# 九州大学学術情報リポジトリ Kyushu University Institutional Repository

Fabrication of Ge-MOS capacitors with high quality interface by ultra-thin SiO 2/GeO 2 bilayer passivation combined with the subsequent SiO 2-depositions using magnetron sputtering

Hirayama, Kana Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Yoshino, Keisuke

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Ueno, Ryuji

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Iwamura, Yoshiaki

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

他

https://hdl.handle.net/2324/25512

出版情報: Solid-State Electronics. 60 (1), pp.122-127, 2011-06. Elsevier

バージョン:

権利関係:(C) 2011 Elsevier Ltd.



Fabrication of Ge-MOS capacitors with high quality interface by ultrathin SiO<sub>2</sub>/GeO<sub>2</sub> bi-layer passivation combined with the subsequent SiO<sub>2</sub>depositions using magnetron sputtering

Kana Hirayama<sup>a</sup>, Keisuke Yoshino<sup>a</sup>, Ryuji Ueno<sup>a</sup>, Yoshiaki Iwamura<sup>a</sup>, Haigui Yang<sup>b</sup>, Dong Wang<sup>b</sup>, Hiroshi Nakashima<sup>b,\*</sup>

<sup>a</sup>Interdisciplinary Graduate School of Engineering Sciences, Kyushu University,

6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

<sup>b</sup>Art, Science and Technology Center for Cooperative Research, Kyushu University,

6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

\*TEL: +81-92-583-7872; FAX: +81-92-573-8729,

\*Email: nakasima@astec.kyushu-u.ac.jp

### **Abstract**

Ge-MOS capacitors were fabricated by a novel method of ultra-thin SiO<sub>2</sub>/GeO<sub>2</sub> bilayer passivation (BLP) for Ge surface combined with the subsequent SiO<sub>2</sub>-depositions using magnetron sputtering. For the Ge-MOS capacitors fabricated by BLP with O<sub>2</sub>, to decrease oxygen content in the subsequent SiO<sub>2</sub> deposition is helpful for improving interface quality. By optimizing process parameters of the Ge surface thermal cleaning, the BLP, and the subsequent SiO<sub>2</sub> deposition, interface states density of 4×10<sup>11</sup> cm<sup>-2</sup>eV<sup>-1</sup> at around midgap was achieved, which is approximately three times smaller than that of non-passavited Ge-MOS capacitors. On the contrary, for the Ge-MOS capacitors fabricated by BLP without O<sub>2</sub>, interface quality could be improved by an increase in oxygen contents during the subsequent SiO<sub>2</sub> deposition, but the interface quality was worse compared with BLP with O<sub>2</sub>.

### 1. Introduction

To maintain Moore's Law, it is desired to continuously improve performance of complementary metal-oxide-semiconductor (CMOS) devices, for which mobility enhancement has become a key technology. Since germanium (Ge) has superior intrinsic carrier mobility than that of silicon (Si), it is of great interest as a candidate channel material for future. So far, Ge-CMOS technology has not been realized because of many difficulties associated with different physical and chemical properties of Ge compared with Si. One of the most challenging issues is to achieve good interface property for a Ge metal-oxide-semiconductor (MOS) capacitor, which attracted many studies on passivation technology for interface between gate dielectric film and Ge substrate. One of the attractive interface passivation methods is to grow Ge compounds such as GeO<sub>2</sub>, Ge<sub>3</sub>N<sub>4</sub>, and GeO<sub>x</sub>N<sub>y</sub>, on Ge surface [1-3]. In particular, GeO<sub>2</sub>/Ge structure has superior interface property. From a simple calculation on the basis of viscoelastic properties of GeO<sub>2</sub>, a good interface property of as-oxidized GeO<sub>2</sub>/Ge (100) interface at above 500 °C was predicted [4]. Experimentally, Matsubara et al. have reported very low interface state density (Dit) of 1×10<sup>11</sup> cm<sup>-2</sup>eV<sup>-1</sup> for GeO<sub>2</sub>/Ge structure, which were formed by dry oxidation of Ge substrate at around 575 °C [5].

Unfortunately, GeO<sub>2</sub> has poor thermal stability and high water solubility. It has been reported that thermal decomposition of GeO<sub>2</sub> is caused by GeO molecule desorption by furnace annealing at above 425 °C [6]. Abstracting Ge from Ge substrate at a GeO<sub>2</sub>/Ge structure is essential for GeO molecule formation, causing to serious degradation of GeO<sub>2</sub>/Ge interface property [7]. In addition, it has been also pointed out that not only water but also hydrocarbons are easily infiltrated into GeO<sub>2</sub> layers during air exposure,

causing to unusual negative shift of flat band voltage  $(V_{fb})$  and large increase in hysteresis (HT) in capacitance-gate bias voltage  $(C-V_G)$  curve [8]. Therefore, it is difficult to integrate  $GeO_2$  into conventional MOS fabrication process.

Thus, to passivate Ge surface by  $GeO_2$ , it is necessary to fabricate  $GeO_2$  on Ge surface without exposure in air, and the fabricated  $GeO_2$  layer should be also protected by a stable material, such as  $SiO_2$ , to prevent thermal decomposition and unintentional reaction with subsequently deposited gate dielectric film. If this kind of  $SiO_2/GeO_2$  bilayer can be very thin, it should be very useful as interlayer (IL) between insulating film and Ge substrate, because high-k film such as  $HfO_2$  or  $ZrO_2$  can be deposited on Ge substrate passivated with the bi-layer, for which low EOT (effective oxide thickness) and low  $D_{it}$  are expected.

In this paper, we demonstrate the fabrication of ultra-thin SiO<sub>2</sub>/GeO<sub>2</sub> bi-layer for electrical passivation of Ge surface. A novel method is proposed to fabricate the bi-layer using a physical vapor deposition (PVD) system through the thermal etching of GeO<sub>2</sub> by vacuum annealing and the subsequent SiO<sub>2</sub> deposition at 350 °C. During the SiO<sub>2</sub> deposition, oxygen flow rate is an important parameter, which dominates the growth of ultra-thin GeO<sub>2</sub> film on Ge substrate. After Ge surface passivation, SiO<sub>2</sub> was deposited as gate dielectric film by magnetron sputtering followed by post deposition annealing (PDA). To validate the effect of SiO<sub>2</sub>/GeO<sub>2</sub> bi-layer passivation (BLP), *D*<sub>it</sub> was measured for all the MOS capacitors by deep level transient spectroscopy (DLTS). By optimization of the BLP and the subsequent SiO<sub>2</sub> deposition processes, Ge-MOS capacitor with high quality interface was successfully fabricated.

## 2. Ge surface passivation process

To fabricate high quality passivation layer on Ge, surface cleaning is essential. If a Ge substrate with clean surface is exposed in air, the Ge surface can be naturally oxidized, simultaneously water and hydrocarbons are easily infiltrated into the naturally oxidized GeO<sub>2</sub> layer during air exposure [8]. Therefore, it is better to prevent air exposure between Ge surface cleaning and surface passivation, which can be realized by a vacuum annealing for sacrificially oxidized GeO<sub>2</sub> combined with the subsequent passivation process in the same vacuum chamber. Figure 1 shows the process flow of the surface cleaning and passivation. A p-type (100) Ge substrate with a resistivity of 0.2-0.3 Ωcm was used. After cleaning by acetone and the subsequent cyclic cleaning by 10% HF dip and deionized water rinse, the sacrificial oxidation was done at 450 °C for 30 min in O<sub>2</sub> ambient with pressure of 1 atmosphere, resulted in GeO<sub>2</sub> thickness of 3 nm, as shown in Fig. 1b. The sample without sacrificially oxidized GeO<sub>2</sub> was also prepared for investigation. The oxidized Ge substrate was then loaded in a PVD chamber, which was subsequently pumped down to base pressure of less than  $2\times10^{-5}$  Pa. Then the Ge substrate was immediately heated by a step mode heating by lamp heater with total time of 30 min, as shown in Fig. 1c, by which the sample temperature increased up to around 550 °C at the beginning and decreased down to 350 °C during approximately 5 min. This vacuum annealing led to complete volatilization of GeO<sub>2</sub> layer, which was confirmed by ellipsometry measurement that GeO<sub>2</sub> layer disappeared completely after the step mode heating. Without breaking the vacuum, 1 nm-thick SiO<sub>2</sub> IL deposition was performed at deposition temperature  $(T_D)$  of 350 °C in the same chamber using PVD (radio frequency (RF) magnetron sputtering) with a  $SiO_2$  target, where the ambient pressure p was 1 Pa. There are two ways to passivate Ge surface. One is to introduce O2 in the gas ambient

during SiO<sub>2</sub> IL deposition, resulting in a simultaneous growth of GeO<sub>2</sub>, as shown in Fig. 1d. Another way is to deposit SiO<sub>2</sub> IL without the addition of O<sub>2</sub> in the gas ambient, by which only SiO<sub>2</sub> layer was deposited on Ge surface, as shown in Fig. 1e. For this kind of passivation, a subsequent growth of Ge-oxygen compound between SiO<sub>2</sub> and Ge should be performed by adjusting oxygen contents in the later steps of MOS capacitor fabrication. The gas flow rates of Ar and O<sub>2</sub>, as well as RF power  $P_{RF}$ , are also shown in Figs. 1d and 1e.  $P_{RF}$  is slightly different from each other to maintain the same deposition rate of 0.11 nm/min for above two deposition methods.

In order to clarify the structures after SiO<sub>2</sub> IL deposition, X-ray photoelectron spectroscopy (XPS) measurements using an Al Kα line were carried out for the samples with and without the addition of O<sub>2</sub> during SiO<sub>2</sub> IL deposition. Figure 2a shows the Ge 3d XPS spectra at a photoelectron take-off angle of 90°, where all measured spectra were calibrated using an Ge  $3d_{3/2}$  core-level (29.3 eV). The SiO<sub>2</sub> signals with binding energy (BE) of 103.6 eV were clearly observed for both samples, as shown in the inset of Fig. 2a. For the sample without the addition of  $O_2$ , oxidized Ge 3d peaks could not be observed. This implies that initial GeO<sub>2</sub> layer was completely removed by vacuum annealing and the subsequent GeO<sub>2</sub> formation did not occur. On the other hand, the sample with the addition of O<sub>2</sub> showed clear oxidized Ge 3d peak, which shifts to higher BE by 3.2 eV relative to the Ge bulk peak (29.3 eV) [9], implying that the signal with BE of 32.5 eV is mostly originated from GeO<sub>2</sub>. In Fig. 2b, the spectra of thermally grown GeO<sub>2</sub>/Ge samples with thicknesses of 1.0, 1.5, and 2.4 nm, which were prepared at 400 °C for 21 min, 450 °C for 9 min, 450°C for 18 min, respectively, were used as reference for thickness of GeO<sub>2</sub> underlying SiO<sub>2</sub> IL. The signal intensity ratio of GeO<sub>2</sub> to Ge bulk for the sample with  $O_2$  is close to that for 1.5 nm-thick  $GeO_2/Ge$  sample. Thus, the thickness

of GeO<sub>2</sub> underlying SiO<sub>2</sub> IL should be less than 1.5 nm, because 1 nm-thick SiO<sub>2</sub> IL should cause to decrease the intensity of Ge bulk XPS signal, which was confirmed by the following TEM measurement.

The sample with the addition of  $O_2$  was prepared for the TEM observation under the same condition as 1.0 nm-thick  $SiO_2$  IL deposition, followed by 50 nm-thick Zr deposition. Figure 3 show cross-sectional TEM image. It can be seen from the image that there is white-contrasted layer between Zr and Ge substrate, corresponding to  $SiO_2/GeO_2$  layer with the thickness of 1.9 nm. This suggests that the thickness of  $GeO_2$  was 0.9 nm.

# 3. Fabrication flow of Ge-MOS capacitors and DLTS measurement

Figure 4 shows the details of fabrication flow for Ge-MOS capacitors. The fabrications were continued from the samples with structures in Fig. 1d and 1e. Since oxygen content is an important parameter for improving interface quality of GeO<sub>2</sub>/Ge, we performed gate SiO<sub>2</sub> depositions with different oxygen contents. Figures 4a and 4b show fabrication parameters of 10 nm-thick SiO<sub>2</sub> deposited by magnetron sputtering with (2 sccm) and without (0 sccm) the addition of O<sub>2</sub>, respectively, in the same PVD chamber as that of BLP process. Both of them were performed at *RT* with Ar flow rate of 20 sccm and gas ambient of 1.0 Pa. *P*<sub>RF</sub> in Figs. 4a and 4b were 50 and 42 W, resulted in SiO<sub>2</sub> deposition rate of 2.54 and 0.91 nm/min respectively. The explanation of the electron cyclotron resonance (ECR) sputtering is described in Sec. 4.3. Then PDA was performed at 550 °C in 1 atmosphere N<sub>2</sub> for 30 min to eliminate damage caused by SiO<sub>2</sub> deposition, as shown in Fig. 4d, which was followed by 200 nm-thick Al deposition using thermal

evaporation, as shown in Fig. 4e. Finally, Al gate electrode with area of  $4.52 \times 10^{-4}$  cm<sup>-2</sup> was patterned by lithography and etched by  $H_3PO_4$  solution at 40 °C.

 $D_{it}$  for all the MOS capacitors was measured by DLTS using DLS83D (SEMILAB Co.), which was performed according to a procedure given in Refs. [10] and [11]. During the DLTS measurement, an essential issue is to balance the enough band-bending ( $\phi_s$ ) for complete hole emission from interface states and the small  $\phi_s$  for minimizing minority carrier generation. Based on EOT and  $V_{fb}$  calculated from C- $V_G$  result measured at 220 K, a certain  $V_G$  could be determined for achieving  $\phi_s$  equal to  $\phi_B$  (the potential difference between Fermi level and the intrinsic Fermi level) at the maximum experiment temperature (220 K), which is the critical  $\phi_s$  for complete hole emission from interface state. In this study, we set  $V_G$  corresponding to  $\phi_B$  + 0.05 eV to make a margin for complete hole emission. With this  $V_G$ ,  $D_{it}$  could be slightly over-estimated in the range near to mid-gap due to the contribution of minority carrier generation. Note that minority carrier generation is usually slow when  $\phi_s$  <  $2\phi_B$ , but not negligible.

### 4. Electrical characterization of fabricated Ge-MOS capacitors

In this section, we present the three-type results classified by the BLP and subsequent gate-SiO<sub>2</sub> deposition methods. The type-I results are obtained from the combination of Fig. 1d and Fig. 4b. The type-II results are from the combination of Fig. 1d and Fig. 4a. The type-III results are from the combination of Fig. 1e and Fig. 4b.

## 4.1 Electrical characteristics of type-I Ge-MOS capacitors

We labeled the product samples #1-3 according to the BLP in Fig. 1 and SiO<sub>2</sub>-gate deposition in Fig. 4. Sample #1 was prepared by the process in Figs. 1a  $\rightarrow$  1b  $\rightarrow$  1c  $\rightarrow$  1d $\rightarrow$  Fig. 4b; #2 was Figs. 1a  $\rightarrow$  1c  $\rightarrow$  1d $\rightarrow$  Fig. 4b; #3 was only Fig. 1a  $\rightarrow$  Fig. 4b. For all samples, this was followed by PDA and Al electrode fabrication in Fig. 4 d and 4f.

Figure 5a shows a normalized  $C\text{-}V_G$  curve of the MOS capacitor labeled as #1, where the measurement was performed at room temperature (RT) and at a frequency (f) of 1 MHz. The bias was double-scanned from -3 to +1 V and then +1 to -3 V. EOT, hysteresis (HT) and  $V_{fb}$  were determined to be 12.5 nm, 0.22 V, and -0.73 V, respectively. By using the value of EOT and the deposited SiO<sub>2</sub> thickness, EOT of GeO<sub>2</sub> underlying SiO<sub>2</sub> IL was estimated to be 1.1 nm, which corresponds to the physical thickness ( $T_p$ ) of 1.6 nm by taking into account that the k-value of GeO<sub>2</sub> is 5.7. Thus, it is suggested that the re-growth of GeO<sub>2</sub> from 0.9 to 1.6 nm occurred during 550 °C-PDA.

The fixed oxide charge density  $(Q_f)$  was estimated as  $+5.7 \times 10^{11}$  cm<sup>-2</sup> from the values of  $V_{fb}$  and the work function (4.1 eV) of Al on SiO<sub>2</sub>[12] using the relation of  $Q_f = (\phi_{MS}-V_{fb})C_{ox}$ , where  $\phi_{MS}$  is the work function difference and  $C_{ox}$  the oxide capacitance. This situation leads to the strong inversion of Ge surface underlying GeO<sub>2</sub> in the area without Al electrode, and the induced electron density should be around  $2\times 10^{11}$  cm<sup>-2</sup>, because the maximum width  $W_m$  of the Ge surface depletion region and corresponding depletion charge were calculated as 0.2  $\mu$ m and  $4\times 10^{11}$  cm<sup>-2</sup>, respectively, from the equation of  $2\phi_B = qN_AW_m^2/(2\varepsilon_s)$  [13], where  $N_A$  is the acceptor concentration ( $2\times 10^{16}$  cm<sup>-3</sup>), and  $\varepsilon_s$  the Ge permittivity. This causes to easy penetration of electrons in the depletion region from periphery of MOS capacitor, leading that frequency dependence of  $C-V_G$  curve shows strong inversion response [14], as shown in Fig. 5b.

Figure 5c also shows that the current density (J)—electric field (E: calculated as  $V_G/EOT$ ) curve of capacitor #1 shows excellent insulating features governed by Fowler-Nordheim tunneling with a high breakdown field ( $E_b$ ) of 14 MV/cm. By Fowler-Nordheim analysis, a barrier height of 3.27 eV was estimated using an effective electron mass of 0.39m (m: free-electron mass) in thermally grown SiO<sub>2</sub> [15], implying a good quality of the deposited SiO<sub>2</sub>. The other MOS capacitors (#2-3) showed properties similar to those of #1, implying that the parameters of MOS capacitors such as HT,  $V_{fb}$ , and  $E_b$  were not dependent on SiO<sub>2</sub> IL preparation, but rather were governed by SiO<sub>2</sub> gate insulating film deposition and subsequent PDA.

However,  $D_{it}$  was strongly dependent on IL preparation. Figure 6 shows  $D_{it}$  results for MOS capacitors #1-3. All of the MOS-capacitors tended to show decreases with an increase in the energy position ( $E_T$ ), which is very similar to the trend seen with a GeO<sub>2</sub>/Ge interface [5]. The  $D_{it}$  values at around midgap are shown in Fig. 6. Among capacitors #1-3, #1 showed the best  $D_{it}$  result, which was  $5.8 \times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup>. The worst  $D_{it}$  was observed for the capacitor #3, which was  $1.2 \times 10^{12}$  cm<sup>-2</sup>eV<sup>-1</sup>. The  $D_{it}$  of capacitor #2 was lower than that of #3 and higher than that of #1. Thus, it is clear that the surface thermal cleaning with sacrificial oxidation (in Figs. 1b and 1c) and the BLP (in Fig. 1d) improve interface quality.

# 4.2 Electrical characteristics of type-II Ge-MOS capacitors

The product samples were labeled as follows: Sample #4 was prepared by the process in Figs.  $1a \rightarrow 1b \rightarrow 1c \rightarrow 1d \rightarrow Fig$ . 4a; #5 was Figs.  $1a \rightarrow 1c \rightarrow 1d \rightarrow Fig$ . 4a. These samples were followed by PDA and Al electrode fabrication.

Figure 7a shows a normalized  $C\text{-}V_G$  curve of the MOS capacitor labeled as #4, where the measurement was performed at RT and at f of 1 MHz. The bias was double-scanned from -3 to +1 V and then +1 to -3 V. EOT, HT and  $V_{fb}$  were determined to be 12.5 nm, 0.12 V, and -1.12 V, respectively. From the value of EOT and the same consideration in Sec. 4.1, it was suggested that the re-growth of  $GeO_2$  from 0.9 to 1.6 nm occurred during 550 °C-PDA.

The HT of capacitor #4 was smaller than that (0.22 V) of capacitor #1, suggesting the improvement of interfacial layer quality. However,  $Q_f$  was estimated as  $+1.2\times10^{12}$  cm<sup>-2</sup> from the  $V_{fb}$ -value, which was twice higher than that of capacitor #1. Thus, Ge surface should become stronger inversion compared with capacitor #1, and induced electron density should be  $8\times10^{11}$  cm<sup>-2</sup>. In fact, a C- $V_G$  curve at f=10 kHz showed complete strong inversion response [14].

Figure 7b also shows that the J–E curve of capacitor #4 shows excellent insulating features governed by Fowler-Nordheim tunneling with a high  $E_b$  of 12 MV/cm, for which a barrier height of 3.16 eV was obtained by Fowler-Nordheim analysis, implying a good SiO<sub>2</sub> quality. The capacitor #5 showed HT,  $V_{fb}$ , and  $E_b$  similar to those of #4.

Figure 8 shows  $D_{it}$  distribution for capacitors #4 and #5. From the comparison of  $D_{it}$  results in Fig. 8, it can be concluded that sacrificial oxidation and subsequent surface cleaning under vacuum are very useful for obtaining a good interface of IL/Ge, which is the same conclusion in Sec. 4.1. The best  $D_{it}$  of  $3.7 \times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup> at around midgap was obtained for the capacitor #4, which is approximately three times lower than that of the capacitor without thermal cleaning and BLP (#3 in Fig. 6). This was confirmed from several fabrication trials, and the obtained  $D_{it}$  was in the range of  $(4\pm0.5)\times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup>.

However, it can not be concluded from the  $D_{it}$  comparison between capacitors #1 and #4 that gate-SiO<sub>2</sub> deposition without the addition of O<sub>2</sub> is better than that with the addition of O<sub>2</sub>, because the deposition rates were different for both SiO<sub>2</sub> depositions (Fig. 3). Thus, we prepared a MOS capacitor (#6) using the same process as capacitor #4 with gate-SiO<sub>2</sub> deposition rate of 0.91 nm/min instead of 2.54 nm/min. In this case,  $P_{RF}$  was 21 W. The  $D_{it}$  result of capacitor #6 is shown in Fig. 8, which was the same as that of capacitor #4 at around midgap. Thus, we can conclude that oxygen-rich deposition method of gate-SiO<sub>2</sub> is harmful to interface quality for the capacitors fabricated by BLP with the addition of O<sub>2</sub>, implying that excessive oxygen may degrade quality of the GeO<sub>2</sub> passivation layer.

### 4.3 Electrical characteristics of type-III Ge-MOS capacitors

In the case of BLP without the addition of  $O_2$ , gate-Si $O_2$  deposition with the addition of  $O_2$  is essential because of no-Ge $O_2$  formation between Si $O_2$  and Ge just after Si $O_2$  IL deposition. Actually, when the gate-Si $O_2$  deposition was performed without the addition of  $O_2$ , C- $V_G$  curve showed flat line attributable to high  $D_{it}$ . Thus, we prepared a MOS capacitor labeled as #7, which was fabricated by the process in Figs. 1a  $\rightarrow$  1b  $\rightarrow$  1c  $\rightarrow$  1e $\rightarrow$  Fig. 4b. Figure 9 shows  $D_{it}$  distribution for capacitor #7. The  $D_{it}$  at around midgap was  $8.0 \times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup>, which is worse than those of capacitors #1 and #4. This is maybe caused by the insufficient supply of oxygen.

Thus, we used ECR sputtering method [16] to supply the abundant oxygen during SiO<sub>2</sub> deposition, as shown in Fig. 3c, which is reactive sputtering from Si target and an oxygen-rich process. The gas ambient was a mixture of Ar and O<sub>2</sub> with flow rates of 16

and 8 sccm, respectively. The ECR sputtering was performed at  $T_D$  of 130 °C with microwave power ( $P_\mu$ ) and  $P_{RF}$  of 300 and 100 W, respectively, and ambient pressure of 0.14 Pa, resulting in a deposition rate of 0.67 nm/min. From the gas ambient pressure and  $O_2$  flow rate, the oxygen pressures were calculated as 0.01 and 0.047 Pa for deposition methods of Figs. 4b and 4c, respectively. Thus, ECR sputtering has longest deposition time and highest  $T_D$ , resulted in the large oxygen content introduced into the SiO<sub>2</sub>/GeO<sub>2</sub> IL. We prepared two MOS capacitors labeled as #8 with the SiO<sub>2</sub>-thickness of 8 nm and #9 with the SiO<sub>2</sub>-thickness of 20 nm, which were fabricated by the process in Figs. 1a  $\rightarrow$  1b  $\rightarrow$  1c  $\rightarrow$  1e $\rightarrow$  Fig. 4c.

The best  $D_{it}$  was obtained from the capacitor #9, which was approximately  $6 \times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup> at around midgap. It is interesting that  $D_{it}$  deceased with increasing SiO<sub>2</sub> thickness. In the case of a thicker SiO<sub>2</sub> deposition, a longer deposition time is needed, during which more oxygen can be introduced into the SiO<sub>2</sub>/GeO<sub>x</sub> IL. Therefore, after BLP without O<sub>2</sub> addition, an oxygen-rich condition of the dielectric SiO<sub>2</sub> deposition is helpful for the formation of stoichiometric GeO<sub>2</sub> between SiO<sub>2</sub> IL and Ge. However, the interface quality of BLP without the addition of O<sub>2</sub> is worse than that of BLP with the addition of O<sub>2</sub> even though oxygen-rich process was used for gate-SiO<sub>2</sub> deposition. Therefore, BLP with the addition of O<sub>2</sub> is a good candidate for the Ge-MOS gate stack with high quality interface.

### 5. Summary

Ge-MOS capacitors were fabricated by a novel method of ultra-thin SiO<sub>2</sub>/GeO<sub>2</sub> bilayer passivation (BLP) for Ge surface combined with subsequent SiO<sub>2</sub> deposition using

magnetron sputtering. Good electrical characteristics of C- $V_G$  and J-E were shown for typical Ge-MOS capacitors. For the Ge-MOS capacitors fabricated by BLP with  $O_2$ , to decrease oxygen content in the subsequent  $SiO_2$  deposition is helpful for improving interface quality. By optimizing process parameters of the Ge surface cleaning, the BLP, and the subsequent  $SiO_2$  deposition,  $D_{it}$  of  $4 \times 10^{11}$  cm<sup>-2</sup>eV<sup>-1</sup> at around midgap was successfully obtained for Al-gate Ge-MOS capacitor fabricated by BLP with  $O_2$  and subsequent gate- $SiO_2$  deposition without  $O_2$ , which is approximately three times smaller than that of Ge-MOS capacitor without surface thermal cleaning and BLP. On the contrary, for the Ge-MOS capacitors fabricated by BLP without  $O_2$ , interface quality could be improved by an increase in oxygen contents during the subsequent  $SiO_2$  deposition, but the interface quality was worse compared with BLP with  $O_2$ . Therefore, BLP with  $O_2$  is a good candidate for the Ge-MOS gate stack with high quality interface.

# Acknowledgment

This study was supported in part by a Grant-in-Aid for Science Research on Priority Areas (20035011) and a Science Research A (21246054) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. XPS measurements were carried out using the facilities of the Center of Advanced Instrumental Analysis of Kyushu University.

### References

- [1] Kuzum D, Krishnamohan T, Pethe AJ, Okyay AK, Oshima Y, Sun Y, McVittie JP, Pianetta PA, McIntyre PC, Saraswat KC. Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density. IEEE Electron Device Lett. 2008; 29:328-30.
- [2] Maeda T, Nishizawa M, Morita Y, Takagi S. Role of germanium nitride interfacial layers in HfO<sub>2</sub>/germanium nitride/germanium metal-insulator-semiconductor structures. Appl. Phys. Lett. 2007; 90:072911-1-3.
- [3] Sugawara T, Oshima Y, Sreenivasan R, McIntyre PC. Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers. Appl. Phys. Lett. 2007; 90:112912-1-3.
- [4] Houssa M, Pourtois G, Caymax M, Meuris M, Heyns MM, Afanas'ev VV, Stesmans A. Ge dangling bonds at the (100)Ge/GeO<sub>2</sub> interface and the viscoelastic properties of GeO<sub>2</sub>. Appl. Phys. Lett. 2008; 93:161909-1-3.
- [5] Matsubara H, Sasada T, Takenaka M, Takagi S. Evidence of low interface trap density in GeO<sub>2</sub>/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Appl. Phys. Lett. 2008; 93:032104-1-3.
- [6] Prabhakaran K, Maeda F, Watanabe Y, Ogino T. Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference. Thin Solid Films. 2000; 369:289-92.
- [7] Kita K, Suzuki S, Nomura H, Takahashi T, Nishimura T, Toriumi A. Direct evidence of GeO volatilization from GeO<sub>2</sub>/Ge and impact of its suppression on GeO<sub>2</sub>/Ge metal-insulator-semiconductor characteristics. Jpn. J. Appl. Phys. 2008; 47:2349-53.

- [8] Hosoi T, Kutsuki K, Okamoto G, Saito M, Shimura T, Watanabe H. Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO<sub>2</sub>/Ge metal-oxide- semiconductor devices. Appl. Phys. Lett. 2009; 94:202112-1-3.
- [9] Prabhakaran K, Ogino T. Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study. Surf. Sci. 1995; 325:263-71.
- [10] Nakashima H, Wang D, Noguchi T, Itani K, Wang J, Zhao L. Method for Detecting Defects in Silicon-On-Insulator Using Capacitance Transient Spectroscopy. Jpn. J. Appl. Phys. 2004; 43:2402-8.
- [11] Wang D, Ninomiya M, Nakamae M, Nakashima H. Electrical characterization of strained Si/SiGe wafers using transient capacitance measurements. Appl. Phys. Lett. 2005; 86:122111-1-3.
- [12] Sze SM. In: Physics of Semiconductor Devices 2nd ED. New York: John Wiley and Sons; 1981. p. 396.
- [13] Sze SM. In: Physics of Semiconductor Devices 2nd ED. New York: John Wiley and Sons; 1981. p. 373.
- [14] Martens K, Chui CO, Brammertz G, Jaeger BD, Kuzum D, Meuris M, Heyns MM, Krishnamohan T, Saraswat K, Maes HE, and Groeseneken G. On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates. IEEE Trans. ED. 2008; 55:547-56.
- [15] Lenzlinger M and Snow EH. Fowler-Nordheim Tunneling into Thermally Grown SiO<sub>2</sub>. J. Appl. Phys. 1969; 40:278-83.
- [16] Gao DW, Kashiwazaki Y, Muraoka K, Nakashima H, Furukawa K, Liu YC, Shibata K, and Tsurushima T. Effect of preoxidation on deposition of thin gate-quality silicon oxide film at low temperature by using a sputter-type electron cyclotron resonance plasma. J. Appl. Phys, 1997; 82:5680-5.

## Figure captions

- Fig. 1 Process diagram of surface cleaning and passivation for Ge substrate. (a) chemical cleaning; (b) sacrificial oxidization for Ge substrate; (c) vacuum annealing in a PVD chamber to completely volatilize the sacrificially oxidized GeO<sub>2</sub>; (d) SiO<sub>2</sub> deposition by magnetron sputtering in the same chamber with the addition of O<sub>2</sub>, resulting in SiO<sub>2</sub>/GeO<sub>2</sub> passivation layer on Ge surface; (e) SiO<sub>2</sub> deposition by magnetron sputtering in the same chamber without the addition of O<sub>2</sub>, by which only SiO<sub>2</sub> layer was formed on Ge surface.
- Fig. 2 (a) Ge 3d XPS signals for the samples shown in Figs. 1d and 1e. A GeO<sub>2</sub> peak was clearly observed for the sample passivated with the addition of O<sub>2</sub>. On the contrary, only Ge bulk signal was observed for the sample passivated without the addition of O<sub>2</sub>; (b) Ge 3d XPS signals for thermally oxidized Ge samples with different GeO<sub>2</sub> thickness.
- Fig. 3 Cross-sectional TEM image of 1.0 nm-thick  $SiO_2/Ge$  sample prepared using BLP with the addition of  $O_2$ .
- Fig. 4 Fabrication flow of Ge-MOS capacitors. (a) SiO<sub>2</sub> deposition by magnetron sputtering without the addition of O<sub>2</sub> in the same PVD chamber as that of BLP process; (b) SiO<sub>2</sub> deposition by magnetron sputtering with the addition of O<sub>2</sub> in the same PVD chamber as that of BLP process; (c) SiO<sub>2</sub> deposition by the ECR sputtering method; (d) PDA process to eliminate damage caused by SiO<sub>2</sub> deposition; (e) Al deposition as gate metal. The electrode formation by lithography and wet etching is not shown. SiO<sub>2</sub> thicknesses were 10 nm for all the deposition methods. Other important parameters are also shown in the figure.

- Fig. 5 Electrical characteristics for a Ge-MOS capacitor #1. The preparation method for capacitor #1 is described in the text. (a) normalized C- $V_G$ ; (b) frequency dependence of C- $V_G$ . (c) J-E; The inset in Fig. 5c is the Fowler-Nordheim plot.
- Fig. 6  $D_{it}$  distribution for Ge-MOS capacitors #1, #2, and #3. The preparation method for each capacitor is described in the text.
- Fig. 7 Electrical characteristics for a Ge-MOS capacitor #4. The preparation method for capacitor #4 is described in the text. (a) normalized  $C\text{-}V_G$ ; (b) J-E; The inset in Fig. 7b is the Fowler-Nordheim plot.
- Fig. 8  $D_{it}$  distribution for Ge-MOS capacitors #4, #5, and #6. The preparation method for each capacitor is described in the text.
- Fig. 9  $D_{it}$  distribution for Ge-MOS capacitors #7, #8, and #9. The preparation method for each capacitor is described in the text.

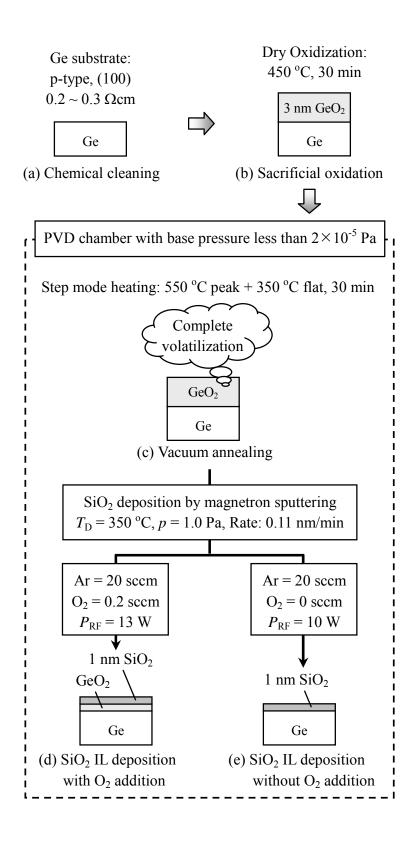



Figure 1. Kana Hirayama et al.

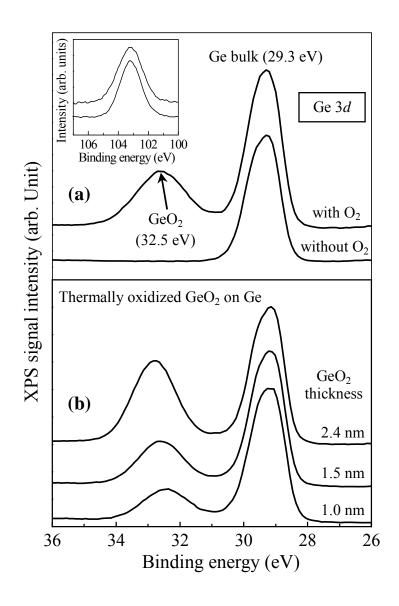



Figure 2. Kana Hirayama et al.

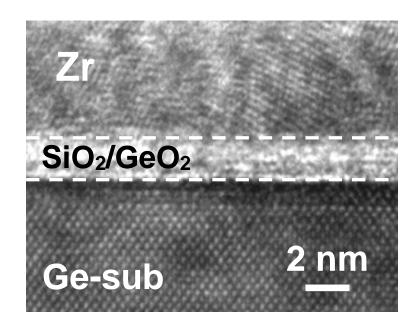



Figure 3. Kana Hirayama *et al*.

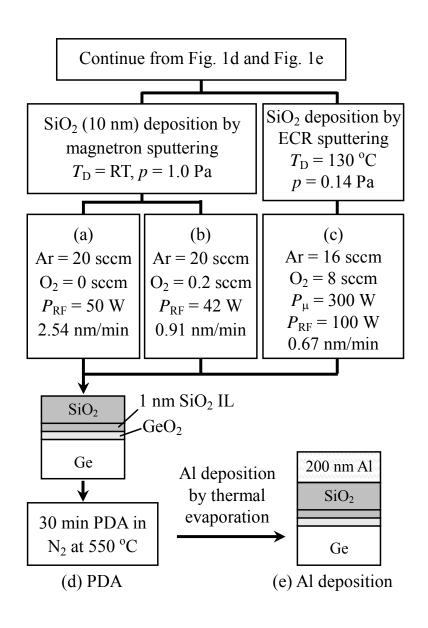



Figure 4. Kana Hirayama et al.

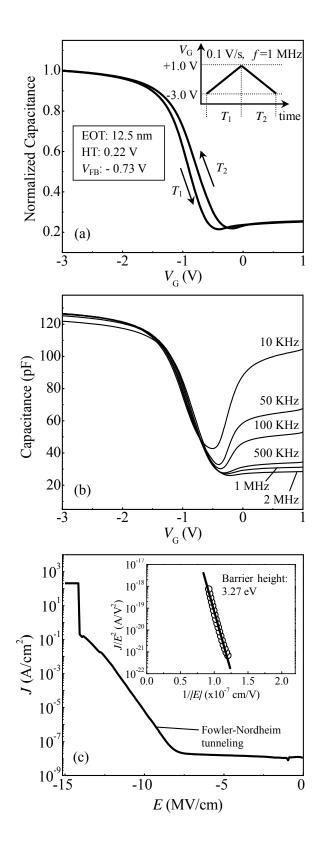



Figure 5. Kana Hirayama et al.

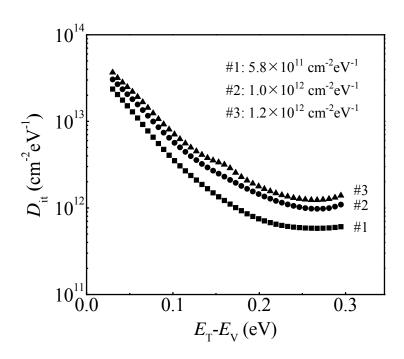



Figure 6. Kana Hirayama et al.

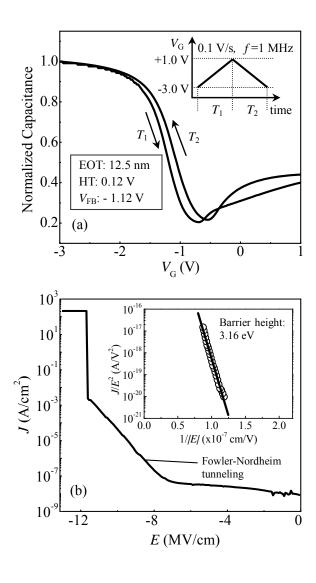



Figure 7. Kana Hirayama et al.

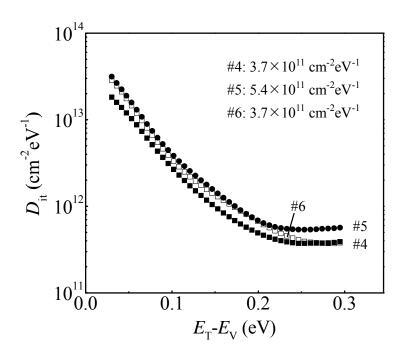



Figure 8. Kana Hirayama et al.

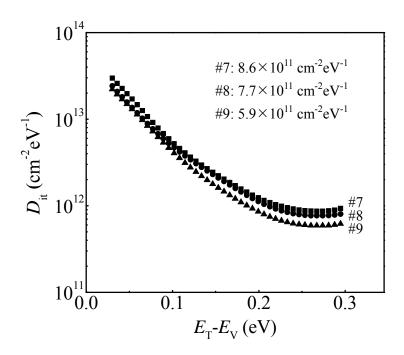



Figure 9. Kana Hirayama *et al*.