On the convergence rates for the compressible Navier-Stokes equations with potential force

Okita, Masatoshi
Graduate School of Mathematics, Kyushu University

https://hdl.handle.net/2324/25586
On the convergence rates for the compressible Navier-Stokes equations with potential force

Masatoshi Okita

MI 2012-13

(Received December 25, 2012)
On the convergence rates for the compressible Navier-Stokes equations with potential force

Masatoshi Okita

Graduate School of Mathematics,
Kyushu University,
Fukuoka 819-0395, Japan
Email: m-okita@math.kyushu-u.ac.jp

Abstract: In this paper we are concerned with the convergence rates to the stationary solutions for the compressible Navier-Stokes equations with a potential external force $\nabla \Phi$ in the whole space \mathbb{R}^n for $n \geq 2$. It is proved that the perturbation decays in L^2 norm in the same order as that of the n-dimensional heat kernel, if the initial perturbation is small in $H^{s_0}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ with $s_0 = \lceil \frac{n}{2} \rceil + 1$ and the potential Φ is small in some Sobolev space. The results also hold for $n = 2$ when $\Phi = 0$.

2010 Mathematics Subject Classification Numbers. 35Q30, 76N15.

1 Introduction

This paper studies the initial value problem for the compressible Navier-Stokes equation with potential force in \mathbb{R}^n:

\[
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho u) &= 0, \\
\partial_t u + (u \cdot \nabla)u + \frac{\nabla P(\rho)}{\rho} &= \frac{\mu}{\rho} \Delta u + \frac{\mu + \mu'}{\rho} \nabla (\nabla \cdot u) - \nabla \Phi(x), \\
(\rho, u)(0, x) &= (\rho_0, u_0)(x) \to (\rho_\infty, 0) \quad |x| \to \infty.
\end{align*}
\]

(1)

Here $t > 0$, $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ ($n \geq 2$); the unknown functions $\rho = \rho(t, x) > 0$ and $u = u(t, x) = (u_1(t, x), u_2(t, x), \ldots, u_n(t, x))$ denote the density and velocity, respectively; $P = P(\rho)$ is the pressure that are assumed to be a function of the density ρ; $-\nabla \Phi(x)$ is a time independent potential force; μ and μ' are the viscosity coefficients satisfying the conditions $\mu > 0$ and $\mu' + \frac{2}{n} \mu \geq 0$; ρ_∞ is a given positive constant; and $\nabla \cdot$, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to x, respectively.

We assume that $P(\rho)$ is smooth in a neighborhood of ρ_∞ with $P'(\rho) > 0$ ($\rho \in [\frac{1}{2} \rho_\infty, \frac{3}{2} \rho_\infty]$).
When Φ is small, the Navier-Stokes equation (1) with potential force has the stationary solution $(\rho_*, u_*) = (\rho_*(x), 0)$, where ρ_* satisfies
\[
\int_{\rho_\infty}^{\rho(x)} \frac{P'(s)}{s} ds + \Phi(x) = 0. \tag{2}
\]
In this paper we derive the convergence rate of solution of problem (1) to the stationary solution $(\rho_*, 0)$ as $t \to \infty$ when the initial perturbation $(\rho_0 - \rho_*, u_0)$ is sufficiently small in $H^{s_0}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ with $s_0 = \lfloor \frac{n}{2} \rfloor + 1$, $n \geq 2$.

When $\Phi = 0$, (1)$_1$ - (1)$_2$ has a (constant) stationary solution $(\rho_*(x), u_*) = (\rho_\infty, 0)$. These results were proved by combining the energy method and the decay estimates of the semigroup $E(t)$ generated by the linearized operator A at the constant state $(\rho_\infty, 0)$.

When $\Phi \neq 0$, Matsumura-Nishida [10] proved the global in time existence of solution of (1) for $n = 3$, provided that the initial perturbation $(\rho_0 - \rho_\infty, u_0)$ is sufficiently small in $H^3(\mathbb{R}^3) \cap L^1(\mathbb{R}^3)$. Furthermore, the following decay estimate was obtained in [8]:
\[
\|\nabla^k(\rho - \rho_\infty, u)(t)\|_{L^2} \leq C(1 + t)^{-\frac{2}{3} - \frac{k}{2}} \quad k = 0, 1. \tag{3}
\]
These results were proved by combining the energy method and the decay estimates of the semigroup $E(t)$ generated by the linearized operator A at the constant state $(\rho_\infty, 0)$.

On the other hand, Kawashita [7] showed the global existence of solution for initial perturbations sufficiently small in $H^{s_0}(\mathbb{R}^n)$ with $s_0 = \lfloor \frac{n}{2} \rfloor + 1$, $n \geq 2$, when $\Phi = 0$. (Note that $s_0 = 2$ for $n = 3$). Wang-Tan [13] then considered the case $n = 3$ and $\Phi = 0$ when the initial perturbation $(\rho_0 - \rho_\infty, u_0)$ is sufficiently small in $H^2(\mathbb{R}^3) \cap L^1(\mathbb{R}^3)$, and proved the decay estimates (3). The proof in [13] is similar to that in [1]; and the key in the proof of [13] is to use the bound $\int_0^\infty \|\nabla u(t)\|^2_{H^2} \, dt \leq C\|\rho_0 - \rho_\infty, u_0\|^2_{H^2}$, which is obtained by the energy method, in the estimate of the nonlinearity to obtain the decay estimates under the less regularity assumption on $(\rho_0 - \rho_\infty, u_0)$.

In this paper we will extend the results in [1] and [13] in the following way by an approach different to [1, 13].

We show that if $n \geq 3$ then the following estimates hold true for the solution (ρ, u) of (1):
\[
\|\nabla^k(\rho - \rho_*, u)(t)\|_{L^2} \leq C(1 + t)^{-\frac{2}{3} - \frac{k}{2}} \quad k = 0, 1, \tag{4}
\]
provided that $(\rho_0 - \rho_*, u_0)$ is sufficiently small in $H^{s_0}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ with $s_0 = \lfloor \frac{n}{2} \rfloor + 1$ and that Φ is sufficiently small but $\Phi \neq 0$. Furthermore, if $\Phi = 0$, then the estimates (4) also hold for the case $n = 2$, provided that $(\rho_0 - \rho_*, u_0)$ is sufficiently small in $H^2(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$. (Note that $s_0 = \lfloor \frac{n}{2} \rfloor + 1 = 2$ for $n = 2$.)
To prove (4), as in [6], we introduce a decomposition of the perturbation \(U(t) = (\rho - \rho_* , u)(t) \) associated with the spectral properties of the linearized operator \(A \) at the constant state \((\rho_\infty, 0)\). In the case of our problem, we simply decompose the perturbation \(U(t) \) into low and high frequency parts. As for the low frequency part, we apply the decay estimates for the low frequency part of \(E(t) \); while the high frequency part is estimated by using the energy method. One of the points of our approach is that by restricting the use of the decay estimates for \(E(t) \) to its low frequency part, one can avoid the derivative loss due to the convective term of the transport equation (1)\(_1\). On the other hand, the convective term of (1)\(_1\) can be controlled by the energy method which we apply to the high frequency part. Another point is that in the high frequency part we have a Poincaré type inequality:
\[
\| \nabla U_\infty \|_{L^2} \geq C \| U_\infty \|_{L^2},
\]
where \(U_\infty \) is the high frequency part of the perturbation \(U \).

This yields the strict positivity inequality (\(AU_\infty , U_\infty \)\)\(_{L^2} + \gamma \| \nabla \sigma_\infty \|^2_{L^2} \geq C_0 \| U_\infty \|^2_{L^2} \) for some positive constants \(C_0 \) and \(\gamma \), where \(\sigma_\infty \) denotes the density component of \(U_\infty \).

Furthermore, the Poincaré type inequality makes the estimate of the nonlinearity a little bit simpler in the energy method. Using these properties we can deal with the time decay of \(\| U(t) \|_{H^0} \) in contrast to the approach in [1, 13] which, roughly speaking, deals mainly with \(\| \nabla U(t) \|_{H^{-1}} \). In particular, by our approach, we can treat the case \(n = 2 \) if \(\Phi = 0 \).

The paper is organized as follows. In Section 2 we introduce the notation and auxiliary Lemmas used in this paper. In Section 3 we state the main result of this paper. In Section 4 we introduce a decomposition of the solution. In Section 5 we give the proof of the main result.

2 Preliminaries

In this section we first introduce the notation which will be used throughout this paper. We then introduce some auxiliary lemmas which will be useful in the proof of the main result.

Let \(L^p(1 \leq p \leq \infty) \) denote the usual \(L^p \)-Lebesgue space on \(\mathbb{R}^n \) with norm \(\| \cdot \|_p \). For nonnegative integer \(m \), we denote by \(W^{m,p}(1 \leq p \leq \infty) \) the usual \(L^p \)-Sobolev space of order \(m \) whose norm is denoted by \(\| \cdot \|_{W^{m,p}} \). When \(p = 2 \), we define \(H^m = W^{m,2} \). The inner-product of \(L^2 \) is denoted by (\(. , \.)\). We denote by \(H^{-1} \) the dual space of \(H^1 \), and (\(\langle . , \cdot \rangle \)) denote the pairing between \(H^{-1} \) and \(H^1 \).

We introduce the following notation for spatial derivatives. For a multi-index \(\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n) \), we denote
\[
\partial^\alpha_x = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}, \quad |\alpha| = \sum_{i=1}^{n} \alpha_i,
\]
and for any integer \(l \geq 0 \), \(\nabla^l f \) denotes all of \(l \)-th derivatives of \(f \).

For a function \(f \), we denote its Fourier transform by \(\hat{f} : \mathbb{R}^n \rightarrow \mathbb{C} \):
\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx.
\]
The inverse of \mathcal{F} is denoted by $\mathcal{F}^{-1}[f] = \hat{f}$,

$$
\mathcal{F}^{-1}[f](\xi) = \hat{f}(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} f(\xi)e^{ix\cdot\xi}d\xi.
$$

For operators A, B, we denote the commutator of A and B by $[A, B]$:

$$
[A, B]f = A(Bf) - B(Af).
$$

BC^k denotes the set of all functions such that $\nabla^l f$ is a bounded function for $l \leq k$.

We next state some basic Lemmas.

Lemma 2.1 (Hardy’s inequality). Assume that $n \geq 3$. Then there holds the inequality

$$
\left\| \frac{u}{|x|} \right\|_2 \leq C \|\nabla u\|_2
$$

for $u \in H^1$.

See, e.g., [2], for the proof.

Lemma 2.2. Assume that $n \geq 3$. Then there holds the inequality

$$
\|f\|_\infty \leq C \|\nabla f\|_{H^{s_0-1}}
$$

for $f \in H^{s_0}$.

Lemma 2.2 is proved as follows. Let $p = \frac{2n}{n-2}$. Then, since $s_0 - 1 > \frac{2}{p}$, by the Sobolev inequalities, we have

$$
\|f\|_\infty \leq C \|f\|_{W^{s_0-1,p}} \leq C \|\nabla f\|_{H^{s_0-1}}.
$$

This proves Lemma 2.2.

Lemma 2.3. Suppose $a(x) \in BC^1$. For $u \in L^2$ set

$$
[a(x)\frac{\partial}{\partial x_k}, \eta_\epsilon u](x) = a(x)\frac{\partial}{\partial x_k}(\eta_\epsilon u)(x) - (\eta_\epsilon (a\frac{\partial u}{\partial x_k}))(x).
$$

Here $\eta_\epsilon u$ is standard Friedrichs mollifier. Then it holds that

$$
\|\langle a(x)\frac{\partial}{\partial x_k}, \eta_\epsilon u \rangle \|_2 \leq C \|\nabla a\|_\infty \|u\|_2.
$$

and

$$
\|\langle a(x)\frac{\partial}{\partial x_k}, \eta_\epsilon u \rangle \|_2 \rightarrow 0 \quad (\epsilon \rightarrow 0).
$$

See, e.g., [11], for the proof.
Lemma 2.4. Suppose $u \in L^2(0, T; H^1)$ and $\frac{\partial}{\partial t} u \in L^2(0, T; H^{-1})$. Then, the mapping $t \mapsto \|u(t)\|_2^2$ is absolutely continuous, with
\[
\frac{d}{dt} \|u(t)\|_2^2 = 2 < u'(t), u(t) >
\]
in the sense of distribution.

See, e.g., [2], for the proof.

Lemma 2.5. If $0 \leq s_j (j = 1, 2, \cdots, l)$ satisfy $s_j \leq \frac{n}{2} (j = 1, 2, \cdots, l)$ and $s_1 + s_2 + \cdots + s_l > (\frac{n}{2})(l - 1)$, then there holds
\[
\|f_1 \cdot f_2 \cdots f_l\|_2 \leq C_{s_1, \ldots, s_l} \prod_{j=1}^l \|f_j\|_{H^{s_j}}.
\]

See, e.g., [7], for the proof.

By using Lemma 2.5 we have the following estimates.

Lemma 2.6. (i) If $1 \leq |\alpha| \leq s_0$, $g \in H^{s_0}$ and $f \in H^{|\alpha|}$, then
\[
\| [\partial^\alpha_x, g]f \|_2 \leq C \left\{ \frac{\|\nabla g\|_{H^{s_0-1}} \|f\|_{H^{|\alpha|}}}{\|\nabla g\|_{H^{s_0}} \|f\|_{H^{|\alpha|}-1}} \right\}
\]

(ii) Let I be a compact interval of \mathbb{R} and let $R(y, x) \in C^\infty(I \times \mathbb{R}^n)$. If $1 \leq |\alpha| \leq s_0$, then there holds
\[
\| [\partial^\alpha_x, R(\nabla g(x), x)f] \|_2 \leq C \left\{ R_0(g) \|f\|_2 + R_1(g) \|\nabla f\|_{H^{|\alpha|}}
+ R_2(g) (1 + \|g\|_{H^{s_0}})^{|\alpha|} \|\nabla g\|_{H^{s_0-1}} \|f\|_{H^{|\alpha|}} \right\}
\]
for $g \in H^{s_0}$ such that $g(x) \in I (x \in \mathbb{R}^n)$ and $f \in H^{|\alpha|}$. Here
\[
R_0(g) := \sup_{x \in \mathbb{R}^n} |(\partial^\alpha_x R)(g(x), x)|,
\]
\[
R_1(g) := \sup_{\beta < \alpha, x \in \mathbb{R}^n} |(\partial^\beta_x \partial^\alpha_x R)(g(x), x)|,
\]
\[
R_2(g) := \max_{k \geq 1, k + |\beta| \leq |\alpha|} \sup_{x \in \mathbb{R}^n} |(\partial^\beta_x \partial^\alpha_x R)(g(x), x)|.
\]

Lemma 2.6 can be proved in a similar way to the proof of [7, Lemma 3]. (See also [5, Lemma 4.3] and [4, Lemma A.2])
3 Main result

In this section, we first state the existence of stationary solution \((\rho_*, 0)\) and some estimates on \(\rho_*\) which were obtained in Matsumura-Nishida [10]. We then state our main result on the convergence rate of solutions \((\rho(t), u(t))\) to \((\rho_*, 0)\) as \(t \to \infty\).

Proposition 3.1 (Matsumura-Nishida [10]). There exist positive constants \(\epsilon\) and \(C\) such that if

\[
\|\Phi\|_{H^q+1} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon,
\]

the problem \((1)_1 - (1)_2\) has a stationary solution \((\rho_*, u) = (\rho_*(x), 0)\) in a small neighborhood of \((\rho_\infty, 0)\); and it satisfies

\[
\|\rho_*(x) - \rho_\infty\|_{H^q+1} + \|(1 + |x|)\nabla \rho_*(x)\|_{L^2} \leq C \left(\|\Phi\|_{H^q+1} + \|(1 + |x|)\nabla \Phi\|_{L^2} \right),
\]

\[
|\rho_*(x) - \rho_\infty| < \frac{1}{2} \rho_\infty.
\]

Let us rewrite the problem \((1)\). By the change of variables,

\[
\tilde{\rho}(t, x) = \rho(t, x) - \rho_*(x), \quad \tilde{u}(t, x) = u(t, x),
\]

problem \((1)\) is transformed into

\[
\begin{aligned}
\partial_t \tilde{\rho} + \nabla \cdot (\rho_* \tilde{u}) &= \tilde{F}_1, \\
\partial_t \tilde{u} - \frac{\rho_*}{\rho_* + \rho_\infty} \Delta \tilde{u} - \frac{\mu + \mu'}{\rho_*} \nabla \cdot \tilde{u} + \frac{P'(\rho_*) \nabla \tilde{\rho}}{\rho_*} + \left(\frac{P''(\rho_*)}{\rho_*} - \frac{P'(\rho_*)}{\rho_*^2} \right) \nabla \rho_* \tilde{\rho} &= \tilde{F}_2,
\end{aligned}
\]

where

\[
\tilde{F}_1 = -\nabla \cdot (\tilde{\rho} \tilde{u}),
\]

\[
\tilde{F}_2 = -(\tilde{u} \cdot \nabla) \tilde{u} - \mu \tilde{\rho} \rho_\infty (\tilde{\rho} + \rho_\infty)^{-1} \Delta \tilde{u} - (\mu + \mu') \frac{\tilde{\rho}}{\rho_* (\tilde{\rho} + \rho_\infty)} \nabla (\nabla \cdot \tilde{u})
\]

\[
\quad + \left(\frac{P'(\rho_*)}{\rho_* (\tilde{\rho} + \rho_\infty)} - \frac{1}{\tilde{\rho} + \rho_\infty} \int_0^1 P''(s \tilde{\rho} + \rho_\infty) ds \right) \tilde{\rho} \nabla \tilde{\rho}
\]

\[
\quad + \left(\frac{P''(\rho_*)}{\rho_* (\tilde{\rho} + \rho_\infty)} \nabla \rho_* - \frac{P'(\rho_*)}{\rho_*^2 (\tilde{\rho} + \rho_\infty)} \nabla \rho_* - \left(\nabla \rho_* \rho_\infty \frac{\rho_*}{\tilde{\rho} + \rho_\infty} \right) \int_0^1 (1 - s) P''(s \tilde{\rho} + \rho_\infty) ds \right) \tilde{\rho}^2.
\]

Next, we define \(\mu_1, \mu_2\) and \(\gamma\) by

\[
\mu_1 = \frac{\mu}{\rho_\infty}, \quad \mu_2 = \frac{\mu + \mu'}{\rho_\infty}, \quad \gamma = \sqrt{\frac{P'(\rho_\infty)}{\rho_\infty}}.
\]

We also set

\[
\tilde{\rho} = \rho_*(x) - \rho_\infty.
\]
By using the new unknown functions
\[\sigma(t, x) = \frac{1}{\rho_{\infty}} \tilde{\rho}(t, x), \quad w(t, x) = \frac{1}{\sqrt{P'(\rho_{\infty})}} \tilde{u}(t, x), \]
the initial value problem (1) is reformulated as
\[
\begin{aligned}
\partial_t \sigma + \gamma \nabla \cdot w - B_1 U &= F_1(U), \\
\partial_t w - \mu_1 \Delta w - \mu_2 \nabla (\nabla \cdot w) + \gamma \nabla \sigma - B_2 U &= F_2(U),
\end{aligned}
\tag{5}
\]
where, \(U = \begin{pmatrix} \sigma \\ w \end{pmatrix} \),
\[
B_1 U = -\frac{\gamma}{\rho_{\infty}} (w \cdot \nabla \tilde{\rho} + \tilde{\rho} \nabla \cdot w),
\]
\[
B_2 U = -\mu_1 \frac{\tilde{\rho}}{\rho_{s}} \Delta w - \mu_2 \frac{\tilde{\rho}}{\rho_{s}} \nabla (\nabla \cdot w) + \gamma \frac{\tilde{\rho}}{\rho_{s}} \nabla \sigma
\]
\[
- \frac{\tilde{\rho} \rho_{\infty}}{\gamma \rho_{s}} \nabla \sigma \int_{0}^{1} P''(s \tilde{\rho} + \rho_{\infty}) ds - \frac{\rho_{\infty} \nabla \rho_{s}}{\gamma} \left(\frac{P'(\rho_{s})}{\rho_{s}} - \frac{P'(\rho_{s})}{\rho_{s}^2} \right) \sigma,
\]
\[
F_1(U) = -\gamma (w \cdot \nabla \sigma + \sigma \nabla \cdot w),
\]
\[
F_2(U) = -\gamma (w \cdot \nabla \sigma w - \mu_1 \frac{\rho_{\infty}^2}{\rho_{s}(\rho_{\infty} \sigma + \rho_{s})} \sigma \Delta w - \mu_2 \frac{\rho_{\infty}^2}{\rho_{s}(\rho_{\infty} \sigma + \rho_{s})} \sigma \nabla (\nabla \cdot w)
\]
\[
+ \frac{\rho_{\infty}^2}{\gamma} \left(\frac{P'(\rho_{s})}{\rho_{s}(\rho_{\infty} \sigma + \rho_{s})} - \frac{1}{\rho_{\infty} \sigma + \rho_{s}} \int_{0}^{1} P''(s \rho_{\infty} \sigma + \rho_{s}) ds \right) \sigma \nabla \sigma
\]
\[
+ \frac{\rho_{\infty}^2}{\gamma} \nabla \rho_{s} \left(\frac{P''(\rho_{s})}{\rho_{s}(\rho_{\infty} \sigma + \rho_{s})} - \frac{P'(\rho_{s})}{\rho_{s}^2(\rho_{\infty} \sigma + \rho_{s})} \right)
\]
\[
- \frac{1}{\rho_{\infty} \sigma + \rho_{s}} \int_{0}^{1} (1 - s) P''(s \rho_{\infty} \sigma + \rho_{s}) ds \right) \sigma^2.
\]

Remark 3.2. When \(\Phi = 0 \), we have \(\rho_{s} = \rho_{\infty} \), and thus, \(\tilde{\rho} = 0 \) and \(\nabla \rho_{s} = 0 \). It then follows that \(B_1 U = 0 \) and \(B_2 U = 0 \) and \(F(U) = -\gamma (w \cdot \nabla) w - \mu_1 \frac{1}{\sigma_{+1}} \sigma \Delta w - \mu_2 \frac{1}{\sigma_{+1}} \nabla (\nabla \cdot w) + \frac{\gamma}{\sigma_{+1}} \sigma \nabla \sigma. \)

For problem (5), Kawashita [7] proved the following global existence result.

Proposition 3.3 (Kawashita [7]). Let \(n \geq 2 \) and let \(U_0 = (\rho_0, w_0) \in H^{s_0} \). There exist a positive constant \(\epsilon_1 \) such that if
\[
\|U_0\|_{H^{s_0}} \leq \epsilon_1,
\]
\[
\begin{align*}
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} &\leq \epsilon_1 \quad (n \geq 3), \\
\Phi &= 0 \quad (n = 2),
\end{align*}
\]
then problem (5) has a unique global solution \(U:\)

\[
U = (\sigma, w) \in \bigcap_{j=0}^{1} C^j([0, \infty); H^{s_0-j}) \times C^j([0, \infty); H^{s_0-2j}),
\]

\[
w \in L^2(0, \infty; H^{s_0+1}) \cap H^1(0, \infty; H^{s_0-1}).
\]

Proposition 3.3 were proved for the case \(\Phi = 0\) in [7]. In a similar manner one can see that Proposition 3.3 holds for \(\Phi \neq 0\) satisfying the smallness condition of Proposition 3.3 when \(n \geq 3\).

We now state our main result of this paper.

Theorem 3.4. Let \(U = (\sigma, w)\) be a unique global solution of (5) with initial value \(U_0 = (\sigma_0, w_0)\) obtained in Proposition 3.3. Assume that \(n \geq 3\). Then there exist \(\epsilon_2 > 0\) such that if \(U_0 \in H^{s_0} \cap L^1\) and

\[
\|U_0\|_{H^{s_0} \cap L^1} \leq \epsilon_2
\]

\[
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon_2
\]

then, the estimates

\[
\|\nabla^k U(t)\|_2 \leq C_0 (1 + t)^{-\frac{n}{4} - \frac{k}{2}}, \quad k = 0, 1,
\]

hold for \(t \geq 0\).

The estimates (6) also hold for \(n = 2\) if \(\Phi = 0\).

The proof of Theorem 3.4 will be given in section 5.

Remark 3.5. When \(\Phi = 0\), one can also obtain the decay rates for the perturbation of higher-order spatial derivatives. In fact, one can prove the following estimates. Let \(U\) and \(U_0\) satisfy the assumption of Theorem 3.4. When \(\Phi = 0\) \((n \geq 2)\), we have

\[
\|\nabla^k U(t)\|_2 \leq C_0 (1 + t)^{-\frac{n}{4} - \frac{k}{2}}, \quad k = 0, 1, \ldots, s_0
\]

for \(t \geq 0\).

4 Decomposition of solution

In this section we introduce a decomposition of solutions to prove Theorem 3.4.

We set

\[
U = \left(\begin{array}{c} \sigma \\ w \end{array} \right), \quad U_0 = \left(\begin{array}{c} \sigma_0 \\ w_0 \end{array} \right),
\]
\[A = \begin{pmatrix} 0 & -\gamma \nabla \cdot \\ -\gamma \nabla & \mu_1 \Delta + \mu_2 \nabla \nabla \cdot \end{pmatrix}. \]

Then problem (5) is written as
\[\partial_t U - AU - BU = F(U), \quad U|_{t=0} = U_0, \quad (7) \]
where
\[BU = \begin{pmatrix} B_1 U \\ B_2 U \end{pmatrix}, \quad F(U) = \begin{pmatrix} F_1(U) \\ F_2(U) \end{pmatrix}. \]

We next decompose a solution \(U \) of (7) into low and high frequency parts. Let \(\hat{\chi}_1 \) be a cutoff function defined by
\[\hat{\chi}_1(\xi) = \begin{cases} 1 & (|\xi| < r) \\ 0 & (|\xi| \geq r) \end{cases}, \quad \hat{\chi}_\infty(\xi) = 1 - \hat{\chi}_1(\xi). \]

Here \(r = \frac{\gamma}{\sqrt{\mu_1 + \mu_2}} \). (As for the number \(r \), see Lemma 5.1 below.)

We define operator \(Q_j (j = 1, \infty) \) on \(L^2 \) by
\[Q_j u := \mathfrak{F}^{-1}(\hat{\chi}_j \hat{u}) \quad (j = 1, \infty), \quad u \in L^2. \]

The operators \(Q_j (j = 1, \infty) \) have the following properties.

Lemma 4.1. \(Q_j (j = 1, \infty) \) satisfy the following relations.

(i) \(Q_1 + Q_\infty = I \).

(ii) \(Q_2^2 = Q_j \).

(iii) \(Q_1 Q_\infty = 0 \).

(iv) \((Q_j u, v) = (u, Q_j v) \) for \(u, v \in L^2 \).

Lemma 4.1 can be easily verified; and we omit the proof.

We next state boundedness properties of \(Q_j (j = 1, \infty) \).

Lemma 4.2. (i) For each nonnegative integer \(k \), \(Q_j (j = 1, \infty) \) are bounded linear operator on \(H^k \).

(ii) For each nonnegative integer \(k \), it holds that \(\|\nabla^k Q_1 u\|_2 \leq \|u\|_2 \) \((u \in L^2) \).

(iii) For each nonnegative integer \(k \), it holds that \(\|\nabla^k Q_1 u\|_\infty \leq C\|u\|_2 \) \((u \in L^2) \).

(iv) \(Q_\infty \) satisfies \(\|\nabla Q_\infty u\|_2 \geq C\|Q_\infty u\|_2 \) \((u \in H^1) \)
The assertions (i), (ii), (iv) easily follow from the Plancherel theorem. The inequality (iii) is obtained by (ii) and the Sobolev inequality.

In terms of Q_1 and Q_∞, we decompose a solution $U(t)$ of (7) as

$$U(t) = U_1(t) + U_\infty(t), \quad U_j(t) = Q_j U(t) \quad (j = 1, \infty).$$

It then follows that $U_1(t)$ and $U_\infty(t)$ are governed by equations (13) and (14) given in Proposition 4.3 below.

To state Proposition 4.3 we introduce a semigroup associated with a low frequency part of A. We set

$$E_1(t)u := \mathcal{F}^{-1}[^{\hat{\chi}_{1}} e^{\hat{A}(\xi) t} \mathcal{F} u] \quad \text{for} \quad u \in L^2,$$

where

$$\hat{A}(\xi) = \begin{pmatrix} 0 & -i \gamma \xi \xi^t \\ -i \gamma \xi & -\mu_1 |\xi|^2 I_n - \mu_2 \xi \xi^t \end{pmatrix}.$$

Here and in what follows the superscript \cdot^t means the transposition.

Proposition 4.3. Let $T > 0$ and let $U = (\sigma, w)^t$ be a solution of problem (7) on $[0, T]$ such that

$$U = (\sigma, w)^t \in \bigcap_{j=0}^{1} C^j([0, T]; H^{s_0-j}) \times C^j([0, T]; H^{s_0-2j}),$$

$$w \in L^2(0, T; H^{s_0+1}) \cap H^1(0, T; H^{s_0-1}),$$

and let

$$U_j = Q_j U, \quad \sigma_j = Q_j \sigma, \quad w_j = Q_j w \quad (j = 1, \infty).$$

Then,

$$U_1 \in C^k([0, T]; H^k), \quad \forall k = 0, 1, 2, \ldots,$$

$$U_\infty \in \bigcap_{j=0}^{1} C^j([0, T]; H^{s_0-j}) \times C^j([0, T]; H^{s_0-2j}),$$

$$w_\infty \in L^2(0, T; H^{s_0+1}) \cap H^1(0, T; H^{s_0-1}).$$

Furthermore $U_1(t)$ and $U_\infty(t)$ satisfy

$$U_1(t) = E_1(t)U_01 + \int_0^t E_1(t - s)Q_1(B(U_1 + U_\infty)(s) + F(U_1 + U_\infty)(s)) ds$$

and

$$\partial_t U_\infty - AU_\infty - Q_\infty B(U_1 + U_\infty) = Q_\infty F(U_1 + U_\infty),$$

$$U_\infty|_{t=0} = U_{0\infty},$$

where $U_{0j} = Q_j U_0 \ (j = 1, \infty).$
Proof. Let \(U(t) = (\sigma, w)^t \) be a solution of (7) satisfying (8) and (9). It then follow from Lemma 4\(^2 \) that \(U_1(t) \) and \(U_\infty(t) \) satisfy (10), (11) and (12), respectively.

Since \(Q_jAU = AQ_jU \) for \(U \in H^0 \) (\(j = 1, \infty \)), applying \(Q_j \) to (7), we obtain

\[
\begin{aligned}
\frac{\partial}{\partial t} U_1 - AU_1 - Q_1 B(U_1 + U_\infty) &= Q_1 F(U_1 + U_\infty), \quad U_1|_{t=0} = U_{01}, \\
\frac{\partial}{\partial t} U_\infty - AU_\infty - Q_\infty B(U_1 + U_\infty) &= Q_\infty F(U_1 + U_\infty), \quad U_\infty|_{t=0} = U_{0\infty}.
\end{aligned}
\]

Taking the Fourier transform of (16)\(_1 \), we have

\[
\hat{\chi}_1 \partial_t \hat{U} = \hat{\chi}_1 A \hat{U} + \hat{\chi}_1 d \hat{B}(U_1 + U_\infty) + \hat{\chi}_1 \hat{F}(U).
\]

It follows from (17) that

\[
\hat{\chi}_1 \hat{U}(t) = e^{At} \hat{\chi}_1 \hat{U}(0) + \int_0^t e^{A(t-s)} (\hat{\chi}_1 \hat{B} \hat{U} + \hat{\chi}_1 \hat{F}(U))(s) ds.
\]

We thus obtain

\[
U_1(t) = E_1(t) U_{01} + \int_0^t E_1(t-s) Q_1 (B(U_1 + U_\infty) + F(U_1 + U_\infty))(s) ds.
\]

This completes the proof.\(\square \)

5 Proof of main result

In this section we prove Theorem 3.4. In subsections 5.1 and 5.2 we establish the necessary estimates for \(U_1(t) \) and \(U_\infty(t) \), respectively. In subsection 5.3 we derive the a priori estimate to complete the proof of Theorem 3.4.

Set

\[
M_1(t) := \sup_{0 \leq \tau \leq t} \sum_{k=0}^1 (1 + \tau) \frac{2}{4 + 2} \| \nabla^k U_1(\tau) \|_2,
\]

\[
M_\infty(t) := \sup_{0 \leq \tau \leq t} (1 + \tau) \frac{3}{4 + 2} \| U_\infty(\tau) \|_{H^0},
\]

\[
M(t) := M_1(t) + M_\infty(t).
\]

We also set \(\delta = \frac{\rho_{\infty}}{4 C_s} \), where \(C_s \) is constant such that \(\| f \|_\infty \leq C_s \| f \|_{H^0} \) for all \(f \in H^{s_0} \). Hereafter, we assume that

\[
\sup_{0 \leq t \leq T} \| \sigma(t) \|_{H^0} \leq \delta.
\]

Then we have

\[
\| \sigma(t) \|_\infty \leq C_s \| \sigma(t) \|_{H^0} \leq \frac{\rho_{\infty}}{4}.
\]
5.1 Estimate of $U_1(t)$

In this subsection we derive the estimate of $U_1(t)$, in other words, we estimate $M_1(t)$.

Lemma 5.1 (Matsumura-Nishida [9]). (i) The set of all eigenvalues of $\hat{A}(\xi)$ consists of $\lambda_i(\xi)$ ($i = 1, 2, 3$), where

$$\begin{align*}
\lambda_1(\xi) &= \frac{-((\mu_1+\mu_2)|\xi|^2+i|\xi|\sqrt{4\gamma^2-(\mu_1+\mu_2)|\xi|^2}}{2}, \\
\lambda_2(\xi) &= \lambda_1(\xi), \\
\lambda_3(\xi) &= -\mu_1|\xi|^2,
\end{align*}$$

for $|\xi| \leq r$, where $r = \frac{\gamma}{\sqrt{\mu_1+\mu_2}}$. Here $\overline{\lambda_1(\xi)}$ denotes the complex conjugate of $\lambda_1(\xi)$.

(ii) $e^{t\hat{A}(\xi)}$ has the spectral resolution

$$e^{t\hat{A}(\xi)} = \sum_{j=1}^{3} e^{t\lambda_j(\xi)} P_j(\xi),$$

where $P_j(\xi)$ is the eigenprojection for $\lambda_j(\xi)$ and $P_j(\xi)$ satisfies

$$\|P_j(\xi)\| \leq C \quad (|\xi| \leq r).$$

where $r = \frac{\gamma}{\sqrt{\mu_1+\mu_2}}$.

$E_1(t)$ satisfies the following estimate:

Lemma 5.2. Let k be a nonnegative integer. Then there holds

$$\|\nabla^k E_1(t)Q_1U_0\|_2 \leq C(1 + t)^{-(n^4 + \frac{k}{2})} \|U_0\|_1$$

for $t \geq 0$.

Proof. By Lemma 5.1 (i) we see that there exists a constant $\beta > 0$ such that

$$e^{2Re\lambda_j(\xi)t} \leq Ce^{-\beta|\xi|^2t} \quad (1 \leq j \leq 3).$$

Therefore, by Plancherel’s theorem and Lemma 5.1 (ii), we have

$$\|\nabla^k E_1(t)Q_1U_0(t)\|_2 \leq C\left(\int_{|\xi| \leq r} |\xi|^{2k} |e^{t\hat{A}(\xi)t}\hat{U}_0|^2 d\xi \right)^{\frac{1}{2}}$$

$$\leq C\left(\int_{\mathbb{R}^n} |\xi|^{2k} e^{-\beta|\xi|^2t}|\hat{U}_0(\xi)|^2 d\xi \right)^{\frac{1}{2}}$$

$$\leq Ct^{-(n^4 + \frac{k}{2})} \|U_0\|_1. \quad (18)$$
We also find that
\[
\|\nabla^k E_1(t)Q_1 U_0\|_2 \leq C \|\hat{U}_0\|_\infty \left(\int_{|\xi| < 1} e^{-\beta |\xi|^2} d\xi \right)^{\frac{1}{2}}
\]
\[
\leq C \|U_0\|_1.
\]
(19)
The estimate of Lemma 5.2 follows from (18) and (19).

As for $M_1(t)$, we show the following estimate.

Proposition 5.3. There exists a $\epsilon > 0$ such that if
\[
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon,
\]
\[
\sup_{0 \leq t \leq T} \|\sigma(t)\|_{H^{s_0}} \leq \delta,
\]
and
\[
M(t) \leq 1
\]
for $t \in [0, T]$, then there exists a constant $C > 0$ independent of T such that
\[
M_1(t) \leq C \|U_0\|_1 + C\epsilon M(t) + CM^2(t)
\]
for $t \in [0, T]$.

To prove Proposition 5.3, we will use the following estimates on $B(U)$ and $F(U)$.

Lemma 5.4. Let $n \geq 3$. There exists a $\epsilon > 0$ such that if
\[
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon,
\]
and
\[
M(t) \leq 1
\]
for $t \in [0, T]$, then there exists a constant $C > 0$ independent of T such that
\[
\|B(U_1(t) + U_\infty(t))\|_1 \leq C\epsilon (1 + t)^{-\frac{n+2}{2}} M(t)
\]
for $t \in [0, T]$.

Lemma 5.5. Let $n \geq 2$. There exists a $\epsilon > 0$ such that if
\[
M(t) \leq 1
\]
and
\[
\left\{ \begin{array}{ll}
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon & (n \geq 3), \\
\Phi = 0 & (n = 2)
\end{array} \right.
\]
for $t \in [0, T]$, then there exists a constant $C > 0$ independent of T such that
\[
\|F(U_1(t) + U_\infty(t))\|_1 \leq C(1 + t)^{-\frac{n+1}{2}} M^2(t)
\]
for $t \in [0, T]$.

13
We will prove Lemma 5.4 and Lemma 5.5 later. Now we prove Proposition 5.3.

Proof of Proposition 5.3. We first consider the case \(n \geq 3 \). By Lemma 5.2 and (13), we see that

\[
\|\nabla^k U_1(\tau)\|_2 \leq \|\nabla^k E_1(\tau)U_0\|_2 \\
+ \int_0^\tau \|\nabla^k E_1(\tau-s)(Q_1B(U_1(s) + U_\infty(s)) + Q_1F(U_1(s) + U_\infty(s)))\|_2 ds \\
\leq C (1 + \tau)^{-\left(\frac{n}{4} + \frac{3}{2}\right)}\|U_0\|_1 \\
+ \int_0^\tau (1 + \tau-s)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}\|B(U_1(s) + U_\infty(s))\|_1 \\
+ \|F(U_1(s) + U_\infty(s))\|_1 \) ds.
\]

(20)

Using Lemma 5.4 and Lemma 5.5, we have

\[
\int_0^\tau (1 + \tau-s)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}\|B(U_1(s) + U_\infty(s))\|_1 + \|F(U_1(s) + U_\infty(s))\|_1 \) ds
\leq C \int_0^\tau (1 + \tau-s)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}\{1 + (1 + s)^{-\frac{n+2}{4}} M(t) + (1 + s)^{-\frac{n+2}{4}} M^2(t)\} ds
\leq C \epsilon M(t) \int_0^\tau (1 + \tau-s)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}(1 + s)^{-\frac{n+2}{4}} ds \\
+ \epsilon M(t) \int_0^\tau (1 + \tau-s)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}(1 + s)^{-\frac{n+2}{4}} ds
\leq C \epsilon(1 + \tau)^{-\left(\frac{n}{4} + \frac{1}{2}\right)} M(t) + C(1 + \tau)^{-\left(\frac{n}{4} + \frac{1}{2}\right)} M^2(t).
\]

(21)

Here we used \(\frac{n+2}{4} > 1 \) for \(n \geq 3 \) to handle the term \(\epsilon(1 + s)^{-\frac{n+2}{4}} M(t) \). By (20) and (21), we obtain

\[
\|\nabla^k U_1(\tau)\|_2 \leq C (1 + \tau)^{-\left(\frac{n}{4} + \frac{1}{2}\right)}\|U_0\|_1 + C \epsilon(1 + \tau)^{-\left(\frac{n}{4} + \frac{1}{2}\right)} M(t) + C(1 + \tau)^{-\left(\frac{n}{4} + \frac{1}{2}\right)} M^2(t),
\]

and hence,

\[
(1 + \tau)^{\frac{n}{4} + \frac{1}{2}}\|\nabla^k U_1(\tau)\|_2 \leq C\|U_0\|_1 + C \epsilon M(t) + C M^2(t).
\]

Taking the supremum in \(\tau \in [0, t] \), we obtain the desired estimate for \(n \geq 3 \).

When \(n = 2 \), we have \(BU = 0 \). Therefore the term \(\epsilon(1 + s)^{-\frac{4+2}{4}} M(t) \) in the computation above is missing; and one can obtain the desired estimate for \(n = 2 \).

\(\square \)

It remains to prove Lemma 5.4 and Lemma 5.5.

Proof of Lemma 5.4. By Lemma 2.1, we have

\[
\|w \cdot \nabla \rho\|_1 \leq \|(1 + |x|)\nabla \rho\|_2 \frac{1}{1 + |x|} (w_1 + w_\infty)\|_2 \\
\leq \epsilon (\|\nabla w_1\|_2 + \|\nabla w_\infty\|_2),
\]

14
\[
\left\| -\rho_{\infty}\nabla\rho_{*}\left(\frac{P''(\rho_{*})}{\rho_{*}} + \frac{P'(\rho_{*})}{\rho_{*}^2}\right)\sigma_{1}\right\|
\leq C\left\| \frac{P''(\rho_{*})}{\rho_{*}} + \frac{P'(\rho_{*})}{\rho_{*}^2}\right\|_{\infty}\left(1 + |x|\right)\left\| \nabla\rho_{*}\right\|_{2}\frac{1}{1 + |x|}\sigma_{2}
\leq C\epsilon\left(\left\| \nabla\sigma_{1}\right\|_{2} + \left\| \nabla\sigma_{\infty}\right\|_{2}\right).
\]

By using the Hölder inequality and Lemma 4.2, one can see that the \(L^1\) norms of the others terms are bounded by \(C\epsilon\left(\left\| \nabla\sigma_{1}\right\|_{2} + \left\| \nabla\sigma_{\infty}\right\|_{2}\right)\). We thus conclude that
\[
\|B(U_{1} + U_{\infty})\|_{1} \leq C\epsilon\left(\left\| \nabla U_{1}\right\|_{2} + \left\| \nabla U_{\infty}\right\|_{H^1}\right)
\leq C\epsilon(1 + s)^{-\frac{n+2}{4}}M(t).
\]

This completes the proof. \(\Box\)

Proof of Lemma 5.5. When \(n \geq 3\), we see from Lemma 2.2 that
\[
\left\| \nabla\rho_{*}\left(\frac{P''(\rho_{*})}{\rho_{*}} + \frac{P'(\rho_{*})}{\rho_{*}^2}\rho_{\infty}\sigma_{1} + \rho_{*}\rho_{\infty}\sigma_{1}\right)_{1}\left(1 - s\right)P''(s\rho_{\infty}\sigma_{1} + \rho_{*})ds\right\|_{2}
\leq C\left\| \nabla\rho_{*}\right\|_{2}\left\| \sigma_{1}\right\|_{2}
\leq C\left\| \nabla\sigma_{1}\right\|_{H^{\sigma_{1}}-1}\left\| \sigma_{1}\right\|_{2}
\leq C(1 + s)^{-\frac{n+1}{2}}M^{2}(t).
\]

Note that this term does not appear when \(n = 2\) since it is assumed that \(\Phi = 0\).

The \(L^1\) norm of the other terms are estimated by using the Hölder inequality, and bounded by \(C(1 + s)^{-\frac{n+2}{4}}M^{2}(t)\). Hence, we have
\[
\|F(U_{1} + U_{\infty})\|_{1} \leq C(1 + s)^{-\frac{n+1}{2}}M^{2}(t).
\]

This completes the proof. \(\Box\)

5.2 Estimate of \(U_{\infty}(t)\)

We next derive estimates for \(U_{\infty}\). The system (14) is written as
\[
\begin{align*}
\partial_{t}\sigma_{\infty} + \gamma \nabla \cdot w_{\infty} = Q_{\infty}(B_{1}U_{1} + F_{1}(U)),
\partial_{t}w_{\infty} - \mu_{1}\Delta w_{\infty} - \mu_{2}\nabla \cdot (\nabla w_{\infty}) + \gamma \nabla \sigma_{\infty} = Q_{\infty}(B_{2}U_{1} + F_{2}(U)).
\end{align*}
\tag{22}
\]

Proposition 5.6. There holds
\[
\sum_{0 \leq |\alpha| \leq s_{0}} \frac{1}{2} \frac{d}{dt}\left\| \partial_{x}^{\alpha}U_{\infty}(t)\right\|_{2}^2 + \mu_{1}\left\| \nabla \partial_{x}^{\alpha}w_{\infty}\right\|_{2}^2 + \mu_{2}\| \nabla \cdot \partial_{x}^{\alpha}w_{\infty}(t)\|_{2}^2 = \sum_{i=1}^{4} I_{i}
\tag{23}
\]
for a.e. \(t \in [0, T] \). Here,

\[
I_1 := \sum_{0 \leq |\alpha| \leq s_0} (\partial^\alpha_x B_1 U, \partial^\alpha_x \sigma_\infty),
\]

\[
I_2 := \sum_{0 \leq |\alpha| \leq s_0-1} (\partial^\alpha_x F_1(U), \partial^\alpha_x \sigma_\infty)
- \sum_{|\alpha|=s_0} \left(\frac{\gamma}{\rho_\infty} \partial^\alpha_x \sigma \cdot \partial^\alpha_x \sigma_\infty \right)
- \sum_{|\alpha|=s_0} \left(\frac{\gamma}{\rho_\infty} \partial^\alpha_x \sigma \cdot \partial^\alpha_x \sigma_\infty \right)
- \frac{1}{2} \sum_{|\alpha|=s_0} (\nabla \cdot w, |\partial^\alpha_x \sigma_\infty|^2) + \sum_{|\alpha|=s_0} (w \cdot \nabla \partial^\alpha_x \sigma_1, \partial^\alpha_x \sigma_\infty),
\]

\[
I_3 := - \sum_{|\alpha|=s_0} \sum_{|\gamma|=1} (\partial^{\alpha-\gamma}_x B_2 U, \partial^{\alpha+\gamma}_x \omega_\infty)
+ \sum_{0 \leq |\alpha| \leq s_0-1} (\partial^\alpha_x B_2 U, \partial^\alpha_x \omega_\infty),
\]

\[
I_4 := - \sum_{|\alpha|=s_0} \sum_{|\gamma|=1} (\partial^{\alpha-\gamma}_x F_2(U), \partial^{\alpha+\gamma}_x \omega_\infty)
+ \sum_{0 \leq |\alpha| \leq s_0-1} (\partial^\alpha_x F_2(U), \partial^\alpha_x \omega_\infty).
\]

Proof. Let \(\eta \in C^\infty_0(\mathbb{R}^n) \) satisfying \(\eta \geq 0 \), \(\text{supp} \eta \subset \{ x; |x| \leq 1 \} \), \(\eta(-x) = \eta(x) \) and \(\int \eta(x)dx = 1 \). Set \(\eta_\epsilon(x) = \epsilon^{-n} \eta(\epsilon x) \). Note that due to \(\eta(-x) = \eta(x) \) we have

\[
(\eta_\epsilon * f, g) = (f, \eta_\epsilon * g).
\]

Let \(\varphi \in C^\infty_0 \) and \(|\alpha| = s_0 \). We take the inner product of (22) with \(\partial^\alpha_x (\eta_\epsilon * \varphi) \) to obtain

\[
(\partial_t \sigma_\infty, \partial^\alpha_x \eta_\epsilon * \varphi) + (\gamma \nabla \cdot \omega_\infty, \partial^\alpha_x \eta_\epsilon * \varphi)
= (Q_\infty (B_1 U + F_1(U)), \partial^\alpha_x (\eta_\epsilon * \varphi))
= (Q_\infty B_1 U, \partial^\alpha_x \eta_\epsilon * \varphi) - \gamma \{ (Q_\infty (\sigma \nabla \cdot w), \partial^\alpha_x \eta_\epsilon * \varphi) + (w \cdot \nabla \sigma, \partial^\alpha_x \eta_\epsilon * \varphi) - (Q_1 (\omega \cdot \nabla \sigma), \partial^\alpha_x \eta_\epsilon * \varphi) \}. \tag{24}
\]

By integration by parts, we have

\[
(\partial_t (\eta_\epsilon * \partial^\alpha_x \sigma_\infty), \varphi) + \gamma (\eta_\epsilon * \nabla \cdot \partial^\alpha_x \omega_\infty, \varphi)
= (\eta_\epsilon * \partial^\alpha_x Q_\infty B_1 U, \varphi) - \gamma \{ (\eta_\epsilon * \partial^\alpha_x Q_\infty (\sigma \nabla \cdot w), \varphi) + (\eta_\epsilon * (\partial^\alpha_x w \nabla) \sigma, \varphi) - (\eta_\epsilon * (\partial^\alpha_x w \cdot \nabla) \sigma, \varphi) \}
- (w \cdot \nabla \eta_\epsilon * \partial^\alpha_x \sigma, \varphi) - (\eta_\epsilon * \partial^\alpha_x Q_1 (w \cdot \nabla \sigma), \varphi) \}. \tag{25}
\]

Next, we multiply (25) by \(h \in C^\infty_0(0,T) \) and take \(\varphi = \eta_\epsilon * \partial^\alpha_x \sigma_\infty \in C^\infty \cap L^2 \). Integrating the resulting equation over \([0,T] \), we obtain
Hence, we obtain

\[-\frac{1}{2} \int_0^T \| \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty \|^2 \frac{d}{dt} hdt + \int_0^T (\eta_\epsilon \ast \partial_x^\alpha (\gamma \nabla \cdot w_\infty), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[= \int_0^T - (\eta_\epsilon \ast (\partial_x^\alpha Q_\infty B_1 U), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \gamma \int_0^T (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \gamma \int_0^T (\eta_\epsilon \ast [\partial_x^\alpha, w], \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[- \gamma \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_\infty (\sigma \nabla \cdot w), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \gamma \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_1 (w \cdot \nabla \sigma), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt. \]

We rewrite this equality to let \(\epsilon \to 0 \). The second term on the right hand-side is written as

\[(w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty)\]

\[= (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_\infty), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) + (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_1), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty)\]

\[= \frac{1}{2} (w, \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) \|^2) + (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_1), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty)\]

\[= - \frac{1}{2} (\nabla \cdot w, |\eta_\epsilon \ast \partial_x^\alpha \sigma_\infty|^2) + (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_1), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty).\]

Hence, we obtain

\[-\frac{1}{2} \int_0^T \| \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty \|^2 \frac{d}{dt} hdt + \gamma \int_0^T (\eta_\epsilon \ast \nabla \cdot \partial_x^\alpha w_\infty, \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[= - \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_\infty B_1 U, \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[- \gamma \int_0^T \frac{1}{2} (\nabla \cdot w, |\eta_\epsilon \ast \partial_x^\alpha \sigma_\infty|^2) hdt \]

\[+ \gamma \int_0^T (w \cdot \nabla (\eta_\epsilon \ast \partial_x^\alpha \sigma_1), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \gamma \int_0^T (\eta_\epsilon \ast [\partial_x^\alpha, w] \nabla \sigma, \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \gamma \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_1 (w \cdot \nabla \sigma), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[- \gamma \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_\infty (\sigma \nabla \cdot w), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \]

\[+ \int_0^T (\eta_\epsilon \ast \partial_x^\alpha Q_1 (w \cdot \nabla \sigma), \eta_\epsilon \ast \partial_x^\alpha \sigma_\infty) hdt \] (26)
Letting $\epsilon \to 0$ in (26), we can obtain

$$
\frac{1}{2} \int_0^T \frac{d}{dt} \| \partial^\alpha_x \sigma \|_2^2 dt + \gamma \int_0^T (\nabla \cdot \partial^\alpha_x w, \partial^\alpha_x \sigma) dt \\
= - \int_0^T (\partial^\alpha_x B_1 U, \partial^\alpha_x \sigma) dt \\
- \gamma \int_0^T \frac{1}{2} (\nabla \cdot w, |\partial^\alpha_x \sigma|)^2 dt \\
+ \gamma \int_0^T (w \cdot \nabla \partial^\alpha_x \sigma_1, \partial^\alpha_x \sigma) dt \\
+ \gamma \int_0^T ([\partial^\alpha_x w] \nabla \sigma, \partial^\alpha_x \sigma) dt \\
- \gamma \int_0^T (\partial^\alpha_x (\sigma \nabla \cdot w), \partial^\alpha_x \sigma) dt.
$$

(27)

In fact, as for the third term on the right hand-side of (26), by Lemma 4.2, we see that

$$
(w \cdot \nabla (\eta_\epsilon * (\partial^\alpha_x \sigma_1)), \eta_\epsilon * \partial^\alpha_x \sigma) \\
\leq \|w\|_\infty \|\nabla \partial^\alpha_x \sigma_1\|_2 \|\partial^\alpha_x \sigma\|_2 \\
\leq \|w\|_{H^{s_0}} \|\nabla \sigma_1\|_2 \|\partial^\alpha_x \sigma\|_2 \in L^1(0, T).
$$

Hence, we have

$$
\int_0^T (w \cdot \nabla (\eta_\epsilon * (\partial^\alpha_x \sigma_1)), \eta_\epsilon * \partial^\alpha_x \sigma) dt \\
\longrightarrow \int_0^T (w \cdot \nabla (\partial^\alpha_x \sigma_1), \partial^\alpha_x \sigma) dt.
$$

The fourth term on the right hand-side of (26) can be shown to go to zero by using Lemma 2.3. In fact, since $\partial^\alpha_x \sigma \in C([0, T]; L^2)$, $w \in L^2(0, T; H^{s_0+1}) \subset L^2(0, T; BC^1)$, applying Lemma 2.3, we have

$$
\|\|\eta_\epsilon \ast w \cdot \nabla \partial^\alpha_x \sigma\|_2 \longrightarrow 0 \quad (\epsilon \to 0),
$$

for a.e. $t \in (0, T)$. We thus obtain

$$
[\|\eta_\epsilon \ast w \cdot \nabla \partial^\alpha_x \sigma, \eta_\epsilon \ast \partial^\alpha_x \sigma|\|_h] \\
\leq C \left\{ \|\nabla w(t)\|_\infty \|\partial^\alpha_x \sigma(t)\|_2^2 \|h(t)\| \right\} \\
\longrightarrow \|\|\eta_\epsilon \ast w \cdot \nabla \partial^\alpha_x \sigma\|_2 \|\eta_\epsilon \ast \partial^\alpha_x \sigma\|_2 \|h(t)\| \longrightarrow 0 \quad (\epsilon \to 0),
$$

for a.e. $t \in (0, T)$. Since, $\|\nabla w(t)\|_\infty \leq C \|w(t)\|_{H^{s_0+1}} \in L^2(0, T)$, we see that

$$
\int_0^T (\|\eta_\epsilon \ast w \cdot \nabla \partial^\alpha_x \sigma, \eta_\epsilon \ast \partial^\alpha_x \sigma 4 dt \longrightarrow 0.
$$
As for the seventh term on the right hand-side of (26), by Lemma 4.2 and the dominated convergence theorem, we have

\[
\int_0^T (\eta_t * \partial_x^\alpha Q_1(w \cdot \nabla \sigma), \eta_t * \partial_x^\alpha \sigma_\infty) \, dt \\
= \int_0^T (\partial_x^\alpha Q_1(w \cdot \nabla \sigma), \partial_x^\alpha \sigma_\infty) \, dt = 0.
\]

Here we have used \((\partial_x^\alpha Q_1(w \cdot \nabla \sigma), \partial_x^\alpha \sigma_\infty) = (Q_1 \partial_x^\alpha Q_1(w \cdot \nabla \sigma), \partial_x^\alpha \sigma_\infty) = (\partial_x^\alpha Q_1(w \cdot \nabla \sigma), \partial_x^\alpha Q_1 \sigma_\infty) = 0 \).

For the other terms of (26), one can apply the dominated convergence theorem to pass the limit and we obtain (27). It then follows from (27) that

\[
\frac{1}{2} \frac{d}{dt} \|\partial_x^\alpha \sigma_\infty(t)\|_2^2 + \gamma (\nabla \cdot \partial_x^\alpha w_\infty, \partial_x^\alpha \sigma_\infty) = (\partial_x^\alpha B_1 U, \partial_x^\alpha \sigma_\infty) - \frac{1}{2} \gamma (\nabla \cdot w, |\partial_x^\alpha \sigma|^2) \\
+ \gamma (\partial_x^\alpha w, \partial_x^\alpha \sigma_\infty) \\
+ \gamma (\partial_x^\alpha, w \nabla \sigma_\infty, \partial_x^\alpha \sigma_\infty) \\
- \gamma (\partial_x^\alpha (\sigma \nabla \cdot w), \partial_x^\alpha \sigma_\infty)
\]

for a.e. \(t \in (0, T) \) and \(|\alpha| = s_0 \).

When \(|\alpha| \leq s_0 - 1 \), by simply taking the inner product of \(\partial_x^\alpha (22)_1 \) with \(\partial_x^\alpha \sigma_\infty \), we have

\[
\frac{1}{2} \frac{d}{dt} \|\partial_x^\alpha \sigma_\infty(t)\|_2^2 + \gamma (\nabla \cdot \partial_x^\alpha w_\infty, \partial_x^\alpha \sigma_\infty) = (\partial_x^\alpha B_1 U, \partial_x^\alpha \sigma_\infty) + (\partial_x^\alpha F_1 U, \partial_x^\alpha \sigma_\infty).
\]

We see from (28) and (29) that

\[
\sum_{0 \leq |\alpha| \leq s_0} \frac{1}{2} \frac{d}{dt} \|\partial_x^\alpha \sigma_\infty(t)\|_2^2 + \gamma (\nabla \cdot \partial_x^\alpha w_\infty, \partial_x^\alpha \sigma_\infty) \\
= \sum_{0 \leq |\alpha| \leq s_0} (\partial_x^\alpha B_1 U, \partial_x^\alpha \sigma_\infty) + \sum_{0 \leq |\alpha| \leq s_0 - 1} (\partial_x^\alpha F_1(U), \partial_x^\alpha \sigma_\infty) \\
+ \sum_{|\alpha| = s_0} \left(-\frac{\gamma}{\rho_\infty} [\partial_x^\alpha, w] \nabla \sigma_\infty, \partial_x^\alpha \sigma_\infty \right) + \sum_{|\alpha| = s_0} \left(-\frac{\gamma}{\rho_\infty} (\sigma \nabla \cdot w) \partial_x^\alpha \sigma_\infty \right) \\
- \frac{1}{2} \sum_{|\alpha| = s_0} (\nabla \cdot w, |\partial_x^\alpha \sigma_\infty|^2) + \sum_{|\alpha| = s_0} (w \cdot \nabla \partial_x^\alpha \sigma_1, \partial_x^\alpha \sigma_\infty)
\]

for a.e. \(t \in (0, T) \).

We next consider (22)_2. Let \(\varphi \in C_0^\infty \) and let \(|\alpha| = s_0 \). We take the inner-product of (22)_2 with \(\partial_x^\alpha \varphi \) to obtain

\[
(\partial_t w_\infty, \partial_x^\alpha \varphi) - \mu_1 (\Delta w_\infty, \partial_x^\alpha \varphi) - \mu_2 (\nabla (\nabla \cdot w_\infty), \partial_x^\alpha \varphi) \\
+ \gamma (\nabla \sigma_\infty, \partial_x^\alpha \varphi) = (Q_\infty B_2 U, \partial_x^\alpha \varphi) + (Q_\infty F_2(U), \partial_x^\alpha \varphi).
\]
Integrating by parts, we obtain
\[
\langle \partial_x^\alpha \partial_t w_\infty, \varphi \rangle + \mu_1 (\nabla \partial_x^\alpha w_\infty, \nabla \varphi) + \mu_2 (\nabla \cdot \partial_x^\alpha w_\infty, \nabla \cdot \varphi) - \gamma (\partial_x^\alpha \sigma_\infty, \nabla \cdot \varphi)
\]
\[= \sum_{|\gamma|=1} (\partial_x^\alpha \sigma_\infty Q_\infty B_2 U, \partial_x^\gamma \varphi) + \sum_{|\gamma|=1} (\partial_x^\alpha \sigma_\infty Q_\infty F_2(U), \partial_x^\gamma \varphi). \tag{31}\]

Here we have used the fact that \(\sum_{|\gamma|=1} \partial_x^\alpha \sigma_\infty Q_\infty F_2 \in L^2\), which can be seen from the proof of Lemma 5.7 below. By density, we can set \(\varphi = \partial_x^\alpha w_\infty\). So we obtain by Lemma 2.4,
\[
\frac{1}{2} \frac{d}{dt} \|\partial_x^\alpha w_\infty\|^2_2 + \mu_1 \|\nabla \partial_x^\alpha w_\infty\|^2_2 + \mu_2 \|\nabla \cdot \partial_x^\alpha w_\infty\|^2_2 - \gamma (\partial_x^\alpha \sigma_\infty, \nabla \cdot \partial_x^\alpha w_\infty)
\]
\[= - \sum_{|\gamma|=1} (\partial_x^\alpha \sigma_\infty Q_\infty B_2 U, \partial_x^\gamma \partial_x^\alpha w_\infty) - \sum_{|\gamma|=1} (\partial_x^\alpha \sigma_\infty Q_\infty F_2(U), \partial_x^\gamma \partial_x^\alpha w_\infty). \tag{32}\]

We see from (31) and (32) that
\[
\sum_{0\leq |\alpha| \leq s_0-1} \frac{1}{2} \frac{d}{dt} \|\partial_x^\alpha w_\infty\|^2_2 + \mu_1 \|\nabla \partial_x^\alpha w_\infty\|^2_2 + \mu_2 \|\nabla \cdot \partial_x^\alpha w_\infty\|^2_2 - \gamma (\partial_x^\alpha \sigma_\infty, \nabla \cdot \partial_x^\alpha w_\infty)
\]
\[= - \sum_{|\alpha|=s_0} \sum_{|\gamma|=1} (\partial_x^\alpha B_2 U, \partial_x^\gamma \partial_x^\alpha w_\infty) - \sum_{|\alpha|=s_0} \sum_{|\gamma|=1} (\partial_x^\alpha F_2(U), \partial_x^\gamma \partial_x^\alpha w_\infty).
\]
\[+ \sum_{0\leq |\alpha| \leq s_0-1} (\partial_x^\alpha B_2 U, \partial_x^\alpha w_\infty) + (\partial_x^\alpha F_2(U), \partial_x^\alpha w_\infty). \tag{33}\]

A linear combination of (30) and (33) yields the desired result. \(\Box\)

We next estimate \(I_1\) and \(I_3\).

Proposition 5.7. Let \(n \geq 3\). There exists a constant \(\epsilon > 0\) such that if
\[
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|)\nabla \Phi\|_{L^2} \leq \epsilon,
\]
\[
\sup_{0 \leq t \leq T} \|\sigma(t)\|_{H^{s_0}} \leq \delta,
\]
and
\[
M(t) \leq 1
\]
for \(t \in [0, T]\), then
\[
|I_1| + |I_3| \leq C\epsilon\{(1 + t)^{-(\frac{n+1}{2})}M^2(t) + \|\nabla^{s_0+1} w_\infty(t)\|_2^2\}
\]
for \(t \in [0, T]\). Here \(C > 0\) is a constant independent of \(T\).
Proof. First we show the estimate of I_1. We have

$$|I_1| = | \sum_{0 \leq |a| \leq s_0} (\partial_x^a (\tilde{w} \cdot \nabla \tilde{\rho}), \partial_x^\alpha \sigma_\infty) + (\partial_x^a (\tilde{\rho} \cdot \nabla \tilde{w}), \partial_x^\alpha \sigma_\infty)|$$

$$\leq \sum_{0 \leq |a| \leq s_0} \left(\| \partial_x^a (\tilde{w} \cdot \nabla \tilde{\rho}) \|_2 + \| \partial_x^a (\tilde{\rho} \nabla \cdot \tilde{w}) \|_2 \right) \| \partial_x^\alpha \sigma_\infty \|_2. \quad (34)$$

By Lemma 2.2 and Lemma 2.6, the terms on the right-hand side of (34) is estimated as

$$\| \partial_x^a (\tilde{w} \cdot \nabla \tilde{\rho}) \|_2 \leq C' \| \tilde{\rho} \|_\infty \| \nabla \tilde{\rho} \|_{H^{s_0}} + \| \nabla \tilde{w} \|_{s_0-1} \| \nabla \tilde{\rho} \|_{s_0}$$

$$\leq C \epsilon (1 + t)^{-\left(\frac{\gamma}{2} + \frac{1}{2}\right)} M(t),$$

$$\| \partial_x^a (\tilde{\rho} \nabla \cdot \tilde{w}) \|_2 \leq C \| \tilde{\rho} \|_{H^{s_0}} \| \nabla \tilde{w} \|_{H^{s_0}}$$

$$\leq C \epsilon (1 + t)^{-\left(\frac{\gamma}{2} + \frac{1}{2}\right)} M(t) + C \epsilon \| \nabla^{s_0+1} w_\infty \|_2.$$

Hence, we obtain the estimate of I_1.

Let us next consider I_3:

$$|I_3| = \left| \sum_{|a| = s_0} \sum_{|\gamma| = 1} (\bar{\partial}^{a-\gamma} B_2 U, \bar{\partial}^{a+\gamma} w_\infty) + \sum_{0 \leq |a| \leq s_0-1} \partial_x^a B_2 U, \partial_x^a w_\infty \right|$$

$$\leq C \left(\sum_{|a| \leq s_0-1} \| \partial_x^a B_2 U \|_2 \right) \| \nabla w_\infty \|_{H^{s_0}}$$

We estimate $\| \partial_x^a B_2 U \|_2 (|a| \leq s_0 - 1)$. We write $B_2 U$ as

$$B_2 U = G_1(\tilde{\rho}, x) \Delta w + G_2(\tilde{\rho}, x) \nabla (\nabla \cdot w) + G_3(\tilde{\rho}, x) \nabla \sigma + G_4(x) \sigma,$$

where

$$G_1(\tilde{\rho}, x) = -\mu_1 \frac{\tilde{\rho}}{\rho_*},$$

$$G_2(\tilde{\rho}, x) = -\mu_2 \frac{\tilde{\rho}}{\rho_*},$$

$$G_3(\tilde{\rho}, x) = -\gamma \frac{\tilde{\rho}}{\rho_*} + \frac{\tilde{\rho} \rho_\infty}{\gamma \rho_*} \int_0^1 P''(s \tilde{\rho} + \rho_\infty) ds,$$

$$G_4(x) = -\frac{\rho_\infty \nabla \rho_*}{\gamma} \left(\frac{P''(\rho_*)}{\rho_*} - \frac{P''(\rho_\infty)}{\rho_*^2} \right).$$

We thus obtain by Lemma 2.2 and Lemma 2.6

$$\| \partial_x^a B_2 U \|_2 \leq C \{ \| \tilde{\rho} \|_{H^{s_0}} \| \nabla^2 w \|_{H^{s_0-1}} + \| \tilde{\rho} \|_{H^{s_0+1}} \| \sigma \|_{H^{s_0}} + \| \partial_x^a G_4(x) \|_2 \| \sigma \|_\infty \}$$

$$\leq C \epsilon \{ (1 + t)^{-\frac{\gamma}{2} - \frac{1}{2}} M(t) + \| \nabla^{s_0+1} w_\infty \|_2 \}.$$

Hence, we have

$$|I_3| \leq C \epsilon (1 + t)^{-\left(\frac{\gamma}{2} + 1\right)} M^2(t) + C \epsilon \| \nabla^{s_0+1} w_\infty \|_2^2.$$

This completes the proof. \qed
Proposition 5.8. Let \(n \geq 2 \). There exists a constant \(\epsilon > 0 \) such that if

\[
\begin{align*}
\| \Phi \|_{H^{n+1}} &+ \| (1 + |x|) \nabla \Phi \|_{L^2} \leq \epsilon \quad (n \geq 3), \\
\Phi = 0 &\quad (n = 2),
\end{align*}
\]

\[
\sup_{0 \leq t \leq T} \| \sigma(t) \|_{H^n} \leq \delta,
\]

and

\[M(t) \leq 1 \]

for \(t \in [0, T] \), then

\[
|I_2| + |I_4| \leq C (1 + t)^{-\frac{n}{2}} M(t) \left\{ (1 + t)^{-(\frac{n}{2} + 1)} M^2(t) + \| \nabla s_0 w_{\infty}(t) \|_2^2 \right\}
\]

for \(t \in [0, T] \). Here \(C > 0 \) is a constant independent of \(T \).

Proof. We first consider the case \(n \geq 3 \). Let us estimate \(I_2 \). For the first term of \(I_2 \), by Lemma 2.6 and Lemma 4.2 we have

\[
\left| \sum_{0 \leq |\alpha| \leq s_0 - 1} (\partial_\alpha^2 F_1(U), \partial_\alpha^2 \sigma) \right|
\leq C (\| \nabla \sigma \|_{H^{n+1}} \| w \|_{H^n} + \| \sigma \|_{H^n} \| \nabla w \|_{H^{n+1}}) \| \sigma \|_{H^n}
\leq C \{(1 + t)^{-(\frac{n}{2} + 1)} M^3(t) + (1 + t)^{-\frac{n}{2}} M(t) \| \nabla s_0 w_{\infty} \|_2 \}.
\]

By Lemma 2.6, the second term of \(I_2 \) is estimated as

\[
\left| \sum_{|\alpha| = s_0} (\frac{-\gamma}{\rho_\infty}, w) \nabla \sigma, \partial_\alpha^2 \sigma \right| \leq C \| \nabla w \|_{H^n} \| \nabla \sigma \|_{H^{n+1}} \| \sigma \|_{H^n}
\]

We finally, we consider \(I_4 \):

\[
|I_4| = \left| \sum_{|\alpha| = s_0} \sum_{|\gamma| = 1} (\partial_\alpha^{a - \gamma} F_2(U), \partial_\alpha^{a + \gamma} w_{\infty}) + \sum_{0 \leq |\alpha| \leq s_0 - 1} (\partial_\alpha^a F_2(U), \partial_\alpha^{a} \sigma) \right|
\leq \sum_{|\alpha| = s_0} \left| \sum_{|\gamma| = 1} (\partial_\alpha^{a - \gamma} F_2(U), \partial_\alpha^{a + \gamma} w_{\infty}) \right| + \sum_{0 \leq |\alpha| \leq s_0 - 1} \left| \partial_\alpha^a F_2(U) \right| \| \nabla w_{\infty} \|_2
\leq \left(\sum_{0 \leq |\alpha| \leq s_0 - 1} \left| \partial_\alpha^a F_2(U) \right| \right) \| \nabla w_{\infty} \|_2
\]

Let us estimate \(\| \partial_\alpha^a F_2(U) \|_2 \) for \(|\alpha| \leq s_0 - 1 \). \(F_2(U) \) is written as

\[
F_2(U) = R_0(w) \cdot \nabla w + R_1(\sigma, x) \nabla w + R_2(\sigma, x) \nabla (\nabla \cdot w) + R_3(\sigma, x) \sigma + R_4(\sigma, x) \nabla \sigma,
\]

where

\[
R_0(w) = -\gamma w
\]

\[
R_1(\sigma, x) = -\mu_1 \frac{\rho_\infty}{\rho_s(\rho_\infty \sigma + \rho_\infty)} \sigma, \quad R_2(\sigma, x) = -\mu_2 \frac{\rho_\infty}{\rho_s(\rho_\infty \sigma + \rho_\infty)} \sigma,
\]

22
There holds the inequality

\[
R_3(\sigma, x) = \frac{\rho_\infty^2 \nabla \rho}{\gamma} \left(\frac{P''(\rho_\ast)}{\rho_\ast (\rho_\infty \sigma + \rho_\ast)} - \frac{P'(\rho_\ast)}{\rho_\ast^2 (\rho_\infty \sigma + \rho_\ast)} \right) - \frac{1}{\rho_\infty \sigma + \rho_\ast} \int_0^1 (1 - s) P'''(s \rho_\infty \sigma + \rho_\ast) ds \right) \sigma,
\]

\[
R_4(\sigma, x) = \frac{\rho_\infty^2}{\gamma} \left(\frac{P'(\rho_\ast)}{\rho_\ast (\rho_\infty \sigma + \rho_\ast)} - \frac{1}{\rho_\infty \sigma + \rho_\ast} \int_0^1 P'''(s \rho_\infty \sigma + \rho_\ast) ds \right) \sigma.
\]

From Lemma 2.2 and Lemma 2.6, we have

\[
\| \partial_x^\alpha (R_0(w) \cdot \nabla w) \|_2 \leq C \| \nabla w \|_{H^{s_0-1}}^2,
\]

\[
\| \partial_x^\alpha \left(R_1(\sigma, x) \Delta w \right) \|_2 \leq C \| \nabla \sigma \|_{H^{s_0-1}} \| \Delta w \|_{H^{s_0-1}},
\]

\[
\| \partial_x^\alpha \left(R_2(\sigma, x) \nabla (\nabla \cdot w) \right) \|_2 \leq C \| \nabla \sigma \|_{H^{s_0-1}} \| \nabla (\nabla \cdot w) \|_{H^{s_0-1}},
\]

\[
\| \partial_x^\alpha \left(R_3(\sigma, x) \right) \|_2 \leq C \| \nabla \sigma \|_{H^{s_0-1}} \| \sigma \|_{H^{s_0-1}},
\]

\[
\| \partial_x^\alpha \left(R_4(\sigma, x) \nabla \sigma \right) \|_2 \leq C \| \nabla \sigma \|_{H^{s_0-1}} \| \nabla \sigma \|_{H^{s_0-1}}.
\]

We thus obtain

\[
|I_4| \leq C (1 + t)^{-\frac{4}{3}} M(t) \left\{ (1 + t)^{-\frac{n+1}{2}} M^2(t) + \| \nabla^{s_0+1} w(t) \|_2^2 \right\}.
\]

When \(n = 2 \), by using the Hölder and Sobolev inequalities we see that

\[
|I_2| + |I_4| \leq C (1 + t)^{-\frac{4}{3}} M(t) \left\{ (1 + t)^{-\frac{n+1}{2}} M^2(t) + \| \nabla^{s_0+1} w(t) \|_2^2 \right\}.
\]

This completes the proof. \(\square \)

Proposition 5.9. There holds the inequality

\[
\sum_{0 \leq |\alpha| \leq s_0 - 1} \frac{d}{dt} \left(\partial_x^\alpha w(t), \partial_x^\alpha \nabla \sigma(t) \right) + \frac{\gamma}{2} \| \partial_x^\alpha \nabla \sigma(t) \|_2^2 \leq C \| \nabla w(t) \|_{H^{s_0}}^2 + \sum_{i=1}^4 J_i \tag{35}
\]

for a.e. \(t \in (0, T) \), where,

\[
J_1 = \sum_{0 \leq |\alpha| \leq s_0 - 1} |(\partial_x^\alpha Q_{\infty} B_1 U, \partial_x^\alpha \nabla \cdot w(t))|,
\]

\[
J_2 = \sum_{0 \leq |\alpha| \leq s_0 - 1} |(\partial_x^\alpha Q_{\infty} F_1 (U), \partial_x^\alpha \nabla \cdot w(t))|,
\]

\[
J_3 = C \sum_{0 \leq |\alpha| \leq s_0 - 1} |(\partial_x^\alpha B_2 U, \partial_x^\alpha \nabla \sigma(t))|,
\]

\[
J_4 = \sum_{0 \leq |\alpha| \leq s_0 - 1} |(\partial_x^\alpha Q_{\infty} F_2 (U), \partial_x^\alpha \nabla \sigma(t))|.
\]

Proof. Let \(|\alpha| \leq s_0 - 1 \). We take the inner-product of \(\partial_x^\alpha (22)_2 \) with \(\partial_x^\alpha \nabla \sigma \) to obtain

\[
(\partial_x^\alpha \partial_t w(t), \partial_x^\alpha \nabla \sigma(t)) + \gamma \| \partial_x^\alpha \nabla \sigma(t) \|_2^2
= \mu_1 (\partial_x^\alpha \Delta w(t), \partial_x^\alpha \nabla \sigma) + \mu_2 (\partial_x^\alpha \nabla \cdot (\nabla w(t)), \partial_x^\alpha \nabla \sigma(t))
+ (\partial_x^\alpha Q_{\infty} F_2 (U), \partial_x^\alpha \nabla \sigma(t)) - (\partial_x^\alpha Q_{\infty} B_2 U, \partial_x^\alpha \nabla \sigma(t)). \tag{36}
\]
We next take the inner-product of $\partial^\alpha_x (22)_1$ with $-\partial^\alpha_x \nabla \cdot w_\infty$ to obtain

\begin{align*}
- (\partial^\alpha_x \partial_t \sigma, \partial^\alpha_x \nabla \cdot w_\infty) &= + \gamma (\partial^\alpha_x (\nabla \cdot w_\infty), \partial^\alpha_x \nabla \cdot w_\infty) \\
- (\partial^\alpha_x Q_\infty B_1 U, \partial^\alpha_x \nabla \cdot w_\infty) &- (\partial^\alpha_x Q_\infty F_1(U), \partial^\alpha_x \nabla \cdot w_\infty),
\end{align*}

(37)

Since

$$
\mu_1(\partial^\alpha_x \triangle w_\infty, \partial^\alpha_x \nabla \sigma) \leq C ||\partial^\alpha_x \triangle w_\infty||^2 + \frac{\gamma}{4} ||\partial^\alpha_x \nabla \sigma||^2,
$$

and

$$
\mu_2(\partial^\alpha_x \nabla \cdot (\nabla w_\infty), \partial^\alpha_x \nabla \sigma) \leq C ||\partial^\alpha_x \triangle w_\infty||^2 + \frac{\gamma}{4} ||\partial^\alpha_x \nabla \sigma||^2,
$$

by adding (36) and (37), we obtain the desired inequality

\begin{align*}
\sum_{0 \leq |\alpha| \leq s_0 - 1} \frac{d}{dt} (\partial^\alpha_x w_\infty(t), \partial^\alpha_x \nabla \sigma(t)) + \frac{\gamma}{2} ||\nabla \partial^\alpha_x \sigma(t)||^2 &
\leq C (\|\nabla w\|^2_{H^{s_0}} + \sum_{0 \leq |\alpha| \leq s_0 - 1} |(\partial^\alpha_x Q_\infty B_1 U, \partial^\alpha_x \nabla \cdot w_\infty)| + |(\partial^\alpha_x Q_\infty F_1(U), \partial^\alpha_x \nabla \cdot w_\infty)| \\
&+ |(\partial^\alpha_x B_2 U, \partial^\alpha_x \nabla \sigma)| + |(\partial^\alpha_x Q_\infty F_2(U), \partial^\alpha_x \nabla \sigma)|)
\end{align*}

(38)

for a.e. $t \in [0, T]$. In fact, let $h \in C_0^\infty (0, T)$ and let η_ϵ is standard Friedrichs mollifier, as for the first term on the left hand side of (38)

\begin{align*}
\int_0^T (\partial^\alpha_x \partial_t w_\infty, \partial^\alpha_x \nabla \eta_\epsilon \ast \sigma) dt \\
= \int_0^T \frac{d}{dt} (\partial^\alpha_x w_\infty, \partial^\alpha_x \nabla \eta_\epsilon \ast \sigma) dt - \int_0^T (\partial^\alpha_x w_\infty, \partial^\alpha_x \partial_t (\nabla \eta_\epsilon \ast \sigma)) dt \\
= - \int_0^T (\partial^\alpha_x w_\infty, \partial^\alpha_x \nabla (\eta_\epsilon \ast \sigma)) \frac{d}{dt} \eta_\epsilon dt + \int_0^T (\partial^\alpha_x \nabla \cdot w_\infty, \eta_\epsilon \ast \partial_t \partial^\alpha_x \sigma) dt.
\end{align*}

(39)

Since $\partial^\alpha_x w_\infty, \partial^\alpha_x \nabla \cdot w_\infty, \partial^\alpha_x \partial_t \sigma$ and $\partial^\alpha_x \partial_t \sigma$ are in $C([0, T]; L^2)$ for $|\alpha| \leq s_0 - 1$, letting $\epsilon \to 0$ in (39) we can obtain by similar to proof of Lemma 5.6

\begin{align*}
(\partial^\alpha_x w_\infty, \partial^\alpha_x \nabla \sigma) &= \frac{d}{dt} (\partial^\alpha_x w_\infty, \partial^\alpha_x \nabla \sigma) + (\partial^\alpha_x \nabla \cdot w_\infty, \partial^\alpha_x \partial_t \sigma)
\end{align*}

for a.e. $t \in [0, T]$.

This completes the proof. \hfill \Box

\textbf{Proposition 5.10.} Let $n \geq 3$. There exists a $\epsilon > 0$ such that if

$$
\|\Phi\|_{H^{s_0+1}} + \|(1 + |x|) \nabla \Phi\|_{L^2} \leq \epsilon,
$$

$$
\sup_{0 \leq t \leq T} \|\sigma(t)\|_{H^{s_0}} \leq \delta,
$$

and

$$
M(t) \leq 1
$$

24
for \(t \in [0, T] \), then there holds
\[
|J_1| + |J_3| \leq C e \{ (1 + t)^{-\frac{n+2}{2}} M^2(t) + \| \nabla^{s_0+1} w(t) \|_2^2 \}.
\]

for \(t \in [0, T] \). Here \(C > 0 \) is a constant independent of \(T \).

The proof is similar to that of Proposition 5.7. We omit it.

Proposition 5.11. There exists a \(\epsilon > 0 \) such that if
\[
\left\{ \begin{array}{ll}
\| \Phi \|_{H^{s_0+1}} + \| (1 + |x|) \nabla \Phi \|_{L^2} \leq \epsilon & (n \geq 3), \\
\Phi = 0 & (n = 2),
\end{array} \right.
\]
\[
\sup_{0 \leq t \leq T} \| \sigma(t) \|_{H^{s_0}} \leq \delta,
\]
and
\[
M(t) \leq 1
\]

for \(t \in [0, T] \), then there hold
\[
|J_2| + |J_4| \leq C (1 + t)^{-\frac{n}{4}} M(t) \{ (1 + t)^{-\frac{n+2}{2}} M^2(t) + \| \nabla^{s_0+1} w(t) \|_2^2 \}
\]

for \(t \in [0, T] \). Here \(C > 0 \) is a constant independent of \(T \).

The proof is similar to that of Proposition 5.8. We omit it.

Proposition 5.12. There exists a \(\epsilon > 0 \) such that if
\[
\left\{ \begin{array}{ll}
\| \Phi \|_{H^{s_0}} + \| (1 + |x|) \nabla \Phi \|_{L^2} \leq \epsilon & (n \geq 3), \\
\Phi = 0 & (n = 2),
\end{array} \right.
\]
\[
\sup_{0 \leq t \leq T} \| \sigma(t) \|_{H^{s_0}} \leq \delta,
\]
and
\[
M(t) \leq 1
\]

for \(t \in [0, T] \), then there holds
\[
\frac{d}{dt} E_\infty(t) + C_1 E_\infty(t) + C_2 D_\infty(t) \leq C e (1 + t)^{-\frac{n}{2} - \frac{3}{4}} M^2(t)
\]
\[
+ C(1 + t)^{-\frac{3n+4}{4}} M^3(t) + C(1 + t)^{-\frac{n}{2}} M(t) D_\infty(t)
\]

(40)

for \(t \in [0, T] \). Here, \(E_\infty(t) \) and \(D_\infty(t) \) are equivalent to \(\| U_\infty(t) \|_{H^{s_0}}^2 \) and \(\| \nabla w_\infty(t) \|_{H^{s_0}}^2 + \| \nabla \sigma_\infty(t) \|_{H^{s_0-1}}^2 \) respectively. That is, there exist \(d_1, d_2 > 0 \) such that
\[
\frac{1}{d_1} E_\infty(t) \leq \| U_\infty(t) \|_{H^{s_0}}^2 \leq d_1 E_\infty(t),
\]
\[
\frac{1}{d_2} D_\infty(t) \leq \| \nabla w_\infty(t) \|_{H^{s_0}}^2 + \| \nabla \sigma_\infty(t) \|_{H^{s_0-1}}^2 \leq d_2 D_\infty(t).
\]
Proof. We add \(\kappa \times (23) \) to (35) with a constant \(\kappa > 0 \) to be determined later. Then, by Proposition 5.7 and Proposition 5.11, we obtain

\[
\frac{d}{dt} \left(\frac{\kappa}{2} \| U_\infty \|_{H^s_0}^2 + \sum_{0 \leq |\alpha| \leq s_0 - 1} (\partial_x^2 w_\infty, \partial_x^\alpha \nabla \sigma_\infty) \right) + \kappa \left(\sum_{0 \leq |\alpha| \leq s_0} \mu_1 \| \nabla \partial_x^\alpha w_\infty \|_2^2 + \mu_2 \| \nabla \cdot \partial_x^\alpha w_\infty(t) \|_2^2 \right) + \frac{\gamma}{2} \| \nabla \sigma_\infty \|_{H^{s_0-1}}^2
\]

\[
\leq C \sum_{0 \leq |\alpha| \leq s_0 - 1} \| \partial_x^\alpha \nabla w_\infty \|_{H^{s_0-1}}^2 + C \epsilon \left((1 + t)^{-\frac{n+4}{2}} M(t)^2 + \| \nabla^{s_0+1} w_\infty \|_2^2 \right) + C(1 + t)^{-\frac{n+2}{2}} M(t)^2 + \| \nabla^{s_0+1} w_\infty \|_2^2.
\]

(41)

We set

\[
E_\infty(t) = \frac{\kappa}{2} \| U_\infty(t) \|_{H^s_0}^2 + \sum_{0 \leq |\alpha| \leq s_0 - 1} (\partial_x^2 w_\infty(t), \partial_x^\alpha \nabla \sigma_\infty(t)),
\]

\[
D_\infty(t) = \frac{\kappa}{2} \sum_{0 \leq |\alpha| \leq s_0} (\mu_1 \| \nabla \partial_x^\alpha w_\infty(t) \|_2^2 + \mu_2 \| \nabla \cdot \partial_x^\alpha w_\infty(t) \|_2^2) + \frac{\gamma}{2} \| \nabla \sigma_\infty(t) \|_{H^{s_0-1}}^2.
\]

For each \(\kappa > 0 \), \(D_\infty(t) \) and \(\| \nabla w_\infty(t) \|_{H^{s_0}}^2 + \| \nabla \sigma_\infty(t) \|_{H^{s_0-1}}^2 \) are equivalent. Since

\[
\left| \sum_{0 \leq |\alpha| \leq s_0} (\partial_x^2 w_\infty(t), \partial_x^\alpha \nabla \sigma_\infty(t)) \right| \leq C' \| U_\infty(t) \|_{H^s_0}^2,
\]

if \(\kappa \) is fixed in such a way that \(\kappa > 2C' \), then one can see that \(E_\infty(t) \) and \(\| U_\infty(t) \|_{H^s_0}^2 \) are equivalent. With this \(\kappa > 0 \), we see from (41) that

\[
\frac{d}{dt} E_\infty(t) + 2C_2 D_\infty \leq C \epsilon (1 + t)^{-\frac{n+4}{2} - \frac{1}{2}} M^2(t)
\]

\[
+ C(1 + t)^{-\frac{n+4}{4}} M^3(t) + C(1 + t)^{-\frac{7}{4}} M(t) D_\infty(t).
\]

(42)

By Lemma 4.2, we have

\[
E_\infty(t) \leq CD_\infty(t).
\]

This, together with (42), gives the desired inequality (40). \(\square \)

5.3 Proof of Theorem 3.4.

Proposition 5.13. There exists a constant \(\epsilon_2 > 0 \) such that if

\[
\| U_0 \|_{H^s_0 \cap L^1}^2 \leq \epsilon_2,
\]

then there holds

\[
M(t) \leq C \| U_0 \|_{H^s_0 \cap L^1}
\]

for \(0 \leq t \leq T \), where the constant \(C \) does not depend on \(T \).
Proof. By (40) we have

\[
E_\infty(t) + C_2 \int_0^t e^{-C_1(t-\tau)} D_\infty(\tau) d\tau \\
\leq e^{-C_1 t} E_\infty(0) + C \epsilon M^2(t) \int_0^t e^{-C_1(t-\tau)} (1 + \tau)^{-\frac{n+2}{2}} d\tau \\
+ C \{ M^3(t) \int_0^t (1 + \tau)^{-\frac{3n+4}{4}} e^{-C_1(t-\tau)} d\tau \\
+ M(t) \int_0^t (1 + \tau)^{-\frac{n}{2}} e^{-C_1(t-\tau)} D_\infty(\tau) d\tau \} \\
\leq e^{-C_1 t} E_\infty(0) + C \epsilon (1 + t)^{-\frac{n+2}{2}} M^2(t) + C(1 + t)^{-\frac{3n+4}{4}} M^3(t) \\
+ C M(t) \int_0^t e^{-C_1(t-\tau)} D_\infty(\tau) d\tau.
\]

(43)

We set \(D_\infty(t) := (1 + t)^{\frac{n+2}{2}} \int_0^t e^{-C_1(t-\tau)} D_\infty(\tau) d\tau \). Since \(\frac{3n+4}{4} > \frac{n+2}{2} \), we see from (43) that

\[
M^2_\infty(t) + C_2 D_\infty(t) \leq C \left(E_\infty(0) + \epsilon M^2(t) + M^3(t) + C M(t) D_\infty(t) \right).
\]

This, together with Proposition 5.3, gives

\[
M^2(t) + C_2 D_\infty(t) \leq C \left(E_\infty(0) + \| U_0 \|^2 \| \sigma_0 \|_{H^0} + M^4(t) + M^3(t) + M(t) D_\infty(t) + \epsilon M^2(t) \right).
\]

By taking \(\epsilon > 0 \) suitable small, we obtain

\[
M^2(t) + C_2' D_\infty(t) \leq C_3 \left(\| U_0 \|^2 \| \sigma_0 \|_{H^0} + M^4(t) + M^3(t) + M(t) D_\infty(t) \right).
\]

(44)

We observe that there exists a constant \(C_4 > 0 \) such that

\[
M(t) \leq C_4 \| U_0 \|_{H^0}.
\]

Since \(M(t) \) is continuous in \(t \), there exists \(t_0 > 0 \) such that

\[
M(t) < 2C_4 \| U_0 \|_{H^0}.
\]

for all \(t \in [0, t_0] \). Moreover there exists constants \(C_6 > 0 \) and \(C_7 \) such that

\[
\| \sigma_0 \|_{H^0} + \| u_0 \|_{H^0} \leq C_6 M(0).
\]

We set \(C_5 := \max \left\{ \sqrt{\frac{C_1}{C_3}}, C_4 \right\} \), and take \(\epsilon_2 \) in such a way that \(0 < \epsilon_2 < \min \left\{ \frac{1}{4C_5^2}, \frac{\delta}{4C_5^2}, \frac{\epsilon_1^2}{2C_4^2}, \frac{1}{16C_5^2C_6^2}, \frac{C_7^2}{16C_5^2C_6^2} \right\} \). We will show \(M(t) < 2C_5 \| U_0 \|_{H^0}, \; 0 \leq t \leq T \).

Assume that there exists \(t_1 \in (t_0, T] \) such that

\[
M(t) < 2C_5 \| U_0 \|_{H^0}.
\]

27
for $0 \leq t < t_1$ and
\[M(t_1) = 2C_5 \| U_0 \|_{H^s \cap L^1}. \]
It then follows from (44) that
\[
M^2(t) + C'_2 D_\infty(t) \leq C_3 \| U_0 \|^2_{H^s \cap L^1} + C_3 M(t) \left(M^2(t) + D_\infty(t) \right)
\]
\[
< C_3 \| U_0 \|^2_{H^s \cap L^1} + \frac{1}{2} \left(M^2(t) + C'_2 D_\infty(t) \right)
\]
for $t \in [0, t_1]$, and hence,
\[
M^2(t) + C'_2 D_\infty(t) < 2C_3 \left(E_\infty(0) + \| U_0 \|^2_{L^1 \cap L^2} \right)
\]
\[
\leq 4C_3^2 \| U_0 \|^2_{H^s \cap L^1}
\]
for $t \in [0, t_1]$. But this contradicts to $M(t_1) = 2C_5 \| U_0 \|_{H^s \cap L^1}$. We thus conclude that
\[M(t) < 2C_5 \| U_0 \|_{H^s \cap L^1} \]
for all $0 \leq t \leq T$. □

It follows from Theorem 3.3 and Proposition 5.13 that
\[M(t) \leq C_0 \quad \text{for all } t. \]

Hence we obtain the desired decay estimate in Theorem 3.4.

Acknowledgment: The author would like to thank Professor Yoshiyuki Kagei for his valuable advice.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbb{H}-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANA & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitean symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

Chikashi ARITA
Queueing process with excluded-volume effect

Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type\((A_2 + A_1)^{(1)}\)

Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAIITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAIITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier-Stokes equations with potential force