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Abstract

We propose a nonlinear regression model that uses basis expansion for the case

where the underlying regression function has inhomogeneous smoothness. In this

case, conventional nonlinear regression models tend to over- or underfit where the

function is smoother or less smooth, respectively. We begin by roughly approximat-

ing the underlying regression function with a locally linear function. We then extend

the fused lasso signal approximator and thereby develop a fast and efficient algo-

rithm. We next use the residuals between the locally linear functions and the data

to adaptively prepare the basis functions. Finally, using a regularization method,

we construct a nonlinear regression model with these basis functions. To select the

optimal value of the tuning parameter for the regularization method, we provide an

explicit form of the generalized information criterion. The validity of our proposed

method is then demonstrated through several numerical examples.
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1 Introduction

Recently, nonlinear regression models with basis expansion have received considerable

attention in various statistical and engineering fields. Basis expansion is widely used as

an effective approach for analyzing data with a complex structure. The essential idea

behind basis expansion is to represent the underlying regression function as a linear com-

bination of known nonlinear functions, which are called basis functions. In constructing

the statistical model, various basis functions, such as natural cubic splines, B-splines, and

radial basis functions (Green and Silverman 1994; de Boor 2001; Hastie et al. 2009) are

used according to the structure of the data or the purpose of the analysis.

While basis expansion is shown to work well in many situations, it is often inappropri-

ate when the underlying regression function has inhomogeneous smoothness. Let us call

the region where the function is smoother the strongly smooth region and that where it

is less smooth the weakly smooth region. Basis expansion often leads to underfitting in

the strongly smooth region and overfitting in the weakly smooth region. Loader (1999)

overcame this problem using the local likelihood, which is defined as a locally weighted

log-likelihood with weights determined by a kernel function and a bandwidth. Miyata and

Shen (2003) also resolved the problem using free-knot splines, along with the technique

of variable multiple knots and an evolutionary Monte Carlo algorithm. Although these

methods have performed well in simulations, they bear intensive computational burdens.

In this study, our aim is to estimate an underlying function with inhomogeneous

smoothness in a way that is not highly computationally demanding. To do so, we propose

a fast and efficient nonlinear regression modeling method that uses a given number of

Gaussian basis functions with a specified center and bandwidth. Our strategy is based on

the idea that the variation in the data can be decomposed as global and local variations.

We regard the global variation as that which is caught by a locally smooth function, and
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indeed we catch it by a locally linear function. Regions in which the underlying function

is weakly smooth are correlated with large local variation. Since the expression of weakly

smooth underlying functions requires many basis functions, we increase the number of

basis functions on such regions.

To achieve our aim, we perform three stages, as follow. In the first stage, the global

variation is caught by an extended fused lasso signal approximator (eFLSA) using locally

linear functions. In the second stage, we measure the magnitude of the local variation by

the residual sum of squares between the global variation function and the given data. In

the final stage, the magnitude obtained in the previous stage is used to adaptively define

basis functions. After setting these adaptive basis functions in all regions, we construct a

nonlinear regression model by using the ridge regularization method.

The remainder of this article is organized as follows. In Section 2, we describe a

framework for nonlinear regression models based on basis expansion and describe the fused

lasso signal approximator (FLSA; Friedman et al., 2007). Section 3 describes the eFLSA

and presents our procedure, which uses it. In Section 4, we investigate the performance

of our procedure by performing Monte Carlo simulations. Some concluding remarks are

presented in Section 5.

2 Background

2.1 Nonlinear regression model with basis expansion

Suppose that we have n independent observations {(xi, yi); i = 1, . . . , n} in terms of

an explanatory variable x and a response variable y. We consider a regression model

yi = g(xi) + εi, i = 1, . . . , n, (1)
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where g(·) is an unknown underlying function and the εis are independently distributed

according to N(0, σ2). It is assumed that the function g(·) can be expressed as a linear

combination of basis functions ϕk(x) (k = 1, . . . ,m) in the form

g(x;w) =
m∑
k=1

wkϕk(x) = wTϕ(x), (2)

where ϕ(x) = (ϕ1(x), . . . , ϕm(x))
T is a vector in which the components are known basis

functions and w = (w1, . . . , wm)
T is a vector in which the components are the unknown

coefficients for the basis functions. As mentioned above, the basis expansion may use

a variety of basis functions such as natural cubic splines, B-splines, and radial basis

functions (de Boor 2001; Green and Silverman 1994; Hastie et al. 2009), according to the

structure of the data and the purpose of the analysis.

From (1) and (2), the probability density function of yi is

f(yi|xi;w, σ2) =
1√
2πσ2

exp

[
−
{
yi −wTϕ(xi)

}2

2σ2

]
, i = 1, . . . , n.

Note that the unknown parameters in the model are w = (w1, . . . , wm)
T and σ2.

When the number of basis functions is large, the maximum likelihood method yields

unstable estimates (Konishi and Kitagawa 2008). Therefore, many researchers estimate

w and σ2 with a regularization method, such as the ridge method (Hoerl and Kennard

1970), the lasso method (Tibshirani 1996), or their variants (e.g., Zou and Hastie 2005;

Fan and Li 2001).

However, when the underlying function g(·) has inhomogeneous smoothness, conven-

tional regularization methods often lead to overfitting in the region where the function is

strongly smooth or underfitting where it is weakly smooth (see Figure 1). To overcome

this problem, Loader (1999) used the local likelihood method, which is specified as follows.
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Figure 1: Estimated curves based on a conventional use of basis expansion with a strong

regularization (left) and a weak regularization (right). Solid lines, broken lines, and dots

depict the estimated curves, the true regression functions, and the data, respectively.

Let kh(x, x0) be a weight function that assigns large weights to observations close to x:

kh(x, x0) = (2πh2)−
1
2 exp

{
−(x− x0)2

2h2

}
, (3)

where h is a bandwidth parameter with positive value. The local likelihood method

considers the weighted maximum likelihood at each point x0 as

L(w(x0), σ
2(x0)) =

n∑
i=1

kh(xi, x0) log f(yi|xi;w(x0), σ
2(x0)). (4)

Maximizing over the parameters w(x0) and σ
2(x0) leads to the local likelihood estimate.

This method performs well in simulations, but it bears intensive computational burdens.

Miyata and Shen (2003) proposed an effective method for estimating these functions by

using free-knot splines with variable multiple knots and an adaptive scheme for locating

the optimal knots, but it is also computationally intensive.

2.2 Fused lasso signal approximator (FLSA)

In this section, we briefly describe the FLSA (Friedman et al. 2007), which we will

extend in the next section. In the FLSA, there is one parameter per observation yi, that
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is, a model

yi = βi + εi, (i = 1, . . . , n) (5)

is considered, where εi is an error with mean zero and variance σ2, and βi is the parameter

to be estimated. The FLSA provides an estimator of β = (β1, . . . , βn)
T as

β̂ = argmin
β∈Rn

{
1

2

n∑
i=1

(yi − βi)2 + λ
n∑

i=2

|βi − βi−1|+ λ′
n∑

i=1

|βi|

}
, (6)

where λ and λ′ are tuning parameters with positive values. The first penalty encourages

sparsity in their differences, and the second encourages sparsity in the coefficients. As a

result, β̂ becomes a step function.

It is difficult to obtain β̂ in (6) exactly when the sample size n is sufficiently large.

Friedman et al. (2007) describe an algorithm to approximate β̂ quickly. The algorithm

consists of three nested cycles: a descent cycle, a fusion cycle, and a smoothing cycle. For

more details of the algorithm, see Friedman et al. (2007).

3 Proposed method

3.1 Extended FLSA

In this section, we consider an estimator of β which minimize

1

2

n∑
i=1

(yi − βi)2 + λ
n∑

i=3

|βi − 2βi−1 + βi−2|+ λ′
n∑

i=2

|βi − βi−1|+ λ′′
n∑

i=1

|βi|,

which leads to the extended FLSA (eFLSA), where λ (> 0), λ′ (> 0), and λ′′ (> 0) are

tuning parameters. The first penalty term is new, is the absolute value of the second

differences, and encourages their sparsity; the second and third penalty terms are the

same as in (6). Our aim is to use the eFLSA to obtain a locally linear regression function

that does not require that we collapse the data, i.e., we set λ′ = 0 and λ′′ = 0, and hence
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consider

β̂ = argmin
β∈Rn

h(β) = argmin
β∈Rn

{
1

2

n∑
i=1

(yi − βi)2 + λ

n∑
i=3

|βi − 2βi−1 + βi−2|

}
. (7)

In order to solve (7), we propose an eFLSA algorithm that fuses (βi+2 − βi+1) and

(βi+1−βi) for a number of i’s. To describe this model, let us define the set F = {i1, . . . , ip}

such that there is no j satisfying ij − ij−1 = 2 and such that

βij−1+2 − βij−1+1 = βij−1+3 − βij−1+2 = · · · = βij − βij−1 (8)

if ij − ij−1 ≥ 3 (1 ≤ j ≤ p), where i0 = 0 and ip = n. We call F the fusion set. Note

that βi for ij−1 < i ≤ ij can be expressed as βij − γj(ij − i), where γj = βij − βij−1. The

eFLSA algorithm updates F and estimates of β = (β1, . . . , βn)
T through the following

three nested cycles.

• Descent cycle: Update estimates of β for a given fusion set F by a coordinate wise

descent with respect to each parameter βij and γj.

• Fusion cycle: Consider the fusion of neighboring parameters to update the fusion

set F , followed by the descent cycle.

• Smoothing cycle: Increase the tuning parameter λ by a small amount, and rerun

the two previous cycles.

Note that the initial value of F is {1, . . . , n}. We describe each cycle in more detail below.

3.1.1 Descent cycle

First, we consider the descent cycle. If ij − ij−1 = 1, the derivative of (7) with respect

to βij , holding all βi = β̃i (i ̸= ij) fixed at their current estimates, is

∂h(β)/∂βij

= −(yij − βij) + λ · sign(βij − 2β̃ij−1 + β̃ij−2)

−2λ · sign(β̃ij+1 − 2βij + β̃ij−1) + λ · sign(β̃ij+2 − 2β̃ij+1 + βij), (9)
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when βij /∈ {2β̃ij−1 − β̃ij−2, (β̃ij+1 + β̃ij−1)/2, 2β̃ij+1 − β̃ij+2}. We have only to check for

zero of (9). If no solution is found, we examine the three active-constraint values for βi:

2β̃i−1 − β̃i−2, (β̃i+1 + β̃i−1)/2, and 2β̃i+1 − β̃i+2, and find the one that gives the smallest

value of the objective function h(β). On the other hand, if ij − ij−1 ≥ 3, the derivative of

(7) with respect to βij , holding the other parameters fixed at their current estimates, is

∂h(β)/∂βij

= −
ij∑

i=ij−1+1

{yi − βij − γ̃j · (ij − i)}

+λ · sign{βij − γ̃j · (ij − ij−1 − 1)− 2β̃ij−1
+ β̃ij−1−1}

−λ · sign{−βij − γ̃j · (ij − ij−1) + β̃ij−1
}

−λ · sign(β̃ij+1 − βij − γ̃j) + λ · sign(β̃ij+2 − 2β̃ij+1 + βij), (10)

and the derivative of (7) with respect to γj, holding all the other parameters fixed at their

current estimates, is

∂h(β)/∂γj

= −
ij−1∑

i=ij−1+1

(ij − i)[yi − {β̃ij − γj · (ij − i)}]

−λ · (ij − ij−1 − 1) · sign{βij − γ̃j · (ij − ij−1 − 1)− 2β̃ij−1
+ β̃ij−1−1}

+λ · (ij − ij−1) · sign{−βij − γ̃j · (ij − ij−1) + β̃ij−1
}

−λ · sign(β̃ij+1 − βij − γ̃j). (11)

We then check for zeros of (10) or (11), and if no solution is found, we examine some

active-constraint values.

3.1.2 Fusion cycle

Friedman et al. (2007) reported that the solution of the descent cycle of the FLSA

introduced in Section 2 often gets stuck, and the same problem occurs in our eFLSA. To
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overcome this problem, we considered a fusion cycle similar to that of Friedman et al.

(2007), and we checked if it would help to remove the index ij from the fusion set F , that

is, whether βij+2 − βij+1 = · · · = βij+1
− βij+1−1 and βij−1+2 − βij−1+1 = · · · = βij − βij−1

should be fused. We ran the descent cycle for the fusion set F \ {ij} and computed the

objective function. If it was smaller than the objective function for F , we updated the

fusion set from F to F \ {ij}. Note that if ij+1 − ij = ij − ij−1 = 1, F \ {ij} does not

become a fusion set. Therefore, in this case, we considered the fusion set F \ {ij, ij+1} in

place of F \ {ij}.

3.1.3 Smoothing cycle

Finally, we consider the smoothing cycle. We increased the value of the penalty λ by

a small amount and reran the two previous cycles. Note that the new optimal fusion set

will be a subset of the optimal fusion set before incrementation. Therefore, we use the

fusion set before incrementation as the initial value for the rerun cycles, which reduces

the number of computations. The smoothing cycle is then as follows:

1. Start with λ = 0, and run the descent cycle.

2. Increment λ ← λ + δ, and run the descent and fusion cycles repeatedly until no

further changes occur.

3. Repeat step 2 until a target value of λ is reached.

3.2 Nonlinear regression modeling via eFLSA

By applying our eFLSA algorithm, we obtain the β̂ that makes h(β) in (7) small, from

the final fusion set F = {i1, . . . , ip} and estimators β̂ij and γ̂j (1 ≤ j ≤ p). We can regard

β̂ as the global variation, that is, we can catch the global variation with linear functions on

the subintervals [aj−1, aj] (1 ≤ j ≤ p), where a0 = x1, aj = (xij +xij+1)/2 (1 ≤ j ≤ p−1),
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and ap = xn. Here we measure the magnitude of the local variation at each subinterval

[aj−1, aj] by using the residuals of the data from the global variation that was caught by

the eFLSA, and we propose to determine the basis functions adaptively, based on these

magnitudes.

We use a Gaussian function that is one of the ones most commonly used in basis

expansion,

ϕk(x) = exp

{
−(x− ck)2

2h2k

}
, k = 1, . . . ,m, (12)

where ck and hk are the center and bandwidth, respectively. Usually, the centers are set

at regular intervals of the data region, and the bandwidths are set to be constant. Note

that this procedure does not perform well if the underlying function has inhomogeneous

smoothness.

Our idea is to determine the number and bandwidth of the basis functions appro-

priately according to the magnitude of the local variation. Here we use dj − dj−1 as a

measure of the magnitude for the region [aj−1, aj], where

dj =

∑
xi∈[a0,aj ](yi − β̂i)

2∑
xi∈[a0,ap](yi − β̂i)2

, j = 1, . . . , p.

Then we provide the number of basis functionsmj on each subinterval [aj−1, aj] as follows:

mj = [m× dj]round − [m× dj−1]round, j = 1, . . . , p,

where [ · ]round is the round-off function. Based on mj, we determine the center ĉj,ℓ and

the bandwidth parameter ĥj for each subinterval [aj−1, aj], as follows:

ĉj,ℓ = aj−1 +

(
ℓ− 1

2

)
ĥj, ℓ = 1, . . . ,mj; j = 1, . . . , p,

and

ĥj =
aj − aj−1

mj

, j = 1, . . . , p.
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Thus, we can provide a large number of Gaussian basis functions with a small bandwidth

on the region where the local variation is large, and a small number with a large bandwidth

where the local variation is small. Replacing ck and h2k in (12) by ĉj,ℓ and ĥ
2
j , respectively,

we obtain m basis functions

ϕ
j,ℓ
(x) = exp

{
−(x− ĉj,ℓ)2

2ĥ2j

}
, ℓ = 1, . . . ,mj; j = 1, . . . , p. (13)

Finally, we estimate the model parameters w and σ2 by the ridge method. We use

the ridge penalty on the log-likelihood function

ℓη(w, σ
2) =

n∑
i=1

log f(yi|xi;w, σ2)− nη

2
wTw, (14)

where η (> 0) is a tuning parameter that controls the smoothness of the fitted model.

The maximum penalized likelihood estimates of w and σ2 are, respectively,

ŵ = (ΦTΦ + nησ̂2I)−1ΦTy, σ̂2 =
1

n
(y − Φŵ)T(y − Φŵ).

Here, Φ is an n×m matrix (Φ1,Φ2, . . . ,Φp), where

Φj =


ϕj,1(x1) · · · ϕj,mj

(x1)

...
. . .

...

ϕj,1(xn) · · · ϕj,mj
(xn)


; j = 1, . . . , p. (15)

Note that ŵ and σ̂2 depend on each other. Therefore, we provide an appropriate initial

value for σ2 and then ŵ and σ̂2 are updated until convergence.

The choice of the tuning parameter η and number of basis functions m are crucial

issues. To determine them, we use the generalized information criterion (GIC; Konishi

and Kitagawa, 1996), which is the Akaike information criterion (AIC) generalized for the

regularization method. For our problem, the GIC can be obtained as follows:

GIC = n {log(2π) + 1}+ n log σ̂2 + 2tr
{
R−1Q

}
. (16)

11



Here, R and Q are (m+ 1)× (m+ 1) matrices given by

R =
1

nσ̂2


ΦTΦ + nησ̂2Im ΦTΛ1n/σ̂

2

1T
nΛΦ/σ̂

2 n/(2σ̂2)


and

Q =
1

nσ̂2


ΦTΛ2Φ/σ̂2 − ηImŵ1T

nΛΦ ΦTΛ31n/(2σ̂
4)− ΦTΛ1n/(2σ̂

2)

1T
nΛ

3Φ/(2σ̂4)− 1T
nΛΦ/(2σ̂

2) 1T
nΛ

41n/(4σ̂
6)− n/(4σ̂2)

 ,

where 1n = (1, . . . , 1)T and Λ = diag[y1−ŵTϕ(x1), . . . , yn−ŵTϕ(xn)]. We use the values

of η and m that minimize the GIC in (16), since by choosing to use the GIC, they are

considered optimal.

4 Numerical studies

4.1 Monte Carlo simulations

To investigate the performance of our proposed adaptive basis expansion, we applied it

with simple regression functions to several types of simulated data. We generated samples

{(xi, yi); i = 1, . . . , n} from yi = g(xi) + εi with a regression function g(x) and noise εi.

We consider the following two cases for the regression function:

g(x) =
5√
2π

exp

(
x2

2

)
, (−10 ≤ x ≤ 10), (17)

and

g(x) =


sin {8π exp(x3)} , (0 ≤ x < 0.5),

sin(22πx), (0.5 ≤ x < 1).

(18)
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Table 1: Mean, median, and standard deviation of the MSEs for the regression function

in (17).

proposed non-adaptive

Mean [Median] (SD) Mean [Median] (SD)

n = 50 0.0057 [0.0047] (0.0047) 0.0064 [0.0061] (0.0016)

τ = 0.1 n = 100 0.0043 [0.0030] (0.0070) 0.0120 [0.0046] (0.0420)

n = 150 0.0042 [0.0021] (0.0207) 0.0307 [0.0037] (0.0768)

n = 50 0.0160 [0.0157] (0.0063) 0.0238 [0.0235] (0.0058)

τ = 0.2 n = 100 0.0158 [0.0106] (0.0208) 0.0170 [0.0142] (0.0232)

n = 150 0.0080 [0.0074] (0.0040) 0.0230 [0.0119] (0.0485)

n = 50 0.0388 [0.0317] (0.0427) 0.0463 [0.0446] (0.0118)

τ = 0.3 n = 100 0.0218 [0.0200] (0.0135) 0.0297 [0.0275] (0.0109)

n = 150 0.0169 [0.0146] (0.0133) 0.0263 [0.0225] (0.0124)

Here we assume that the design points {xi}ni=1 are uniformly spaced on [0, 1] and the errors

εi are independently distributed according to N(0, τ 2). The sample size and standard

deviation are, respectively, n = 50, 100, or 150 and τ = 0.1, 0.2, or 0.3 for the case in

(17), and they are n = 100, 200, or 300 and τ = 0.2, 0.4, or 0.6 for the case in (18).

Simulation results were obtained from 100 Monte Carlo trials, and then we evalu-

ated the mean squared errors (MSE), defined by
∑n

i=1 {g(xi)− ŷi}
2 /n, to measure the

goodness of fit. The proposed method was compared with a conventional Gaussian basis

expansion with the ridge method, where the basis functions were represented by

ψk(x) = exp

{
−(x− bk)2

2h

}
, k = 1, . . . ,m. (19)
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Table 2: Mean and standard deviation of the MSEs for the regression function in (18)

(Region 1: 0 < x < 0.5, Region 2: 0.5 < x < 1).

Region 1 Region 2 Total

mean (SD) mean (SD) mean (SD)

n = 100 proposed 0.0039 (0.0019) 0.0085 (0.0151) 0.0063 (0.0110)

non-adaptive 0.0179 (0.0038) 0.0185 (0.0035) 0.0182 (0.0036)

τ = 0.2 n = 200 proposed 0.0023 (0.0015) 0.0063 (0.0192) 0.0043 (0.0138)

non-adaptive 0.0060 (0.0018) 0.0063 (0.0018) 0.0061 (0.0018)

n = 300 proposed 0.0014 (0.0007) 0.0048 (0.0229) 0.0031 (0.0163)

non-adaptive 0.0050 (0.0024) 0.0053 (0.0024) 0.0051 (0.0024)

n = 100 proposed 0.0183 (0.0083) 0.0250 (0.0090) 0.0216 (0.0093)

non-adaptive 0.0773 (0.0153) 0.0767 (0.0125) 0.0770 (0.0140)

τ = 0.4 n = 200 proposed 0.0097 (0.0040) 0.0131 (0.0052) 0.0114 (0.0049)

non-adaptive 0.0261 (0.0068) 0.0255 (0.0075) 0.0258 (0.0071)

n = 300 proposed 0.0065 (0.0027) 0.0084 (0.0027) 0.0074 (0.0028)

non-adaptive 0.0166 (0.0047) 0.0161 (0.0035) 0.0163 (0.0042)

n = 100 proposed 0.0442 (0.0201) 0.0499 (0.0199) 0.0471 (0.0201)

non-adaptive 0.1030 (0.0246) 0.1022 (0.0267) 0.1026 (0.0475)

τ = 0.6 n = 200 proposed 0.0253 (0.0098) 0.0266 (0.0109) 0.0259 (0.0104)

non-adaptive 0.0564 (0.0158) 0.0550 (0.0163) 0.0557 (0.0160)

n = 300 proposed 0.0144 (0.0060) 0.0176 (0.0059) 0.0160 (0.0061)

non-adaptive 0.0358 (0.0102) 0.0348 (0.0084) 0.0353 (0.0093)
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In the conventional approach, the centers of the Gaussian basis functions bk (k = 1, . . . ,m)

were set at regular intervals on the data region, and the bandwidths h were set to be

constant. Hereinafter, we will call this the non-adaptive method. We chose the number

of basis functions m, the tuning parameter η, and the bandwidth parameters h that

minimize the information criterion GIC in (16). The candidate values were specified as

m = 100 + 25q (q = 0, . . . , 8), η = 10−9 + 3q · 10−6 (q = 0, . . . , 5), and h = 10−3 + 3q ·

10−2 (q = 0, . . . , 5).

Table 1 evaluates the MSE for the case of (17), where both methods are equipped

with the GIC. In all cases, the proposed method gives smaller MSEs than does the non-

adaptive method. Because the non-adaptive method sometimes yields inaccurate results,

several values for the mean of the MSEs for the non-adaptive method are unnaturally

large. We thus also evaluate the median of the MSEs. From the values for the median, we

conclude that the proposed method produces the same degree of improvement regardless

of the values of n and τ .

Table 2 presents the MSE for the case of (18) by Region 1 (0 < x < 0.5), Region

2 (0.5 < x < 1), and the entire region (0 < x < 1). We observe that the mean of the

MSEs of the proposed method is smaller than that of the non-adaptive method in both

Regions 1 and 2. In all simulations, the improvement of the proposed method in Region

1 (a strongly smooth region) tends to be larger than that in Region 2 (a weakly smooth

region). This means that the proposed method avoids overfitting more than underfitting.

When τ is small (i.e., τ = 0.2) and n is relatively large (i.e., n = 200 or n = 300),

the performances of the two methods are competitive. This is not surprising, because in

this case the standard deviation of the noise is small enough and the sample size is large

enough that the non-adaptive method will work well. When τ = 0.4 and τ = 0.6, the

proposed method produces the same degree of improvement. We can thus see the validity

of the proposed method in all cases, but especially in the strongly smooth regions.
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Figure 2: Estimated curves based on a conventional basis expansion (left) and the pro-

posed adaptive basis expansion (right) for the regression function in (17).

Figures 2 and 3 give estimated curves for each method for the case of τ = 0.2 and

n = 100 and for the case of τ = 0.4 and n = 200, respectively. These curves are both

typical, and we can analyze them as above. From Figures 2 and 3, respectively, we can

see that the proposed method avoids overfitting on |x| ≥ 2 and on Region 1, and it avoids

underfitting around x = 0 and on Region 2. From Figure 3, we see that its improvement

on Region 1 is a little bit larger than that on Region 2.

4.2 Benchmark example

We next treat the Doppler data with sample size n = 128 presented by Donoho and

Johnstone (1995). Doppler data have an underlying function that vibrates with equal

amplitude but with a shorter period near zero, and so it has inhomogeneous smoothness.

We applied both the proposed and the non-adaptive methods to this data. The candidate

values were specified as m = 100 + 50q (q = 0, . . . , 4), λ = 10−9 + 3q · 10−6 (q = 0, . . . , 3),

and h = 10−2 + 3q · 10−1 (q = 0, . . . , 3), and we selected appropriate values from these

candidates by applying the GIC. Figure 4 displays the estimated curves based on each
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Figure 3: Estimated curves based on a conventional basis expansion (left) and the pro-

posed adaptive basis expansion (right) for the regression function in (18).

method. The function estimated by the proposed method vibrated near zero, whereas the

one estimated by the non-adaptive method did not. Hence we can say that the proposed

method caught the underlying regression function in the Doppler data.

5 Concluding Remarks

In this study, an adaptive basis expansion has been proposed for estimating underlying

regression functions with inhomogeneous smoothness. In the first stage, our method tries

to catch the global variation of data using a locally linear function. To do so, we extended

the FLSA and constructed an extended version of the descent, fusion, and smoothing

cycles in order to obtain the approximator quickly and efficiently. We call this the eFLSA

algorithm. Second, our method measures the magnitude of the residuals between the

global variation and the data by regions, and the basis functions are determined adaptively

based on these magnitudes. In particular, a large number of Gaussian basis functions with

small bandwidth are set on regions with large residuals, and a smaller number with larger

bandwidth are set on regions with small residuals. Finally, our method uses a ridge method
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Figure 4: Estimated curves based on a conventional basis expansion (left) and the pro-

posed adaptive basis expansion (right) for Doppler data

to estimate the parameters for the models. To choose the number of basis functions

and the tuning parameters for the ridge method, we have provided an explicit form of

the GIC. Numerical examples suggest that when there is inhomogeneous smoothness,

our method can capture the true structure better than a conventional basis expansion,

in terms of the averaged mean squared errors. The conventional method causes over-

and underfitting on strongly and weakly smooth regions, respectively, but our proposed

methodology considerably reduces this problem.
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