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INTRODUCTION

Confronting decreases in gross production and high 
input costs of rice (Oryza sativa L.), the Japanese gov-
ernment is promoting the transition from acreage reduc-
tion to improvements in efficiency and competitiveness.  
In 2014, the production of sorted brown rice was 8.43 × 
106 t, 40% lower than the 1985 production of 11.83 × 
106 t (MAFF, 2016a).  In 2015, the average production 
cost of sorted rice was 257 Japanese Yen (JPY) per kg 
(MAFF, 2016b).  The cost typically decreased as farming 
scale increased.  In the large farms over 15 ha, the aver-
age production cost of sorted rice was 193 JPY/kg.  From 
our research consortium, we found that the cost per kg 
decreased further to 155 JPY and 150 JPY for farms with 
30 ha and over 100 ha of land, respectively (Nanseki et 
al., 2016).  Nevertheless, it was difficult to reduce the 
production costs further by merely increasing the scale, 
thereby increasing production efficiency, without tech-
nological innovation.  Thus, we analyzed rice production 
from the perspective of technical efficiency using field–
level data from a large–scale farm.  To isolate the bias 
arising from the differences in rice varieties, we concen-
trated the study on Koshihikari.  As one of the most pop-
ular rice varieties in Japan, it accounts for approximately 
35.6% of the total domestic planting area (Komenet, 
2018).

Many studies, including Abdullah and Ali (2014), 
Barrett et al. (2010), and Kozak et al. (2007), focused 

on the determinants of rice yield using overseas field–
level on–farm data.  In addition to these studies, a study 
by Hirai et al. (2012) used experimental data sampled in 
Japan.  In our prior study, we analyzed the determinants 
of Koshihikari yield, using 2014 data from a large–scale 
farm in the Kanto Region of Japan (Li et al., 2016).  
However, we have not found similar studies sampling 
field–level on–farm data in Japan.  Therefore, it is impor-
tant to accumulate further empirical evidences on the 
research fields.

In this study, we applied the analytical flamework 
employed in our previous study (Li et al., 2016) to 
another farm in the different prefecture and analyzed 
the determinants of the 2015 rice yield, using data envel-
opment analysis (DEA) in the first stage.  The effect of 
water management on rice production efficiency was 
analyzed in the second stage.  Water management is the 
control and movement of water resources to minimize 
damage to life and property and to maximize efficient 
beneficial use.  Irrigation water management systems 
make the most efficient use of limited water supplies for 
agriculture (NRCS, 2017).

Based on the pioneering work of Farrell (1957), 
studies devoted to the estimation of efficiency mainly 
embrace two approaches: the parametric function sym-
bolized by the stochastic frontier production (SFP, 
Aigner et al., 1977) and the nonparametric approach of 
DEA (Charnes et al., 1978).  SFP requires the specifica-
tion of the function between inputs and outputs.  In con-
trast, DEA is advantageous in that it includes multiple 
inputs and outputs with different units, simultaneously.  
Moreover, it avoids the parametric specification of tech-
nology and the distributional assumption (Coelli et al., 
2005).
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A multi–input model is necessary to measure agri-
cultural efficiency when parameters such as land, ferti-
lizer, and water are considered.  Furthermore, a variety 
of yield variables should be used to measure not only 
quantity, but also quality, which is linked to the market 
value.  The input and output variables may be in differ-
ent units without any relevant parameters that can be 
assumed accurately beforehand.  Moreover, the farmers 
can control the quantity of inputs rather than the out-
puts relatively freely.  Farms are difficult to operate at an 
optimal scale because of varying socio–economic factors, 
including natural and marketing risks, government regu-
lations, and financial constraints (Nanseki et al., 2016).  
Therefore, we adopted an input–oriented DEA model 
assuming variable returns to scale (VRS).

To interpret the differences in production efficiency 
and adjustable slacks measured by DEA, we adopted 
water management practices in the second stage.  As an 
indispensable factor, water affects many aspects of rice 
productivity e.g., nutrition supplication and weed control 
(Goto et al., 2000; Sellamuthua et al., 2011).  Rice is also 
a major water–consuming crop and in Asia, about 80% of 
the irrigated fresh water is consumed by rice (Bouman 
and Tuong, 2001; Wang et al., 2016).  Moreover, with 
global warming, it is increasingly important to stabilize 
soil temperature, control excessive decomposition of 
organic matter, and maintain soil capacity through 
proper water management practices (Goto et al., 2000; 
Tsujimoto et al., 2009).  Many studies have measured 
the effects of water management from two perspectives.  
Roel et al. (2005) estimated the effects of water temper-
ature on rice production in California, US, by calculating 
the total number of hours and days it was below a given 
threshold. Saga et al. (2010) included water tempera-
ture as a form of energy in estimating the high–yield rice 
plants of Japan.  Tao et al. (2015), Choudhury and Singh 
(2016) estimated the impact of water management on 
rice yield in China and India, respectively.  As the effects 
of water management may vary at different growth 
stages and conditions, its subsequent analysis rather 
than its inclusion in the first stage of the DEA model was 
preferable.  Based on the analyzing model presented in 
Li et al. (2018), this study included both water tempera-
ture and water depth, and analyzed their effects on vari-
ous paddy fields.  To further amplify the effects, a com-
parison of 20 paddy fields of high and low efficiency was 
conducted.

We composed this manuscript based on an oral pres-
entation conducted on the annual symposium of the 
Japan Farm Management Society (Li et al, 2017), to ful-
fill several objectives in this study.  (1) We formulated a 
DEA model appropriate for analyzing the efficiency of 
rice production using the paddy fields as the decision 
making units (DMUs); (2) revealed the overall attributes 
of rice production efficiency; (3) determined the theo-
retical margins for increasing yields and saving inputs; 
(4) identified the effects of the depth and temperature 
of water on rice production and technical efficiency; and 
(5) summarized our major findings, and put forward rec-
ommendations to improve rice yield.

MATERIALS AND METHODS

Sample and data
The dataset used in this study was constructed in 

NoshoNavi1000 project (Nanseki et al., 2016, Nanseki 
2019).  In the DEA model of this paper, the following six 
rice yield variables were measured: raw paddy, paddy 
with 15% moisture, unsorted, sorted, perfectly shaped, 
and milled brown rice (Table 1).  The raw paddy weight 
and percentage of moisture content were monitored 
directly by the combines equipped with advanced infor-
mation technologies (IT).  Furthermore, the yield of the 
paddy with 15% moisture was calculated using the raw 
paddy yield and average moisture content measured by 
IT combines.  Brown rice was then weighed after hulling, 
and for sorted brown rice we retained only grains thicker 
than 1.85 mm.  Milled rice referred to the fluffy white–
yellow rice with the bran and germ removed, while per-
fectly shaped rice excluded the deformed, crashed, 
immature, and dead grains.  Quantity was the focus of 
our first four outputs, while the last two outputs were 
more focused on quality.  In the domestic market of 
Japan, the first–class rice, composed of about 70% per-
fect grains, fetches the highest price.

Within the IT combine, a small matchbox sized sen-
sor, set at the input slot of the grain tank, monitored 
yield.  The sensor probed the grain flow rate, whereas 
conventionally a much larger load cell is set at the bot-
tom to measure the total grain weight in the tank.  This 
innovation enabled real–time, precise, and low–cost 
monitoring, expelling the bias out of the grain tank stuff-
ing state—whether the tank is filled or not.  The IT com-
bines could detect the threshing or screening yield with 
loss sensors and minimize it by automatic operation.  
Finally, the field–specific data was conveyed, via the 
global navigation satellite system (GNSS), to the cloud 
server shared by the company, institutes, and farms.  
Thereafter, the yield, moisture content, and farming time 
were automatically mapped, using Google Maps.  The 
maps were essential for farms to capture the yield varia-
tions among the paddy fields, and update their farming 
plans, accordingly (Nanseki et al., 2016).

The inputs included the field area, average tempera-
ture, and solar radiation within 20 days after heading, 
the amount of fertilizer nitrogen, soil capacity, and farm-
ing conditions.  The temperature and solar radiation 
were monitored through meteorological observation 
devices every 10 min, and average values of these 
parameters were calculated.  Fertilizer nitrogen was esti-
mated based on the amount of chicken manure, chemical 
fertilizer, ammonium sulfate, and urea fertilizers, as well 
as their corresponding nitrogen contents, used.  The soil 
capacity was measured using the compound values of 
five principals of 21 soil analysis indicators.  Farming 
condition scores consisted of the managers’ appraisal of 
the farming conditions of the paddy fields, including 
height difference, water depth, water leakage, former 
crop, water inletting, fertility unevenness, illumination, 
and herbicide application (Table 1).
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Comparing the coefficient of variation (CV) we 
found that among the output variables, perfectly shaped 
rice had the largest CV (9.92%), while the CVs of other 
yield indicators were approximately 9%.  Among the 
input variables, the largest CV was observed in the field 
area, followed by land capacity and amount of fertilizer 
nitrogen, respectively, both of which were measured as 
the most important yield determinants by Tsujimoto et 
al. (2009).  At the same time, the temperature, solar 
radiation, and farming conditions score varied to a lesser 
degree, with CVs less than 6% (Table 1).  Both the tem-
perature and solar radiation varied negatively with a 
later date of transplantation (Fig. 1).  The estimated 
regression equations indicated that delaying transplant-
ing by 1 d resulted in an approximately 0.06˚C reduction 
in temperature and a 0.21 MJ reduction in solar radiation 
per m2.  Hence, to some extent, the average temperature 

and solar radiation within 20 days after heading were 
discretionary variables, when adjusting the date of trans-
plantation.

Theory of the DEA model
DEA measures the efficiency of the DMUs relative to 

a frontier constructed through linear programming.  This 
nonparametric method was proposed by Charnes et al. 
(1978), with the assumption of constant returns to scale 
(CRS), which holds when all firms are operating at an 
optimal scale (Coelli et al., 2005).  It was generalized by 
Banker et al. (1984), assuming VRS and that the weight 
of each DMU add up to unity.  Thus get the input–ori-
ented VRS model:

min θi
subject to  –yi + Yλ ≥ 0
              θixi + Xλ ≥ 0 ( i =1, 2, …, n)              (1)
                I1’λ = 1
              λ ≥ 0, 0 ≤ θi ≤ 1

where Y and X are the output and input matrix, respec-
tively; yi and xi are the output and input vector of the i–
th DMU, respectively; λ is an n × 1 vector, serving as a 
weight system to each DMU in forming an optimal com-
bination of inputs and outputs, the frontier, for the i–th 
DMU; θi is a scalar for the i–th DMU, used to scale the xi 
to achieve the optimal combination of inputs, with a 
value of unity indicating a point on the frontier—a tech-
nically efficient DMU; and I1 (I1’ means its transpose) is 
an n × 1 vector of unities, ensuring that the sum of all 
the weights assigned to the benchmarking DMUs equals 
1.  Thus, the fabricated benchmarks (the optimal combi-

Table 1.   The yield of six forms of rice constituting the outputs and six determinants as inputs in the DEA model of the sampled paddy 
fields

Variable              N Min Max Mean     S.D          CV (%)

Output: yield of (kg ha–1)

Raw paddy 122 5948.64 9983.33 8058.98 758.36 9.41

Paddy of 15% moisture 122 5423.76 9114.20 7358.73 666.46 9.06

Unsorted brown rice 122 4401.63 7360.44 5934.22 530.20 8.93

Sorted brown rice 1 122 4172.75 6753.21 5438.19 493.49 9.07

Milled rice 2 122 3613.42 5843.36 4797.12 436.53 9.10

Perfectly shaped rice 122 2934.91 5226.98 4111.93 408.09 9.92

Input variables

Field area (m2) 122 452.00 4458.00 1354.70 1028.80 75.94

Temperature (˚C) 3 122 25.55 26.60 26.19 0.29 1.11

Solar radiation (MJ m–2) 3 122 18.07 21.82 20.37 1.17 5.73

Fertilizer nitrogen (kg ha–1) 4 122 92.01 136.01 112.49 7.71 92.01

Land capacity 5 122 0.00 0.92 0.48 0.18 37.98

Farming condition score 6 122 27.00 38.00 33.97 1.68 4.93
1 Grains with the thickness over 1.85 mm. 2 Fluffy white–yellow grain with the bran and germ removed. 3 Average values within 20 days 
after the heading. 4 Calculated according to the amounts of chicken manure, chemical fertilizer, ammonium sulfate, and urea fertilizers and 
the corresponding nitrogen contents. 5 Compound value of 5 principals of 21 soil analysis indicators transformed using (xi–maxX)/(maxX–
minX). 6 Managers’ appraisal of the farming condition of paddy fields, including height difference, water depth, water leakage, former crop, 
water inletting, fertility unevenness, illumination, and herbicide application.
Data source: survey by the authors

Fig. 1.   Temperature and solar radiation at different dates of trans-
planting in the sampled paddy fields, where significant lin-
ear and negative relationships were identified.
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nation of inputs and outputs) are similar in scale to the 
i–th DMU (Coelli et al., 2005), and so, the DEA model of 
Eq.  (1) seeks to reduce the inputs as much as possible, 
relative to the empirically–constructed identical and 
optimal combination of inputs and outputs for each 
DMU.

Eq. (1) represents the VRS DEA model, and the θi 
showcases the pure technical inefficiency. Removed the 
constraint of I1’λ = 1, Eq. (1) becomes the CRS DEA 
model, and the corresponding θi indicates the total inef-
ficiency (i.e., production or economic efficiency).  If the 
θi obtained from the CRS DEA, differs from that calcu-
lated by the VRS DEA, there exists scale inefficiency 
(Coelli et al., 2005), which is the ratio of the total effi-
ciency (i.e. CRS θi) to the pure technical inefficiency 
(i.e. VRS θi).  Thus, the total efficiency is decomposed 
into two components arising from scale inefficiency and 
pure technical inefficiency (Li et al., 2018). 

Effects of water management 
In the second stage, the High–10 and Low–10 paddy 

fields (the ten fields with the highest and lowest techni-
cal efficiency, respectively) were analyzed based on the 
technical efficiency and slack measured in the DEA.

Based on Tsujimoto et al. (2009) and the model 
published by the Food and Agriculture Organization 
(Allen et al., 1998) and cited by Choudhury and Singh 
(2016), we divided the total growth duration into four 
stages.  S1 included the 40 d from transplanting to fully 
tillering, S2 covered the duration from fully tillering to 
heading, S3 referred to the 25 d from heading to grain 
filling, i.e., the early–middle maturity stage, and S4 con-

sisted of the remaining days until complete maturity 
(Fig. 2).  Water management was measured in terms of 
water depth and temperature.  The monitoring device 
consisted mainly of three parts: (1) the sensor head 
immersed in water to detect the depth and temperature, 
(2) the sensor box to process the data gathered and sent 
to the farming visualization system (FVS) via (3) the 
antenna.  The FVS can report field–specific water depth 
and water temperature in form of maps, graphs, and 
tables.  All are accessible by internet terminals or mobile 
apps, and thus, promote precise and efficient water man-
agement practices (Nanseki et al., 2016).  Although 
being monitored every 10 min, the data used in this 
study was collected at 18:30 h, when the soil tempera-
ture was most easily affected by the performance of 
water management in the paddy fields (Matsue, 2016).  
Fig. 2 showed the varying water depths and tempera-
tures at 18:30 h for all growth stages, in a paddy field of 
high production efficiency across the sample.

RESULTS

DEA analysis of production efficiency
The summary of efficiency in Table 2 showed that 19 

paddy fields were fully efficient and served as bench-
marks for the other paddy fields.  For convenience of 
analysis, they were defined as Type I.  The remaining 
103 paddy fields had a total efficiency less than 1, within 
which 27 paddy fields had a technical efficiency score 
equal to 1 and were referred to as Type II.  This indicated 
that in these paddy fields, the production efficiency 
could only be improved through equi–proportional 

Fig. 2.   Water management in a paddy field of high production efficiency, where the water depth and water temperature were 
monitored at 18:30 h, and divided into four growth stages from transplanting to maturation.

Table 2.   Efficiency and status of returns to scale for the paddy fields in different types categorized in terms of their total, technical and 
scale efficiencies

Type
Number of 

DMUs

Mean of efficiency Number of DMUs

Total Technical Scale crs irs drs

I 19 1.000 1.000 1.000 19 0 0

II 27 0.921 1.000 0.921 0 27 0

III 76 0.884 0.987 0.895 0 76 0

Total 122 0.910 0.992 0.917 19 103 0

Note: crs = constant returns to scale; irs = increasing returns to scale; drs = decreasing returns to scale
Software: DEAP 2.1
Data source: Li et al (2017)



177Two–Stage DEA on Technical Efficiency and the Effect of Water Management on Rice Production of 122 Paddy Fields from a Large–Scale Farm in Japan

adjustments of all the inputs.  Here, the scale should be 
increased according to the returns to scale information 
provided in the last columns of Table 2.  An average 
scale efficiency of 0.921 indicated that the scale adjust-
ment could increase the production efficiency by 7.9% 
(Coelli et al., 2005).

The 76 paddy fields left were referred to as Type III, 
having a technical and scale efficiency less than 1.  In 
these paddy fields, the production efficiency could be 
improved by reducing the inputs and increasing the 
scales, while keeping the outputs constant.  The average 
technical efficiency of Type III was 0.987, implying that 
1.3% of the inputs could be reduced by eliminating tech-
nical inefficiency.  Meanwhile, production efficiency 
could only be improved by 10.5% through increases in 
the scales of the paddy fields.  For the entire sample, the 
total production efficiency could be improved by 9.0%, 
of which 0.8% could be fulfilled through technical 
improvement and, thus, input reduction, while about 
8.3% could be realized by increasing the scales of 103 of 
the 122 paddy fields.

The slack of an output shows the margin for output 
improvement by a benchmarking DMU identified by 
DEA.  Here, the output slacks occurred only in Type III; 
the ratio of slack calculated in all paddy fields were less 
than that of Type III (Table 3).  For instance, considering 
the entire sample, the yields of the sorted brown rice 
and Type III could be increased by 1.76% and 2.82%, 
respectively.  Not much dispersion existed among the 
paddy fields, in terms of the different types of rice 
yields.  Within the entire sample, the ratios of yield slack 
ranged from 1.7–3.0%, while in Type III, they ranged from 
2.8–5.0%.  The largest and smallest slack ratios occurred 
in the raw paddy and sorted brown rice, respectively.

The DEAP 2.1 provided the input slack movement 
for each DMU.  As mentioned above, for the paddy fields 

of Type I and II, the pure technical efficiencies equaled 1, 
and hence, there was no margin needed to adjust the 
input, maintaining a constant output level.  Therefore, 
radial and slack analysis was conducted only for Type III.

In the DEA analysis, the slacks showed the inputs 
that were in excess supply or not completely used 
(Audibert et al., 2003).  As shown in Table 3, land capac-
ity had the largest slack of 13.81%, followed by field area 
with 5.94%, for all paddy fields, and the corresponding 
slacks increased to 21.64% and 10.86%, respectively, for 
Type III.  These ratios showed the relatively redundant or 
inefficient use of the two kinds of inputs.  Meanwhile, 
the temperature, fertilizer nitrogen, and farming condi-
tions demonstrated an efficient use by the much smaller 
slacks.  The slack analysis of each variable, i.e., the con-
straining factor of each paddy field, could be beneficial 
in increasing the production efficiency through the 
appropriate adjustment of the inputs.

Effects of water management on production effi-
ciency

In the second stage, we analyzed the effects of water 
management on the production efficiency measured by 
DEA.  As mentioned above, we chose 20 paddy fields to 
represent paddy fields with high and low efficiency.  The 
output and input variables were summarized in Table 4.

The paddy fields with high efficiency had higher 
yields than those with low efficiency for all the output 
variables.  Moreover, the results of the t–test showed 
that the average yield per hectare of efficient paddy 
fields were significantly higher than that of the ineffi-
cient fields.  For instance, according to the mostly used 
rice yield indicator in Japan, the average yield of sorted 
brown rice in High–10 paddy fields was 5715 kg per hec-
tare, 795 kg (approximately 16%) higher than that of the 
Low–10 fields.  Among the input variables, temperature, 

Table 3.   Output and input slacks of rice yield, of all the paddy fields and of Type III. The slacks are shown in terms of both absolute values 
and percentages

Variable
All paddy fields Type III

Origin Target Slack Slack (%) Origin Target Slack Slack (%)

Output: Yield (kg ha–1)

    Raw paddy 8058.98 8304.34 245.36 3.04 7926.96 8317.86 390.90 4.93

    Paddy with 15% moisture 7358.73 7560.70 201.97 2.74 7257.63 7578.49 320.86 4.42

    Unsorted brown rice 5934.22 6090.75 156.53 2.64 5855.25 6103.27 248.02 4.24

    Sorted brown rice 5438.19 5533.67 95.48 1.76 5378.64 5530.29 151.66 2.82

    Milled rice 4797.12 4902.08 104.96 2.19 4728.70 4890.35 161.65 3.42

    Perfectly shaped rice 4111.93 4202.37 90.44 2.20 4083.58 4228.28 144.70 3.54

Input

    Field area (m2) 1354.70 1274.25 80.44 5.94 1189.57 1060.43 129.14 10.86

    Temperature (˚C) 26.19 25.98 0.21 0.80 26.26 25.93 0.33 1.27

    Solar radiation (MJ m–2) 20.37 19.58 0.80 3.91 20.62 19.34 1.28 6.20

    Fertilizer nitrogen (kg ha–1) 112.49 110.84 1.66 1.47 112.89 110.46 2.43 2.16

    Land capacity 0.48 0.41 0.07 13.81 0.47 0.37 0.10 21.64

    Farming condition score 33.97 33.41 0.55 1.63 34.35 33.47 0.88 2.56

Software: DEAP 2.1
Data source: Li et al (2017)
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solar radiation, fertilizer nitrogen, and farming condi-
tions of the efficient paddy fields were less than the cor-
responding variables of the inefficient fields.  This indi-
cated that higher yields and lower inputs were related to 
efficient production.

As shown in Table 5, the average water level was the 
deepest in S1.  In this stage, a high water depth may 
have resulted in rotten roots or even plants thus, inhibit-
ing yield and production efficiency.  The average water 
depth of the Low–10 paddy fields was 51.68 mm, which 
was 40% higher than the average for the Top–10 fields.  
Thus, a lower average water depth benefitted the pro-
duction efficiency.  In these efficient fields, the average 
water depth for harvest preparation was the lowest in S4 
followed by S3, where the lower water levels facilitated 
the top dressing and the decomposition of organic sur-
vival substances.  On the other hand, higher water 
depths in S3 may have improved efficiency by resisting 
the strong evaporation and over–absorption of cadmium 
(Goto et al., 2000).

In contrast, the water temperature of the High–10 
paddy fields was significantly lower than that of the 
Low–10 paddy fields, in S1, S3, and S4. In S3, the early–
middle maturity stage included the 25 d from heading to 
grain filling, vital for starch accumulation.  In this stage, 
especially after flowering occurs, lower temperature is 
necessary to facilitate the branching, extension, and 
vitality maintenance of the roots (Asaoka et al., 1985).  
In S4, a lower water depth and water temperature may 

have helped to resist lodging, constrain the activity of 
the plant, and facilitate harvesting conducted soon after 
the end of this stage.  In the entire growth season, lower 
water temperature may limit over–evaporation thereby, 
preventing the withering of plants (Goto et al., 2000) 
thus, contributing to higher rice yields.  Therefore, for 
the 20 paddy fields, technical efficiency was much more 
affected by water temperature than water depth.  This 
finding was in accordance with Roel et al. (2005) and 
Saga et al. (2010), where water temperature was identi-
fied as the determining factor in rice production.

DISCUSSION

The DEA analysis conducted above mainly indicated 
two ways to increase rice production efficiency.  The 
first was to eliminate the input slacks under the present 
scale and level of returns.  This was adoptable in DMUs 
with a technical efficiency less than 1, i.e., the paddy 
fields of Type III.  According to the results summarized in 
Table 3, the largest average slack ratio occurred in land 
capacity.  For each paddy field, land capacity was the 
compound value of five principals of 21 soil analysis indi-
cators.  Thus, in some paddy fields, land capacity was 
not completely cultivated because of the constraints of 
other resources.  The field area was estimated to be pos-
itively related to rice yield in our previous studies (Li et 
al., 2016; Nanseki et al., 2016).  The large average slack 
ratio indicated that an enlarged area of some paddy 

Table 4.   Outputs and inputs of the High–10 and Low–10 paddy fields in terms of the technical efficiency measured using DEA.  A t–test 
was conducted to calculate the significance of their differences

Paddy field

Output: Yield (kg ha–1)

Raw paddy
Paddy with 15% 

moisture
Unsorted brown 

rice
Sorted brown rice Milled rice

Perfectly shaped
rice

High–10 8521.72 7770.51 6251.73 5715.04 5086.84 4467.55

Low–10 7108.40 6518.14 5281.32 4919.50 4320.11 3809.73

Differ 1      1413.32***      1252.37***        970.41***         795.53***        766.73***        657.82***

Paddy field

Input variable

Field area
(m2)

Temperature
(˚C)

Solar radiation
(MJ m–2)

Fertilizer nitrogen
(kg ha–1)

Land capacity
Farming condition

score

High–10 1336 26.07 19.98 108.52 0.48 32.80

Low–10 1151 26.46 21.35 113.40 0.38 34.90

Differ 1 185     –0.39***     –1.38**   –4.87 0.10     –2.10*** 

1 the balance of high – low, **and ***indicate significance at 5% and 1% probability levels, respectively.

Table 5.   Water depth and temperature of the High–10 and Low–10 paddy fields, in terms of the technical efficiency measured using DEA. 
A t–test was conducted to calculate the significance of their differences

Paddy
field

Peer
count 1

Technical
Efficiency

Water depth (Mean at 18:30 h, mm) Water temperature (Mean of 18:30, ˚C)

S1 S2 S3 S4 S1 S2 S3 S4

High–10 24.9 1.000 36.72 22.18 16.43 5.58 23.26 26.23 26.16 23.00 

Low–10 00.0 0.974 51.68 29.90 12.75 9.55 24.42 26.36 27.39 24.24 

Differ b 24.9 0.026   –14.96** –7.71 3.68 –3.97     –1.16** –0.13     –1.23**      –1.24***

1  the number of times it was a benchmark for other DMUs; b: the balance of high – low, **and ***indicate significance at 5% and 1% 
probability levels, respectively

Data source: Li et al (2017)
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fields could increase efficiency.  Although much smaller 
than the above two inputs, the average slack ratios of 
other input variables indicated additional ways and 
extents to which the inputs could be adjusted.  
Considering the significantly negative relationship as 
illustrated in Fig. 1, lower temperature and solar radia-
tion were acceptable in some paddy fields, from dis-
persed farming plans and hence, postponed the dates of 
transplanting or sowing.  Some paddy fields yielded less, 
relative to the improved farming conditions including a 
leveled height difference and fertility, irrigating system, 
illumination, and herbicide application.  In addition, effi-
ciency could be increased by reducing the amount of fer-
tilizer, with a given content of nitrogen, used.  In the sec-
ond approach, the production efficiency could be 
increased by changing the scales.  In other words, by 
increasing or decreasing the inputs with the same pro-
portions, according to the status of returns to scale.  As 
shown in Table 2, scale adjustments were applied to 
Type II and III, where scales of all the 103 paddy fields 
could be enlarged.  Nevertheless, due to the law of 
diminishing returns to scale, there should be boundary 
values for the inputs.  For instance, a significant quad-
ratic relationship was detected between the average 
solar radiation during the 20 days after heading and rice 
yields, of which the optimal values ranged from 20.27 to 
20.39˚C.  In addition, roughly 0.7 ha was measured as the 
optimal paddy area for the highest yields (Li et al., 
2016).  Thus, in establishing farming plans, it was neces-
sary to conduct a general optimization considering inter-
actions of the inputs and tradeoffs from costs and reve-
nue, using professional technologies.

In the second stage, water temperature was meas-
ured as significantly affecting production efficiency. 
Thus, it was necessary to identify the determinants of 
water temperature from the perspectives of air tempera-
ture and water depth.  Fig. 3 illustrated the average 
water depth (AWD), average air temperature (AAT), and 
average water temperature (AWT) at 18:30 h, of the 117 
paddy fields in the growth stages of S1 through S4.  It 
was obvious that the AWT varied closely with the AAT.  
In fact, a high correlation coefficient of 0.90, significant 
at 0.01, existed between the AWT and AAT.  It indicated 
that the former was highly affected by the latter.  
Moreover, the AWT was higher than the AAT in each 
growth stage.  In total, the AWT was 1.45˚C higher than 
the AAT, across the four stages.

These relationships were illustrated in Fig. 4 (a), 
where a significantly linear regression was fitted 
between the AAT and AWT; the AWT was larger than the 
AAT in most cases, as represented by the diagonal line.  
However, the CVs of AWT and AAT were 11.94% and 
15.49%, respectively.  Thus, it showed that water tem-
perature was more stabilized, and it helped to maintain 
the land temperature, which promoted plant growth.  In 
addition, the average technical efficiency of the Low–10 
paddy fields was 0.974, only 0.026 lower than that of the 
High–10 paddy fields (Table 5).  This indicated that little 
inequality existed in the efficiency of the paddy fields 
sampled from the same farm.  In total, the means of 

water temperature and air temperature were 25.02˚C 
and 23.57˚C, respectively, while the CVs were 11.94% 
and 15.49%, respectively.  Hence, water functioned in 
maintaining the land temperature.

In contrast, no significant linearity was observed 
between water depth and water temperature, as shown 
in Fig. 3 and Fig. 4 (b). Nevertheless, a significant quad-
ratic relationship was identified and fitted between the 
variables.  Calculations based on the equation shown in 
Fig. 4 (b), showed that the AWT peaked when the AWD 
was roughly 36 mm, over the entire growth season.  This 
implied that before reaching this threshold, the water 
temperature was preserved with increasing depths.  On 
the other hand, heat from solar radiation and the air was 
separated when the water depth exceeded this thresh-
old. Thus, to some extent, the water temperature could 
be adjusted by properly controlling the water depth.

CONCLUSIONS

The results of the DEA showed that among the 122 
paddy fields, 19 paddy fields were fully efficient and 
acted as benchmarks for the other inefficient paddy 
fields.  There were 27 paddy fields with technical effi-
ciency scores of 1, indicating that an input adjustment 
did not change the output efficiency.  Thus, in these 
paddy fields, increasing the scales was the only solution 
for improving production efficiency.  There remained 76 
paddy fields with technical efficiencies less than 1, 
where inputs could be reduced further.  Altogether, in 
more than 84% of the paddy fields, the efficiency could 
be increased by increasing the scales.  Slack analysis of 
the outputs showed that not much of a margin existed 
between the yields of the six types of rice.  The largest 
slack ratios were observed in the raw paddy and sorted 
brown rice, respectively.  From our analyses and the sim-
ilar CVs of the yields shown in Table 1, we concluded 
that that the quantity and quality were balanced by 
large, among the paddy fields.  On the other hand, slack 
analysis of the inputs indicated that land capacity had 
the largest slack, followed by field area, in terms of rela-
tively redundant or inefficient usage.  In contrast, the 
temperature, fertilizer nitrogen, and farming conditions 
showed efficient usage with the smallest slacks.  Further 
comparisons indicated that the efficient paddy fields 
yielded significantly more than those with low efficiency.  
Among the input variables, temperature, solar radiation, 
fertilizer nitrogen, and farming conditions of the high–
efficiency paddy fields had lower values than those of 
the inefficient fields.  Thus, higher yields and lower 
inputs related to efficient production.

A comparison of water management practices indi-
cated that in S1 alone, the water depth of the High–10 
paddy fields was significantly lower than that of the 
Low–10 paddy fields.  In contrast, the average water 
temperature of the High–10 paddy fields was signifi-
cantly lower than that of the Low–10 paddy fields, in all 
stages, except for S3.  In these 20 paddy fields, water 
temperature and depth in all the four growth stages 
except for S3 were identified as significant to the meas-
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urement of technical efficiency, although the direction of 
the effect, positive or negative, varied in different stages.  
Taking the paddy fields as a whole, further discussion 
revealed that water temperature was linearly affected by 
air temperature.  Moreover, a significant quadratic rela-
tionship showed that water temperature peaked at a 
water depth of approximately 36 mm, thus the water 
temperature could be adjusted by properly controlling 
the water temperature.

Therefore, water management, including depth and 
temperature, is an essential factor affecting rice produc-
tion.  In addition to real–time monitoring, an analysis of 
the interactions, effects, and determinants of water man-
agerial indicators are necessary for increasing rice yield 
and technical efficiency.  Thus, in future studies, the 
DEA models should be expanded to incorporate non–
discretionary variables, e.g., the stage–specific average 
and the corresponding daily ranges of air temperature 
and solar radiation.  Furthermore, other empirical mod-
els — e.g., covariance structure analysis and multivariate 
regression — could be adopted to identify the effects of 
the yield determinants, including water temperature, 
and the interactions between them.
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