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Human anti‐programmed death‐1 (PD‐1) antibody possesses the capability to revitalize

host T cells and has been an effective therapy for metastatic malignant melanoma (MM).

The precise subsets of T cells predominantly activated by anti‐PD‐1, however, have not

yet been clarified. In this study, peripheral blood mononuclear cells obtained from MM

patients scheduled to receive anti‐PD‐1 (nivolumab) therapy, and healthy subjects (HS),

were systematically examined on flow cytometry to identify changes in the proportion of

immune cell subsets. Compared with HS, MM patients prior to therapy had an increased

proportion of activated CD8+ T cells with effector memory phenotypes (Tem), and PD‐1
positive subsets of CD4+ central memory T cells (Tcm) and T‐helper (Th)17 cells. After a

single course of anti‐PD‐1 therapy, MM patients had an increase in activated Tem and

Tcm subsets of CD4+ and CD8+ T cells, and activated Th1 plus T-helper follicular 1 cells.

There was no consistent change in the proportion of Tfh cells, B cells, natural killer cells,

or dendritic cells. The observed activated phenotypes were attenuated during the course

of therapy, but regulatory T cells belonging to the CD3+CD4+CD45RO+CD25high frac-

tion increased at disease progression. Taken together, anti‐PD‐1 therapy modulates sys-

temic immune reactions and exerts anti‐tumor effects, not only by revitalizing Tem and

Tcm of CD4+ and CD8+ T cells, but also via a shift to a Th1 phenotype.
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1 | INTRODUCTION

Tumor antigen‐specific immune reactions in the host induce tumor

growth suppression and can lead to its eradication. Tumor antigens

are incorporated by antigen‐presenting cells (APC), such as dendritic

cells (DC), and are presented to naïve T cells (Tn) in the secondary

lymphoid organs. The T cells sensitized by tumor antigens

subsequently leave these organs and reach tumor tissues via the sys-

temic circulation.1 The proportion of tumor antigen‐specific T cells

among the tumor‐infiltrating lymphocyte (TIL) population is thought

to increase by selective homing and proliferation in the tumor tissue,

and the immune cell composition is thus often different to that of

the peripheral blood.2 The precise composition of TIL can be corre-

lated with the prognosis of various types of cancer, including
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malignant melanoma (MM).3 In contrast, the immune cell composition

of the peripheral blood does not necessarily reflect anti‐tumor activ-

ity because it is influenced by systemic conditions. Despite the fact

that a correlation between peripheral blood immune cell composition

and anti‐tumor activity has not been clearly established, profiling of

peripheral blood lymphocytes is attractive because it can potentially

provide a frequent and comprehensive analysis of ongoing anti‐tumor

immune activity in patients. In the case of MM patients, peripheral

blood CD16‐ natural killer (NK) cells are expanded and monocytes

decreased compared with healthy subjects (HS).4,5

Programmed death‐1 (PD‐1) is a type I membrane glycoprotein of

50‐55 kD expressed on the cell surface of T cells and B cells.6 In T

cells, the expression of PD‐1 protein is promoted by antigen presenta-

tion. Additionally, in patients with chronic infection or cancer, PD‐1 is

strongly expressed on exhausted T cells, which are mainly induced by

continuous activation signaling. PD‐1‐expressing T cells receive an

inhibitory signal after binding to the ligands PD‐L1 and PD‐L2,
expressed on APC and tumor cells, resulting in the suppression of pro-

liferation, cytokine production, and cytotoxic activity.7 Human anti‐
PD‐1 antibody has been developed as an anti‐tumor agent and exhi-

bits remarkable efficacy in the treatment of MM, non‐small cell lung

cancer, renal cell carcinoma, lymphoma, and head and neck cancer.8

The human anti‐PD‐1 antibody, nivolumab, demonstrated a significant

survival benefit in chemotherapy‐refractory MM and in first‐line
chemotherapy for MM compared with dacarbazine.9,10

Anti‐PD‐1 antibody is thought to activate tumor‐specific T cells by

interfering with the ligation of PD‐1 expressed on tumor‐specific CD8+
T cells, and PD‐L1/L2 on tumor cells. Thus, modulation of PD‐1‐positive
T cells in the tumor site has been thought to be a major aspect of the

effectiveness of the PD‐1 blockade strategy.7 In addition, PD‐1‐expres-
sing T cells are observed in secondary lymphoid organs. Activated effec-

tor T cells (Te), induced by antigen presentation by APC, express PD‐1,
and cytotoxic T‐lymphocyte‐associated protein 4 (CTLA‐4).11 Therefore,
in cancer patients receiving anti‐PD‐1 therapy, anti‐tumor effects may

be both directly and indirectly attributable to the inhibition of regula-

tory signaling in not only PD‐1‐positive TIL, but also PD‐1‐positive T

cells in the secondary lymphoid organs and peripheral blood. The

effects of anti‐PD‐1 on T cell subsets other than TIL, and the subse-

quent impact on the systemic immune system, however, have not yet

been elucidated. In the present study, we systematically analyzed

peripheral blood immune cell subsets obtained from MM patients

before and after anti‐PD‐1 therapy, referencing standardized assays

from the Human Immunology Project,12 and demonstrate that PD‐1
blockade induces activation of effector memory T cells (Tem) and cen-

tral memory T cells (Tcm) of CD4+ and CD8+ T cells, and T‐helper (Th)
1 cells, and can modulate systemic anti‐tumor immunity.

2 | MATERIALS AND METHODS

2.1 | Patients

A total of 10 patients with advanced MM who were scheduled to

receive the anti‐PD‐1 antibody nivolumab, from January 2015 to

May 2017 at Kyushu University Hospital, Fukuoka, Japan, were reg-

istered. Nivolumab treatment was carried out following standard

methods. I.v. nivolumab (3 or 2 mg/kg bodyweight) was given every

2 or 3 weeks, and continued until the occurrence of significant

tumor progression, intolerable adverse events, refusal by the patient,

or doctor decision to withdraw treatment. Efficacy of the therapy

was assessed on a combination of physical examination, radiology

(including computed tomography and magnetic resonance imaging),

and gastrointestinal endoscopy, according to the response evaluation

criteria in solid tumors (RECIST) version 1.1.13 In the case of adverse

events, appropriate treatment was given, and anti‐PD‐1 therapy was

delayed until recovery from the event. Medical information from

each patient was examined using electronic records. Items surveyed

in this study included: age, sex, Eastern Cooperative Oncology Group

(ECOG) performance status, primary tumor site, BRAF mutation sta-

tus, and the number of previous systemic treatments. Details of anti‐
PD‐1 therapy and patient survival were also examined. The study

was approved by the ethics committee of Kyushu University Hospi-

tal and performed according to the guidelines for biomedical

research specified in the Declaration of Helsinki. Each patient pro-

vided written informed consent for participating in this study. Blood

samples of HS were obtained from volunteers after obtaining written

informed consent.

2.2 | Cells

Acid citrate dextrose solution‐added peripheral blood (14 mL) was

obtained from each patient prior to anti‐PD‐1 antibody in each treat-

ment cycle. Peripheral blood mononuclear cells (PBMC) were sepa-

rated by centrifugation with Ficoll (Ficoll‐Paque, GE Healthcare,

Little Chalfont, UK), washed twice with PBS containing 2% FBS and

EDTA (designated as FACS buffer), and then resuspended in FACS

buffer at 4°C for subsequent flow cytometry.

2.3 | Flow cytometry

A total of 5 × 105 PBMC in 50 μL FACS buffer were incubated with

fluorescence‐conjugated antibodies at a final concentration of 1‐
5 μg/mL for 30 minutes on ice. Then the cells were washed with

FACS buffer, resuspended in 200 μL FACS buffer, and analyzed.

Flow cytometry was performed using the FACSAria III (BD Bio-

science, Tokyo, Japan). Data were analyzed with Flow Jo version 9

(Tomy Digital Biology, Tokyo, Japan). The different sets of mono-

clonal antibodies used for the analysis of immune cell populations

are listed as follows: panel A (for the detection of memory T cells

and activated phenotypes), FITC‐CCR7/CD197 (G043H7, BD), PE‐
CD38 (HB‐7, BD), PE‐Cy7‐CD3 (UCTH1, BD), APC‐CD8 (SK1, BD),

APC‐Cy7‐CD45RA (HI100, BioLegend, San Diego, CA, USA), BV421‐
HLA‐DR (G46‐6, BD), and BV510‐CD4 (SK3, BD); panel B (for the

detection of T‐helper (Th) cells, T‐helper follicular (Tfh) cells, and PD‐
1 expression), FITC‐CCR7/CD197 (G043H7, BD), PE‐PD1/CD279

(EH12.2H7, BD), PerCP‐Cy5.5‐CD14 (M5E2, BD), PerCP‐Cy5.5‐CD8

(SK1, BD), PE‐Cy7‐CCR6/CD196 (G034E3, BioLegend), APC‐CXCR3/
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CD183 (G025H7, BioLegend), APC‐Cy7‐CD45RA (HI100, BioLe-

gend), BV421‐CXCR5/CD185 (RF8B2, BD), and BV510‐CD4 (SK3,

BD); panel C (for the detection of activated phenotypes of Th and

Tfh cells), FITC‐CD3 (UCTH1, BD), PE‐CD38 (HB‐7, BD), PE‐Cy7‐
CCR6/CD196 (G034E3, BioLegend), APC‐CXCR3/CD183 (G025H7,

BioLegend), APC‐Cy7‐CD8 (SK1, BD), BV421‐HLA‐DR (G46‐6, BD),

and BV510‐CD4 (SK3, BD); panel D (for the detection of regulatory

T cells [Treg]), FITC‐CD45RO (UCHL1, BD), PE‐CD127 (HIL‐7R‐M21,

BD), PerCP‐Cy5.5‐CD8 (SK1, BD), PerCP‐Cy5.5‐CD14 (M5E2, BD),

PE‐Cy7‐CCR4/CD194 (L291H4, BioLegend), APC‐CD25 (BC96, Bio-

Legend), BV421‐HLA‐DR (G46‐6, BD), APC‐Cy7‐CD3 (SK7, BioLe-

gend), and BV510‐CD4 (SK3, BD); panel E (for the detection of B

cells), FITC‐IgD (IA6‐2, BD), PE‐CD24 (ML5, BD), PerCP‐Cy5.5‐CD14

(M5E2, BD), PE‐Cy7‐CD20 (2H7, BD), APC‐CD27 (M‐T271, BD),

APC‐Cy7‐CD3 (SK7, BioLegend), BV421‐CD19 (HIB19, BD), and

BV510‐CD38 (HIT2, BD); and panel F (for the detection of NK cells,

DC and monocytes), FITC‐CD11c (B‐ly6, BD), PE‐HLA‐DR (G46‐6,
BD), PerCP‐Cy5.5‐CD3 (UCTH1, BioLegend), PE‐Cy7‐CD123 (7G3,

BD), APC‐CD19 (HIB19, BioLegend), APC‐Cy7‐CD16 (3G8, BD),

BV421‐CD56 (NCAM16.2, BD), and BV510‐CD14 (MφP9, BD).

2.4 | Cytokine production

Selected T‐cell subsets, including memory CD4+ or CD8+ T cells and

Th1 cells, were sorted using the FACSAria III. Cells (1 × 104) were then

cultured with 0.25 μL Dynabeads Human CD3/CD28 T‐Activator
(Thermo Fisher Scientific, Waltham, MA, USA) in 96‐well plates for

48 hours. Cytokine concentration in the supernatant was measured

using the LEGENDplex Human Th Panel (13‐plex; BioLegend) accord-
ing to the manufacturer's recommendations and analyzed using the

FACSAria III and the BioLegend LEGENDplex software.

2.5 | Statistical analysis

Comparison of baseline characteristics between HS and MM patients

was performed using Wilcoxon rank sum test. Comparison between

samples obtained before treatment and after each cycle of anti‐PD‐1
antibody treatment was performed using the Wilcoxon signed‐rank
test. Comparison between samples obtained before treatment and

after confirmation of the best clinical response was performed using

the Steel–Dwass test. Progression‐free survival (PFS) was examined

using Kaplan–Meier curves and analyzed on log‐rank test. P < 0.05

was considered statistically significant. All statistical analysis was car-

ried out using JMP (SAS Institute Japan, Tokyo, Japan).

3 | RESULTS

3.1 | Patients

Ten advanced MM patients were registered for this study. Median

age was 73 years (range, 57‐85 years), and the group included 4

women (Table 1). Five patients had melanoma of the skin, 4 patients

had mucosal melanoma, and 1 had melanoma of unknown origin.

Seven patients received nivolumab as first‐line therapy and 3 patients

received nivolumab as later therapy. The median number of nivolu-

mab therapy cycles was 6 (range, 3‐29 cycles). Treatment efficacy

was observed as partial response (PR) in 1 patient, stable disease (SD)

in 5 patients, and progressive disease (PD) in 4 patients. All 10

patients eventually discontinued nivolumab therapy, for reasons of

either PD (8 patients, 80%), adverse events (1 patient, 10%), or dete-

rioration of performance status (1 patient, 10%). The median follow‐
up period was 274 days (range, 76‐577 days). Median PFS was

123 days (95%CI: 65‐259 days) and median overall survival (OS) was

544 days (95%CI: 76‐not reached). Severe adverse events associated

with nivolumab were observed in 2 patients, specifically type I dia-

betes mellitus and refractory bi‐cytopenia (1 patient each). Twelve

HS were registered for this study. The median age of HS was

75 years (range, 61‐84 years); the HS also included 4 women. Age

distribution and the ratio of male and female did not differ between

the MM and HS cohorts.

A peripheral blood sample prior to nivolumab therapy could not

be obtained from 1 patient, while the assessment of Treg cells and

PD‐1 expression was not possible for another patient. Therefore, the

data prior to nivolumab therapy were analyzed from a total of 9

MM patients, and the data relating to PD‐1 expression and Treg

were analyzed from 8 patients.

3.2 | Immune cell phenotypes: HS vs MM patients

Peripheral blood immune cell subsets obtained from HS and MM

patients prior to anti‐PD‐1 therapy were analyzed on flow cytometry

(Figure 1). The proportion of CD3+CD4+ T cells in the CD3+ popu-

lation was equivalent in both HS and MM groups (Figure 1A,B). The

proportions of CD4+ T subsets, consisting of Tn

(CD3+CD4+CCR7+CD45RA+), Tcm (CD3+CD4+CCR7+CD45RA‐),
and Tem (CD3+CD4+CCR7‐CD45RA‐) were also similar between

the 2 groups. There were significantly fewer Te (CD3+CD4+CCR7‐
CD45RA+) in MM patients than HS (Figure 1A‐D).

The proportion of CD3+CD8+ T cells in the CD3+ population

was equivalent in HS and MM patients, but a significant decrease in

CD8+ Tem was observed. In terms of activated phenotypes (ie

expression of CD38 and HLA‐DR) in the CD8+ T cells, Tcm, and

Tem, the proportion of activated CD8+ Tem was significantly

increased in MM patients (Figure 1B,D). These data suggest that

while the overall proportion of CD8+ Tem decreased in MM

patients, most of the subsets were in an activated state.

The proportions of CD45RA‐CXCR5‐CXCR3+CCR6‐ (Th1) and

CD45RA‐CXCR5‐CXCR3+CCR6+ (Th1/17) cells in the CD4+ T pop-

ulation were significantly lower in MM patients compared with HS,

while the proportions of CD45RA‐CXCR5‐CXCR3‐CCR6‐ T cells

(Th2) and CD45RA‐CXCR5‐CXCR3‐CCR6+ T cells (Th17) were simi-

lar between the 2 groups (Figure 1E,F). In the analysis of Tfh sub-

sets, defined by CD4+CD45RA‐CXCR5+, the proportion of Tfh cells

in the CD4+ population did not differ between the cohorts. Indeed,

all Tfh subsets, including Tfh‐Th1, Tfh‐Th2, Tfh‐Th17, and Tfh‐Th1/
17, were similar in proportion between the 2 groups (Figure 1F). The
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proportion of activated T-helper subsets (Th2 plus Tfh2) in the

CD4+ population was significantly higher in MM patients than in HS

(Figure 1G).

We next examined the numbers of Treg in the CD4+ T cell pop-

ulation (Figure 1H,I). Significantly lower levels of all Treg fractions,

namely fraction I Treg (FrI, CD3+CD4+CD45RO‐CD25dim), fraction

II Treg (FrII; CD3+CD4+CD45RO+CD25high), and fraction III Treg

(FrIII; CD3+CD4+CD45RO+CD25dim), were observed in MM

patients compared with HS (Figure 1I). We also examined the

expression of CCR4 in each of the Treg fractions. The median pro-

portion of CCR4 positivity in Treg FrII cells in HS and in MM

patients was 98.5% and 94.8%, respectively (P = 0.169). The median

proportion of CCR4 positivity in FrI and in FrIII cells was 22.4% and

89.3% in HS, and 23.4% and 76.7% in MM patients, respectively.

Therefore, Treg FrII cells in this study were considered to represent

effector regulatory T cells.

In the analysis of B cells, naïve B cells (CD19+IgD+CD27‐) were

found to be significantly decreased, and switched memory B cells

(CD19+IgD‐CD27+) increased, in MM patients. IgM memory B cells

(CD19+IgD+CD27+), transitional B cells (CD19+CD24+CD38+),

and plasmablasts (CD19+CD20‐CD38high) showed no differences

between MM patients and HS (Figure 1J,K). The proportion of

monocytes (CD3‐CD19‐HLA‐DR+CD14low/+) in the non‐T, non‐B
immune cells was lower in MM patients, while there was no differ-

ence in the level of NK cells (CD3‐CD19‐CD56+), plasmacytoid DC

(HLA‐DR+CD14‐CD123+) or myeloid DC (HLA‐DR+CD14‐
CD11c+CD123‐) between HS and MM patients (Figure 1L,M). Taken

together, these data indicate that the peripheral blood immune cell

profile of MM patients is defined by an increase in activated CD8+

Tem, and Th2 plus Tfh2 cells, together with a decrease in the num-

ber of Th1 cells.

3.3 | PD‐1 expression in each cell population

To assess the exhaustion status of lymphocyte populations in HS

and MM patients, we measured the expression of PD‐1 in these cells

(Figure 2). In CD4+ T cells, the proportion of PD‐1‐expressing cells

did not differ between the 2 cohorts. The level of PD‐1 expression

in CD4+ Tcm and CD4+ Th17 cells, however, was significantly

higher in MM patients than in HS (Figure 2B,C). This suggest that

the central memory CD4+ T cells in MM patients have a more

prominent exhaustion phenotype than those in HS.

3.4 | Change in immune cell phenotype after anti‐
PD‐1 antibody treatment

We then assessed the change in peripheral blood immune cell sub-

sets in 9 MM patients, prior to, and after 1 cycle of, anti‐PD‐1 anti-

body treatment. The changes in the proportions of CD4+ T cells and

CD8+ T cells in the CD3+ T cell population varied in each patient

but did not show significant trends. Neither did the proportions of

Tn, Tcm, Tem, and Te subsets in the CD4+ and CD8+ T cell popula-

tions show differences after 1 cycle of treatment (Figure 3A).

Activated CD4+ or CD8+ T cells increased after anti‐PD‐1 antibody

treatment, however, particularly the Tcm and Tem phenotypes

(Figure 3B).

TABLE 1 Patient characteristics and clinical course

Characteristic
n = 10 Median (range),
n (%) or †median (95%CI)

Baseline characteristics

Age (years) 73 (57‐85)

Sex

Male 6 (60)

Female 4 (40)

ECOG PS

0 7 (70)

1 1 (10)

2 2 (20)

BRAF status (V600)

Mutant 2 (20)

Wild type 4 (40)

Unknown 4 (40)

Site of primary tumor

Skin 5 (50)

Mucosa 4 (40)

Unknown 1 (10)

M stage

M0 1 (10)

M1 9 (90)

Baseline LDH

≤ULN 5 (50)

>ULN 5 (50)

No. previous systemic treatments

0 7 (70)

1 1 (10)

>2 2 (20)

Clinical courses

Dose

2 mg/kg every 3 weeks 7 (70)

3 mg/kg every 2 weeks 3 (30)

No. cycles nivolumab 6 (3‐29)

Efficacy

ORR 10

DCR 60

PFS (days) 123 (65‐259)†

Reasons for discontinuation of nivolumab

Progressive disease 8 (80)

Adverse events 1 (10)

Deterioration of PS 1 (10)

†95%CI, 95% confidence interval.

DCR, disease control rate; ECOG, Eastern Cooperative Oncology Group;

LDH, lactate dehydrogenase; ORR, overall response rate; PFS, progres-

sion‐free survival; PS, performance status; ULN, upper limit of normal.
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F IGURE 1 Comparison of immune cell phenotypes between healthy subjects (HS, n = 12) and malignant melanoma patients (MM, n = 9). A,
Representative gating strategies used for T cell subsets: naive T cells (Tn), central memory T cells (Tcm), effector memory T cells (Tem), and effector T
cells (Te). B, Percentage of CD4+(CD8+) T cells among CD3+ lymphocytes, and percentage of CD3+CD4+(CD8+) Tn, Tcm, Tem, and Te cells among
CD3+CD4+(CD8+) T lymphocytes. C, Representative gating strategy used for cells with an activated phenotype (CD38+HLA‐DR+). D, Percentage
of cells with an activated phenotype among CD4+(CD8+) Tcm and Tem. E, Representative gating strategies for subsets of T-helper (Th) and T-helper
follicular (Tfh) cells. Subsets were: Th1, Th2, Th17, and Th1/17. F, Percentage of Th and Tfh subsets among CD4+ T lymphocytes. G, Percentage of
activated Th subsets (Th plus Tfh) among CD4+ T lymphocytes. H, Representative gating strategy for regulatory T‐cell (Treg) subsets: fraction (Fr)I,
FrII, and FrIII. I, Percentage of each Treg fraction among CD4+ T cells. J, Representative gating strategies for B‐cell subsets: naïve B cells, IgM
memory B cells, switched memory B cells or plasmablasts. K, Percentage of switched memory B cells and plasmablasts among CD19+ B cells. L,
Representative gating strategies for natural killer (NK) cells, monocytes, and dendritic cells (DC). M, Percentage of NK cells, monocytes and DC
among CD3‐CD19‐mononuclear cells
[Correction added on 24 September 2018, after first online publication: The missing X axis labels and missing symbols were added to Figure 1.]
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No significant difference in the proportion of Th and Tfh subsets

was observed in response to 1 cycle of PD‐1 treatment (Figure 3C).

The proportion of activated Th1 plus T-helper follicular (Tfh)1 cells in

the CD4+ T cell population significantly increased after therapy, but

no difference was observed for Th2 plus Tfh2, or Th17 plus Tfh17

cells (Figure 3D). We next examined the cytokine‐producing ability of

the CD4+ or CD8+ memory cells and Th1 plus Tfh1 cells to verify that

the observed proportional changes were associated with functional

alteration. Paired PBMC samples obtained before and after therapy

were available in 4 patients for further analysis. Sorted CD4+ memory

T cells (CD3+CD4+CD45RA‐) were cultured with CD3/CD28 stimula-

tion for 48 hours, and cytokine concentration of the culture super-

natants was measured. In contrast to the results obtained by

measuring the proportion of T cell subsets, no significant changes in

cytokine production were observed after 1 cycle of treatment (Fig-

ure 3F). Similarly, CD8+ memory T cells (CD3+CD8+CD45RA‐), which

consisted of Tcm and Tem, and Th1 plus Tfh1 cells (CD3+CD4+

CD45RA‐CXCR3+CCR6‐) were sorted and cultured individually, but

the production of interleukin (IL)‐2, interferon (IFN)‐γ, and tumor

necrosis factor (TNF)‐α was not found to be affected by 1 cycle of

treatment in either cell population (data not shown).

The activated Treg (FrII) fraction exhibited an increasing trend

after anti‐PD‐1 treatment (Figure 3E). In terms of B cell subsets, NK

cells, monocytes, plasmacytoid DC, and myeloid DC, however, no

significant changes were observed after anti‐PD‐1 therapy (Fig-

ure 3G,H). Taken together, peripheral blood immune cell profiles

after 1 cycle of anti‐PD‐1 therapy indicated a significant increase in

activated CD4+/CD8+ Tcm and Tem, and Th1 plus Tfh1 cells, and a

trend towards an increase in the number of Treg FrII cells.

3.5 | Specific immune cell phenotype changes
during anti‐PD‐1 antibody treatment

For immune cell subsets that showed significant changes in response

to 1 cycle of anti‐PD‐1 treatment, we followed their progression

during further rounds of therapy in 10 MM patients. The level of

activated CD4+ Tcm, CD8+ Tcm, Th1 plus Tfh1, and Treg FrII cells

over 4 cycles of therapy, is shown in Figure 4A,B. Compared with

before therapy, activated CD4+ Tcm increased after the first and

second cycles (P = 0.055 and P = 0.031, respectively), but this differ-

ence diminished after the third and fourth cycles (P = 0.078 and

P = 0.25, respectively). For activated CD8+ Tcm and Th1 plus Tfh1

cells, a similar trend was observed (Figure 4A). Activated phenotypes

of CD4+ and CD8+ Tem were also shown the similar trend (data not

shown). Compared with pre‐treatment levels, the proportion of Treg

FrII cells in the total CD4+ population tended to be higher at every

treatment cycle (P = 0.055, P = 0.047, P = 0.078, P = 0.13, and

P = 0.068, for cycles 1‐5, respectively; Figure 4B).

Samples were obtained at the point when the best clinical

responses, either PR or SD (PR/SD), or PD, were confirmed (n = 4

and 7, respectively). Treg FrII cell numbers at the point of PR/SD

were similar to pre‐treatment levels, while they tended to be higher

at the point of PD (P = 0.45 and P = 0.063; Figure 4C). Figure 4D

shows representative flow cytometry scatter plots for the transition

of Treg FrII cells in the same patient. This suggests that peripheral

blood Treg FrII cells increase immediately after anti‐PD‐1 treatment,

and continue to increase to the point of PD.

Subsequently, we evaluated the correlation between therapeutic

effect and changes in the proportion of each immune cell subset by

comparing patients who had anti‐tumor effects (PR/SD) with those

patients without response (PD). Of all subsets examined in this

study, we found that CD19+CD27+ memory B cells, including IgM

memory B cells and switched memory B cells, tended to increase

after 1 treatment cycle in PD patients. In contrast, the opposite

trend was observed in PR/SD patients (Figure 4E,F).

3.6 | Baseline immune cell phenotype and
prognosis

Finally, the correlation between baseline immune cell phenotype and

prognosis was assessed (Figure 5A,B). We divided 9 MM patients into

2 groups based on the median proportion of CD8+ Tem in the total

CD8+ population (%CD8+ Tem) prior to nivolumab therapy. We

defined patients in whom the proportion of CD8+ Tem was higher

than the median as “%CD8+ Tem‐high” and those with a lower num-

ber of CD8+ Tem cells as “%CD8+ Tem‐low”. Anti‐PD‐1 therapy PFS

in the %CD8+ Tem‐low group was significantly longer than in the %

CD8+ Tem‐high group (P = 0.016; Figure 5A). No significant differ-

ences in PFS were seen, however, when dividing patients into groups

based on the proportions of other subsets of CD8+ and CD4+ T cells.

Next, we assessed the effect of the PD‐1 expression of T cell

populations (CD4+ Tn, CD4+ Tcm, CD4+ Tem, and CD4+ Te) on

PFS. To do this, we similarly divided patients into “%PD‐1‐high” and

“%PD‐1‐low” groups, based on the median proportion of PD‐1
expression in each CD4+ T subset. Patients with high PD‐1 in effec-

tor memory and effector subsets, such as CD4+ Tem and Te, tended

to have shorter survival, but this did not reach statistical significance.

Figure 5B shows the survival curves for patients grouped according

to the PD‐1 expression level in CD4+ Tem.

Finally, we also examined the significance of memory B cells after

1 cycle of nivolumab in regard to prognosis. Nine patients were

divided into 2 groups, “Δ%‐switched memory B‐high” and “Δ%‐
switched memory B‐low”, based on the median difference in propor-

tion following 1 cycle of treatment. In this analysis, we found that the

Δ%‐switched memory B‐high group tended to show worse prognosis

(Figure 5C).

4 | DISCUSSION

In the present study, activated CD8+ Tem and Th2 plus Tfh2

cells were more frequently observed in MM patients than in HS,

suggesting an effect of tumor‐induced chronic inflammation.

Peripheral blood T cells exhibiting memory and effector pheno-

types, however, do not necessarily possess anti‐tumor activity,

because they may include non‐tumor‐specific T cells, and because
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they may be cells that are exhausted by continuous tumor antigen

presentation.

The ability of PD‐1‐positive exhausted T cells in tumor‐bearing
patients to exert tumor‐specific cytotoxicity is thought to be

restored by systemic administration of anti‐PD‐1 antibody. With this

in mind, we analyzed the change in peripheral blood immune cell

subsets in MM patients before and after 1 cycle of anti‐PD‐1 treat-

ment. The direct effect of anti‐PD‐1 antibody on PD‐1 expressing

cells residing in secondary lymphoid tissues and the peripheral blood

is not yet well understood. Although the in vitro, treatment-induced

activation of a Th1 subset by cytokine-production was not clearly

shown, our observation of an increased proportion of activated Th1

plus Tfh1 cells in response to therapy is notable. In terms of the

cytokine analysis, we should consider the possible effects of freezing

on the condition of the stocked cells and the limitations of a small

sample size to assess statistical significance.

The possible effects of interfering with the PD‐1/PD‐L1 axis of T

cell‐APC interactions can be considered in terms of 2 response

phases. First, initial antigen presentation to Tn by DC in the sec-

ondary lymphoid tissues induces differentiation to Th1 or Tfh sub-

sets in the presence of IL‐12.14 Given that PD‐1 is expressed during

Tn‐APC interactions, and negative signaling via PD‐1 is thought to
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F IGURE 3 Change in immune cell phenotypes after anti‐programmed death (anti‐PD)‐1 antibody treatment (n = 9). A, Proportion of
CD4+(CD8+) T cells among CD3+ T lymphocytes, and CD4+(CD8+) naive T cells (Tn), central memory T cells (Tcm), effector memory T cells
(Tem), and effector T cells (Te) among CD4+(CD8+) T cells. B, Proportion of activated CD4+(CD8+) central/effector memory cells. C, Proportion
of T-helper (Th), T-helper follicular (Tfh) cells, and Th subsets among CD4+ T cells. D, Proportion of activated Th subsets (Th plus Tfh) among
CD4+ T cells. E, Proportion of regulatory T cells (Treg) fractions (Fr I, II and III) among CD4+ T cells. F, CD4+ memory T cells
(CD3+CD4+CD45RA‐) were sorted and cultured with CD3/CD28 stimulation for 48 h. Culture supernatants were analyzed for the quantification
of different cytokines by LEGENDplex (BioLegend, San Diego, CA, USA). The concentration is shown as the production per 104 cells. G,
Proportion of naïve B cells, IgM memory B cells, switched memory B cells and plasmablasts among CD19+ B cells. H, Proportion of natural killer
(NK) cells, monocytes, and dendritic cells (DC) among CD3‐CD19‐ mononuclear cells. Cycle 0, pre‐treatment, that is, prior to the first PD‐1
antibody cycle; cycle 1, post‐first treatment cycle (ie prior to the second PD‐1 antibody cycle); Matched patient samples are connected by lines
[Correction added on 24 September 2018, after first online publication: The missing X axis labels were added to Figure 3.]
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regulate T‐cell activation, anti‐PD‐1 antibodies may have the poten-

tial to increase activation of Th1 subsets. The role of PD‐1 signaling

in the process of Th1 or Tfh differentiation, however, has not been

elucidated,15,16 and thus the possible effect of anti‐PD‐1 therapy

during this phase should be further examined. Second, PD‐1‐expres-
sing exhausted Th1 cell subsets may be restored by anti‐PD‐1 anti-

bodies, with activated Th1 cells subsequently detectable in the

peripheral blood. Although the specific molecular mechanisms for

this putative process remain unclear, the present findings strongly

suggest that part of the anti‐tumor effect of PD‐1 therapy involves

additional processes beyond the direct activation of exhausted

tumor‐specific cytotoxic T cells.

The role of B cells in tumor immunity has not yet been fully elu-

cidated, but some B‐cell subsets have been reported to suppress

anti‐tumor immune responses. Indeed, the anti‐tumor activity of

cytotoxic T lymphocytes (CTL) is enhanced in B‐cell‐deficient mice,

and some B‐cell subsets are reported to suppress DC and CTL via

transforming growth factor (TGF)‐β and IL‐10.17,18 Human

CD19+CD24highCD27high B cells and CD19+CD27intCD38+ plas-

mablasts have also been reported to produce IL‐10.19,20 In the pre-

sent study, we observed that decreased ratios of memory B‐cell
populations correlated with favorable prognosis during anti‐PD‐1
treatment. It is considered that systemic PD‐1 blockade represses B‐
cell subsets that suppress anti‐tumor immunity, resulting in a thera-

peutic effect. Tfh cells residing in secondary lymphoid tissues highly

express PD‐1 and induce proliferation and differentiation of naïve B

cells presenting in the germinal center (GC). Excessive activation of

Tfh cells is thought to be regulated by PD‐1 signaling during their

interaction with GC B cells.21 Therefore, systemic PD‐1 blockade

possibly modulates humoral immunity by affecting Tfh and naïve B

cells. Further analyses are required to elucidate the functional role of

anti‐PD‐1 treatment in humoral immunity.

The recruitment of Treg, which produce regulatory cytokines such

as TGF‐β and IL‐10 in tumor tissues, is one of the important
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F IGURE 4 Changes in specific immune cell phenotypes during anti‐programmed death (PD)‐1 treatment. A, Proportion of activated CD8+
central memory T cells (Tcm), CD4+ Tcm, and T-helper (Th)1 plus T-helper follicular (Tfh)1 cells at different treatment time points. Matched
patient samples are connected by lines. Green line, average for each time point. B, Proportion of regulatory T-cell (Treg) fraction (Fr)II cells at
different treatment time points (PD, progressive disease; PR, partial response; SD, stable disease). C, Proportion of Treg FrII cells before (0) and
after treatment. D, Representative flow cytometry scatter plot of the treatment‐induced transition of Treg FrII cells in a single individual. E,
Proportion of naïve B cells, IgM memory B cells and switched memory B cells among CD19+ B cells. Matched patient samples are connected
by lines. F, Change in subset proportions following 1 cycle of nivolumab therapy
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mechanisms that tumors use to escape from immune surveillance.

Peripheral blood Treg often express CD4, CD25, and FoxP3. A recent

study proposed the classification of FoxP3‐expressing CD4+ T cells

into 3 fractions: naïve Treg (fraction I: CD45RA+, FoxP3‐low, CD4+),

effector Treg (fraction II: CD45RA‐, FoxP3‐high, CD4+), and non‐Treg
(fraction III: CD45RA‐, FoxP3‐low, CD4+).22 Although we used a

CD3+CD4+CD45RO+CD25high phenotype for detecting effector

Treg in the present study, this population expressed a high level of

CCR4, which is recognized as a molecule specifically expressed at high

levels in effector Treg. This indicates that the approach used in the

present study may adequately show the behavior of effector Treg.

T‐cell receptor (TCR) signaling via APC induces the acquisition of

effector Treg, which play a strong role in immune suppression. The

PD‐1/PD‐L1 axis might regulate the activation of naïve Treg by APC,

and thus anti‐PD‐1 treatment could affect the induction of these

cells. In the IL‐2‐induced chronic graft‐versus‐host disease (cGVHD)

mouse model, concomitant administration of low‐dose IL‐2 and anti‐
PD‐1 antibody has been found to induce an increase in peripheral

blood Treg and amelioration of cGVHD in 1 week.23 Consistent with

this, we observed that the proportion of peripheral blood effector

Treg after 2 courses of anti‐PD‐1 therapy in the present study also

increased. Interestingly, effector Treg tended to rise at the point of

PD, suggesting that this cell fraction might therefore be useful for

detecting disease progression on blood sampling. Taken together,

however, the impact of systemic PD‐1 blockade on human Treg

remains unclear, and further investigation is warranted.

In the adaptive immune system, CD4+ or CD8+ Tn differentiate

to effector cells in the first‐contact response to foreign antigens, and a

small population survives as memory subsets to prepare for antigen

re‐encounter. Among memory T cells, Tcm lymphocytes expressing

CCR7 exist mainly in the secondary lymphoid tissues, while Tem have

lower expression of CCR7 and reside mainly in local inflammatory tis-

sues.24 When Tcm and Tem re‐encounter the same antigens, Tcm pro-

liferate rapidly but produce fewer cytokines, while Tem proliferate less

but immediately produce cytokines and become cytotoxic.24 There-

fore, it has been suggested that sustained PD‐1/PD‐L1 stimulation in

the tumor microenvironment may render Tem and Te too exhausted

to respond to anti‐PD‐1 treatment. Consistent with this hypothesis,

high numbers of CD8+ Tem and a high level of PD‐1 expression in

CD4+ lymphocytes were associated with worse prognosis in this

study.

Although the proportions of several immune cell subsets, including

activated CD4+/CD8+ Tcm and Tem, and Th1 plus Tfh1 cells,

increased after the first course of anti‐PD‐1 therapy, these changes

gradually attenuated over time. Given that MM patients received anti‐
PD‐1 antibody regularly, the blood serum concentration of nivolumab

would be expected to be maintained at the target value and the effect

of PD‐1 blockade continued. Our observation of an increased propor-

tion of activated Th1 plus Tfh1 cells might relate to an unknown indi-

rect effect of the anti‐PD‐1 antibody, which could explain this

attenuation. Given that the present study examined only a small num-

ber of MM patients, analysis of the mechanistic basis for the observed

changes in immune cell representation, and their relationship with the

tumor‐suppressing effects and immune‐related adverse events of anti‐
PD‐1 therapy, requires further investigation in a larger cohort.
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(▵%) switched memory B cells before and after 1 cycle of nivolumab (n = 9; P = .50; HR, 0.32; 95%CI: 0.042‐1.96). Data were analyzed using
the log‐rank test
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