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Abstract A new phenomenon that we call a sweeping echo is 

described and investigated. When we clap hands in a regularly 

shaped reverberant room, we hear sweeping echoes whose 

frequency increases linearly with time. An example of sweeping 

echoes observed in a rectangular reverberation room is first 

described. Then, the mechanism that generated the sweeping 

echoes is investigated by assuming a cubic room and using 

number theory. The reflected pulse sound train is found to have 

almost equal intervals between pulses on the squared-time axis. 

This regularity of arrival times of the reflected pulse sounds is 

shown to generate the weeping echoes. Computer simulation of 

room acoustics shows good agreement with theoretical results. 

 Next, we investigated sweeping echoes in a two-dimensional 

(2D) space. We first describe our investigation of a square 

cross-section based on number theory. Next, we describe 

rectangular cross-section with various aspect ratio investigated 

based on the same theory as that for the square. We also discuss 

our measurements of sweeping echoes in a long hallway. We 

propose a method for extracting sweep rates of sweeping echoes 

by calculating their correlation with a time stretched pulse. We 

analyzed the sweeping echoes for a source and receiver at the 

center of a rectangular cross-section.  
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I. INTRODUCTION 

 A new, interesting acoustical phenomenon is described, and its generation 

mechanism is investigated theoretically. 

 When we clap hands once between parallel hard walls, we hear a sound 

called “fluttering echo.”[1]. A single handclap sound (i.e., an impulsive sound) 

is reflected by the walls repeatedly, and a train of pulses with periodic 

intervals is generated. This pulse train causes a specific sound sensation; 

that is, a fluttering echo. 

 In the fluttering echo, reflected sounds go forward and backward in a 

one-dimensional pattern between parallel hard walls. What happens, then, 

when we clap hands in a three-dimensional (3D) reflective space? The author 

found sweep sound (Audio illustrations are available at: 

http://www.asp.c.dendai.ac.jp/sweep/) which the author call “sweeping 

echoes,” were perceived when we generated a pulse sound in a regularly 

shaped reverberation room. The perceived frequency of the sweep sounds 

increased with time at different speeds. Other researchers have also noticed 

the sweeping echoes in squash courts, which also had hard regularly shaped 

walls. 

ISO [2] allows rectangular reverberation room because of its construction 

cost and easiness of measurement. Also Japanese Industrial Standard (JIS) 

[3] recently allowed the rectangular shaped reverberation room as TYPE II 

room. 

 However, the sweeping echoes might cause acoustic cumbrance at 

measuring in the reverberation room. Therefore, it is necessary to consider 

an adequate volume. 
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 There are some other types of sweeping (or sliding) echoes. One is caused by 

frequency dispersion. The frequency dispersion assumes some special sound 

field where the phase velocity of a sound varies with its frequency. This is not 

the case here; the sweeping echoes presented in this paper occur in normal 

sound field, without dispersion. 

 Knudsen[4] reported another type of frequency shift in reverberated sound. 

He reported that the pitch of a tone in a small, resonant room might change 

perceptively during the decay of the tone. The pitch of the emitted sound is 

considered to be changed to that of a resonance frequency. On the other hand, 

our sweeping echoes are clearly explained in the time domain based on the 

number theory. 

 Kaneda et al [5] reported when a stone is dropped in a circular long pipe 

(about 100m length, 20cm diameter), sweep sounds whose frequency 

decreases with time are observed and they analyzed its generation 

mechanism. 

 Another researcher noticed when a handclap is once occurred toward a 

flight of steps (about 40m width, 25 steps), echoes whose frequency varies 

with time are perceived.  

Sweep component often appears when measuring an impulse response 

using TSP signal. However, this is not sweeping echoes but the harmonic 

distortion of the loudspeaker [6]. 

 In this paper, the sweeping echoes observed in a rectangular parallelepiped 

reverberation room are described first with their time-frequency analysis in 

Sec. II. 1. Then, the generation mechanism of the sweeping echoes in a cubic 

room is investigated using number theory in Secs. II. 2 and II. 3. The 



 3

theoretical results are compared with simulation results in Sec. II. 4.  

Section III describes Examination on the Three Dimensional Case. Sec. III.1 

discusses sweeping echoes in a rectangular parallelepiped reverberation 

room by auto-correlation of the measured data. Sec. III.2 considers an 

adequate volume of the reverberation room. Sec. III.3 concludes sweeping 

echoes in 3D spaces. 

 Sec. IV describes sweeping echoes in a two-dimensional (2D) space (square 

cross-section) and discusses whether the above theory can be applied to a 2D 

space and theoretically analyzes the generation mechanism of the echo. 

Section IV.1 describes the main sweeping echo based on the above research. 

Section IV.2 describes sub-sweeping echoes in 2D spaces. Section IV.3 shows 

a numerical simulated result. Section IV.4 describes an experiment result 

and compares with the theoretical result. 

In Section V, Examination on the Two Dimensional Case is described. Sec. 

V.1 proposes a new method for detecting sweeping echoes and the theoretical 

and experimental results for sweeping echoes are confirmed. 

Sec. V.2 describes forbidden numbers of rectangular cross-section. Sec. V.3 

concludes sweeping echoes in 2D spaces. 

Section VI concludes the paper. 
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II. SWEEPING ECHOES PERCEIVED IN A RECTANGULAR 

PARALELEPIPED REVERVERATION ROOM 

 Sweeping echoes are perceived in relatively large, regularly shaped 

three-dimensional rooms with highly reflective surfaces; i.e., walls, ceiling, 

and floor. The author first describes the sweeping echoes measured in a 

rectangular parallelepiped reverberation room along with time-frequency 

analysis. 

 

II. 1 Measured sweeping echoes 

A. Measurement conditions and sweeping echoes 

The dimensions of the rectangular parallelepiped reverberation room were 

11 m (width) × 8.8 m (depth) × 6.6 m (height) [7]. The measurement 

conditions are shown in Fig. 2.1. Figures 2.1(a) and (b) show the plan view 

and cross section of the reverberation room, respectively. The symbols S and 

R represent the source and reception positions, respectively. As shown in Fig. 

2.1(a), both S and R were located on the center line of the floor. S was located 

3.2 m from the wall and 1.2 m high, and R was 1.1 m from the opposite wall 

and 1.5 m high as shown in the figure, respectively. 

When hands were clapped once at position S, the first sweep sound whose 

frequency increases over a short time (called the main sweeping echo) was 

perceived at position R. Multiple sweep sounds whose frequency increased 

relatively slowly (called sub-sweeping echoes) were then perceived, along 

with ordinary reverberation sounds. 

Although sweep sounds were perceived at other source and reception 

positions, the sounds were perceived more clearly at positions that were 



 5

symmetrical with respect to the room, such as those shown in Fig. 2.1. To 

analyze these sweep sounds, they were recorded with a microphone placed at 

position R. 

 

 

 

 

 

 

 

 

  (a) Plan view   (b) Cross section 

 

FIG. 2.1 Layout for sweep-sound measurement. (a) Plan view, (b) cross 

section. S, source position, R, reception position. 
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B. Time-frequency analysis of the sweeping echoes 

 Figure 2.2 shows the results of analyzing the recorded echoes by using 

short-time Fourier transformation. The horizontal axis represents time, and 

the time when hands were clapped is set to the origin. The figure shows the 

spectrogram for the first 2seconds. The vertical axis represents frequency, up 

to 2 kHz, which was the range within which the sweep sounds clearly 

perceived. The analysis conditions were the following: the sampling 

frequency was 16 kHz, a 16-ms rectangular window (62.5 Hz frequency 

resolution) was used, and the window was shifted in steps of 8 ms.  

In Fig. 2.2, the main sweeping echo appears clearly from 0 to about 400 ms 

[line (A)]. The frequency of the main sweeping echo increased linearly with 

time, and it rose to about 1500 Hz during the first 400 ms. This result 

corresponds with hearing perception. Following the main sweeping echo, 

multiple sub-sweeping echoes whose frequency rose linearly at relatively 

slow speeds, also appear in Fig. 2.2.
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FIG. 2.2 Spectrogram of the recorded data. The main sweeping echo appears 

clearly from 0 to about 400 ms [line (A)]. The frequency of the main sweeping 

echo increased linearly with time, and it rose to about 1500 Hz during the 

first 400 ms. Following the main sweeping echo, multiple sub-sweeping 

echoes also appeared whose frequency rose linearly at relatively slow speeds. 
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(A) Main sweeping echo 
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II.2 Generation mechanism of the main sweeping echo (cubic room) 

 In this section, the author investigates the generation mechanism of the 

main sweeping echo, based on geometrical acoustics and number theory. As 

the first step in this investigation, a cubic room is assumed in this paper. 

 

A. Intervals of reflected sounds in a cubic room 

 First, the regularity of arrival time of reflected sounds in a cubic room is 

described. To simplify the issue, the source and reception points are both 

assumed to be located at the center of the room. Figure 2.3 shows the mirror 

image sources generated in a cubic room based on geometrical acoustics [8]. 

The figure shows a top view, and the edge length of the room is denoted by L. 

When a pulse sound is generated at the center of the room, the arrival times 

and amplitude of the observed reflected sounds are the same as those of the 

sounds that would be generated from the image sources shown in Fig. 2.3. In 

other words, the reflected sounds can be treated as the sounds from the 

image sources. 

 The coordinate origin O is set at the center of the room. Then, the location of 

each image source is represented by (nxL, nyL, nzL), where nx, ny, nz are 

integers. The distance d between the origin (reception position) and an image 

source of (nxL, nyL, nzL) is represented by  

        .
222222
Lzyxzyxd nnnLnLnLn    (2.1) 

Thus, the arrival time of the sound from the image sources is obtained by 

dividing d by sound velocity c, as in the following equation:  
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FIG. 2.3 Mirror image sources of a cubic room. The figure shows a top view, 

and the size of the room is denoted by L. The reflected sounds are treated as 

the sounds from the image sources. The coordinate origin O is set to the 

center of the room. The location of each image source is represented by (nxL, 

nyL, nzL), where nx, ny, nz are positive and negative integers. 
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. ./
222








c

L
zyxcdd nnn      (2.2) 

Next, consider the arrival time on the squared-time axis. The squared arrival 

time is derived by squaring Eq. (2.2): 

      ,
222222

c

L
M

c

L
zyx nnnt 




       (2.3) 

  . 
222

nnn zyxM        (2.4) 

 Thus, the squared arrival time t2 is represented by an integer M times a 

constant (L/c)2. Equation (2.3) represents the position on the squared-time 

axis at which the reflected sound exists. 

 From number theory [9], the sum of the squared integers 




  nnn zyx

222
 

expresses all integers, except the “forbidden numbers,” i.e., 

  M ≠ 4k(8m+7),       (2.5) 

where k, m = 0, 1 , 2, …. (Appendix A). 

 Since these forbidden numbers account for 1/6 of all positive integers 

(Appendix B), the author first disregards the forbidden numbers and assume 

that M includes approximately all positive integers. Then Eq. (2.3) indicates 

that reflected sounds (pulse sounds) exist (L/c)2, 2(L/c)2, 3(L/c)2,…; that is, 

they exist at equal intervals of (L/c)2 on the square-time axis. 
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B.  Relationship between the squared-time axis and the time axis 

The author represents the arrival times of two adjacent pulses (reflected 

sounds) as ta and tb (ta ＜ tb). The interval between these pulses on the 

squared-time axis is (L/c)2. Namely 

 
c

L
tt ab

2  
22  .        (2.6) 

By factoring the left-hand side of Eq. (2.6), we obtain 

    
c

L
tttt abab

2  

 .       (2.7) 

The average arrival time tv of the two pulses is defined by 

tv=( tb + ta)/2.        (2.8) 

By substituting Eq.(2.8) into Eq. (2.7) and modifying it, the interval 

between pulses on the time axis represented by the following equation: 

  









tc

L
tt

v
ab

1
2 2

2

.       (2.9) 

Equation (2.9) clarifies that the interval between the two pulses is 

inversely proportional to the time tv. 

Thus, a pulse series with equal intervals on the squared-time axis has 

intervals inversely proportional to time on the time axis. Figure 2.4 

illustrates this relationship. 
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C. Main sweeping echo 

 A periodic pulse series has a fundamental frequency represented by the 

reciprocal of its interval [10]. Therefore, when the interval of pulses is 

represented by Eq. (2.9), the fundamental frequency of the pulses at time tv 

is expressed by the following equation: 

  (2.10)                                                                                    21)(
2

2

t
L

c

tt
f v

ab
vt 


  

Equation (2.10) indicates that the fundamental frequency f  is proportional 

to the time tv. In other words, human perceive an increasing sweep sound. 

This proves that a reflective pulse train in a cubic room produces a sweep 

sound sensation. 
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FIG. 2.4 A pulse series with equal intervals on the squared-time axis has 

intervals inversely proportional to time on the time axis.

Observed fundamental 

frequency: f = (2t)/P 
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II. 3 Generation mechanism of the sub-sweeping echoes (Influence of the   

forbidden numbers) 

 As described above, a pulse series from the image sources of a cubic room 

does not have completely equal intervals on the squared-time axis because of 

the forbidden numbers. The influence of the forbidden numbers can be 

explained as the addition of a forbidden numbers pulse train which has 

pulses corresponding to forbidden numbers on the squared-time axis with 

negative amplitudes. Figure 2.5 conceptually illustrates this phenomenon. 

Figure 2.5(a) shows a pulse series on the time axis of a cubic room for equal 

amplitudes, where the dimension L of the cubic room was assumed 10 m. 

Some pulses are missing because of the forbidden numbers. These gaps were 

considered to be generated by adding a pulse series corresponding to the 

forbidden numbers with negative amplitude of the same values [Fig. 2.5(c)] 

to a pulse series with completely equal intervals on the squared-time axis 

[Fig. 2.5(b)]. 

 From Eqs. (2.3) and (2.5), the squared arrival time for the pulse series 

corresponding to the forbidden numbers is represented by the following 

equation: 

 
c

L
mt k

2  
2 )78(4  ,      (2.11) 

where k, m=0, 1, 2, 3, … . 

 The pulse series has equal intervals of 4k8(L/c)2, for k=0, 1, 2, … , on the 

squared-time axis as m changes. For a typical example, corresponding to k=0, 

m=0, 1, 2, … , the period of the pulse series becomes 8(L/c)2. The 

fundamental frequency at the mean time tv of two adjacent pulses  
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FIG. 2.5 The influence of the forbidden numbers. (a) A pulse series on the 

time axis of a cubic room for equal amplitudes. (b) A pulse series with 

completely equal intervals on the squared-time axis. (c) A pulse series 

corresponding to the forbidden numbers with the negative amplitude of the 

same values. The gaps of (a) are considered to be generated by adding (c) to 

(b), where the dimension L of the cubic room was assumed to be 10 m. 
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corresponding to this example is represented by the following equation: 

    t
L

cf vvb t 8
12)(

2

2

 .      (2.12) 

For k=1 and m=0, 1, 2, … , the period of the pulses becomes 32(L/c)2, and its 

fundamental frequency is represented by the following equation: 

    t
L

cf vvb t 32
12)(

2

2

 .      (2.13) 

For k=2, 3, 4, … , the fundamental frequency is represented in a similar way. 

 The pulses series corresponding to the forbidden numbers thus consists of 

multiple pulse series with different periods on the squared-time axis. Since 

these periods are longer than that of the main sweeping echo, the 

fundamental frequencies of the pulse series corresponding to the forbidden 

numbers increase more slowly. Thus, sub-sweeping echoes are generated. 

 

 

II.4 Numerical simulation 

 The theoretical results derived in the preceding sections were confirmed by 

time-frequency analysis. Figure 2.6(a) shows the spectrogram of the pulse 

series shown in Fig. 2.5(b). The spectrogram was calculated by FFT with a 

16-ms rectangular time window and an 8-ms shift. In Fig. 2.6(a), the main 

sweeping echo (A) appears clearly. The lines (B) are its harmonics.  

Calculating the slope (or frequency rising speed, or sweep speed) of the 

main sweeping echo from Eq. (2.10) with sound velocity c=340 m/s gave 

2c2/L2 =2312 Hz/s. This value is consistent with the slope of the main 

sweeping echo (A) shown in Fig. 2.6(a). 
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FIG. 2.6. (a) Spectrogram of the pulse series shown in Fig. 2.5(b). The main 

sweeping echo (A) appears clearly. The lines (B) are its harmonics. (b) 

Spectrogram of the pulse series shown in Fig. 2.5(c). The sub-sweeping echo 

(C) appears clearly, and its harmonics (D) also appear.  
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Figure 2.6(b) shows the spectrogram of the pulse series shown in Fig. 2.5(c). 

The sub-sweeping echo (C) corresponding to k=0 appears clearly, and its 

harmonics (D) also appear. Calculating the slope of the sub-sweeping echo for 

k=0 from Eq. (2.12) gave (2c2/L2)/8=289 Hz/s. This value is consistent with 

the slope of the sub-sweeping echo (C) shown in Fig. 2.6(c). 

 Figure 2.7 shows the spectrogram of the pulse series shown in Fig. 2.5(a). 

The spectrogram is almost the power sum of the spectra shown in Fig. 2.6(a) 

and (b). The main sweeping echo (A) and its harmonics (B), and the 

sub-sweeping echo (C) corresponding k=0 and its harmonics (D) all appear in 

Fig. 2.7. Thus, the main sweeping echo and the sub-sweeping echoes 

corresponding to the forbidden numbers were perceived for the pulse series 

shown in Fig. 2.5(a). 

 Next, the reflected sounds of a pulse sound (i.e., an impulse response) in the 

cubic room were simulated by the mirror image method [11]. Dimension L for 

the room was 10 m. The calculated reflected pulses were convolved with a 

sinc function and overlap added [12] to derive sampling data. Figure 2.8 

shows the spectrogram of the simulated sounds. Multiple sweep sounds 

appear, and just as in Fig. 2.7, the main sweeping echo (A) appears clearly. 

The sub-sweeping echo (C) also appears. 

 Since the sound source and reception point were located at the center of the 

room, different numbers of multiply reflected pulses arrived at the same 

time due to degeneracy of the mirror image sources. Therefore, the 

amplitudes of the reflected-pulse series were not equal. This caused random 

noisy spectrum that was superposed on the time-spectrum plot. As a result, 

the sweeping echoes shown in Fig. 2.8 are somewhat obscure. However, the  
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FIG. 2.7 Spectrogram of the pulse series shown in Fig. 2.5(a). The 

spectrogram is almost the power sum of the spectra shown in Figs. 2.6(a) and 

(b). The main sweeping echo (A) and its harmonics (B), and the sub-sweeping 

echo (C) and its harmonics (D) all appear. 
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FIG. 2.8 Spectrogram of the impulse response in a cubic reverberation room 

whose dimension L is 10 m. Multiple sweep sounds appear, and just as in Fig. 

2.7, the main sweeping echo (A) appear clearly. The sub-sweeping echo (C) 

also appears.  
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same sweeping echoes shown in Fig. 2.7 can also be recognized in Fig. 2.8. 

 The slopes of lines (A) and (C) in Fig. 2.8 are similar to the theoretical 

values 2312 Hz/s and 289 Hz/s, respectively, calculated above. Thus, the 

theoretical results developed in the preceding section adequately explain the 

sweeping echo phenomenon that appeared in the computer simulation of 

room acoustics. 
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III. Examination on the Three Dimensional Case 

 III.1 Auto-correlation of the measured data 

 Unlike a cubic room, all the side lengths of a rectangular parallelepiped 

room are not equal. Therefore, the arrival time of a reflected sound from 

image source cannot be represented by a simple formula like Eq. (2.2). This 

makes theoretical analysis using number theory difficult. 

 Therefore, the author attempted a qualitative explanation by analyzing 

experimental data. A pulse sound was generated by hand clapping under the 

conditions shown in Fig. 2.1. Then, the periodicity of the received pulse train 

(reverberation sound) was studied based on the short-time autocorrelation 

method. The short-time autocorrelation function ρ(τ, tw) was calculated 

from the windowed data centered at time tw, and it was calculated repeatedly 

with sliding time tw. The sampling frequency was 16 kHz, and the window 

length was 10 ms. 

 When the reflected pulses contain periodic pulses, the autocorrelation 

functionρ(τ, tw), as a function of time τ with fixed tw, has peaks at times, 

τ s, corresponding to the pulse periods. These peak times, or pulse periods 

were calculated as a function of tw. The results are shown in Fig. 3.1, as the 

reciprocals of the detected periods, which correspond to the frequencies. Fig. 

3.2 shows a flowchart for calculating the frequencies. 

 In Fig. 3.1, the horizontal axis represents the time tw and the vertical axis 

represents the reciprocal of the peak of the autocorrelation function by 

frequency. The ♢ symbol denotes the frequencies that correspond to the first 

high peaks ofρ (τ , tw) for each tw, and the ×  symbol denotes the 

frequencies that correspond to the second high peaks. 
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 The root-mean-square Lm of the side lengths of the rectangular 

parallelepiped room was calculated using the following equation: 

    3/222 LLLL zyxm  .     (3.1) 

Substituting the dimension of the experimental room (Lx=11 m, Ly=8.8m, 

Lz=6.6 m from Fig.1) gave Lm=8.98 m. A function derived by substituting Lm 

into Eq. (2.10), representing the theoretical frequency of a main sweeping 

echo for a cubic room with side length of Lm, is shown as a solid line in Fig. 

3.1. This solid line is close to the ×. The line of the main sweeping echo 

observed in Fig. 2.2 is also plotted in Fig. 3.1, by a broken line, and it is also 

close to the theoretical line plot. 

 This result indicates that the calculated frequency line of a sweeping echo 

based on Lm matches the observed sweeping echo, and its sweeping 

frequency corresponds to the periodicity in the pulse train appearing as the 

second high peak of the short-time autocorrelation function. It is left for 

future study to answer the question why the second high peaks but not the 

first ones, and what do the first high peaks represent. 
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FIG. 3.1 Reciprocal of peak time of short-time autocorrelation ρ(τ) of 

recorded data shown in Fig. 2.2. ♢, the first high peak ofρ(τ). ×, the 

second high peak ofρ(τ). Solid line, theoretical frequency. The solid line is 

closed to the ×  symbols. Broken line, the line of main sweeping echo 

observed in Fig. 2.2. It is also close to the theoretical line plot. 

Thus, the main sweeping echo in a rectangular parallelepiped room has 

reflected pulse periods close to those of a cubic room with the same mean side 

length Lm as the rectangular parallelepiped room. This implies that the 

pulse train in a rectangular parallelepiped room has a regularity similar to 

that in a cubic room, and this regularity causes sweeping sounds. 
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FIG. 3.2 Flowchart for calculating frequencies corresponding to reflected 

pulse series. 

 

Input recorded data x 

Calculating autocorrelation function ρ(τ,tw) for each 10 ms tw  

Extracting first peak of ρ(τ1,tw) 

Plot frequency ◇ corresponding 1/τ1 at each tw  

Extracting second peak of ρ(τ2,tw) 

Plot frequency × corresponding 1/τ2 at each tw  

End 
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III.2 Recommended volume of the reverberation room 

Eq. (3.2) indicates modified Eq. (2.10) for Lm instead of L; 

  (3.2)                                                                                    2)(
2

2

t
L

cf v
m

vt   

The smaller Lm is, the more quickly f (tv) increases. ISO [2] allows 

rectangular reverberation room because of its construction cost and easiness 

of measurement. Also Japanese Industrial Standard (JIS) [3] recently 

allowed the rectangular shaped reverberation room as TYPE II room. ISO [2] 

prescripts the volume of the reverberation shall be at least 150 m3 

corresponding to about Lm = 5.5 m. Then, f (tv=1 s) = 7643.0 Hz. This 

frequency can be difficult to be perceived. The size of our previous 

reverberation room was 11 m×8.8 m×6.6m, i.e. its volume was 638.88 ㎥. 

The Lm in Eq. (3.2) was about 8.6 m and f (tv=1 s) = 3116.8 Hz. The frequency 

is easy to be perceived, therefore, such huge size should be avoided for 

acoustical measurements. 

Our reverberation room was reconstructed as decreasing the volume 1/3, 

about 200 m3. In the room, the sweeping echo is difficult to be perceived. ISO 

[2] strongly recommend the volume to be at least 200 m3, but not greater 

than 500 m3 because of air absorption at high frequencies. 

 Therefore, the recommended volume seems to be about 200 m3 to avoid 

acoustic cumbrance by the sweeping echoes. 
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III.3 Conclusion of sweeping echoes in 3D spaces 

 When a pulse sound is generated in a rectangular parallelepiped 

reverberation room, a peculiar phenomenon is observed in that the frequency 

components of the reflected sounds increase linearly (called “sweeping 

echoes”). These sweeping echoes consist of a “main sweeping echo,” whose 

frequency component increases over a short time, and “sub-sweeping 

echoes,” whose frequency components increase slowly. Investigating the 

sweeping echoes assuming a cubic room showed that the arrival times of the 

pulse sounds from mirror image sources had almost equal intervals on the 

squared-time axis, and this regularity of the pulse intervals generated the 

main sweeping echo. The pulse train does not have exactly equal intervals on 

the squared-time axis, but rather has some missing pulses corresponding to 

“forbidden numbers” based on number theory. These missing pulses were 

shown to have relatively long, equal intervals. This regularity causes the 

sub-sweeping echoes. Computer simulation based on the image method 

produced results in good agreement with the theoretical results. 
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IV. SWEEPING ECHOES IN A 2D SPACE (square cross-section) 

The author focuses on the sweep echo phenomenon in a 2D space. Section 

IV.1 discusses whether our proposed theory in Sec. II can be applied to a 2D 

space and theoretically analyzes the generation mechanism of the echo. The 

author first discusses a square cross-section. Section IV.1 describes the main 

sweeping echo based on our above research. Section IV.2 describes 

sub-sweeping echoes in square cross-section. Section IV.3 shows simulation 

results and compares them with the theoretical results. Section IV.4 shows 

the experimental results and compares them with the theoretical and 

simulation results.  

The author analyzed the sweeping echoes for a source and receiver at the 

center of a cross-section. The sweeping echoes were not only perceived at the 

exact center position but also around the center. 
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IV.1 Generation mechanism of main sweeping echo in 2D space  

Figure 4.1 shows a sound source and its mirror image sources generated in 

a rectangular cross-section field based on geometrical acoustics [8]. The size 

of the square space is denoted by L×L, where L is positive real number. The 

reflected sounds can be treated as sounds from the mirror image sources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.1 Mirror image sources of rectangular cross-section field. Coordinate 

origin O set to center of cross-section. Location of each image source 

represented by (nxL, nyL), where nx, ny are positive or negative integers. 
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The sound source and reception point are located at the center of the 

rectangular space. The coordinate origin O is also set at the center of the 

space. The location of each image source is then represented by (nxL, nyL), 

where nx and ny are positive or negative integers. The distance d between the 

origin and an image source of (nxL, nyL) is represented by  

.   

)()(

22

22

nn

nn

yxL

LLd yx




        (4.1) 

The arrival time of the sound from the image source is obtained by dividing d 

by the velocity of sound c, as in the following equation: 

.  

/
22 










c

L

cdt

nn yx

         (4.2) 

Next, consider the arrival time on the ‘squared-time axis’, which is derived 

by squaring Eq. (4.2): 

 
2

2
222

   















c

L
q

c

L
nnt yx

,         (4.3) 

where  

  nn yxq
22  .         (4.4) 

q becomes an integer for all nx and ny. Now, assume q takes all positive 

integers when nx and ny take all integers; however, this does not happen in 

actuality, as stated in Sec. IV.2. However, to simplify, assume that the 

squared arrival time t 2 in Eq. (4.3) has an equal interval (L/c)2.  

Considering that a sound source emits a sound pulse, the author represent 

the arrival time of two adjacent pulses (reflected sound) as ta and tb (ta ＜ tb). 
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The interval between these pulses on the squared-time axis is (L/c)2. Namely,  

2
22








c

L
tt ab

.         (4.5) 

By factoring the left-hand side of Eq. (4.5), we obtain 

  








c

L
tttt abab

2

))(( .     (4.6) 

The mean arrival time tv of the two pulses is defined by 

  tv=( tb + ta)/2 .          (4.7) 

By substituting Eq. (4.7) into Eq. (4.6) and modifying the resultant equation, 

the interval between pulses on the time axis is represented by the following 

equation: 

  









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

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ab
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L 1
2 2

2

 .        (4.8) 

 A periodic pulse series has a fundamental frequency represented by the 

reciprocal of its interval [10]. Therefore, when the interval of pulses is 

represented by Eq. (4.8), the fundamental frequency of the pulses at time tv 

is expressed by the following equation: 

  tttt v
ab

v L
f

c















2

221)(  .     (4.9) 

Equation (4.9) indicates that the fundamental frequency f (tv) of the reflected 

pulse train increases with the arrival time tv . The author calls this 

phenomenon the “main sweeping echo”. 

For L=4 m, the frequency f (tv) at tv =1 s is 14,450 Hz with c = 340 m/s. 
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IV.2 Sub-sweeping echoes (Effect of forbidden numbers) 

Number theory states that q in Eq. (4.4) can take the most positive integers 

but does not take specific positive integer values, which are called “forbidden 

numbers” [9]. This section describes the effect of these forbidden numbers. 

The forbidden numbers are expressed as follows [13]: 

 q≠k 2r (4h + 3) ,        (4.10) 

where k, r, h = 0, 1, 2, …，and all squared factors of q are included in k2 not 

in r (4h + 3), and r≠4h + 3. 

The forbidden numbers correspond to absent pulses, which are caused by 

pulses added in anti-phase to all integers. Figure 4.2 (b) shows a pulse series 

that has completely equal intervals on the squared-time axis, where L = 4 m. 

Figure 4.2 (a) shows an equal amplitude pulse series of a square cross- 

section field, which lacks pulses due to forbidden numbers. Figure 4.2 (c) 

shows an anti-phased pulse series corresponding to forbidden numbers, 

where the amplitudes are normalized as 1. Clearly, Fig. 4.2 (b) added to Fig. 

4.2 (c) becomes Fig. 4.2 (a). 

For k =r = 1, substituting Eq. (4.10) into Eq. (4.3) gives  

2
2 )34( 







c

L
ht .        (4.11) 

Since Eq. (4.11) represents pulse arrival times for h = 0, 1, 2, …, adjacent 

pulses have interval 4(L /c)2 on the squared-time axis. Therefore, the interval 

of the anti-phased pulse is 4 times longer than that of Eq. (4.8), and thus its 

fundamental frequency is 1/4 that of Eq. (4.9), the fundamental frequency of 

the main sweeping echo. This phenomenon is called “sub-sweeping echo”. For 

L = 4 m, the fundamental frequency of the sub-sweeping echo for k = r = 1 at  
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FIG. 4.2 Effect of forbidden numbers. (a) Pulse series on time axis of square 

cross-section for equal amplitudes. (b) Pulse with completely equal intervals 

on squared-time axis. (c) Pulse series corresponding to forbidden numbers 

with negative amplitude of same values. Gaps of (a) are considered to be 

generated by adding (c) to (b), where dimension L of cross-section was 

assumed to be 4 m 

Sample

(a) 

(b) 

(c) 
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tv = 1 s is 3,612 Hz. 

Thus, the forbidden numbers cause a regularity in the lack of reflected 

pulses and this regularity causes sub-sweeping echoes, i.e., echoes with a 

small frequency sweep rate. 

The forbidden numbers indicate that integers are impossible. This means 

that a reflected sound pulse does not exist at the time corresponding to the 

forbidden numbers on the squared-time axis  
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IV.3 Numerical simulation 

In this section, the author confirms, using numerical simulation, the 

theoretical results of the sweeping echoes described in Section IV.1 and 2. 

Echo simulation based on the mirror image method [11] was conducted 

assuming a 4 × 4 m 2D space. The band-limited impulse response, or echo 

series, was calculated by convolving echo pulses with a discrete sinc function. 

The sampling frequency was 40 kHz. The spectrogram of the impulse 

response was calculated with a 16-ms Hanning window (62.5-Hz frequency 

resolution), and the window was shifted in steps of 8 ms.  

  Figure 4.3 shows the spectrogram of the impulse response. Multiple sweep 

sounds, whose frequency components linearly increase with time, can be 

observed. The main sweeping echo (A) can be clearly observed, and the 

sub-sweeping echo (B) also can be observed. Other sweeping components are 

harmonics of the main- and sub-sweeping echoes. 

The slopes of lines (A) and (B) in Fig. 4.3 are 14,378 and 3,598 Hz/s, 

respectively, which are almost consistent with the theoretical values of 

14,450 and 3,612 Hz/s, respectively, calculated above. Thus, the theoretical 

results discussed in the previous section clearly explain the sweeping echo 

phenomenon that appeared in the computer simulation of room acoustics. 

 The theoretical and numerical models are based on the same mirror-images. 

The good agreement between these models indicates they are essentially the 

same. 
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FIG. 4.3 Spectrogram of simulated impulse-response in two-dimensional 

square space. Multiple sweep sounds can be observed, and main sweeping 

echo (A) can be clearly observed. Sub-sweeping echo (B) also can be observed. 
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IV.4 Experiment 

There are sound spaces that can be regarded as 2D sound spaces. A typical 

example is a long, straight hallway. A pulse sound generated in such a 

hallway is reflected repeatedly in the hallway’s cross-section, i.e., 2D space. 

Strictly speaking, the cross-section is not a 2D sound space but a 2D 

subspace of a 3D sound space. In this subspace, however, the arrival time of 

the reflected pulses is equivalent to that in a 2D sound space. Therefore, the 

author regards this subspace as a 2D sound space. 

 However, in practice, 2D sweeping echoes are hardly ever observed, 

whereas 3D ones can be observed in certain situations. The main reason is 

that the number of image sources is much smaller in a 2D space than in a 3D 

space, so the reflected energy is small in a 2D space. 

 By chance, the author found actual sweeping echoes in a hallway at the 

Tokyo International Forum, at Yurakucho in Tokyo. The cross-section of the 

hallway is square with 4-m sides, as shown in Fig. 4.4 (a). The lateral walls 

are glass plates, which reflect sound well. The hallway is a 40-m-long 

straight square pipe, with no junctions or doors except at the end. This seems 

to be a good example of a 2D sound space. 

The author measured and analyzed the sweeping echoes generated in this 

hallway. The measurement conditions are shown in Fig. 4.4 (b). The symbols 

S and R represent the source and receiver positions, respectively. Both source 

and receiver were located at almost the same height at the center of the 

hallway. The receiver (microphone) was set behind the source (loudspeaker) 

for decreasing direct sound. 
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FIG. 4.4 Layout for sweep-sound measurement. (a) Dimensions and (b) 

cross-section, S: source position; R: receiver position. 

 

 

When a pulse sound (handclap) was generated at position S, sweep sounds 

whose frequencies increased relatively slowly were perceived, along with 

ordinary reverberation sounds. 

 To analyze these sweeping echoes, the author recorded impulse response 

with a microphone placed at position R and a loudspeaker placed at position 

S emitting a maximum-length (M-)sequence signal. Figure 4.5(a), (b) shows 

the recorded impulse-response and the spectrogram of the impulse response, 

respectively. The horizontal axis represents time; the time when the pulse 

sound was generated was set to the origin. The vertical axis represents 

frequency up to 4 kHz, which was the band within which the sweep sounds 

were observed. The analysis conditions were as follows: the sampling 
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frequency was 16 kHz, a 256-sample rectangular window was used for 

discrete Fourier transform (DFT), and the window was shifted by 128 

samples. 
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FIG. 4.5(a) Recorded impulse-response. Sampling frequency is 16kHz. 
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FIG. 4.5(b) Spectrogram of recorded data. Main sweeping echo (A) vaguely 

appears from 0 to about 0.2 s. Frequency of main sweeping echo increased 

linearly with time and increased to about 2,200 Hz during first 0.2 s. 

Following main sweeping echo, sub-sweeping echo (B) also appears with 
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 In Fig. 4.5(b), a sub-sweeping echo whose frequency increases linearly with 

time can be seen (Line (B)). The slope of the sub-sweeping echo in Fig. 4.5 is  

about 3,500 Hz/s, which is in good agreement with the theoretical 3,612 Hz/s 

calculated by Eq. (4.9).  

 Compared with the simulation results in Fig. 4.3, the sub-sweeping echo in 

Fig. 4.5 is not clear. There are two main reasons for this lack of clarity. First, 

the reflection coefficient was set to 1 in the simulation, while the mean 

pressure reflection coefficient of the experimental space was about 0.9, 

determined using numerical simulation. Generally, in a real space, the 

higher the frequency, the lower the reflection coefficient, which means 

low-frequency reverberance. This causes fast decay of the high-frequency 

components of sweeping echoes. Sweeping echoes clearly appeared at high 

frequencies but only vaguely at low frequencies, as shown in the simulation 

results in Fig. 4.3. Therefore, sweeping echoes were not clear.  

Second, there were differences between the ideal and practical spaces. The 

walls are not perfectly parallel and rigid, and the floor has small uneven 

bumps to prevent people slipping. Sections of the ceiling are made of 

perforated metal without sound absorption material, and the diameter of 

perforation is about 1 cm and open ratio is about 20%; therefore, the ceiling 

is reflective in low frequencies and absorptive in high frequencies. These 

irregularities of the space also caused the sweeping echoes to be unclear. 

The main sweeping echo scarcely appears in Fig. 4.5(b). This may be 

explained by the frequency of the main sweeping echo increasing and 

decaying quicker than that of the sub-sweeping echo. 
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V. Examination on the Two Dimensional Case 

V.I Method for extracting sweep sound 

  In the simulation results, sweeping echoes clearly appeared in the 

spectrograms. However, the sweeping echoes in the measured sound cannot 

be clearly seen in the spectrogram, as shown in Fig. 5.2. Therefore, the 

author proposes a new method for quantitatively extracting sweep-sound 

components by calculating the correlation with a complex up-sweep sine 

signal described in the next section. 

 A. Complex ascending sweep sine signal 

 An ascending sweep sine signal is a sine signal whose frequency increases 

linearly with time, it is also called a chirp signal. The author created the sine 

signal based on the time stretched pulse (TSP) method [14]. An up-TSP 

signal (ascending sweep sine wave) is defined in the frequency domain as 

follows: 

,2/               )( *                     

2/0     })/(2exp{-   )( 2

NmNmNTSP

NmNmMjmTSP

＜＜

 
    (5.1) 

where N is discrete signal length, m is discrete frequency, and * represents 

the complex conjugate. The parameter M is a length where the sweep sine 

signal exists in practical terms in all length N. The up-TSP signal tsp(k) (k: 

discrete time) is obtained by executing inverse fast Fourier transform (FFT) 

of the TSP(m). 

 A spectrogram of the up-TSP signal is shown in Fig. 5.1. The frequency 

increases from 0 to fs/2 (fs: sampling frequency) during time M /fs. Therefore, 

the increase in frequency in 1 s is inversely proportional to M as follows: 
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  .                 (5.2) 

By varying M, it is possible to control the frequency sweep rate of the sweep 

sine wave. 

 However, in this form, the phase of the sine wave affects extraction of sweep 

sound. To avoid this, a complex sine signal is introduced using inverse FFT of 

the following equation, where negative-frequency components are zero in Eq. 

(5.1): 

,2/               0                       
2/0     })/(2exp{-   )( 2

NmN

NmNmMjmCCASS

＜＜

 
       (5.3) 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

 

Time

 

F
re

qu
e
n
c
y

-150

-140

-130

-120

-110

-100

-90

-80

-70

 

FIG. 5.1 Spectrogram of TSP signal 
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It seems possible to extract sweep signal components of a sound by 

calculating correlations of the objective sound with the varying frequency 

sweep rate of a conjugated complex ascending sweep sine (CCASS) signal as 

described above. Fig 5.2 shows a flowchart of the calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.2 Flowchart for extracting sweep components by a conjugated complex 

ascending sweep sine (CCASS) signal 
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B. Correlation results with sweeping echoes 

 The author calculated the correlation of the CCASS signal with the 

simulation and measured data. The results are shown in Figs. 5.3 and 5.4, 

respectively. In these figures, the horizontal axis indicates the frequency 

sweep rate [kHz/s] of the CCASS signal, and the vertical axis indicates the 

normalized cross-correlation value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.3 Correlation of simulated data with conjugated complex ascending 

sweep sine (CCASS) signal. Main sweeping echo (14.5 kHz/s) and 

sub-sweeping echo (3.6 kHz/s) are clear. 
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As shown in Fig. 5.3, sharp peaks appear at around 3.6 and 14.5 kHz/s, 

corresponding to the frequency sweep rate of the sub- and main-sweeping 

echo, respectively, of the simulated data, as described in Section IV.3. The 

peaks at around 7.2 and 10.8 kHz/s are harmonics of the sub-sweeping echo. 

The detected results in Fig. 5.4 indicate good agreement with the frequency 

sweep rate of each sweeping component in Fig. 5.3. Therefore, the author 

confirmed the validity of the proposed analyzing method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.4 Correlation of measured data with CCASS signal. Main sweeping 

echo (14.5 kHz/s) and sub-sweeping echo (3.6 kHz/s) are clear, as in Fig. 5.5. 
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The analyzed results for the measured data are shown in Fig. 5.4. A clear 

peak appears around 3.6 kHz, confirming the existence of a sub-sweeping 

echo. The peak is at maximum in components below 8 kHz/s. Contrary to the 

results with the simulated data, the measured data harmonics cannot clearly 

observed.  

The main sweeping echo can be confirmed because a peak exists around 

14.5 kHz. However, many peaks are observed at large frequency sweep rates 

(ex. over 8 kHz/s). The reason is that the total length of the sweep is short 

when the frequency sweep rate is large, so the length of correlation is short, 

namely the sweep starts to decay soon after the start of measurement. This 

causes the early strong component in the measured data, which is not 

necessarily the sweep sine component, to affect the correlation value. Thus, 

the calculated values seemed to vary widely. 

 As described above, the sub-sweeping echo in an actual 2D space observed 

only vaguely in a spectrogram can be detected with the proposed method. 

Thus, from this vague spectrogram, theoretical sweep sounds can be 

detected. 
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V.2 FORBIDDEN NUMBERS OF RECTANGULAR CROSS-SECTION 

 A. Formulation 

Figure 5.5 shows a sound source and its mirror image sources generated in 

a rectangular cross-section field based on geometrical acoustics [8]. The size 

of the rectangular space is denoted by L×aL, where L and a are positive real 

numbers. The reflected sounds can be treated as sounds from the mirror 

image sources.  

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.5 Mirror image sources of rectangular cross-section field. Coordinate 

origin O set to center of cross-section. Location of each image source 

represented by (nxL, nyaL), where nx, ny are positive or negative integers. 
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The sound source and reception point are located at the center of the 

rectangular space. The coordinate origin O is also set at the center of the 

space. The location of each image source is then represented by (nxL, nyaL), 

where nx and ny are positive or negative integers. The distance d between the 

origin and an image source of (nxL, nyaL) is represented by  

  .   

)()(
22

22

ann

nn

yxL

aLLd yx




                (5.4) 

The arrival time of the sound from the image source is obtained by dividing d 

by the velocity of sound c, as in the following equation: 
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Next, consider the arrival time on the ‘squared-time axis’, which is derived 

by squaring Eq. (5.5): 
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,                (5.6) 

where  

   ann yxq
22  .                (5.7) 

If a2 becomes an integer, q becomes an integer for all nx and ny. 

It is difficult to derive a general solution for forbidden numbers for an 

arbitrary value of ‘a’. Specific forbidden numbers for several values of ‘a’ are 

as follows.  
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B. Examples 

1) 2a  

For 2a  in Eq. (5.6), q is expressed by Eq. (5.8): 

nn yxq 2 22   .        (5.8) 

This q does not have an (8h + 5)- and (8h + 7)-type prime factor [15]. As in 

the above description, the anti-phased pulse interval is 8-times longer than 

that of Eq. (4.8), so its fundamental frequency becomes 1/8 that of Eq. (4.9), 

i.e., 1,806 Hz at 1 s for L = 4 m. 

 

2) 3a  

Similarly, for 3a , q  is calculated with the following equation: 

nn yxq 3 22   .        (5.9) 

This q does not have a (3h+2)-type prime factor [16]. Therefore, the 

fundamental frequency of the sub-sweeping echo becomes 1/3 of Eq. (4.9), i.e., 

4,816 Hz at 1 s for L = 4 m. 

 

3) 5a  

For 5a , q is expressed by Eq. (5.10): 

nn yxq 5 22   .        (5.10) 

This q does not have a (20h + 1)- and (20h + 9)-type prime factor and 2(20h 

+ 3)- and 2(20h +7)-type prime factor [17]. Therefore, the fundamental 

frequency of the sub-sweeping echo becomes 1/20 that of Eq. (4.9), i.e., 722 

Hz at 1 s for L = 4 m. 

The above results are based on number theory; therefore, if a2 is not an 

integer, the above theory cannot be applied. 
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 However, for even 3:5 as relatively simple integer ratio, simple regularity 

does not exist anymore, so sweeping echoes do not appear as shown in Figure 

5.6. 
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Fig. 5.6 For even 3:5 as relatively simple integer ratio, simple regularity does 

not exist anymore, so sweeping echoes do not appear. 
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C. Cases that a2 is a rational number 

It seems that sweeping echoes appear for a rectangular close to a square. 

However, as shown in Figure 5.7, the echoes slightly appear in Fig. (c) 

that takes relatively the most simple equation.  
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Fig. 5.7 Cases that a2 is a rational number  
(b) 1:1.1 a2 = 1.21, i.e. 100x2+121y2=100t2 

(a) 1:1.01 a2 = 1.0201, i.e. 10000x2+10201y2=10000t2 
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Fig. 5.7 Cases that a2 is a rational number 

(d) a2 = 1.01, i.e. 100x2+101y2=100t2 

(c) a2 = 1.1, i.e. 10x2+11y2=10t2 
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D. Case that a2 is an irrational number 
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Fig. 5.8  1:(1+√2)/2 

 

As forecasted, sweeping echoes do not appear.
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 V.3 Conclusion for Sweeping Echoes in 2D spaces 

 The author investigated the regularity of reflected pulse sounds in a 2D 

space based on number theory. The author found that the arrival times of the 

pulse sounds from mirror image sources in a rectangular space have almost 

equal intervals on the squared-time axis. This regularity of the pulse 

intervals generates a “main sweeping echo”, whose frequency component 

linearly increases with time. The reflected pulse train, however, does not 

have completely equal intervals on the squared-time axis; there are missing 

pulses corresponding to “forbidden numbers” based on number theory. These 

missing pulses were found to have relatively long, equal intervals. This 

regularity causes “sub-sweeping echoes”, whose frequency components 

increase slowly. 

 Computer simulation based on the mirror image method showed both main- 

and sub-sweeping echoes. The sweeping speeds of these echoes agreed well 

with the theoretical results. 

 The regularities of reflected sounds in a 2D space are similar to those in a 

3D sound space, but the number of image sources is much smaller in a 2D 

space than in a 3D space. Thus, the reflected energy is small in a 2D space, 

which is why sweeping echoes are rarely perceived there. However, the 

author observed sweeping echoes in an actual long hallway with a square 

cross-section. The frequency sweep rate of the observed sub-sweeping echo 

corresponded well to the theoretical and simulated results. 

  Next, the author proposed a method for extracting sweep sound 

components, which uses CCASS (conjugated complex ascending sweep sine). 

By changing the frequency sweep rate of the CCASS signal, correlation is 
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calculated with an objective signal. The correlation with a simulated room’s 

impulse response confirms the validity of the proposed method. The 

correlation with a real space’s impulse response clearly shows the existence 

of a sub-sweeping echo, which could not be clearly observed in the 

spectrogram.  

 Finally, the author showed the forbidden numbers, which corresponding to 

sub-sweeping echoes, for several rectangular spaces of specific size-ratio. 
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VI  CONCLUSIONS  

A new phenomenon that the author calls a sweeping echo is described and 

investigated.  

When a pulse sound is generated in a rectangular parallelepiped 

reverberation room, a peculiar phenomenon is observed in that the frequency 

components of the reflected sounds increase linearly (called “sweeping 

echoes”). These sweeping echoes consist of a “main sweeping echo,” whose 

frequency component increases over a short time, and “sub-sweeping 

echoes,” whose frequency components increase slowly. Investigating the 

sweeping echoes assuming a cubic room showed that the arrival times of the 

pulse sounds from mirror image sources had almost equal intervals on the 

squared-time axis, and this regularity of the pulse intervals generated the 

main sweeping echo. The pulse train does not have exactly equal intervals on 

the squared-time axis, but rather has some missing pulses corresponding to 

“forbidden numbers” based on number theory. These missing pulses were 

shown to have relatively long, equal intervals. This regularity causes the 

sub-sweeping echoes. Computer simulation based on the image method 

produced results in good agreement with the theoretical results. 

The author also investigated the regularity of reflected pulse sounds in a 2D 

space based on number theory.  

 The regularities of reflected sounds in a 2D space are similar to those in a 

3D sound space, but the number of image sources is much smaller in a 2D 

space than in a 3D space. Thus, the reflected energy is small in a 2D space, 

which is why sweeping echoes are rarely perceived there. However, the 

author observed sweeping echoes in an actual long hallway with a square 
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cross-section. The frequency sweep rate of the observed sub-sweeping echo 

corresponded well to the theoretical and simulated results. 

  Next, the author proposed a method for extracting sweep sound 

components, which uses CCASS (conjugated complex ascending sweep sine). 

By changing the frequency sweep rate of the CCASS signal, correlation is 

calculated with an objective signal. The correlation with a simulated room’s 

impulse response confirms the validity of the proposed method. The 

correlation with a real space’s impulse response clearly shows the existence 

of a sub-sweeping echo, which could not be clearly observed in the 

spectrogram.  

Finally, the author showed the forbidden numbers, which corresponding to 

sub-sweeping echoes, for several rectangular spaces of specific size-ratio. 
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Appendix A: Forbidden numbers for sum of three square numbers [18] 

A.1  (Provision) Congruence 

 Consider a given positive integer m. When the difference between integers a 

and b is divisible, the a and b are congruent modulo m. This describes the 

following expression;  

 a ≡ b mod m. 

 

A.2  Forbidden numbers for sum of three square numbers 

 For M ≡ 7 mod 8, assume that the integers a, b, c exist for M = a2+b2+c2. 

Square of even numbers are multiples of 4. Square of odd numbers are 

congruent with 1 for modulus 8 as the following theorem: 

(Theorem) The condition that a becomes a quadratic residue modulo 2e (e≧3) 

is a ≡ 1 mod 8. 

 Therefore, a is either of the followings; 

 a2 ≡ 0 mod 8, a2 ≡ 4 mod 8, a2 ≡ 1 mod 8. 

For b2 and c2, the above is composed.  

However, for either combination of a, b, c , M = a2+b2+c2 does not become 

congruent 7 mod 8. 

 Mathematically strict proof is omitted in most of textbooks for its 

complexity. 
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Appendix B: The ratio of forbidden numbers for all positive integers [7] 

 Consider the forbidden numbers for the sum of three square numbers as the 

following expression; 

 M = a2+b2+c2 

 ≠ 4k(8m+7). 

where k, m = 0, 1, 2, …. 

For k = 0, M occupies 1/8 of all positive integers. Similarly, M occupies 1/(4×

8) for k =1, 1/(42×8) for k = 2, …. 

Therefore, the ratio of M for all positive integers is expressed as the 

following; 
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