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Abstract. A novel mechanism for energy transfer from energetic particles to bulk ions via
geodesic acoustic modes (GAMs) is presented. The mechanisminvolves the excitation of
GAMs by energetic particles. The GAMs are damped on ions by the Landau damping, by
which wave energy is given to bulk ions. This process of the energy exchange is formulated
within the framework of the quasilinear theory. The rate of energy transfer from energetic
particles to GAMs can be comparable to that of energy exchange to particles via collisions,
if the E × B velocity of GAMs reaches the level of the diamagnetic velocity. Under this
circumstance, the partition of energy absorptions by bulk ions and electrons is substantially
modified due to the selective ion heating by GAMs.
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1. Introduction

An efficient process of transferring energy from energetic ions tobulk ions has been
investigated for the nuclear fusion in magnetic confined plasmas. If one takes an example
of the neutral beam injection (NBI) heating, the energy of energetic particles is likely to be
transferred to electrons through the collision, as the energy of energetic particles becomes
higher [1]. It is difficult to heat bulk ions via collision by using energetic particles. This casts
a problem for the heating of main ions by fusion-generated alpha particles.

The energy channeling from energetic particles to waves hasbeen studied in order to
explore an alternative path of energy exchange from energetic particles to main ions. The
energy transfer from energetic particles to main ions by using waves, which are driven
externally, has been reported. The concept of this channeling effect has been explored in [2],
which is known as alpha channeling. It is known that the ion cyclotron range of frequencies
(ICRF) wave is excited during NBI heating [3], which is thought to be an instability in the
range of ion cyclotron frequencies [4]. The injection of energy and momentum from beam
ions to main ions via ICRF (the seed of which is driven externally, and is amplified by beam
ions) has been proposed. This mechanism has been called ICRF catalyst [5]. The energy
exchange between energetic particles to waves, which are driven spontaneously in plasmas,
has also been investigated. It has been reported that the compressional Alfven waves are
excited by wave-particle interaction, and the waves heat main ions by stochastic diffusion in
the velocity space [6]. This mechanism is useful under the situation that the velocity of beam
ions is comparable to the Alfven velocity. Methods of energychanneling that can be used in
wider circumstances for toroidal plasmas have been required.

Recent studies have shown that geodesic acoustic modes (GAMs) [7] can be excited
by energetic ions introduced by NBI. The GAMs, which are considered to be driven by beam
ions, are observed experimentally [8]-[10], and their theoretical studies have been started [11]-
[13]. There are many studies about the linear properties of GAMs [14]-[17], and the Landau
damping rate by bulk ions has been studied in detail [14]. Based on the two processes, i.e., the
excitation of GAMs by energetic particles and the absorption by bulk ions, we propose here
the possibility of energy channeling from beam ions to bulk ions via GAMs.

GAMs can be a new energy channeling from energetic particlesto bulk ions, that is, the
energetic particles of NBI drive GAMs, and the GAMs heat bulk ions through the Landau
damping. The wave channeling of energy transfer is called GAM channeling in this article.
We evaluate the rate of energy exchange between beam ions andbulk ions within a framework
of quasilinear theory, in which the amplitude of GAMs is treated as a given parameter. The
rate of energy exchange by GAM channeling is compared to thatby collisional process.

2. Model

The GAM channeling is formulated within the framework of thequasilinear theory. In
analyzing the GAM channeling, two energy paths must be calculated; 1) the path from
energetic particles to GAMs, and 2) the path from GAMs to bulkions. In a simple model
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of high aspect ratio tokamak with circular cross-section, the energy density of GAMs,WG,
can be written as

WG =
1
2

mini
q2

r |φG|2

B2
, (1)

where B is the strength of the magnetic field,mi is the ion mass,ni is the ion density.
The electrostatic potential and the radial wavenumber of GAMs are denoted byφG and
qr, respectively. Here, the electrostatic potential and wavenumber of GAMs are given as
parameters. We formulate the problem in two steps. First, the rate of GAM excitation is
evaluated (in which the damping by bulk ions are not taken into account [11]-[13]). Then the
Landau damping of the GAMs by bulk ions is calculated. By this approach, the rate of energy
transfer is estimated.

First, the energy path from energetic particles to GAMs is analyzed. The rate of energy
transfer from energetic particles to GAMs per unit time and unit volume,Ph→G, can be written,
in terms of the excitation rate of GAMs due to energetic particles, as.

Ph→G = 2γhWG. (2)

The excitation rateγh has been studied in literatures [11]-[13]. In the model of [12], following
assumptions are introduced. The velocity of energetic particles |u| is mono-energetic as
|u| = u0, and the effect of pitch angle distribution is considered. The pitch angle is defined as
Λ = u‖/u0, whereu‖ is the velocity parallel to magnetic field, and its distribution is given as
a quadratic function (the peak angle is denoted byΛ = Λ0, and the width is given by∆Λ).
In addition, the loss boundary for the pitch angle is considered, which limits the pitch angle
distribution asΛc < Λ. The dispersion relation was derived, neglecting the Landau damping
and the spatial gradient of energetic particle density, as

D(σ) = 1−
ω2

G

ω2
b

(

1+ σ
∆Λ

Λ0

)−2

+
3q2nh

16ni∆Λ

(

1+ Λ2
0

Λ0

)2 (

2+ σ
∆Λ

Λ0

)−1

×
{

1− δΛ2
c

2(σ + δΛc)
+ 1+ δΛc + σ ln

(

1− σ
−δΛc − σ

) }

. (3)

(The assumption of neglecting the Landau damping is shown valid, a posteriori, in wide range
of parameters, as is illustrated in Fig. 1.) Hereq is the safety factor, andωG is the GAM
frequency asωG =

√

2/miR2 (7Ti/4+ Te)
1/2, whereR is the major radius, andTe andTi are

the electron and ion temperature, respectively. The transit frequency of energetic particles at
the center of the distribution is denoted asωb = u0Λ0/qR. The density of energetic particles
is written asnh, andδΛc is defined asδΛc = (Λ0 − Λc) /∆Λ. The eigenvalue,σ, is defined
asσ = (ω − ωb)Λ0/ωb∆Λ, whereω = ωr + iγh is the frequency of GAMs which is modified
by energetic particles. Equation (3) is an extension of thatin [12], whose detail is explained
in Appendix A. The excitation rate of GAMs by energetic particles is determined not only by
the plasma geometry such as the safety factor and the major radius, but also by the velocity
distribution of energetic particles. This instability is the velocity space instability, and the
gradient of the velocity distribution of the energetic particles destabilizes GAMs. We note
here that the dispersion relation Eq. (3) shows two possibilities of instability. When the
conditionωG < ωb holds, the GAM branch (i.e., the branch which reduces toωr → ωG as



GAM channeling 4

nh/ni → 0) becomes unstable. WhenωG > ωb is satisfied, the beam branch whose frequency
is close toωb becomes unstable. (The latter case is studied in [12] in detail.) In this article,
we focus on the GAM branch. Namely, we consider the case wherethe energy of energetic
particles,Eh, is in the range ofEh/Ti > q

√
7/4+ Te/Ti/Λ0.

Next, the energy transfer rate from GAMs to bulk ions per unittime and unit volume,
PG→i, are discussed. This term can be expressed as

PG→i = 2γGWG. (4)

HereγG denotes the damping rate of GAMs due to the Landau damping. Once the wave
frequency is given, the rate of the Landau damping by bulk ions is calculated. In order to
keep the analytic transparency of the argument, we use an approximation that the unstable
mode satisfies the relationω ∼ ωG. This is allowed in the case where the transit frequency
of energetic particlesωb is larger than the GAM frequencyωG. It is pointed out higher order
correction with respect toq2

rρ
2
i can have a substantial value, whereρi is the ion gyroradius

measured by ion thermal velocity [14]. However, as a first step of the study of GAM
channeling, we here consider the first order correction which is introduced by the frequency
deviation from GAM frequency. By use of this simplification, the Landau damping by bulk
ions is calculated as [14]

γG(ω) =

√
π

2R

√

Ti

mi
e−Ω̂

2
G

[{

Ω̂4
G +

(

1+ 2
Te

Ti

)

Ω̂2
G

}

+ 2

{

− Ω̂5
G +

(

1− 2
Te

Ti

)

Ω̂3
G +

(

1+ 2
Te

Ti

)

Ω̂G

} (

ωqR

√

mi

Ti
− Ω̂G

) ]

, (5)

whereΩ̂G is defined aŝΩG = q
√

7/4+ Te/Ti. The energy transfer from GAMs to bulk ions
is determined not only by the safety factor, the electron andion temperatures, but also by the
energy of energetic particles whose effect is introduced through the frequency shift correction
(i. e., the last parenthesis in the RHS of Eq. (5)). Here, we note that the higher order Landau
damping which is induced by the poloidal harmonics of the eigenfunction must be taken into
account in future when one improves the numerical accuracy of γG. The effect of energetic
particles on the poloidal eigenfunction must be investigated. In this article, we focus on the
order estimation of the energy transfer, so that the derivations of them are out of our scope.

3. Comparison between GAM channeling and collisional energy exchange

The energy of energetic particles is transferred to ions andelectrons via Coulomb collision,
in addition to the process via GAMs excitation. The rate of energy transfer from energetic
particles to ions is a decreasing function of energy of energetic particles, while the one from
energetic particles to electrons is an increasing function. However, the existence of GAM
channeling changes this situation as explained in this section.

In this section, we discuss the effect of GAM channeling. First, the effectiveness of GAM
channeling is formulated by comparing the collisional energy exchange. Then, the evaluations
of the effectiveness of GAM channeling are given.
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3.1. Formulation of the effectiveness of GAM channeling

The energy transfer rates from energetic particles to ions and to electrons, per unit time and
unit volume, can be written as

P(c)
h→i =

21/2ninhZ2Z2
he4m1/2

h ln λ

8πǫ20miE
1/2
h

, (6)

P(c)
h→e =

21/2nenhZ2
he4m1/2

e ln λEh

6π3/2ǫ20mhT 3/2
e

, (7)

whereZ is the charge number of the ion, lnλ is the Coulomb logarithm,ne andme are the
density and the mass of electrons,mh andZh are the mass and the charge number of energetic
particles, andEh andnh are the energy and the density of energetic particles.

In order to estimate the effectiveness of the energy channeling from energetic particles to
GAMs, the rate of energy exchange to bulk ions via GAMs is compared to that via collisions.
The energy flow from energetic particles to GAMs,Ph→G, is normalized to the total collisional
exchange rate,P(c)

h→e + P(c)
h→i of the energy transfer rate to bulk ions and electrons as follows,

Ph→G

P(c)
h→e + P(c)

h→i

=
Ph→G

P(c)
h→e















1+
P(c)

h→i

P(c)
h→e















−1

. (8)

Here, P(c)
h→i/P

(c)
h→e is a known function by Eqs. (6) and (7). The ratio,Ph→G/P

(c)
h→e, which

is denoted asΓc in this article, represents the impact of energy exchange via GAMs. The
analytical expression ofΓc is given as

Γc =
Ph→G

P(c)
h→e

=
6π3/2ǫ20mimh

21/2ZZ2
he4m1/2

e ln λ

T 3/2
e

nhEhB2
q2

r |φG|2γh. (9)

Here,Γc is a decreasing function of the strength of the magnetic field. Γc is proportional to
q2

r |φG|2, which is treated as a parameter here. In reality, the electrostatic potential of GAMs
has to be determined by nonlinear theory, which is a future work.

Next, the effectiveness of the energy path from GAMs to ions is analyzed. The heating
partition between ions and electrons is greatly modified dueto the ion heating by GAMs.
The heating partition between ions and electrons is defined by the ratio between total energy
transfer to ions and electrons, which can be written as

P(c)
h→i + PG→i

P(c)
h→e

=
P(c)

h→i

P(c)
h→e




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







1+
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P(c)
h→i















. (10)

The ratioPG→i/P
(c)
h→i, which is defined asΓh, represents the impact of GAMs on ion heating.

The analytical expression ofΓh is given as

Γh =
PG→i

P(c)
h→i

=
8πǫ20m2

i

21/2Z2Z2
he4m1/2

h ln λ

E1/2
h

nhB2
q2

r |φG|2γG. (11)
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We can evaluate the effectiveness of GAM channeling by using Eqs. (9), (11), whose
evaluations are given in the next subsection. The order estimation of GAM channeling is
described in Appendix B.

3.2. Evaluation of the effectiveness of GAM channeling

The evaluations of the effectiveness of GAM channeling, Eqs. (9), (11), are carried out by
using following plasma parameters.

Z = 1, B = 1[T],R = 1[m],Ln = 0.1[m],Te = 1[keV],ni = 1020[m−3].

The parameters related to energetic particles are given as

Zh = 1, Eh = 42[keV],nh/ni = 2.4[%],Λ0 = 0.5,∆Λ = 0.1, δΛc = 0.2.

The amplitude and the radial wavenumber of GAMs are chosen based on the observations
reported in [8, 10, 18] as

|φG| =
Te

eqrLn
, qr = 10[m−1]. (12)

Here, the amplitude of the GAM is determined by considering the case where theE × B
velocity of GAMs is equal to the diamagnetic drift velocity as vG/vd = 1. The value ofqr

is evaluated from the radial gradient of the envelope of the potential fluctuation [10], so that
this value is lower limit in the case of [10]. In this situation, the ratio between collisional
energy transfer to ions and to electrons isP(c)

h→i/P
(c)
h→e = 0.21. Since the ratio between transit

frequency of energetic particles and GAM frequency isωb/ωG = 1.3 > 1, the GAM branch
becomes unstable.

First, the energy transfer from energetic particles to the GAMs on the density of the
energetic particles is evaluated. Figure 1 illustrates thegrowth rate and the damping rate of
the GAM against the density of the energetic particles. The excitation condition,γh > γG, is
satisfied so that the GAM is excited, and GAM channeling appears. The dependence of the
effectiveness of the energy exchange from energetic particlesto the GAM is shown in Fig.
2. The effectivenessΓc becomes unity in this case when vG/vd = 1, which means that the
rate of the energy transfer to GAMs can be comparable to the rate of the energy exchange
to bulk particles through collision. Figure 3 shows the dependence ofΓc on the energy of
energetic particles. The parameterΓc decreases with the increase of the energyEh. In order
to investigate the accurate parameter dependence, the model in which the excitation rate and
the Landau damping rate are included self-consistently is required, which is a future work.

Next, the effectiveness of the energy transfer from GAMs to ions is evaluated. Figure
4 illustrates the dependence ofΓh on the density of energetic particles. The rate of energy
transfer from GAMs to ions can be comparable to the rate of energy exchange to ions through
collision if GAM amplitude reaches the level of vG/vd = 1. GAMs have a substantial impact
on ion heating. Therefore, the heating partition between ions and electrons is greatly modified.
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4. Summary

In summary, the energy transfer from energetic particles tobulk ions via beam driven GAMs,
GAM channeling, is investigated. The channeling via excitation of GAMs is formulated
within the framework of the quasilinear theory. The resultsare summarized as follows.

(i) The energy transfer rate from energetic particles to GAMs can be comparable to the rate
of energy exchange to particles via collision, if the amplitude of GAMs reaches the level
of vG ∼ vd.

(ii) Under this circumstance, the partition of energy by bulk ions and electrons is
substantially modified due to the selective ion heating by GAMs.

The mechanism of the GAM channeling has several advantages.First, GAMs are excited
spontaneously in the presence of beam ions, therefore the extra excitation power is not
required. Second, GAMs extract energy from energetic particles and transfer them to bulk
ions, improving the energetic particle confinement. Third,the heating mechanism is robust,
since there are many resonant particles whose velocity is v∼ ωGqR. Finally, GAMs are
universal modes in toroidal plasmas, therefore GAM channeling can be useful for every
toroidal plasmas. In order to improve the quantitative evaluation of the rate of energy transfer,
we have to understand the poloidal eigenfunction of the GAMsmore precisely, and its effect
on the Landau damping must be taken into account. In addition, the amplitude of GAMs
should be analyzed by nonlinear theory. These extensions will be carried out in the near
future.
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Figure 1. The dependence of the growth rateγh and the damping rateγG on the density of the
energetic particles. Here, the energy of energetic particles is fixed,Eh = 42[keV].

Figure 2. The dependence ofΓc, the parameter which characterizes the ratio of the rate of
the energy transfer from energetic particles to GAMs and to particles, on the density of the
energetic particles. Here, the energy of energetic particles is fixed,Eh = 42[keV].
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Figure 3. The dependence ofΓc, the parameter which characterizes the ratio of the rate of
the energy transfer from energetic particles to GAMs and to particles, on the energy of the
energetic particles. Here, the density of energetic particles is fixed,nh/ni = 2.4[%].

Figure 4. The dependence ofΓh, the parameter which characterizes the ion heating by GAMs
normalized to the collisional ion heating, on the density ofthe energetic particles. Here, the
energy of energetic particles is fixed,Eh = 42[keV].
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Appendix A. Extension of the dispersion relation of GAMs

We describe the detail of the extension that leads to the dispersion relation Eq.(3). In [12], the
dispersion relation of the GAMs, which are driven by the energetic particles, has been derived
as

D(ω) = 1−
ω2

G

ω2
+

nh

2niR2

∫

d3uu3

nh

(

1+ Λ2

2

)2 [

∂F(u,Λ, r)
∂u

+
1− Λ2

uΛ
∂F(u,Λ, r)
∂Λ

+ sgn
Rq

rωciΛ

∂F(u,Λ, r)
∂r

]

(

ω2 − ω2
b

)−1
= 0, (A.1)

whereF(u,Λ, r) is the distribution function of the energetic particles. Then, the approximation
of the distributionF(u,Λ, r) was used as explained in section 2. The model distribution
function was given as

F(u,Λ, r) =
3nh

8π∆Λ

[

1−
(

Λ − Λ0

∆Λ

)2 ]

× Θ(Λ − Λ0 + ∆Λ)Θ(Λ0 + ∆Λ − Λ)Θ(Λ − Λc). (A.2)

In addition, the assumption was adopted that the real frequency of the unstable mode is close
to the bounce frequency of the energetic particles,ω ∼ ωb, and theω was replaced byωb.
Finally, the simplified dispersion relation has been derived as

D(σ) = −1
τ
+

δΛ2
c

2(σ + δΛc)
+ 1+ δΛc + σ

(

ln

∣

∣

∣

∣

∣

∣

1− σ
−δΛ − σ

∣

∣

∣

∣

∣

∣

+ iπ

)

, (A.3)

whereτ is defined as 3q2nh(1 + Λ2
0/Λ0)2/(32ni∆Λ

2(ω2
G/ω

2
b − 1)). This simplified dispersion

relation can not describe the instability in the case ofωb > ωG, and the connection to the
solution ofω = ωG at nh = 0 is obscure.

In this study, we extend Eq. (A.3) without using the replacement ofω toωb. If one does
not employ the approximationω ≈ ωb, the extended dispersion relation is given as

D(σ) = 1−
ω2

G

ω2
b

(

1+ σ
∆Λ

Λ0

)−2

+
3q2nh

16ni∆Λ

(

1+ Λ2
0

Λ0

)2 (

2+ σ
∆Λ

Λ0

)−1

×
{

1− δΛ2
c

2(σ + δΛc)
+ 1+ δΛc + σ ln

(

1− σ
−δΛc − σ

) }

. (A.4)

If we take the limit of

ω→ ωb : σ
∆Λ

Λ0
→ 0

ln

(

1− σ
−δΛc − σ

)

→ ln

∣

∣

∣

∣

∣

∣

1− σ
−δΛc − σ

∣

∣

∣

∣

∣

∣

+ iπ,

for Eq. (A.4), it reduces to Eq. (A.3). The behavior of the solution of Eq. (A.4) is shown in
Figs. A1, and A2. There are two branches which can be unstable(γh > 0). WhenωG < ωb

holds, GAM branch with a real frequency close toωG becomes unstable. WhenωG > ωb

holds, the beam branch whose frequency is close toωb becomes unstable. These features
are consistent with those in [11]. In this article, we focus on the GAM branch. The GAM
branch can be driven (γh > γG, whereγG is the ion Landau damping rate) in the wide range
of parameters as is shown in Fig. 1.
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Figure A1. The behavior of the solution of Eq. (A.4) in the case ofωb/ωG = 0.71. The left
figure shows the real frequency, and the right one shows the imaginary part of the frequency.
The strongly-damped branch is not shown. The solid line and the dashed line indicate the
unstable branch and the weakly stable branch, respectively.

Figure A2. The behavior of the solution of Eq. (A.4) in the case ofωb/ωG = 1.21. The left
figure shows the real frequency, and the right one shows the imaginary part of the frequency.
The strongly-damped branch is not shown. The solid line and the dashed line indicate the
unstable branch and the weakly stable branch, respectively.

Appendix B. Order estimation of GAM channeling

The order estimations ofPh→G, PG→i are given. The energy density of GAM,WG, can be
rewritten as

WG =
1
2

miniv
2
G

=
1
2

Te

Ti

(

1+
Ti

Te

)−1 (

ρi

Ln

)2 (

vG

vd

)2

Wp, (B.1)

whereWp is the energy density of the plasma, which is defined asWp = ni(Ti + Te), Ln is
the gradient length of the density, vG is theE × B velocity of the GAMs, vG ≡ qr|φG|/B, and
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vd is the diamagnetic drift velocity, vd ≡ Te/(eBLn). The rate of mean energy loss from the
plasma,τ−1

E Wp, is estimated as (ω∗ρ2
i /L

2
n)Wp, whereτE is the energy confinement time which

is calculated from the gyro-Bohm diffusion,τE = L2
n/ω∗ρ

2
i . The energy transfer rate from

energetic particles to the GAMs can be related toτ−1
E Wp as,

Ph→G = γh
Te

Ti

(

1+
Ti

Te

)−1 (

ρi

Ln

)2 (

vG

vd

)2

Wp

=
γh

ω∗

Te

Ti

(

1+
Ti

Te

)−1 (

vG

vd

)2

τ−1
E Wp, (B.2)

In the steady state, the input power,Pin, and the transportτ−1
E Wp are balanced asPin = τ

−1
E Wp.

Finally, the order of the energy transfer ratePh→G can be estimated as

Ph→G

Pin
∼ γh

ω∗

(

vG

vd

)2

. (B.3)

The energy transfer to GAMs is proportional to the squared amplitude of GAMs. When the
E × B velocity of the GAMs reaches to the level of the diamagnetic drift velocity, the energy
transfer rate from energetic particles to the GAMs becomes not negligible compared to the
input power to the plasma. In the same manner, the energy transfer rate from GAMs to bulk
ionsPG→i is evaluated as

PG→i

Pin
∼
γG

ω∗

(

vG

vd

)2

. (B.4)

The rate of energy transfer from the GAMs to bulk ions can be important compared to the
input power to the plasma when the GAM amplitude comes closerto the level of vG/vd = 1.
GAMs can have a substantial impact on ion heating in the case of vG/vd ∼ O(1).
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