
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Morphic characterizations of languages in
Chomsky hierarchy with insertion and locality

Fujioka, Kaoru
Office for Strategic Research Planning, Kyushu University

https://hdl.handle.net/2324/25741

出版情報：Information and Computation. 209 (3), pp.397-408, 2011-03. Elsevier
バージョン：
権利関係：(C) 2010 Elsevier Inc.

Morphic Characterizations of Languages in Chomsky

Hierarchy with Insertion and Locality

Kaoru Fujioka

Office for Strategic Research Planning, Kyushu University,

6-10-1 Hakozaki Higashi-ku Fukuoka 812-8581, JAPAN

Abstract

This paper concerns new characterizations of regular, context-free, and re-
cursively enumerable languages, using insertion systems with lower com-
plexity. This is achieved by using both strictly locally testable languages
and morphisms. The representation is in a similar way to the Chomsky-
Schützenberger representation of context-free languages. Specifically, each
recursively enumerable language L can be represented in the form L =
h(L(γ) ∩ R), where γ is an insertion system of weight (3, 3), R is a strictly
2-testable language, and h is a projection. A similar representation can be
obtained for context-free languages, using insertion systems of weight (2, 0)
and strictly 2-testable languages, as well as for regular languages, using in-
sertion systems of weight (1, 0) and strictly 2-testable languages.

Keywords: insertion system, strictly locally testable language,
Chomsky-Schützenberger theorem

1. Introduction

DNA computing theory involves the use of insertion and deletion oper-

ations. It has been shown that by using insertion and deletion operations,
any recursively enumerable language can be obtained in [2], [3].

In insertion systems, we can use only insertion operations which is based
on insertion rules of the form (u, x, v), where u, x, v are strings over an
alphabet, a new string αuxvβ is produced for a given string αuvβ with

✩A preliminary version of this article appeared in [1].
Email address: kaoru@tcslab.csce.kyushu-u.ac.jp (Kaoru Fujioka)

Preprint submitted to Information and Computation June 8, 2010

context uv using (u, x, v). From the definition of insertion operations, one
would easily imagine that by using only insertion operations, we generate
only context-sensitive languages.

On the other hand, the class of strictly locally testable languages is known
as a proper subclass of regular language classes [4]. The equivalence relation
between a certain type of splicing languages (generated by persistent splicing
systems) and strictly locally testable languages is known in [5].

In this paper, we focus on characterizing the classes of languages in
Chomsky hierarchy by using insertion systems together with some “addi-
tional mechanisms” in the Chomsky-Schützenberger-like form. It has been
shown that using insertion systems together with some morphisms, char-
acterizing recursively enumerable languages is accomplished in [3], [6], [7].
For context-free languages, there is a well-known Chomsky-Schützenberger
characterization: each context-free language L can be represented in the
form L = h(D ∩ R), where D is a Dyck language, R is a regular language,
and h is a projection. It has been shown that each recursively enumerable
language L can be represented in a similar way to the well-known Chomsky-
Schützenberger representation of context-free languages, L = h(L(γ) ∩ D),
where γ is an insertion system, h is a projection, andD is a Dyck language [8].
In this paper, we use strictly locally testable languages and morphisms as the
additional mechanisms for characterizing languages in Chomsky hierarchy.

In insertion systems, a pair of the maximum length of inserted strings
and the one of context-checking strings, called weight is an important pa-
rameter for generative powers. As for strictly locally testable languages, the
length of local testability-checking is considered. The optimality of these two
parameters is to be checked.

We prove that each recursively enumerable language can be represented
in the form h(L(γ)∩R), where γ is an insertion system of weight (3, 3), h is a
morphism, and R is a strictly 2-testable language. Similar characterizations
are shown for context-free and regular languages.

2. Preliminaries

In this section, we introduce necessary notation and basic definitions
needed in this paper. We assume the reader to be familiar with the rudiments
on basic notions in formal language theory (see, e.g., [3], [9]).

2

2.1. Basic Definitions

For an alphabet V , V ∗ is the set of all strings of symbols from V which
includes the empty string λ. For a string x ∈ V ∗, |x| denotes the length of
x. For 0 ≤ k ≤ |x|, let Prek(x) and Sufk(x) be the prefix and the suffix of x
with length k, respectively. For 0 ≤ k ≤ |x|, let Intk(x) be the set of proper
interior substrings of x with length k, while if |x| = k, then Intk(x) = ∅.

2.2. Normal Forms of Grammars

A phrase structure grammar is a quadruple G = (N, T, P, S), where N
is a set of nonterminal symbols, T is a set of terminal symbols, P is a set
of production rules, and S in N is the initial symbol. A rule in P is of the
form r : α → β, where α ∈ (N ∪ T)∗N(N ∪ T)∗, β ∈ (N ∪ T)∗, and r is a
label from a given set Lab(P) such that there are no production rules with
the same label. For any x and y in (N ∪ T)∗, if x = uαv, y = uβv, and
r : α → β ∈ P , then we write

x
r

=⇒G y.

We say that x directly derives y with respect to G. If there is no confusion,
we write x =⇒ y. The n-th power of =⇒, denoted as =⇒n, is defined by
x =⇒ x with k = 0 for any x in (N ∪T)∗. For any n > 0 and x, z ∈ (N ∪T)∗,
x =⇒n z holds if there is y ∈ (N ∪ T)∗ such that x =⇒n−1 y and y =⇒ z.
The reflexive and transitive closure of =⇒ is denoted by =⇒∗.

We define a language L(G) generated by a grammar G as follows:

L(G) = {w ∈ T ∗ | S =⇒∗
G w}.

It is well known that the class of languages generated by the phrase struc-
ture grammars is equal to the class of recursively enumerable languages RE
[9].

A grammar G = (N, T, P, S) is context-free if P is a finite set of context-
free rules of the form A → α, where A ∈ N and α ∈ (N ∪ T)∗. A language
L is a context-free language if there is a context-free grammar G such that
L = L(G). Let CF be the class of context-free languages.

A context-free grammar G = (N, T, P, S) is in Chomsky normal form if
each production rule in P is of one of the following forms:

1. X → Y Z, where X, Y, Z ∈ N .

3

2. X → a, where X ∈ N , a ∈ T .

3. S → λ (only if S does not appear in right-hand sides of production
rules).

It is well known that, for each context-free language L, there is a context-free
grammar in Chomsky normal form generating L [9].

A grammar G = (N, T, P, S) is regular if P is a finite set of production
rules of the form X → α, where X ∈ N and α ∈ TN ∪ T ∪ {λ}. A language
L is a regular language if there is a regular grammar G such that L = L(G).
Let REG be the class of regular languages.

We are going to define a strictly locally testable language, which is one
of the main objectives of the present work.

Let k be a positive integer. A language L over T is strictly k-testable
if there is a triplet Sk = (A,B,C) with sets of strings over T of length k
A,B, C ⊆ T k such that for any w with |w| ≥ k, w is in L iff Prek(w) ∈ A,
Sufk(w) ∈ B, Intk(w) ⊆ C.

Note that if L is strictly k-testable, then L is strictly k′-testable for all
k′ > k. Further, the definition of strictly k-testable says nothing about the
strings of “length k − 1 or less”.

A language L is strictly locally testable iff there exists an integer k ≥ 1
such that L is strictly k-testable. Let LOC(k) be the class of strictly k-
testable languages. Then one can prove the following theorem.

Theorem 1. [10] LOC(1) ⊂ LOC(2) ⊂ · · · ⊂ LOC(k) ⊂ · · · ⊂ REG.

We are now going to define an insertion system. An insertion system is
a triple γ = (T, P, AX), where T is an alphabet, P is a finite set of insertion
rules of the form (u, x, v) with u, x, v ∈ T ∗, and AX is a finite set of strings
over T called axioms.

We write α
r

=⇒γ β if α = α1uvα2 and β = α1uxvα2 for some insertion
rule r : (u, x, v) ∈ P with α1, α2 ∈ T ∗. If there is no confusion, we write
α =⇒ β. As usual, =⇒n denotes the n-th power of =⇒. The reflexive and
transitive closure of =⇒ is denoted by =⇒∗.

A language generated by γ is defined by

L(γ) = {w ∈ T ∗ | s =⇒∗
γ w, for some s ∈ AX}.

4

An insertion system γ = (T, P, AX) is said to be of weight (m,n) if

m = max{ |x| | (u, x, v) ∈ P},
n = max{ |u| | (u, x, v) ∈ P or (v, x, u) ∈ P}.

For m,n ≥ 0, INSn
m denotes the class of all languages generated by

insertion systems of weight (m′, n′) with m′ ≤ m and n′ ≤ n. When the
parameter is not bounded, we replace m or n with ∗.

For insertion systems, there exist the following results.

Theorem 2 ([3]). 1. For the class of finite languages FIN and the one of

context-sensitive languages CS, FIN ⊂ INS0
∗ ⊂ INS1

∗ · · · ⊂ INS∗
∗ ⊂

CS.

2. REG ⊂ INS∗
∗ .

3. INS1
∗ ⊂ CF .

4. CF is incomparable with all INSn
∗ (n ≥ 2), and INS∗

∗ .

5. INS2
2 contains non-semilinear languages.

From the definition of insertion systems, we can easily prove the following
lemma.

Lemma 1. INS0
1 ⊂ REG.

We are now going to introduce some notations concerning morphisms,
which help to express the class of languages represented in the Chomsky-
Schützenberger-like form. A mapping h : V ∗ → T ∗ is called morphism if
h(λ) = λ and h(xy) = h(x)h(y) for any x, y ∈ V ∗. For languages L1, L2, and
a morphism h, we introduce the following notation: h(L1 ∩ L2) = {h(w) |
w ∈ L1 ∩ L2}. For language classes L1 and L2, we introduce the following
class of languages:

H(L1 ∩ L2) = {h(L1 ∩ L2) | h is a morphism, Li ∈ Li (i = 1, 2)}.

3. Characterizations of Regular Languages

In this section, we will characterize regular languages in terms of insertion
languages and strictly locally testable languages both of which form proper
subclasses of regular languages.

Lemma 2. REG ⊆ H(INS0
1 ∩ LOC(2)).

5

Proof. For a regular language L, let G = (N, T, P, S) be a regular grammar
such that L = L(G). Using the new symbol F , we construct the insertion
system γ = (V, P ′, {λ}) of weight (1, 0), where

V = {Xr | r : X → α ∈ P, α ∈ TN ∪ T ∪ {λ}} ∪ {F},
P ′ = {(λ,X, λ) | X ∈ V }.

Then, L(γ) = V ∗.
Further, we define the morphism h : V ∗ → T ∗ by

h(Xr) = a if r : X → aY ∈ P or r : X → a ∈ P,
h(Xr) = λ if r : X → λ ∈ P,
h(F) = λ.

Finally, consider R = AV ∗ ∩ V ∗B − V +C ′V + with C ′ = V 2 − C, where

A = {SrXr1 | r : S → aX ∈ P, r1 : X → α ∈ P, α ∈ T ∪ TN ∪ {λ}}∪
{SrF | r : S → α ∈ P, α ∈ T ∪ {λ}},

B = {XrF | r : X → a ∈ P or r : X → λ ∈ P},
C = {XrYr1 | r : X → aY ∈ P, r1 : Y → α ∈ P, α ∈ T ∪ TN ∪ {λ}}.

Then R is a strictly 2-testable language prescribed by S2 = (A,B,C).

We will show that, for any X ∈ N , X
r1=⇒G · · ·

rn−1

=⇒G w′Y
rn=⇒G w′y =

w ∈ T ∗ iff Xr1 · · ·YrnF ∈ V ∗B − V ∗C ′V + with h(Xr1 · · ·YrnF) = w by the
induction on n.

Base step: For a nonterminal symbol X in N , there is a derivation
X

r
=⇒G w with w ∈ {λ} ∪ T iff from the definitions of P ′ and R, XrF is

hence in V ∗B−V ∗C ′V +. Furthermore, from the definition of h, h(XrF) = w.
Induction step: Suppose that the claim holds for any n ≤ k. Consider

a derivation X
r

=⇒G aY
r1···rk−1

=⇒ G aw′Z
rk=⇒G aw, where a ∈ T , w,w′ ∈ T ∗,

Y, Z ∈ N .
For the rules r and r1, by the constructions of V and R, r and r1 are

in P iff XrYr1 is in V ∗ ∩ C. From the definition of h, h(Xr) = a. By the
induction hypothesis, Y =⇒∗

G w iff a string Yr1 · · ·ZrkF is in V ∗B−V ∗C ′V +

with h(Yr1 · · ·ZrkF) = w. Therefore, X =⇒∗ aw iff XrYr1 · · ·ZrkF ∈ V ∗B −
V ∗C ′V + with h(XrYr1 · · ·ZrkF) = aw.

Note that, for the special case where X = S, SrYr1 is in A, which implies
that SrYr1 · · ·ZrkF ∈ AV ∗ ∩ V ∗B − V ∗C ′V +. Then, SrYr1 · · ·ZrkF is in
AV ∗ ∩ V ∗B − V +C ′V + with h(SrYr1 · · ·ZrkF) = aw. Therefore, for any w
in L, w is in L(G) iff w is in h(L(γ) ∩ R).

6

Lemma 3. H(INS0
1 ∩ LOC(2)) ⊆ REG.

Proof. Since the class of regular languages is closed under intersection with
regular languages and morphisms, the result follows from the facts that
INS0

1 ⊂ REG in Lemma 1 and LOC(2) ⊂ REG in Theorem 1.

From Lemma 2 and Lemma 3, we have the following theorem.

Theorem 3. REG = H(INS0
1 ∩ LOC(2)).

Since for arbitrary k with k ≥ 2, the class of regular languages includes the
class of strictly k-testable languages, the next result follows from Theorem 3
and Theorem 1.

Corollary 1. For all k ≥ 2, REG = H(INS0
1 ∩ LOC(k)).

The value of parameter k = 2 in the strictly k-testable languages in
Theorem 3 is necessary for expressing regular languages in the following
sense.

Lemma 4. There exists a regular language which cannot be written in the

form h(L(γ)∩R), for any insertion system γ of weight (i, 0) (∀i ≥ 1), strictly
1-testable language R, and morphism h.

Proof. Consider the regular language L = {al | l ≥ 0}∪{bl | l ≥ 0}. Suppose
that there is an insertion system γ = (V, P, AX) of weight (i, 0) with i ≥ 1, a
strictly 1-testable language R prescribed by S1 = (A,B,C), and a morphism
h such that L = h(L(γ) ∩R).

Then, for any l ≥ 0, there exists the set of strings Dl = {x | h(x) =
al} ∪ {y | h(y) = bl} such that Dl ⊂ L(γ) ∩ R. Let D = ∪

l≥0
Dl, then D is an

infinite set. Since D ⊂ L(γ)∩R holds, L(γ)∩R is also an infinite set. Then
P includes both (λ, ua, λ) and (λ, ub, λ), where ua, ub ∈ C i, h(ua) = aia ,
h(ub) = bib for some ia, ib > 0. Let t1xt2 and t3yt4 be in L(γ) ∩ R with
t1, t3 ∈ A, t2, t4 ∈ B, ua ∈ Inti(t1xt2), ub ∈ Inti(t3yt4).

Then, the string t1ubxt2 is in L(γ) ∩ R satisfying |h(t1ubxt2)|a ≥ ia > 0
and |h(t1ubxt2)|b ≥ ib > 0, which contradicts to the fact that L = {al | l ≥
0} ∪ {bl | l ≥ 0}.

From Lemma 4, Theorem 1, and Theorem 3, we have the following theo-
rem.

7

Theorem 4. H(INS0
1 ∩ LOC(1)) ⊂ REG.

The value of weight (1, 0) in insertion systems in Theorem 3 is optimal
for expressing regular languages in the following sense.

Lemma 5. There exist an insertion system γ of weight (2, 0), a strictly 1-
testable language R, and a morphism h such that h(L(γ)∩R) is non-regular.

Proof. Consider an insertion system γ = (T, {λ}, {(λ, ab, λ)}) with T =
{a, b}. Then, for any w in L(γ), |w|a = |w|b holds.

Consider R = AT ∗ ∩ T ∗B − T+C ′T+ with C ′ = T − C, where A =
B = C = T . Then R = T+ is a strictly 1-testable language prescribed by
S1 = (T, T, T). Further, we define a morphism h : T ∗ → T ∗ by h(c) = c for
any c ∈ T . Then, we have L(γ)∩R = h(L(γ)∩R) = {w | w ∈ L(γ), w 6= λ}.

For a regular language R∗ = {aibj | i, j ≥ 1}, h(L(γ) ∩ R) ∩ R∗ = {aibi |
i ≥ 1} is not regular. From the fact that the class of regular languages is
closed under intersection with regular languages, h(L(γ) ∩R) is not regular.

From Lemma 4, Lemma 5, and the fact that INS0
i ⊆ INS0

i+1 with i ≥ 1,
we have the following corollary.

Corollary 2. REG and H(INS0
i ∩ LOC(1)) are incomparable (i ≥ 2).

From Lemma 5, Theorem 2, and Theorem 1, we have the following corol-
lary.

Corollary 3. REG ⊂ H(INS0
i ∩ LOC(k)) (i ≥ 2, k ≥ 2).

4. Characterizations of Context-Free Languages

We will show how context-free languages can be characterized by inser-
tion systems and strictly locally testable languages. In [8], each context-free
language L can be written in the form L = h(L(γ)∩R), where γ is an inser-
tion system of weight (3, 0), R is a star language, i.e., R = F ∗ for a finite set
of strings F , and h is a projection. Let us start by showing the relationships
between the class of star languages Star and the one of strictly k-testable
languages for k ≥ 1.

Lemma 6. For all k ≥ 1, LOC(k) and Star are incomparable.

8

Proof. For a given k with k ≥ 1, consider a star language R = {a(k+1)i | i ≥
1}. Suppose that there is a triplet (A,B,C) with A,B,C ⊆ T k prescribing
R. Since ak+1 ∈ R holds, we have ak ∈ A and ak ∈ B. Then a string
ak ∈ A ∩ B is in the strictly k-testable language prescribed by (A,B,C),
which contradicts to the fact that ak /∈ R = {a(k+1)i | i ≥ 1}.

Conversely, consider a strictly 1-testable language L1 = {anb | n > 0}
prescribed by S1 = ({a}, {b}, {a}). Then L1 is prefix-free, i.e., no string in
L1 is a prefix of another string in L1. Suppose that there is a finite set F
such that L1 = F ∗, which contradicts to the fact that L1 is prefix-free. From
Theorem 1, for any k ≥ 1, L1 is in LOC(k). Therefore, for any k ≥ 1,
LOC(k) and Star are incomparable.

Let us consider the following theorem which is essential for this section.

Theorem 5. CF ⊆ H(INS0
2 ∩ LOC(2)).

Construction of an insertion system γ: Consider a context-free
grammar G = (N, T, P, S) in Chomsky normal form. We construct an inser-
tion system γ = (Σ, Pγ, {S}), where

Σ = Nγ ∪N ∪ T ∪ {Sr | r : S → λ ∈ P} with
Nγ = {Xr1, Xr2 | r : X → Y Z ∈ P, X, Y, Z ∈ N}∪

{Xr3 | r : X → a ∈ P, X ∈ N, a ∈ T},

and Pγ contains the following insertion rules:

• for each production rule r : X → Y Z ∈ P with X, Y, Z ∈ N , we
construct the following r-pair insertion rules

form-(1) (λ,Xr1Z, λ),
form-(2) (λ,Xr2Y, λ).

• for each production rule r : X → a ∈ P with X ∈ N and a ∈ T , we
construct the following insertion rules

form-(3) (λ,Xr3a, λ).

• for the production rule r : S → λ ∈ P , we construct the following
insertion rule

9

form-(4) (λ, Sr, λ).

We define the projection h : Σ∗ → T ∗ by

h(a) = a for all a ∈ T,
h(a) = λ otherwise.

Consider R = AΣ∗ ∩ Σ∗B − Σ+C ′Σ+ with C ′ = Σ2 − C, where

A = {SSr1 | r : S → Y Z ∈ P} ∪ {SSr3 | r : S → a ∈ P}∪
{SSr | r : S → λ ∈ P},

B = {Xr3a | r : X → a ∈ P}∪
{SSr | r : S → λ ∈ P},

C = {XXr1, Xr1Xr2, Xr2Y | r : X → Y Z ∈ P}∪
{XXr3, Xr3a | r : X → a ∈ P}∪
{aX | a ∈ T,X ∈ N}.

Then R is a strictly 2-testable language prescribed by S2 = (A,B,C).
The language R can be characterized by using

Ω1 = {XXr1Xr2 | r : X → Y Z ∈ P},
Ω2 = {XXr3a | r : X → a ∈ P},

such that R ⊂ (Ω1 ∪ Ω2)
∗Ω2 ∪ {SSr | r : S → λ ∈ P}.

A nonterminal symbol X in XXr1Xr2 ∈ Ω1 or XXr3a ∈ Ω2 is said to be
Ω-blocked. A symbol in N which is not Ω-blocked is said to be unblocked.
We call a string in (Ω1 ∪ Ω2 ∪N)∗ a legal string.

Intuitively, an Ω-blocked nonterminal symbol X in XXr1Xr2 or XXr3a
means that X has been used for the rule r. In γ at each step a string con-
sisting of unblocked symbols and terminal symbols of a legal string indicates
a sentential form of G.

Further, based on γ and R, we define the followings: for each X ∈ N , let

γX = (Σ, Pγ, {X})

be an insertion grammar, and let

RX = AXΣ
∗ ∩ Σ∗BX − Σ∗C ′Σ∗

be a strictly 2-testable language, where

AX = {XXr1 | r : X → Y Z ∈ P} ∪ {XXr3 | r : X → a ∈ P},
BX = B − {SSr | r : S → λ ∈ P}.

10

Then RX is a strictly 2-testable language prescribed by SX = (AX , BX , C).
The language RX satisfies RX ⊂ (Ω1 ∪ Ω2)

∗Ω2.
From the above definitions, for any X ∈ N , AX ∪ BX ⊂ C holds.

Lemma 7. For any γW and a legal string w with W =⇒∗
γW

w, a form-(1)
rule (λ,Xr1Z, λ) is applied if and only if the form-(2) rule (λ,Xr2Y, λ) inserts
the string Xr2Y just right to Xr1.

Proof. If part: Since the symbol Xr2 always follows the symbol Xr1 in a legal
string, from the definition of Pγ, the form-(2) rule (λ,Xr2Y, λ) can insert the
string Xr2Y in the presence of the symbol Xr1. Therefore, the form-(1) rule
(λ,Xr1Z, λ) has been applied before applying (λ,Xr2Y, λ).

Only if part: Consider an insertion rule (λ,Xr1Z, λ) in form-(1). For
any legal string in (Ω1 ∪ Ω2 ∪N)∗, the symbol Xr1 is always followed by the
symbol Xr2 . From the definition of Pγ, the form-(2) rule (λ,Xr2Y, λ) should
insert the string Xr2Y just right to Xr1 , then we obtain Xr1Xr2Y .

From Lemma 7, without loss of generality, for r-pair rules r1 in form-(1)
and r2 in form-(2), we may apply r2 immediately after applying the rule r1
to obtain a legal string.

Lemma 8. For any γW , a legal string w with W
σ

=⇒γW w, and a substring

Xr3a in (λ,Xr3a, λ) ∈ Pγ, no insertion rule inserts a string in between Xr3

and a in σ.

Proof. For any legal string in (Ω1∪Ω2∪N)∗, a symbol Xr3 is always followed
by a terminal symbol in T . The claim is almost obvious from the definition
of insertion rules in Pγ.

From Lemma 8, without loss of generality, we may consider the derivation
which satisfies the property that once a form-(3) rule is applied then no rule
in form-(1),(2),(4) is applied.

Definition 1. For any X in N and w in RX , a derivation X = α0 =⇒∗
γX

α1 =⇒
∗
γX

· · · =⇒∗
γX

αn = w is called a standard derivation, if it satisfies the
following conditions:

1. αi is a legal string (1 ≤ ∀i ≤ n).

2. No intermediate string appearing between αi =⇒
∗
γX

αi+1 is legal (0 ≤
i ≤ n− 1).

11

3. For each derivation αi
σi=⇒γX αi+1 (0 ≤ ∀i ≤ n − 1), σi is one of the

following forms;

• σi = p1p2, where p1 and p2 are r-pair insertion rules such that p1
is in form-(1) and p2 is in form-(2),

• σi = p3, where p3 is a form-(3) rule.

4. Once a form-(3) rule is applied in αi =⇒
∗
γX

αi+1 (0 ≤ i ≤ n− 1), then
no rule in form-(1) or form-(2) is applied in αi+1 =⇒

∗
γX

αn.

5. No insertion rule splits any string in Ω1 ∪ Ω2.

Lemma 9. For any γX and w in L(γX) ∩ (Ω1 ∪ Ω2)
∗, there is a standard

derivation for w.

Proof. Consider γX and a string w in L(γX)∩(Ω1∪Ω2)
∗ such thatX

σ
=⇒γX w.

From Lemma 7 and Lemma 8, we prove that no insertion rule inserts a string
across the string in Ω1 ∪ Ω2 by the induction on the number n of r-pair
insertion rules in the derivation σ.

Base step: Since there are no r-pair insertion rules in σ, w is in L(γX)∩Ω
∗
2.

From the definition of Pγ , a form-(3) rule inserts a string in NγT . Fur-
ther Ω2 ⊂ (NNγT)

∗ holds. Then we have w = XXr3a for a form-(3) rule
(λ,Xr3a, λ), with X =⇒γX XXr3a, which gives a standard derivation for w.

Induction step: Suppose that the claim holds for any n ≤ k. Consider a
derivation

X = α0
σ1=⇒γX α1 · · ·

σk=⇒γX αk

σk+1

=⇒γX w,

where σi consists of r-pair insertion rules for 1 ≤ i ≤ k, σk+1 consists of
form-(3) rules, and α1 = XWr1Wr2Y Z.

There are the following two cases for αk:

1. W = X and αk = XXr1Xr2Y yZz, where Y y, Zz ∈ (Ω1 ∪N)∗.
In this case, we have a derivation

αk = XXr1Xr2Y yZz =⇒γX XXr1Xr2Y y′Zz′ = w,

where Y y′, Zz′ ∈ (Ω1∪Ω2)
∗. From the induction hypothesis for Y =⇒∗

γY

Y y′ and Z =⇒∗
γZ

Zz′, there are standard derivations σY and σZ for Y y′

and Zz′, respectively. Therefore, σ1σY σZ is a standard derivation for
w through the legal string α1 = XXr1Xr2Y Z.

12

2. W 6= X and αk = XxWWr1Wr2Y yZz, where XxWWr1Wr2 ∈ (Ω1 ∪
N)∗Ω1 and Y yZz ∈ (Ω1 ∪N)∗.
Since the substring xW is inserted by r-pair rules in Pγ , the string αk

satisfies αk = XXp1Xp2βWWr1Wr2Y yZz for (λ,Xp1Z
′, λ), (λ,Xp2Y

′, λ)
∈ Pγ and β ∈ (Ω1 ∪N)∗. Let us consider a derivation

X
σX=⇒γX XXp1Xp2Y

′Z ′

=⇒∗
γX

XXp1Xp2βW
σ1=⇒γX XXp1Xp2βWWr1Wr2Y Z
=⇒∗

γX
XXp1Xp2βWWr1Wr2Y yZz = αk

=⇒∗
γX

w.

Let y′ and z′ be strings in (Ω1 ∪ Ω2)
∗ such that XXp1Xp2y

′z′ = w and
Y ′ =⇒∗

γY ′
y′, Z ′ =⇒∗

γZ′
z′.

From the induction hypothesis for y′ and z′, there are standard deriva-

tions σY ′, σZ′ such that Y ′
σY ′

=⇒γY ′
y′, Z ′

σZ′

=⇒γZ′
z′, respectively. There-

fore, σXσY ′σZ′ is a standard derivation for w through the legal string
α1 = XXp1Xp2Y

′Z ′.

The following two lemmata are essential for the proof of Theorem 5.

Lemma 10. For any X in N , if there is a derivation X =⇒∗
G w with w ∈ T+

then there is a string w′ in L(γX) ∩RX such that h(w′) = w.

Proof. We will show that, for any X in N , if there is a derivation X
r1···rn=⇒ G

a1 · · · al with ai ∈ T (l ≥ 1, 1 ≤ i ≤ l) then there is a string w′ in L(γX)∩RX

such that h(w′) = a1 · · · al by the induction on n.
Base step: Consider a derivation X

r
=⇒G a. From the definition of Pγ , an

insertion rule (λ,Xr3a, λ) is in Pγ. By the construction of RX , XXr3 ∈ AX

and Xr3a ∈ BX hold. Then the string XXr3a in RX satisfies that X =⇒γ

XXr3a and h(XXr3a) = a.
Induction step: We suppose that the claim holds for any n ≤ k. Consider

a string yz which satisfies that X =⇒G Y Z
r1···rj
=⇒G yZ

rj+1···rk
=⇒ G yz, where

ri ∈ P for each 1 ≤ i ≤ k and 1 ≤ j < k. For the derivations Y
r1···rj
=⇒G y and

Z
rj+1···rk
=⇒ G z, from the induction hypothesis, there are strings y′ and z′ such

that y′ ∈ L(γY) ∩ RY , z
′ ∈ L(γZ) ∩RZ , and h(y′) = y, h(z′) = z.

13

For the production rule r : X → Y Z, r-pair insertion rules (λ,Xr1Z, λ)
and (λ,Xr2Y, λ) are in Pγ. Then, there is a derivation

X =⇒γX XXr1Z =⇒γX XXr1Xr2Y Z =⇒∗
γX

XXr1Xr2y
′z′.

Further, for the production rule r : X → Y Z, we have XXr1 ∈ AX ,
Xr1Xr2 , Xr2Y ∈ C. Note that the following holds:

AY ∪ BY ∪ {aZ | a ∈ T} ∪AZ ⊂ C.

Therefore, the string XXr1Xr2y
′z′ in L(γX) ∩ RX , satisfies h(XXr1Xr2y

′z′)
= h(y′)h(z′) = yz.

Lemma 11. For any γX , if a nonempty string w′ is in L(γX) ∩ (Ω1 ∪ Ω2)
∗,

then there is a derivation X =⇒∗
G h(w′).

Proof. ConsiderX inN and a nonempty string w′ ∈ L(γX)∩(Ω1∪Ω2)
∗. From

Lemma 9, without loss of generality, we may consider a standard derivation
X =⇒∗

γX
α1 =⇒∗

γX
α2 =⇒∗

γX
· · · =⇒∗

γX
αn = w′, where n ≥ 1 and αi is

a legal string for each 1 ≤ i ≤ n. We will show that there is a derivation
X =⇒∗

G h(w′) by the induction on n.
Base step: Consider a standard derivation X

σ
=⇒γX XXr3a, where an

insertion rule (λ,Xr3a, λ) is used in σ. Then a production rule r : X → a is
in P , which implies a derivation X =⇒G a, where h(XXr3a) = a.

Induction step: Consider a standard derivation X
σ1=⇒γ α1

σ
=⇒γ αn+1 =

w′.
Suppose that a form-(3) rule is applied in σ1, then there is no derivation

α1
σ

=⇒ w′, where σ consists of form-(3) rules. Then r-pair insertion rules are
used in σ1 and let α1 = XXr1Xr2Y Z and αn+1 = XXr1Xr2Y y′Zz′. For the
r-pair insertion rules (λ,Xr1Z, λ) and (λ,Xr2Y, λ), there is a production rule
r : X → Y Z in P .

For the strings y′ and z′, we have Y y′ ∈ L(γY) ∩ (Ω1 ∪ Ω2)
∗ and Zz′ ∈

L(γZ) ∩ (Ω1 ∪ Ω2)
∗. From the induction hypothesis, there are derivations

Y =⇒∗
G y and Z =⇒∗

G z such that h(Y y′) = y and h(Zz′) = z.
Therefore, there is a derivation X =⇒G Y Z =⇒∗

G yz, where h(w′) =
h(XXr1Xr2Y y′Zz′) = h(y′)h(z′) = yz.

Proof of Theorem 5. Let us consider the case where λ is in L(G).
Since G is in Chomsky normal form, λ is in L(G) if and only if there is a
derivation S

r
=⇒ λ for r : S → λ in P . By the construction of Pγ and R,

14

the string λ is in L(G) if and only if (λ, Sr, λ) ∈ Pλ and SSr ∈ A ∩B. Then
there is a derivation S =⇒γ SSr ∈ A ∩ B. From the definition of h, the
string SSr satisfies h(SSr) = λ. Therefore, λ is in L(G) if and only if λ is in
h(L(γ)∩R). We slightly note that R ⊂ (Ω1∪Ω2)

∗Ω2∪{SSr | r : S → λ ∈ P}
implies that no string in (Σ− T)∗ satisfies L(γ) ∩ R other than SSr.

From Lemma 10, Lemma 11, and the factRX ⊂ (Ω1∪Ω2)
∗Ω2 ⊂ (Ω1∪Ω2)

∗,
considering the case X = S, a nonempty string w is in L(G) if and only if
there is a string w′ such that w′ ∈ L(γ) ∩R and h(w′) = w.

Since the class of context-free languages is closed under intersection with
regular languages and morphism, the fact INS0

2 ⊂ CF implies H(INS0
2 ∩

LOC(2)) ⊆ CF . Therefore, from Theorem 5, we have the following theorem.

Theorem 6. CF = (INS0
2 ∩ LOC(2))

Furthermore, from the fact that, for arbitrary k and i with k ≥ 1 and
i ≥ 1, the class of regular languages includes LOC(k) in Theorem 1 and
the class of context-free languages includes INS0

i in Theorem 2, we have the
following corollary.

Corollary 4. CF = H(INS0
i ∩ LOC(k)) (i, k ≥ 2).

From Lemma 4, Theorem 6, and the fact that INS0
i ⊆ INS0

i+1 with
i ≥ 1, we have the following corollary.

Corollary 5. H(INS0
i ∩ LOC(1)) ⊂ CF (i ≥ 2).

5. Characterizations of RE Languages

In this section, we will show that any recursively enumerable language
can be represented by using insertion systems and strictly locally testable
languages in the similar way to context-free and regular languages.

Theorem 7. RE = H(INS3
3 ∩ LOC(2)).

Construction of an insertion system γ: Let G = (N, T, P, S) be a
type-0 grammar in Penttonen normal form [3]. In this normal form, the rules
in P are of the following types:

Type 1 : X → α ∈ P, where X ∈ N, α ∈ (N ∪ T)∗, |α| ≤ 2.
Type 2 : XY → XZ ∈ P, where X, Y, Z ∈ N.

15

By introducing new symbols # and c, we construct the insertion system
γ = (Σ, Pγ, {Scc}), where Σ = N ∪ T ∪ {#, c} and Pγ contains the following
insertion rules:

• Group 1: For each rule r : X → Y Z ∈ P of Type 1, with X ∈ N and
Y, Z ∈ N ∪ T ∪ {λ}, we construct the following insertion rules

form-(r1) (X,#Y Z, α1α2) in Pγ, where α1α2 ∈ (N ∪ T ∪ {c})2.

• Group 2: For each rule r : XY → XZ ∈ P of Type 2, with X, Y, Z ∈
N , we construct the following insertion rules

form-(r2) (XY,#Z, α1α2) in Pγ , where α1α2 ∈ (N ∪ T ∪ {c})2.

• Group 3 (Relocation task for X): For each X, Y ∈ N , we construct the
following insertion rules

form-(r3) (XY#,#X,α), where α ∈ (N ∪ T ∪ {c}),
form-(r4) (X,#, Y##),
form-(r5) (#Y#, Y,#X).

We define a projection h : Σ∗ → T ∗ by

h(a) = a for all a ∈ T,
h(a) = λ otherwise.

Finally, let R = AΣ∗ ∩ Σ∗B − Σ+C ′Σ+ with C ′ = Σ2 − C,

A = {X# | X ∈ N},
B = {cc},
C = {X# | X ∈ N} ∪ {#X | X ∈ N} ∪ {aX | X ∈ N}∪

{ab | a, b ∈ T} ∪ {ac | a ∈ T} ∪ {#a | a ∈ T} ∪ {#c}.

Then R is a strictly 2-testable language prescribed by S2 = (A,B,C). The
language R can be represented by R = N{#}(T ∪N{#})∗{cc}.

Then we obtain L(G) = h(L(γ) ∩R), which will be proven in the sequel.
We start by introducing some useful notions.

We call the symbol # a marker. A symbol in N followed by # is said
to be #-marked (briefly marked). A symbol in N ∪ T which is not marked
is said to be unmarked. We call a string in N{#} a wreck and a string in

16

(N{#})+ a wrecks. Since the symbols c and # are special symbols, they are
neither marked nor unmarked. A string xcc, where x is in (N{#}∪N ∪T)∗,
is a legal string.

An intuitive explanation of marked symbols, unmarked symbols, and a
wreck is the followings:

Note 1. A marked symbol means that the symbol has been used (i.e. con-
sumed) for some derivation in γ.

Note 2. In γ at each step a wreck is considered to be a “garbage” and a
string consisting of unmarked symbols of a legal string indicates a sentential
form of G.

By the construction of R, making L(γ)∩R leads to only legal strings. Then if
we erase the “wrecks” and the symbol c, we get the legal strings of unmarked
symbols which are exactly sentential forms of G.

By using the rules of Group 1 and Group 2, we can simulate the rules of
Type 1 and Type 2 respectively. By using the rules of Group 3, we move an
unmarked symbol to the right across a block M#, where M ∈ N . Thus the
nonterminal pairs XY can be ready for simulating the rules XY → Y Z of
Type 2.

In order to prove the equality L(G) = h(L(γ) ∩ R), we first prove the
inclusion L(G) ⊆ h(L(γ) ∩ R).

Fact 1. Applying a form-(r1) rule : (X,#Y Z, α1α2) to an occurrence of a
string Xα1α2 with α1α2 ∈ (N ∪ T ∪ {c})2 makes a new occurrence of the
string X#Y Zα1α2. Note that the unmarked symbol X becomes marked,
while the symbols Y, Z are newly created unmarked symbols.

Fact 2. Applying a form-(r2) rule : (XY,#Z, α1α2) to an occurrence of a
string XY α1α2 with α1α2 ∈ (N ∪ T ∪ {c})2 makes a new occurrence of
the string XY#Zα1α2. Note that the symbol X is preserved in just the
unmarked state, the unmarked symbol Y becomes marked, while the symbol
Z is newly created unmarked symbol.

Lemma 12. The rules in Group 3 can replace a substring XY#α (α ∈
N ∪ T ∪ {c}) by a substring consisting of the strings in N{#} and ending

with Xα. The symbol X is unmarked before and after the derivations.

17

Proof. A form-(r3) rule (XY#,#X,α) can be applied to a string XY#α,
where X, Y ∈ N , α ∈ N ∪ T ∪ {c}. After applying the form-(r3) rule, we
have XY##Xα. Then the form-(r4) rule (X,#, Y##) can be applied for
the substring XY##, and we have X#Y##Xα. Now we apply the form-
(r5) rule (#Y#, Y,#X) for the substring #Y##X , and the substring is
replaced by #Y#Y#X .

Therefore, the substring XY#α is replaced by X#Y#Y#Xα, which has
the unmarked symbol X on the rightmost position.

Thus the insertion rules in γ simulate the rules in G, and generate legal
strings from the legal string Scc.

We will give separate consideration to the case of using the rules in Group
3.

Lemma 13. Once a form-(r3) rule : (XY#,#X,α) is applied to obtain a

substring of a legal string, then the form-(r4) rule and form-(r5) rule are used
in this order.

Proof. We may consider a substring XY#α, where X, Y ∈ N , α ∈ N ∪
T ∪ {c}. After using rule in form-(r3), we obtain XY##Xα. Because of
the symbols ##, rules in form-(r1) or (r2) or (r3) cannot be applied for the
substring XY##. In view of the construction of form-(r5) rule, we cannot
apply a form-(r5) rule forXY##. Hence, the only applicable rule forXY##
is form-(r4) rule.

After using form-(r4) rule (X,#, Y##) for XY##Xα, we obtain the
substring X#Y##Xα. For the symbol X following ##, we have a chance
to apply one of the rules in form-(r1), (r2), (r3), (r4). If we apply form-(r1)
or form-(r2) rule, we may take it as the first step of simulation for Type 1 or
Type 2 respectively. Note that, during these simulations, X remains at the
immediately to the right of ##. If we apply form-(r3) or form-(r4) rule, we
may take it independently a new relocation task. Note that, after application
of form-(r3) or form-(r4) rule, X remains immediately to the right of ##.
Therefore, in all cases the symbol ## is followed by X . Further, since the
symbol X was originally unmarked in XY#α, X provides the possibility of
applying one of the rules in form-(r1), (r2), (r3), (r4). Hence this application
causes no trouble with the current relocation task.

After using form-(r4) rule for XY##, we obtain X#Y##. From the
above notation, since X always follows the symbols ##, after applying form-

18

(r4) rule, we obtain X#Y##X . In the substring X#Y##, both of the
symbols X and Y are already marked, and in view of the form of the rules,
none of form-(r1), (r2), (r3), (r4) rule can be used for this substring. Hence,
the only applicable rule for X#Y##X is form-(r5) rule. After applying this
rule, (#Y#, Y,#X), we have X#Y#X#X , which is the substring of a legal
string.

Hence to obtain a substring of a legal string, whenever we use the form-
(r3) rule, we have to use form-(r4) rule and form-(r5) rule in this order.

From Lemma 13, for any derivation in γ, x
π

=⇒γ y, there is a standard

derivation which satisfies that form-(r4) rule and form-(r5) rule are applied
in this order immediately after applying form-(r3) rule.

Denote by umk(x) a string consisting of unmarked symbols in a legal
string x generated by γ. Note that since c is the special symbol, neither
marked nor unmarked, umk(x) does not contain a suffix cc. We thus have
the next lemma.

Lemma 14. The nonterminal symbol S derives x in G if and only if there

is a derivation Scc =⇒∗
γ x′ in γ such that umk(x′) = x.

Proof. We will show that if there is a derivation S =⇒n
G x with x ∈ (N ∪T)∗

then there is a derivation Scc =⇒∗
γ x′ such that umk(x′) = x and x′ ∈ Σ∗ by

induction on n.
Base step: If n = 0, then for the axiom Scc in γ, umk(Scc) = S holds.

Thus obviously the claim holds.
Induction step: We suppose that the claim holds for any n ≤ k. Now

consider a derivation S =⇒k
G x =⇒G y with x, y ∈ (N ∪ T)∗.

From the induction hypothesis, there is a derivation Scc =⇒∗
γ x′, where

umk(x′) = x and x′ ∈ Σ∗. If the rule applied for x is of Type 1 (Type 2,
resp.) then we use the corresponding insertion rule in Group 1 (Group 2,
resp.) for the string x′.

However, in the latter case (i.e. Group 2), if the insertion rule in Group 2
cannot be immediately applied for x′, we need to apply some rules in Group 3.
From Lemma 12, after application of the rules in Group 3, unmarked symbols
of a legal string x′ remain unchanged. We denote this process of derivations
by x′ =⇒∗

γ x′′ =⇒γ y′, where x′′, a string ready for applying a rule in Group
2, is derived by using only rules in form-(r3), (r4), (r5) in Group 3 and y′ is
derived by using only a rule in Group 2. Note that umk(x′) = umk(x′′).

19

Then, in either case, from Fact 1 and Fact 2 we eventually have umk(y′) =
y. Therefore the claim holds for k + 1.

Conversely, we will show that if there is a standard derivation Scc
π

=⇒γ x′

with x′ ∈ Σ∗ then there is a derivation S =⇒∗
G x such that umk(x′) = x and

x ∈ (N ∪ T)∗ by induction on the number n of legal strings in the derivation
π.

Base step: For the axiom Scc, no rules in form-(r3) or (r4) or (r5) can
apply. Further, umk(Scc) = S holds and Scc is legal. Thus, obviously the
claim holds.

Induction step: We suppose that the claim holds for any n ≤ k. Now
consider a standard derivation Scc

π1=⇒γ x′ π2=⇒γ y′, where x′ is the k-th legal
string in π1 and y′ is the first legal string in π2 with x′, y′ ∈ Σ∗. From the
induction hypothesis, there is a derivation S =⇒∗

G x, where umk(x′) = x.
Let r′ denote the production which was applied first in π2. Note that no

rule in form-(r4) or form-(r5) can apply for legal strings. For the insertion
rule r′ of Group 1 (Group 2, resp.), there is the corresponding production
rule in Type 1 (Type 2, resp.) for the string x. In either case, from Fact 1
and Fact 2 we eventually have x =⇒∗

G y, where umk(y′) = y.
In case that the insertion rule r′ is in Group 3 (i.e. r′ is form-(r3) rule),

for standard derivation x′ π2=⇒γ y′ form-(r4) rule and form-(r5) rule are ap-
plied in this order. From Lemma 12, after application of the rules in Group
3, unmarked symbols of a legal string x′ remains unchanged. Note that
umk(x′) = umk(y′). Then, from the induction hypothesis, there is a deriva-
tion S =⇒∗

G x such that umk(x′) = umk(y′) = x.
Therefore the claim holds for k + 1.

In view of the manner of constructing the strictly 2-testable language R
and the projection h, we have the following fact.

Fact 3. For any y ∈ L(γ), if y is in R and umk(y) ∈ T ∗, then umk(y) =
h(y).

From Lemma 14 and Fact 3, we obtain the inclusion L(G) ⊆ h(L(γ)∩R).
Next we prove the inverse inclusion which completes the proof of Theorem
6.

Fact 4. As far as unmarked symbols are concerned, the rules in Group 1
and Group 2 can only simulate the rules of Type 1 and Type 2 respectively
in G.

20

Proof of Theorem 6. From Fact 4, Lemma 13 and Lemma 14, every
string of a form umk(xcc) is generated by the grammar G, where xcc is a
legal string generated by γ.

Therefore, if for any y ∈ L(γ), y is in R, then there is a string h(y) such
that S =⇒∗

G h(y). This means that the inclusion h(L(γ)∩R) ⊆ L(G) holds.
Together with the fact that L(G) ⊆ h(L(γ) ∩ R), we complete the proof of
Theorem 6.

Corollary 6. RE = H(INS3
3 ∩ LOC(k)) (k ≥ 2).

6. Conclusion

In this paper, we have contributed to the study of insertion systems with
new characterizations of recursively enumerable, context-free, and regular
languages. Specifically, we have shown that

REG = H(INS0
1 ∩ LOC(k)) with k ≥ 2.

H(INS0
1 ∩ LOC(1)) ⊂ REG ⊂ H(INS0

i ∩ LOC(k)) with i, k ≥ 2.
CF = H(INS0

i ∩ LOC(k)) with i, k ≥ 2.
RE = H(INS3

3 ∩ LOC(k)) with k ≥ 2.

The followings are open problems:

• Can CF be represented as CF = H(INSj
i ∩LOC(k)) for some i, j, k ≥

1 ?

• Can RE be represented as RE = H(INSj
i ∩ LOC(2)) for some i < 3

or j < 3 ?

• Whether CS (the class of context-sensitive languages) can be repre-
sented as CS = H(INSj

i ∩ LOC(k)) for some i, j ≥ 0, k ≥ 1 ?

Acknowledgements

The author is deeply indebted to T.Yokomori for his helpful discussions.

21

RE = H(INS3
3 ∩ LOC(k))

CF = H(INS0
2 ∩ LOC(k))

(∀k ≥ 2)

· · ·

REG = H(INS0
1 ∩ LOC(k))

(∀k ≥ 2)
H(INS0

2 ∩ LOC(1))
incomparable

H(INS0
1 ∩ LOC(1))

(∀k ≥ 2)

(∀k ≥ 2)(∀k ≥ 2)

Figure 1: Relationships between the classes of languages generated by insertion systems
and strictly k-testable languages

References

[1] K. Onodera, Lecture Notes in Computer Science 5457 (2009) 648–659.

[2] M. Margenstern, G. Păun, Y. Rogozhin, S. Verlan, Theor. Comput. Sci.
330 (2005) 339–348.

[3] G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms., Springer, 1998.

[4] T. Yokomori, S. Kobayashi, IEEE Trans. Pattern Anal. Mach. Intell. 20
(1998) 1067–1079.

[5] T. Head, Discrete Applied Math 87 (1998) 87–139.

[6] C. Martin-Vide, G. Păun, A. Salomaa, Theor. Comput. Sci. 205 (1998)
195–205.

[7] K. Onodera, IPSJ Journal 44 (2003) 1424–1427.

[8] G. Păun, M. J. Pérez-Jiménez, T. Yokomori, Int. J. Found. Comput.
Sci. 19 (2008) 859–871.

[9] G. Rozenberg, A. Salomaa (Eds.), Handbook of formal languages,
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

22

[10] R. McNaughton, S. A. Papert, Counter-Free Automata (M.I.T. research
monograph no. 65), The MIT Press, 1971.

23

