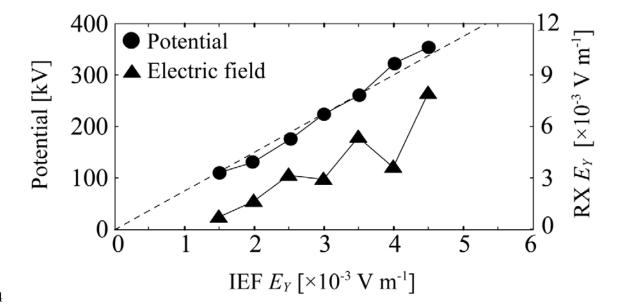


Fig. 1. Dependence of interplanetary electric field (IEF) on cross polar cap potential and electric field of dayside reconnection (RX) for solar wind velocities listed in Table 1.

Horizontal axis represents Y-component of IEF, and left vertical axis, the potential. Right vertical axis represents Y-component of RX. Black circles represent potential and triangles, electric field.

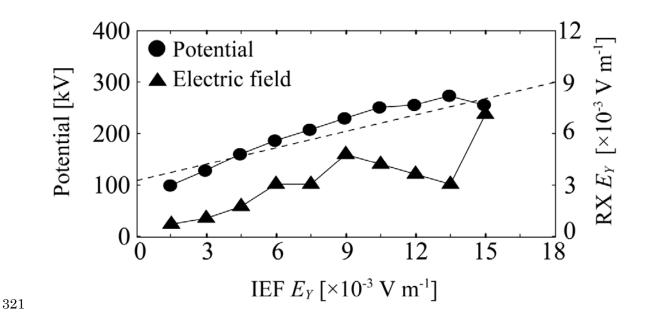


Fig. 2. Dependence of interplanetary electric field (IEF) on cross polar cap potential and electric field of dayside reconnection (RX) for IMF magnitudes listed in Table 2. Legend is same as that of Fig. 1.

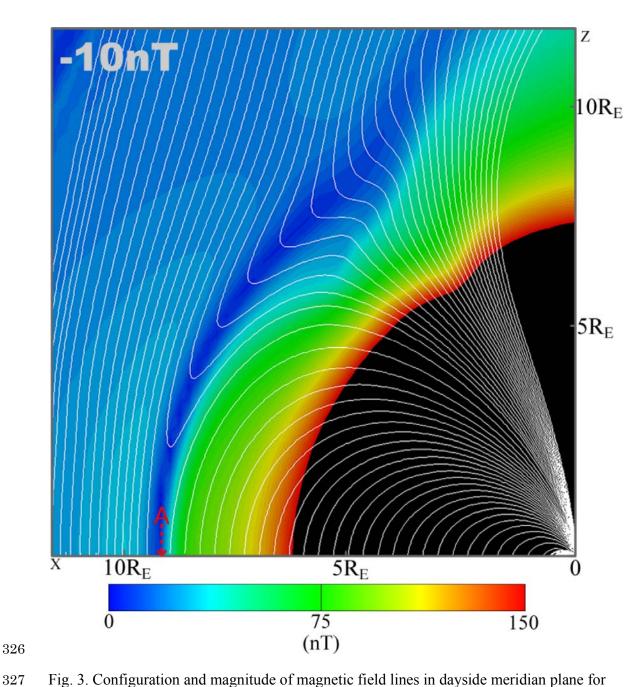


Fig. 3. Configuration and magnitude of magnetic field lines in dayside meridian plane for IMF B_Z of -10 nT. White lines indicate magnetic field lines and color spectrum represents magnitude. "A" indicates the reconnection point (9.1 R_E) on the Sun-Earth line.

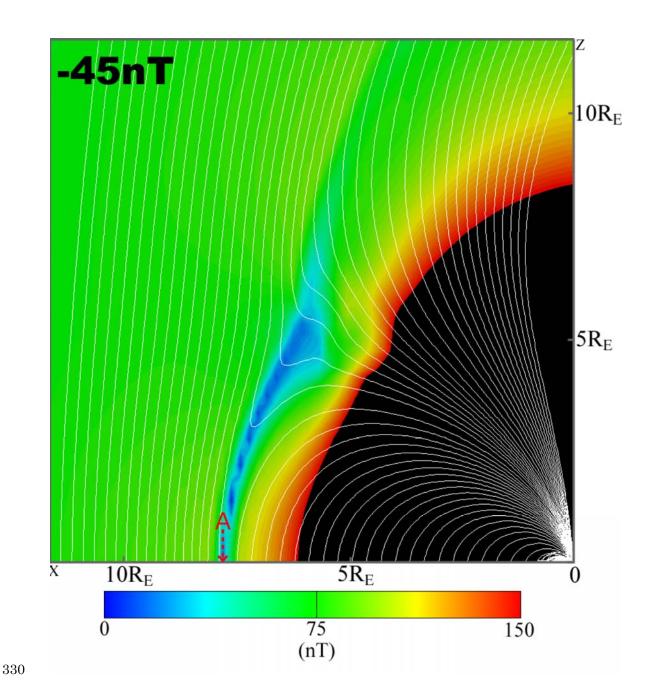


Fig. 4. Configuration and magnitude of magnetic field lines in dayside meridian plane for IMF B_Z of -45 nT. White lines indicate magnetic field lines and color spectrum represents magnitude. "A" indicates the reconnection point (7.8 R_E) on the Sun-Earth line.

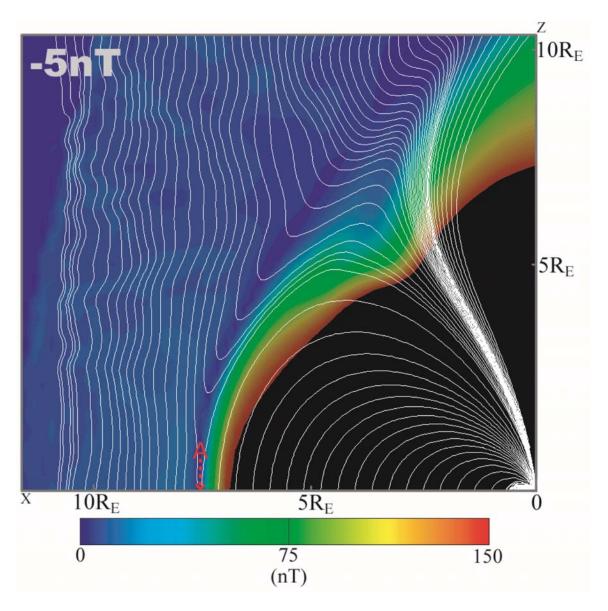


Fig. 5. Configuration and magnitude of magnetic field lines in dayside meridian plane for IMF Bz of -5 nT with 600km/s solar wind. White lines indicate magnetic field lines and color spectrum represents magnitude. "A" indicates the reconnection point (7.5 RE) on the Sun-Earth line.

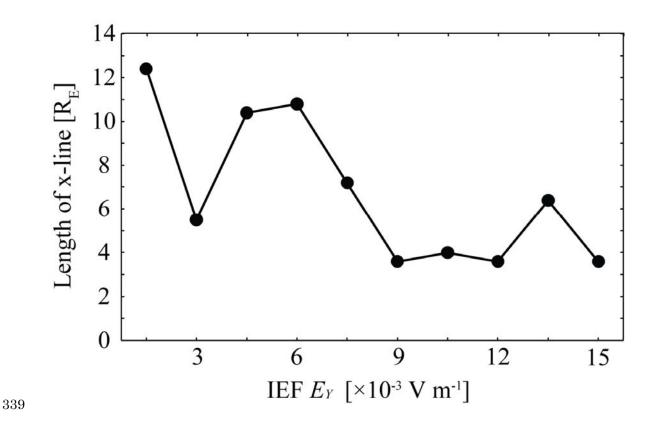


Fig. 6. Dependence of interplanetary electric field (IEF) on length of x-line on dayside for IMF magnitudes listed in Table 2. Horizontal axis represents Y-component of IEF and vertical axis, length of x-line.

345 TABLES

Table 1. Velocity of solar wind, Y-component of IEF (E_Y), and Alfvén Mach number (M_A) used in simulation (IMF B_Z is set to -5 nT).

348	
349	Table 2. Z-component of IMF (Bz), Y-component of IEF (Ey), and Alfvén Mach numbe
350	(M_A) used in simulation (velocity of solar wind is 300 km s $^{-1}$).
351	