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ABSTRACT:  This paper describes a probabilistic study of the two dimensional bearing 

capacity of a vertically loaded strip footing on spatially random, cohesive soil using Numerical 

Limit Analyses (NLA-CD).  The analyses use a Cholesky Decomposition technique to represent 

the spatial variation in undrained shear strength within finite element meshes for both upper and 

lower bound analyses, assuming an isotropic correlation length.  Monte Carlo simulations are 

then used to interpret the bearing capacity for selected ranges of the coefficient of variation in 

undrained shear strength and the ratio of correlation length to footing width.  The results are 

compared directly with data from a very similar study by Griffiths et al. in which bearing 

capacity realizations were computed using a method of Local Average Subdivision (LAS) in a 

conventional displacement-based Finite Element Method (FEM-LAS).  These comparisons 

show the same qualitative features, but suggest that the published FEM calculations tend to 

overestimate the probability of failure at large correlation lengths.  The NLA method offers a 

more convenient and computationally efficient approach for evaluating effects of variability in 

soil strength properties in geotechnical stability calculations. 

Keywords: Bearing capacity; cohesive soil, limit analysis; Monte Carlo method; Random field,  

Probabilistic analysis 
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Introduction 

Recent numerical formulations of upper and lower bound limit analyses for rigid 

perfectly plastic materials, using finite element discretization and linear (Sloan, 1988a; Sloan & 

Kleeman, 1995) or non-linear (Lyamin & Sloan, 2002a, b) programming methods, provide a 

practical,  efficient and accurate method for performing geotechnical stability calculations.  

For example, Ukritchon et al. (1998) proposed a solution to the undrained stability of surface 

footings on non-homogeneous and layered clay deposits under the combined effects of vertical, 

horizontal and moment loading to a numerical accuracy of ±5%.  The only parameter used in 

these NLA is the undrained shear strength (which can vary linearly within a given soil layer).  

Hence, NLA provides a more convenient method of analyzing stability problems than FEM’s 

which also require the specification of elastic stiffness parameters and simulation of the complete 

non-linear load-deformation response up to collapse. 

This paper investigates a probabilistic approach to evaluating the bearing capacity of a 

planar footing on clay by incorporating the stochastic spatial variability of undrained shear 

strength within the numerical limit analyses.  The undrained shear strength is treated as a 

random field (Vanmarcke, 1984) which is characterized by a log-normal distribution and a spatial 

correlation length (i.e., isotropic correlation structure).  The current calculations use a Cholesky 

Decomposition technique (Baecher & Christian, 2003) to incorporate these random properties in 

numerical limit analyses (NLA-CD).  The bearing capacity is then interpreted statistically from 

a series of Monte Carlo simulations. 

Very similar studies have been reported by Griffiths and Fenton (2001) and Griffiths et 
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al. (2002) using displacement-based finite element analyses (FEM) with Local Area Subdivision 

(after Fenton & Vanmarcke, 1990) to represent random distributions of shear strength 

(FEM-LAS).  The current paper adopts similar notations and provides a direct comparison of 

results from the two methods of analysis. 

 

Numerical Limit Analysis with Spatially Random Cohesive Soil 

Figures 1 illustrate typical finite element meshes used to compute upper and lower 

bounds on the two dimensional bearing capacity of a vertically loaded plane strain footing of 

width, B.  The lower bound analyses is based on the linear programming formulation presented 

by Sloan (1988a) and assume a linear variation of the unknown stresses (σx, σy, τxy) within each 

triangular element.  The formulation differs from conventional displacement-based 

finite-element formulations by assigning each node uniquely within an element, such that the 

unknown stresses are discontinuous along adjacent edges between elements.  Statically 

admissible stress fields are generated by satisfying: i) a set of linear equality constraints, 

enforcing static equilibrium with triangular elements and along stress discontinuities between the 

elements, ii) inequality constraints that ensure no violation of the linearized material failure 

criterion.  The current analyses assume a Tresca yield criterion for the undrained shear strength 

of clay. The lower-bound estimate of the collapse load is then obtained through an objective 

function that maximizes the resultant vertical force acting on the footing.  The linear 

programming problem is solved efficiently using a steepest edge active set algorithm (Sloan, 

1988b).   

The upper-bound formulation also discretizes the soil mass into three-noded triangular 

elements, Figure 1, with linear variations in the unknown velocities (ux, uy).  Nodes are unique 
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to each element and hence, the edges between elements represent planes of velocity 

discontinuities.  Plastic volume change and shear distortion can occur within each element as 

well as along velocity discontinuities.  The kinematic constraints are defined by the 

compatibility equations and the condition of associated flow (based on an appropriate 

linearization of the Tresca criterion) within each element and along the velocity discontinuities 

between elements. The external applied load can be expressed as a function of unknown nodal 

velocities and plastic multiplier rates.  The upper-bound on the collapse load can then be 

formulated as a linear programming problem, which seeks to minimize the external applied load 

using an active set algorithm (after Sloan & Kleeman, 1995).   

One of the principal advantages of NLA is that the true collapse load is always 

bracketed by results from the upper and lower bound calculations.  However, careful mesh 

refinement is essential in order to achieve numerically accurate solutions. Sloan (1988a) and 

Sloan & Kleeman (1995) have reported the influence of mesh refinement and approximation of 

linearized Tresca criterion in the lower bound and upper bound numerical limit analyses 

respectively. Based on prior studies by Ukritchon et al. (1998), the current upper bound analyses 

use a uniform mesh with elements of characteristic dimension 0.125B, Figure 1.  The size of the 

discretized domain is sufficient to contain all potential failure mechanisms, such that the far field 

boundaries can be represented as zero velocity conditions.  Extension elements are introduced 

in order to ensure statically admissible solutions at all points in the deep clay layer (half-space). 

The effects of inherent spatial variability are represented in the analyses by modeling the 

undrained shear strength, su, as a homogeneous random field while the effect of the spatial 

variability of soil density is neglected by assuming the soil to be weightless.  The undrained 

shear strength is assumed to have an underlying log-normal distribution with mean, µ su
, and 
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standard deviation, σ su
,  and an isotropic scale of fluctuation (also referred to as the correlation 

length), θln su
.  The use of the log-normal distribution is predicated by the fact that su is always 

a positive quantity.  Phoon and Kulhawy (1999) have compiled data on the inherent variability 

of su and report typical Coefficients of Variation in undrained shear strength, COVsu
 = σ su

µsu
 

= 0.1 – 0.8, based on conventional laboratory shear tests.  The mean and standard deviation of 

logsu are readily derived from COVsu
 and µ su

 as follows (e.g., Baecher & Christian, 2003): 

σ ln su
= ln(1 + COVsu

2 )       (1) 

µ ln su
= lnµ su

−
1

2
σ ln su

2       (2) 

There is much less data available to evaluate the scale of fluctuation which corresponds 

to the physical distance over which there is correlation in the undrained shear strength.  

Although some studies have found that the horizontal scale of fluctuation can be an order of 

magnitude greater than the vertical scale (e.g., James Bay marine clay deposits; DeGroot & 

Baecher, 1983), the local geological environment is likely to have a major influence on the 

correlation length parameter(s).  Following Griffiths et al. (2002) the current analyses present 

results based on assumed values of the ratio of the correlation length to footing width, 

Θln su
 = θln su

B . 

The spatial variability is incorporated within the NLA meshes by assigning the 

undrained shear strength corresponding to the i
th

 element: 

sui
= exp(µ ln su

+ σ ln su
Gi )       (3) 

where 
i

G  is a random variable that is linked to the spatial correlation length, θln su
. 

  Values of Gi are obtained using a Cholesky Decomposition technique (e.g., Baecher & 
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Christian, 2003) using an isotropic Markov function which assumes that the correlation decreases 

exponentially with distance between two points i, j : 

ρ(xij ) = exp −
2xij

θln su












      (4) 

where ρ  is the correlation coefficient between two random values of su at any points separated 

by a distance xij = |xi – xj| where xi is the position vector of i (located at the center of element i in 

the finite element mesh).  This correlation function can be used to generate a correlation matrix, 

K, which represents the correlation coefficient between each of the elements used in the NLA 

finite element meshes: 
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where 
ij

ρ  is the correlation coefficient between element i and j, and n the total number of 

elements in the mesh. 

The matrix K is positive definite and hence, the standard Cholesky Decomposition 

algorithm can be used to factor the matrix into triangular forms used in NLA mesh, S and S
T
, 

respectively: 

S
T
S = K        (6) 

The components of ST are specific to a given finite element mesh and selected value of 

the correlation length, θln su
.   

The vector of random variables, G (i.e., { }
n

GGG ,,,
21
L , where Gi specifies the random 

component of the undrained shear strength in element i, eqn. 3) can then be obtained from the 

product: 
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G = S
T
X        (7) 

where X is a vector of statistically independent, random numbers { }
n

xxx ,,,
21
L  with a standard 

normal distribution (i.e., with zero mean and unit standard deviation). It is noted that undrained 

shear strength calculated at the center of element is used as an input strength parameter to the 

each element in NLA mesh. Namely, it is assumed in this paper that the strength of entire 

element can be represented by the strength at the center of element, which is expected that the 

accuracy of spatial correlation relationship by Cholesky Decomposition technique is affected by 

the mesh size for NLA.  

In order to investigate the accuracy and mesh dependency of spatial correlation 

relationship obtained by Cholesky Decomposition technique, Figure 2 shows the comparison of 

exact correlation, which is an exponential function as Equation (4), and realized correlation in 

NLA mesh (Figure 1) calculated by Cholensky Decomposition technique. It is noted that the plot 

interval for markers by Cholensky Decomposition technique in Figure 2 is 0.05B, which is 

almost equal to a minimum distance between the element centers in NLA mesh. It can be seen 

that there are good agreements between exact correlation lines and plot markers calculated by 

Cholensky Decomposition technique. However, the comparatively rough realization of exact 

correlation relation for Θln su
= 0.1 ( θln su

=0.1Β) is obtained, which is suggested that the element 

size for NLA analyses is should be small for this case. Namely, it can be suggested that the 

element size is at least the half of spatial correlation length when using Cholesky Decomposition 

technique for realizing spatial correlation structure in finite element mesh. Therefore, it is 

confirmed that Cholesky Decomposition technique for fine NLA mesh is a useful method to 

obtain random field parameters with a good accuracy. 

Values of the random variable vector X are then re-generated for each realization in a set 



 8 

of Monte Carlo simulations.  Figures 1 illustrate the spatial distribution of undrained shear 

strength obtained for typical mesh for one example simulation with input parameters µ su
 

=100kPa, 
uc

COV = 0.2 and Θln su
= 1.0.  The lighter shaded regions indicate areas of higher shear 

strength.  

 

Bearing Capacity Results 

Upper and lower bound stability calculations have been performed assuming a fixed 

mean value for the undrained shear strength, µ su
 =100kPa, while varying combinations of the 

coefficient of variation and correlation length over the following ranges: 

COVsu
= 0.2, 0.4, 0.6, 0.8, 1.0, 4.0 

Θln su
= 0.1, 0.2, 1.0, 2.0, 4.0, 8.0, 20 

Figure 3 illustrates the effects of the correlation length parameter on the mechanisms of 

failure from a series of three UB simulations with COVsu
 = 0.4 and Θln su

= 0.2, 1.0, 2.0.  Each 

example shows the specific realization of the undrained strength field superimposed on the 

deformed FE mesh, together with the vectors of the computed velocity field (dark shaded regions 

in these figures represent locations where plastic distortion occurs within the finite elements).  

The strength field appears ragged for Θln su
 =0.2, but is much smoother for  Θln su

= 1.0, 2.0.  

Close inspection shows that the computed failure mechanisms find paths of least resistance, 

passing through weaker regions of the clay. 

A series of 1000 Monte Carlo simulations have been performed for each combination of 

the input parameters (COVsu
, Θln su

).  The computed bearing capacity factor, Nci, can then be 

reported for each realization of the shear strength field: 
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Nci = q fi µsu
,                where i = 1,2,… n…1000   (8) 

where qfi is the computed collapse load (either UB or LB). 

The mean, 
cN

µ , and standard deviation, 
cN

σ , of the bearing capacity factor are recorded 

through each set of Monte Carlo simulations, as follows: 

µNc
=

1

n
Nci

i=1

n

∑ ; ∑
=

µ−
−

=σ
n

i

NciN cc
N

n 1

2)(
1

1
.    (9) 

 Figure 4 illustrates one set of results for the case with Θln su
 = 2.0, COVsu

= 0.2 and 0.8.  

The results confirm that the collapse load for any given realization is well bounded by 
cN

µ  from 

the UB and LB calculations.  The mean and standard deviation of Nc become stable within 1000 

simulations. 

Table 1 summarizes the statistical data for the bearing capacity factor for all 

combinations of the input parameters.  In all cases the results show µNc
UB( ) > µNc

LB( ), the 

actual collapse load is typically bounded within ±5-10% showing acceptable accuracy from the 

numerical limit analyses.  The data also show  σNc
UB( ) > σNc

LB( ).  This latter result may 

reflect differences in the upper bound and lower bound limit analyses.  However, it is notable 

that the numerical limit analyses generate much smaller coefficients of variation in bearing 

capacity than were reported by Griffiths et al. (2002) from FEM-LAS simulations (the data in 

Table 1 show COVNc
 = σNc

µNc
= 0.03 – 0.75). 

Figure 5 presents a 20-bin histogram of the bearing capacity factor from one complete 

series of Monte Carlo simulations with COVsu
= 0.2 and Θln su

 = 2.0 together with the estimated 

normal distribution.  In order to obtain the distribution function of the bearing capacity factor 

based on χ2  goodness-of-fit tests, Table 1 summarizes χ2 statistics for all of the simulations 
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and confirms that normal or log-normal distribution functions can be used to characterize the 

bearing capacity at a 5% significance level  (with acceptance level, χ20−1− 2

2 0.05[ ] = 27.6). 

Figures 6a and 6b summarize the ratio of the mean bearing capacity factor to the 

deterministic solution for homogeneous clay, 
 
%Nc  = µNc

NcDet  (where NcDet  = 2 + π[ ]) for 

combinations of the input parameters ( COVsu
, Θln su

).  In general, 
 
%Nc < 1 and hence spatial 

variability causes a reduction in the expected undrained bearing capacity.  The trends show that 

the largest reductions in µ su
occur when the coefficient of variation is high and/or the correlation 

length is small.  Assuming a maximum realistic range, COVsu
 ≤ 0.6 – 0.8, the results suggest 

that the expected bearing capacity could be as little as 60% of the deterministic value.   

Qualitatively similar results have been presented by Griffiths et al. (2002).  However, 

these Authors also report a local minimum in the expected bearing capacity for Θln su
≈ 1.0, 

which is not seen in the current numerical limit analyses. It is also shown that the differences 

between current UB and LB analyses is large for small Θln su
.  It is considered that the 

difference of these bearing capacities obtained by NLA-CD and FEM-LAS for small Θln su
 is 

related to the mesh dependency of spatial correlation relation obtained by Cholesky 

Decomposition technique as explained in Figure 2.   

 

Probability of Failure 

In conventional working stress design practice an average undrained shear strength is 

used to compute the ultimate bearing capacity, while the allowable/nominal load is then obtained 

by applying a global safety factor, FS = 2.0 – 3.0.  In the current calculations the probability that 

the bearing capacity is less than a given level of applied load can be obtained by assuming that Nc 
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can be described by either a normal or log-normal distribution (as shown in Table 1).  If Nc is 

log-normally distributed, the probability that the bearing capacity is less than the nominal load is 

given by: 

P[Nc < NcDet / FS] =  Φ
ln( 2 + π[ ]/ FS) − µ ln Nc

σ ln Nc









    (10) 

where Φ(..) is the cumulative normal function and values of µ ln Nc
, σ ln Nc

are reported from the 

NLA-DC analyses in Table 1. 

Figure 7 summarizes predictions that the probability of bearing failure is less than the 

nominal load level for FS = 1.0, 2.0 and 3.0 as functions of the coefficient of variation in 

undrained shear strength, COVsu
, for correlation length parameters, Θln su

 = 1.0, 2.0 and 4.0.  

As expected, when spatial variability is included in the analyses, the ultimate bearing capacity is 

almost always less than the deterministic capacity based on the mean shear strength.  The LB 

solutions show that the probability of this event (P[Nc< NcDet]) is greater than 0.90 (for all cases 

considered), while Upper Bound solutions find P > 0.66.  These results can be compared 

directly with earlier solutions from FEM-LAS reported by Griffiths et al. (2002) who find P > 

0.55 (for the same range of input parameters).   

The probability that the bearing capacity is less than the nominal design load for FS = 

2.0 and 3.0 decreases very markedly with the coefficient of variation in undrained shear strength, 

especially for COVsu
< 1.0, Figure 7, and also with increasing values of the spatial correlation 

length ratio, Θln su
.   

For Θln su
= 1.0, the UB predictions of the probability, P[Nc< NcDet/FS] are in excellent 

agreement with prior data presented by Griffiths et al. (2002).  However, the current analyses 
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show lower event probabilities for correlation length ratios, Θln su
= 2.0, 4.0.  The source of this 

discrepancy is not obvious and deserves further investigation. 

Figure 8 offers a more detailed comparison of the probability of bearing failure 

implicitly defined in conventional design methods with the actual probabilities of failure derived 

from the stochastic NLA-CD analyses accounting for inherent spatial variability.   The figures 

plot the P[Nc< NcDet/FS] as functions of the safety factor, FS for selected ranges of the input 

parameters COVsu
and Θln su

.  The target probabilities of failure considered in LRFD codes for 

shallow foundations are reported in the range, Pf = 10
-2

 – 10
-3

 (Baecher & Christian, 2003; Phoon 

et al., 2000).  The results in Figure 8a show that P[Nc< NcDet/FS] is much less than this target 

condition for small values of the coefficient of variation, COVsu
= 0.2.  There is close 

agreement between the conventional working stress design and LFRD methods for COVsu
= 0.4, 

0.6, Figures 8b, c.  However, in exceptional cases with COVsu
= 0.8 and Θln su

≤ 1.0, the 

estimated probability of failure can exceed Pf = 10
-2

 at FS = 3.0. 

 

Conclusions 

This paper summarizes the implementation of a Cholesky Decomposition method for 

representing inherent spatial variability of undrained shear strength in Monte Carlo simulations 

of bearing capacity for a rough, surface strip footing on clay using Numerical Limit Analyses.  

Accurate estimates of the exact bearing capacity are achieved in each Monte-Carlo realization 

except for small spatial correlation length.  The analyses assume that undrained shear strength is 

characterized by a log-normal distribution function, while effects of spatial variability are 

characterized by two input parameters,  i) the coefficient of variation, COVsu
 and ii) an 
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isotropic correlation length ratio, Θln su
.  Stable bearing capacity statistics were derived from a 

series 1000 Monte Carlo simulations for each set on input parameters.  The current parametric 

calculations are then compared with results from a similar study reported by Griffiths et al. 

(2002) using a completely independent method of analysis (FEM-LAS).   

The results confirm that spatial variability reduces the bearing capacity of the footing 

relative to a deterministic calculation based on the mean undrained shear strength.  This result 

occurs due to changes in the predicted failure mechanisms which form through weaker regions in 

the clay.  The lowest values in the computed ratio, 
 
%Nc  = µNc

NcDet , occur at high values of 

COVsu
and small correlation length ratios (Θln su

< 1) in this analyses. 

Although there is very good qualitative agreement with results presented by Griffiths et 

al. (2002) the current analyses generally suggest lower probabilities of design failure for the same 

input properties of the undrained shear strength field.  This result will require further 

investigation through direct comparison of stochastic NLA and FEM methods. 

The results suggest that target probabilities for bearing failure in the range Pf = 10
-2

 – 

10-3 are consistent with conventional working stress design methods using FS = 2.0 – 3.0 except 

in cases where there is very high coefficient of variation, COVsu
≥ 0.8 and/or small correlation 

ratios, Θln su
< 1. 
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NOTATION 

B = width of foundation; 

uc
COV  = coefficient of variation of undrained shear strength; 

su
 = undrained shear strength; 

sui
 = undrained shear strength of ith element; 

FS = safety factor; 

G(x) = standard Gaussian field with zero mean unit variance; 

G(xi) = local value of standard Gaussian field with zero mean unit variance for ith element; 

c
N  = bearing capacity factor; 

ic
N  = bearing capacity factor for i

th
 realization; 

P[…] = probability; 

xi
 = position vector at center of i

th
 element; 

Θln su
 =θln su

B , dimensionless correlation length ratio,; 

θln su
 = spatial correlation length; 

µ su
 = mean undrained shear strength; 

µ ln su
 = mean of log undrained shear strength; 

µ ln Nc
 = mean of log bearing capacity factor; 

µNc
 = mean bearing capacity factor; 

ρ  = correlation coefficient; 

σ su
 = standard deviation of undrained shear strength; 

σ ln su
 = standard deviation of log undrained shear strength; 



 17 

σ ln Nc
 = standard deviation of log bearing capacity factor; 

σNc
 = standard deviation of bearing capacity factor; 

(...)Φ  = cumulative normal function. 
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Table 1. Bearing capacity factor statistics and goodness of fit results for normal and log-normal 

distributions 

 

LB UB 

ucln
Θ  

uc
COV  

cN
µ  

cN
σ  2χ  

cNln
µ  

cNln
σ  2χ  

cN
µ  

cN
σ  2χ  

cNln
µ  

cNln
σ  2χ  

0.2 4.330 0.082 22.2 1.465 0.019 24.3 4.815 0.099 27.1 1.572 0.021 22.3 

0.4 3.572 0.127 20.2 1.272 0.036 19.2 4.16 0.171 24.5 1.425 0.041 24.2 

0.6 2.858 0.154 24.0 1.049 0.054 27.2 3.472 0.217 22.8 1.243 0.062 27.3 

0.8 2.353 0.145 21.3 0.854 0.061 25.1 2.937 0.208 22.3 1.075 0.07 15.1 

1.0 1.921 0.157 14.2 0.649 0.084 10.4 2.467 0.238 22.3 0.898 0.099 24.1 

0.1 

4.0 0.375 0.070 22.3 -0.998 0.192 22.8 0.555 0.119 17.8 -0.613 0.224 11.9 

0.2 4.425 0.108 24.9 1.487 0.024 21.2 4.821 0.126 22.4 1.573 0.026 26.4 

0.4 3.737 0.178 27.4 1.317 0.047 16.6 4.215 0.225 14.4 1.437 0.053 24.5 

0.6 3.053 0.257 20.8 1.112 0.085 16.7 3.512 0.375 18.7 1.250 0.108 24.2 

0.8 2.545 0.247 21.2 0.929 0.098 26.1 2.986 0.345 21.2 1.087 0.117 23.7 

1.0 2.146 0.257 26.8 0.756 0.126 19.3 2.580 0.352 26.7 0.938 0.145 14.7 

0.2 

4.0 0.449 0.112 26.7 -0.835 0.268 22.8 0.591 0.168 13.7 -0.570 0.308 15.8 

0.2 4.617 0.238 14.4 1.528 0.052 15.1 4.788 0.301 25.3 1.564 0.063 25.2 

0.4 4.033 0.512 21.5 1.386 0.132 20.3 4.187 0.584 26.5 1.422 0.144 27.2 

0.6 3.541 0.568 15.1 1.250 0.173 24.8 3.701 0.645 22.7 1.292 0.191 20.7 

0.8 3.155 0.589 14.5 1.127 0.229 26.2 3.241 0.682 12.9 1.148 0.253 21.0 

1.0 2.721 0.722 21.1 0.958 0.312 17.9 2.807 0.833 15.0 0.979 0.349 17.7 

1 

4.0 0.877 0.589 27.6 -0.405 0.730 21.0 0.899 0.663 25.1 -0.346 0.809 19.0 

0.2 4.731 0.260 22.7 1.553 0.056 15.0 4.860 0.307 16.2 1.579 0.064 20.4 

0.4 4.278 0.476 15.7 1.447 0.120 26.8 4.342 0.539 25.1 1.460 0.132 15.2 

0.6 3.785 0.609 24.1 1.317 0.175 24.4 3.823 0.722 21.3 1.321 0.205 20.4 

0.8 3.418 0.758 18.4 1.202 0.244 26.4 3.457 0.860 17.9 1.206 0.275 26.2 

1.0 3.102 0.849 12.2 1.084 0.289 22.5 3.137 0.935 11.2 1.104 0.318 18.7 

2 

4.0 1.417 0.805 27.1 0.126 0.644 21.9 1.503 0.899 26.7 0.230 0.710 16.7 

0.2 4.825 0.185 25.0 1.573 0.038 25.0 4.940 0.225 9.7 1.596 0.046 10.6 

0.4 4.522 0.369 21.1 1.506 0.083 22.7 4.605 0.461 21.4 1.522 0.103 14.3 

0.6 4.235 0.512 18.6 1.436 0.125 21.5 4.318 0.606 20.4 1.452 0.146 23.3 

0.8 3.698 0.726 23.5 1.280 0.216 24.5 3.703 0.822 20.2 1.288 0.245 24.4 

1.0 3.478 0.801 20.6 1.206 0.262 21.2 3.496 0.904 25.3 1.221 0.299 25.8 

4 

4.0 1.958 0.938 22.1 0.512 0.576 21.6 1.976 0.973 22.3 0.541 0.627 22.9 

0.2 4.894 0.170 20.6 1.587 0.035 15.0 5.022 0.189 18.9 1.613 0.038 21.1 

0.4 4.676 0.317 25.6 1.540 0.069 18.6 4.739 0.399 19.2 1.552 0.087 21.9 

0.6 4.432 0.431 24.8 1.484 0.099 18.7 4.485 0.534 21.5 1.494 0.121 12.1 

0.8 4.140 0.652 17.4 1.407 0.166 24.8 4.200 0.77 15.2 1.417 0.195 16.2 

1.0 3.882 0.610 21.9 1.341 0.166 14.1 3.894 0.721 14.7 1.343 0.193 18.7 

8 

4.0 2.773 0.925 16.4 0.936 0.388 19.6 2.817 1.034 19.2 0.970 0.441 14.8 

0.2 4.938 0.113 8.2 1.597 0.023 9.9 5.085 0.137  25.0 1.626 0.027  26.5 

0.4 4.845 0.226 20.6 1.577 0.047 24.8 4.945 0.278  27.5 1.597 0.056  25.2 

0.6 4.688 0.312 26.0 1.543 0.068 21.7 4.762 0.392  23.3 1.557 0.082  14.0 

0.8 4.530 0.381 7.9 1.507 0.085 16.5 4.584 0.470  25.1 1.517 0.102  24.0 

1.0 4.454 0.431 13.2 1.489 0.101 15.9 4.506 0.511  10.8 1.499 0.113  15.5 

20 

4.0 3.468 0.783 16.7 1.209 0.235 26.9 3.503 0.880  18.7 1.227 0.250  17.8 

Note: Acceptance criterion 
2χ 20-1-2 ]05.0[  ≤  27.6 
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Fig. 1. Typical finite element meshes used in numerical limit analyses for rough strip footing 

( COVsu
=0.2, Θln su

=1) 
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Fig. 2. Comparison of exact correlation relation and realized correlation obtained by Cholesky 

Decomposition technique 
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a) COVsu =0.4, Θln su =0.2 

 

b) COVsu =0.4, Θln su =1 

 

c) COVsu =0.4, Θln su =2 

Fig. 3. Typical results of Upper Bound Analyses 
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a) Mean bearing capacity factor   b) Standard deviation of bearing capacity factor 

Fig. 4. Bearing capacity factor against number of simulations 
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Fig. 5. Histogram and estimated normal distribution of bearing capacity factor 
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Fig. 6. Summary of mean bearing capacity ratio 
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c) Θln su
=4 

Fig. 7. Probability that the bearing capacity factor is less than the nominal design load 
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Fig. 8.  Comparison of failure probability and conventional safety factor 

 


