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INTRODUCTION

Nanoscale materials grew rapidly and have been 
used profusely not only in technological products but 
also in products for daily use, which stimulates some 
apprehension especially their influence on directly 
affected organisms.  These materials can exert genotox-
icity by direct and indirect mechanisms (Mehrian and 
Lima, 2016) showing a mutagenic effect upon eukaryotic 
(plant, animal and human) cells despite on–going debate 
on their toxic action (Golbamaki et al., 2015).  Since 
plants serve as producers, forming the basal, most criti-
cal trophic level of the food chain in the ecosystem, 
understanding how nanoscale materials affect them has 
become an urgent necessity.  Due to the small size, large 
surface area and ability to generate reactive oxygen spe-
cies (ROS) (Tumburu et al., 2014; Elespuru et al., 
2018), nanomaterials could manipulate DNA resulting in 
different types of chromosomal aberrations (Kumari et 
al., 2009; Singh et al., 2009; Galal and El–Samahy, 2012).  
Nano–SiO2 (n–SiO2) and nano–TiO2 (n–TiO2) affect plant 
genetic material negatively depending on concentration, 
particle size and structure (Castiglione et al., 2016; Khan 
and Ansari, 2018; Thabet et al., 2019). 

RAPD (Random Amplified Polymorphic DNA) is a 
PCR (Polymerase Chain Reaction) based technique and 
a relatively quick, easy, efficient, reliable and sensitive 
method that can identify a wide range of damaged DNA 

and genetic mutations.  Therefore, RAPD can be applied 
to studies of genotoxicity by detecting differences in 
genomic materials if they occur in primer specific DNA 
sequences (Williams et al., 1990; Atienzar and Jha, 2006; 
Cenkci et al., 2009; Aboulila and Galal, 2019).  Efficient 
RAPD analysis also depends on the purity of the tem-
plate DNA (Sharma et al., 2010).  Here, to evaluate the 
genetic effects of n–SiO2 and n–TiO2, RAPD analysis was 
performed to detect DNA variations induced in V. faba 
cells after treatment with different concentrations (25, 
50 and 75 mg/L) compared to untreated control.

MATERIALS AND METHODS

Nano–scale materials
Nano–scale silicon dioxide (n–SiO2) and titanium 

dioxide (n–TiO2) (anatase) were purchased from 
Nanotech Egypt Co., Egypt.  For visualization purposes, 
osmium coating was applied to these nano–scale materi-
als and observations were made under a scanning elec-
tron microscope (SEM) (SU8000, Hitachi 
Hitechnologies, Japan) at the Center of Advanced 
Instrumental Analysis, Kyushu University, Japan.  The 
particle sizes measured of n–SiO2 and n–TiO2 were 119.1 
± 2.8 and 283.6 ± 15.9nm, respectively (mean ± SD, n = 
10 for each).  Both n–SiO2 and n–TiO2 were dissolved in 
double distilled water by sonication for 30min before 
being used to make concentrations of 25, 50 and 75mg/L.

Preparation of plant samples
Vicia faba seeds were grown following Thabet et al. 

(2019).  Briefly, seeds were surface sterilized with 2.5% 
sodium hypochlorite (NaOCl), then washed by distilled 
water three to four times followed by immersing in dis-
tilled water for 6 h.  The seeds were then soaked for 24 h 
in n–SiO2 and n–TiO2, at three concentrations (25, 50 
and 75 mg/L) each as well as in distilled water as a con-
trol (0 mg/L).  After the treatment, the seeds were thor-
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oughly washed with distilled water.  Ten seeds per repli-
cation (three replications per treatment) were allowed 
to grow in pots supplied with peat moss.

DNA extraction and RAPD–PCR
Individual plant samples were collected from each 

treatment and mixed to form a combined sample.  Total 
genomic DNA (4–6 µg) was extracted from young 
healthy leaves by using the DNeasy Plant Mini Kit 
(QIAGEN GmbH, Germany).  Polymerase chain reaction 
(PCR) was performed using 1 µl of the extracted 
genomic DNA in a 10 µl reaction mixture containing 5 µl 
2X PCR Master mix solution [(i–TaqTM) iNtRON 
Biotechnology, Shanghai, China], 1 µl (20 µM) of one of 
14 decamer arbitrary random primers (Bio Basic Inc., 
Canada) (Table 1), and made up to 10 µl with sterile 
ddH2O.  The PCR amplification was performed accord-
ing to Williams et al. (1990) in a thermal cycler (Perkin–
Elmer, GeneAmp 2400, USA).  PCR amplified products 
were differentiated on 1.5% agarose gel against a known 
DNA molecular marker: L1 (O’GeneRuler DNA Ladder 
Mix, Carlsbad, California, USA) or L2 (1Kb plus DNA 
ladder, TIANGEN, Taiwan). 

Estimation of total polymorphism and genomic 
template stability

DNA polymorphism was analyzed for each treatment 
as the percentage of polymorphic bands compared to 
control and genomic template stability (GTS) was calcu-
lated as follows:

GTS (%) = (1 – α/n) × 100

where α is the number of polymorphic bands detected in 
each treatment and n is the number of total bands 
detected in the control (Cenkci et al., 2010; Qari, 2010).  
By definition, GTS is the highest in the control (= 1). 
Polymorphism observed in the RAPD profile included 
disappearance of a band(s) and appearance of a new 
band(s) in each treatment compared to the control pro-

file (Atienzar et al., 2000; Luceri et al., 2000).

Estimation of band sharing index
Band sharing index (BSI) indicates resemblance 

between two samples using the following equation 
(Savva, 2000):

BSI = 2S / (A + B)

where S is the number of shared bands between two 
samples, A is the number of bands in the control and B 
the number of bands in the respective samples.

Estimation of primer polymorphism and polymor-
phic information content

The polymorphic information content was calculated 
as

PIC = 2fi × (1 − fi)

where PIC is the polymorphic information content of the 
primer and fi is the frequency of band present (Roldan–
Ruiz et al., 2000; Aboulila et al., 2019).

RESULTS

Total polymorphism
The number of amplified bands (a total of 113) in 

untreated control ranged from 4 (OPB–05) to 13 (OPA–
09) bands (Fig. 1, Table 2).  Also, the lowest number of 
polymorphic bands (17) detected at 25 mg/L n–SiO2 

recorded the lowest polymorphism (15.04%), whereas 
the highest number (47) detected at 25 and 50 mg/L n–
TiO2 corresponded to the highest polymorphism 
(41.59%).  Nano–TiO2 treatments generated higher num-
bers of new polymorphic bands whilst n–SiO2 recorded 
noticeably the highest number of disappeared bands 
(33) at 75 mg/L compared to other treatments.  These 
changes in band number illustrate that n–SiO2 showed 
dose dependent increased polymorphism whereas n–
TiO2 showed equal (higher than other treatments) poly-
morphism at 25 and 50 mg/L. 

Genomic template stability 
Presence and absence of bands in a given sample 

was used to estimate GTS, as a qualitative measurement 
of DNA alterations in RAPD profile.  With increasing n–
SiO2 concentration a decrease in V. faba GTS was 
observed, however n–TiO2 at 25 and 50 mg/L recorded an 
equal effect on the genome stability (58.41%) (Fig. 2).  
This indicates that V. faba genome was more stable for 
n–SiO2 than for n–TiO2.  Furthermore, n–SiO2 increased 
numbers of both intensity–changed bands.  It was 
noticeable that n–SiO2 at 75 mg/L decreased both band 
numbers and intensity when the common event arising 
in the DNA patterns treated by n–SiO2 was low intensity 
bands (Fig. 3).  

Band sharing index
The band sharing index illustrates similarity among 

samples; here the first sample is the control.  The high-

Table 1.  �The nucleotide sequences of the primers used for RAPD 
analysis

Primer name Sequence (5´→3´)

OPA–09 GGGTAACGC

OPA–20 GTTGCGATCC

OPB–01 GTTTCGCTCC

OPB–05 TGCGCCCTTC

OPB–06 TGCTCTGCCC

OPB–07 GGTGACGCAG

OPB–08 GTCCACACGG

OPB–11 GTAGACCCGT

OPB–12 CCTTGACGCA

OPB–14 TCCGCTCTGG

OPH–01 GGTCGGAGAA

OPH–03 AGACGTCCAC

OPH–04 GGAAGTCGCC

OPH-05 AGTCGTCCCC
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Table 2.  �Number of polymorphic bands and polymorphism percentage deduced by RAPD profiles of Vicia faba after treatment 
with different concentrations of n–SiO2 and n–TiO2

Primer
Control 
bands

n–SiO2 n–TiO2

25 mg/L 50 mg/L 75 mg/L 25 mg/L 50 mg/L 75 mg/L

a b a b a b a b a b a b

OPA–09 13 0 2 1 2 1 4 3 4 3 4 3 3

OPA–20 7 2 0 2 2 0 0 2 0 2 0 2 0

OPB–01 7 0 4 0 2 0 3 1 1 1 1 1 1

OPB–05 4 0 0 1 0 0 0 11 0 11 0 11 0

OPB–06 7 0 3 0 1 0 3 2 1 2 1 2 1

OPB–07 9 1 0 1 0 1 0 1 0 1 0 1 0

OPB–08 11 0 0 2 0 0 9 2 1 3 1 2 2

OPB–11 10 1 1 1 1 3 3 4 0 3 0 3 0

OPB–12 9 0 0 0 0 0 6 2 1 2 0 1 1

OPB–14 7 0 1 0 0 0 1 3 0 3 0 3 0

OPH–01 8 1 0 1 1 1 2 1 2 2 2 1 1

OPH–03 6 0 0 0 0 0 1 0 2 0 2 0 2

OPH–04 7 1 0 1 0 1 0 1 0 1 0 1 0

OPH–05 8 0 0 1 1 0 1 1 1 1 1 1 1

Total 113 6 11 11 10 7 33 34 13 35 12 32 12

Polymorphic bands (a+b) 17 21 40 47 47 44

Polymorphism (%) 15.04 18.58 35.40 41.59 41.59 38.94

a: appearance of new band(s) compared to the control, b: disappearance of band(s) compared to the control.

Fig. 1.  �Amplification pattern of Vicia faba DNA with 14 RAPD primers.  L1 and L2: reference DNA ladders 
(molecular markers).  Lane 1: control, lanes 2, 3 and 4: treated with n–SiO2 (25, 50 and 75 mg/L, 
respectively), and lanes 5, 6 and 7: treated with n–TiO2 (25, 50 and 75 mg/L, respectively).



60 O. A. GALAL et al. 

est BSI value (0.92) was recorded at 25 mg/L n–SiO2 

(Table 3).  Nano–SiO2 maintained the similarity of bands 
whilst n–TiO2 recorded lower values.  Nano–SiO2 showed 
a concentration dependent decreasing effect on BSI 
value.  Generally, n–SiO2 exhibited an alleviated effect 
compared to n–TiO2. 

Primer polymorphism and PIC value 
Eight out of 14 primers used as RAPD markers 

(OPA–09, OPB–01, OPB–05, OPB–06, OPB–08, OPB–11, 
OPB–12 and OPH–01) can be selected for future studies 

based on the high polymorphism (> 50%) and PIC (> 
0.20) values.  Results showed that 158 bands were 
amplified with an average of 11.29 bands per primer, 
53.80% of them were polymorphic.  The OPB–08 primer 
induced the highest polymorphism (87.50%), whereas 
the OPH–04 induced the lowest polymorphism 
(12.50%).  The PIC values ranged from 0.02 (OPB–07) 
to 0.36 (OPB–05) with an average value of 0.20 (Table 
4).

Fig. 2.  �Genomic template stabilities (GTS) in Vicia faba plants after treatment with different con-
centrations of n–SiO2 and n–TiO2.

Fig. 3.  �Changes in DNA–RAPD profile of Vicia faba treated with different concentrations of n–SiO2 
and n–TiO2; a: appearance of new bands, b: disappearance of bands, c: increase in band 
intensity, d: decrease in band intensity.
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Table 3.  �Band sharing indices (BSI) in Vicia faba DNA after treatment with different concentrations of n–SiO2 and n–TiO2

Primer A

n–SiO2 n–TiO2

25 mg/L 50 mg/L 75 mg/L 25 mg/L 50 mg/L 75 mg/L

S B A+B S B A+B S B A+B S B A+B S B A+B S B A+B

OPA–09 13 11 11 24 11 12 25 9 10 23 9 12 25 9 12 25 10 13 26

OPA–20 7 7 9 16 5 8 15 7 8 15 7 9 16 7 9 16 7 9 16

OPB–01 7 3 3 10 5 5 12 4 4 11 6 7 14 6 7 14 6 7 14

OPB–05 4 4 4 8 4 5 9 4 4 8 4 15 19 4 15 19 4 15 19

OPB–06 7 4 4 11 6 6 13 4 4 11 6 8 15 6 8 15 6 8 15

OPB–07 9 9 10 19 9 10 19 9 10 19 9 10 19 9 10 19 9 10 19

OPB–08 11 11 11 22 11 13 24 2 2 13 10 12 23 10 13 24 9 11 22

OPB–11 10 9 10 20 9 10 20 7 10 20 9 13 23 10 13 23 10 13 23

OPB–12 9 9 9 18 9 9 18 3 3 12 8 10 19 9 11 20 8 9 18

OPB–14 7 6 6 13 7 7 14 6 6 13 7 10 17 7 10 17 7 10 17

OPH–01 8 8 9 17 7 8 16 6 7 15 6 7 15 6 9 17 7 8 16

OPH–03 6 6 6 12 6 6 12 5 5 11 4 4 10 4 4 10 4 4 10

OPH–04 7 7 8 15 7 8 15 7 8 15 7 8 15 7 8 15 7 8 15

OPH–05 8 8 8 16 7 8 16 7 7 15 7 8 16 7 8 16 7 8 16

Total 113 102 108 221 103 115 228 80 88 201 99 133 246 101 137 250 101 133 246

BSI 0.92 0.90 0.80 0.80 0.81 0.82

A, number of bands in control.  S, number of shared bands between control and treatment.  B, number of bands in treatment.

DISCUSSION

Exposure to nanoscale materials involves phytotox-
icity (Ghosh et al., 2010; Hatami et al., 2014) and geno-
toxicity (López–Moreno et al., 2010; Thabet et al., 2019) 
in plants which is related to the ability to cause oxidative 
stress.  Nano–SiO2 (Tripathi et al., 2017) and n–TiO2 
(Song et al., 2013; Laware and Raskar, 2014; Tumburu et 
al., 2014; Koce, 2017) uptake into the plant cell often 
involves free radical (unstable molecules with free outer 
electrons) development that ends up in the oxidative 

destruction of macromolecules such as proteins and 
nucleic acids generating DNA modifications and/or 
enzyme disruption (Droge, 2002).  Plants exposed to 
nanoscale materials show cytotoxic and genotoxic 
effects, including a change in mitotic index and increase 
in chromosomal aberration (Kumari et al., 2009; Yang et 
al., 2015; Khan and Ansari, 2018), indicating genomic 
damage.

Nano–SiO2 had a concentration dependent toxic 
effect on the genetic material as recorded in Glycine 
max (Elsadany et al., 2015) at 250–450 mg/L and in V. 
faba at 75–225 mg/L (Thabet, 2015) and at 25–75 mg/L 
(Thabet et al., 2019).  Nano–SiO2 is also known to regu-
late expression of genes involved with salt stress on 
Solanum lycopersicum (Almutairi, 2016) and increases 
lignin gene expression in Avena sativa (Asgari et al., 
2018).  A study reporting the interaction of n–SiO2 with 
algae showed that n–SiO2 coated alumina were less toxic 
to Pseudokirchneriella subcapitata than bare n–SiO2 
(Van Hoecke et al., 2008). 

Our results demonstrate that n–TiO2, by inducing 
new amplified bands, generated high polymorphism and 
low GTS, indicating that n–TiO2 had a genotoxic effect 
on V. faba DNA.  A genotoxic effect of n–TiO2 has been 
recorded with Arabidopsis thaliana at 100 mg/L (Landa 
et al., 2012), Cucurbita pepo at 50 mg/L (Moreno–
Olivas et al., 2014), Triticum aestivum at 5–150 mg/L 
(Silva et al., 2016), Zea mays at 1000–3000 mg/L (Mutlu 
et al., 2018) and V. faba at 25–75 mg/L (Thabet et al., 
2019).  Nano–TiO2 can activate antioxidant enzymes 
(Xue et al., 2010) or regulate genes involved mainly in 
responses to biotic and abiotic stress (Landa et al., 
2012).  Furthermore, n–TiO2 has been linked to muta-
gens as it could induce DNA breakage (Petković et al., 
2011; Moreno–Olivas et al., 2014).  Also, structure and 

Table 4.  �Number of total amplified bands, polymorphic bands, 
percentage of polymorphism and polymorphic informa-
tion content (PIC) values of the primers used for RAPD 
profile

Primer name
Number of bands Polymorphism

(%)
PIC value

Total Polymorphic

OPA-09 17 10 58.82 0.27

OPA-20 11 5 45.45 0.15

OPB-01 8 5 62.50 0.23

OPB-05 15 11 73.33 0.36

OPB-06 9 5 55.56 0.25

OPB-07 10 1 10.00 0.02

OPB-08 16 14 87.50 0.28

OPB-11 16 9 56.25 0.21

OPB-12 11 8 72.73 0.24

OPB-14 10 5 50.00 0.20

OPH-01 12 7 58.33 0.24

OPH-03 6 2 33.33 0.16

OPH-04 8 1 12.50 0.03

OPH-05 9 2 22.22 0.10

Total 158 85 53.80 2.74

Average 11.29 6.07 0.20
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concentration controls its genotoxic effect as anatase/
rutile structure had a dose–dependent response and was 
more genotoxic than an anatase structure at lower con-
centrations (Silva et al., 2016).

Generally, mutations are responsible for the appear-
ance of new PCR product visible on agarose gel if they 
occur at the same locus in at least 10% of cells (Atienzar 
et al., 2000) and/or large deletions.  Disappearance of 
bands may be associated with point mutations and/or 
complex chromosomal rearrangements caused by geno-
toxic chemicals (Atienzar and Jha, 2006).  Changes 
observed in DNA profiles such as modifications in band 
intensity and loss of bands may be due to changes in oli-
gonucleotide priming sites leading to genomic rearrange-
ments, and less likely due to point mutations or DNA 
damage in the primer binding sites which can block or 
reduce the efficiency of DNA polymerization in PCR 
reaction (Liu et al., 2005; Gao et al., 2010).

CONCLUSION

This work demonstrated toxic effects of n-TiO2 and 
n-SiO2 on V. faba DNA and these are in line with our pre-
vious cytological and developmental studies. Data on 
uptake and translocation mechanisms of nano-scale 
materials are needed to understand mechanism and to 
inhibit potential toxic influences of such materials on the 
plant.
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