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ABSTRACT. We give an explicit presentation of the SO(N) and Sp(N) free energy of lens
spaces and show that the genus g terms of it are analytic in a neighborhood at zero, where
we can choose the neighborhood independently of g. Moreover, we prove that for any rational
homology 3-sphere M and any g, the genus g terms of SO(N) and Sp(N) free energy of M
agree up to sign. We also observe new weight systems related to the free energy.

1. INTRODUCTION

Let G be a compact Lie group parameterized by N such as SU(N), SO(N) or Sp(N), and
let gn be the Lie algebra of Gy. The LMO invariant Z,; € A(() [6] of a closed 3-manifold
M is presented by a linear sum of (a kind of) trivalent graphs, where A(()) denotes the Q
vector space spanned by such trivalent graphs (subject to some relations). The gy weight
system Wy, is a map A(0) — Q[[h]] which “substitutes” gy to trivalent graphs, such that
Wy (D) of a trivalent graph D of degree d is defined to be h? times some polynomial in
N of degree < d+ 2. When we fix a value of N, W, (log Zy/) is a power series in h with Q
coefficients, which presents the perturbative expansion of the path integral of the Chern-Simons
theory on the trivial G bundle over M. When we regard N as a variable, the weight system
can be regarded as a map Wy, : A(0) — Q[N][[h]], and Wy, (log Zy/) is a power series in h
whose coefficients are polynomials in N. Putting 7 to be Nh if Gy = SU(N), (N — 1)h if
Gnx = SO(N), and (N + 1)h if Gy = Sp(N), Wy, (log Zy) is a power series in 7 and h. We
denote it by FCN (1, h) € h=2Q[[r, h]], and call it the Gy free energy of M [5]. Further, we put
the coefficient of h9~2 in FV (7, h) to be F]\C;]\;(T) € Q[[r]], i-e

Fy¥ (7, h) Zhg PR (r

where the value of g implies the genus of some surface appearing in the definition of the weight

system.
Recently, in [4], S. Garoufalidis, T.T.Q. Le and M. Marifio proved that the power series
F ]\SZ;(N) (1) of a closed oriented 3-manifold M for any g is analytic in a neighborhood of zero,

where the neighborhood is independent of g, and gave an explicit presentation of the SU(N)
free energy for lens spaces to illustrate the analyticity. Further, S. Sinha and C. Vafa [8] gave

a formula of the SO(N) and Sp(N) free energy of S? from Chern-Simons gauge theory.
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In this paper, when Gy = SO(N) and Sp(N), we give an explicit presentation of the Gy

free energy for lens spaces, and show that FLG(’J,)) ,(7) of the lens space L(d,b) is analytic in a

neighborhood of zero, where we can choose the neighborhood independently of ¢ (Theorem 2).
This analyticity has been conjectured by Le, Garoufalidis and Marino [4]. Moreover, we show
that for any g, the genus g terms of SO(N) and Sp(NV) free energy agree up to sign (Corollary
2) and observe new weight systems related to the Gy free energy (Section 4).

An idea of the proof of Theorem 2 is to use a presentation of F' LG(’lb)’g(T) given in [4], which is
a presentation in terms of the sum of some function of A over positive roots of gn. We calculate
this sum concretely when Gy = SO(N) and Sp(N), to present FLG(’J’b)’g (7) by a function of 7
and h.

The paper is organized as follows. In Section 2, we review the definition of the Gy free
energy and results on the SU(N) free energy for lens spaces obtained by Garoufalidis, Le and
Marino. In Section 3, we present an explicit presentation of the SO(N) and Sp(N) free energy
for lens spaces and study these analyticity. We also show that the genus ¢ terms of SO(N) and
Sp(N) free energy for a rational homology 3-sphere agree up to sign. In Section 4, we recall
properties of the sl and soy weight systems and observe new weight systems related to the
free energy. In Section 5, we prove a relation between the soy and sp, weight systems.

Acknowledgment The author wishes to thank S. Garoufalidis, T. Ohtsuki, D. Bar-Natan, T.T.Q.
Le, and M. Marino for valuable comments.

2. PRELIMINARIES

In this section, we review the definition of the free energy and some results about the SU(N)
free energy of lens spaces in [4].

We briefly review the LMO invariant Z,; of a closed oriented 3-manifold M, constructed
by T.T.Q. Le, J. Murakami and T. Ohtsuki in [6]. We denote by A(()) the vector space over
Q spanned by trivalent graphs whose vertices are oriented, modulo the AS, THX and STU
relations and denote by A(()con, the subspace of A(()) spanned by connected trivalent graphs.
The degree of a trivalent graph is half the number of vertices. The LMO invariant Z,; takes
values in A((). Tt is known that log Z), takes values in A(()conn-

Let us recall the weight system associated with a semi-simple Lie algebra g. It is known that
for a semi-simple Lie algebra g, one obtains a Q linear map Wy : A(0) — Q[[A]], called the
weight system associated with g (for general references, see [2, 7]). From a trivalent graph D of
degree d in A(0), Wy(D) is obtained by substituting g into D, contracting a tensor at vertices
and multiplying by h%. When g = gy = sly, 50y or spy, regarding N as a variable, W, (D) of
a connected trivalent graph D of degree d is h? times some polynomial in N of degree < d + 2
by Lemma 1 below, and we regard the weight system W, as a map Wy, : A(0) — Q[N][[R]].

Lemma 1. For gy = sly,s0y,5py and a connected trivalent graph D of degree d, Wy, (D) can
be presented in the following form,

(1) WEN(D) = Z agN,g(D)Nd+2_ghda
0<g<d+1
for some aq, 4(D) € Z.
We show a proof of the lemma in Section 4.
Let G be a simple compact Lie group SU(N), SO(N) or Sp(N) and let gy be the Lie

algebra of G. Putting 7 to be Nh for g = sl, (N — 1)h for g = so, and (N + 1)h for g = sp,
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W, (D) has the following form,
(2) We. (D) = Z Cog(D)TH?791972,
0<g<d+1

for some ¢4 ,(D) € Z. Since log Zy; € A(0)conn, Wy, (log Zyr) can be presented in the following
form,

(3) 0 (log Zu) =D Y cqug(M)T™ 79092 € h*Q[r, h]],

d>0 0<g<d+1
for some ¢g4,4(M) € Q. As in [4], we define the Gy free energy of a rational homology 3-sphere
M by

i (1,h) == Wy, (log Zy) € hQ{[r, h]],

and put the coefficient of h9=2 in FN (7, h) to be Fﬁ’;(T) € Q[[r]], i-e.,

Fy(r,h) = Fyf(m)hd 2.

g=0
Let us review a presentation of the Gy free energy of a lens space given in [4]. Let L(d,b)

be the lens space of type (d,b). It is shown in [4] that, for any semi-simple Lie algebra g,

)\L(db Slnh a ) P h/(Qd))
4 7 _ 4+
(4) Wy (Zr(ap) eXP( ) H sinh((a, p)h/2)

acW

where A\j; denotes Casson-Walker invariant for a rational homology 3-sphere M, ¥, denotes
the set of positive roots of g, |V | denotes the number of positive roots, and Cy is the quadratic
Casimir of g. Since FLG(JdV’b) (1,h) = Wy, (log Zpap)) = logWy, (Zrap) by definition, we obtain
the following proposition from (4).

Proposition 2 ([4, Proposition 6.1] ).

AL(d.b) Cyy -dimgy - h + Z (f((e, p)h/d) — f((a, p)h)),

4
acVU

(5) Fpiy(mh) =

where we define the function f by
sinh($/2)>

flz) = 10g< o/

By a concrete computation of (5) in the case that Gy = SU(N), Garoufalidis, Le, and Marino
gave an explicit presentation of the SU(N) free energy of the lens space L(d, b):

Theorem 3 ([4, Theorem 1.4] ). The SU(N) free energy of the lens space L(d,b) is presented

by
B
sty ) (g = D)= (d* Lis_g (") — Lis—y(€7)) + ay(7), if g is even,
L(d,b),g(T) = g:
if ¢ is odd,
where
™ 2T 7'2 ) ™.
= 1
ay(7) —ﬂ(d‘ 1)+ — logd - )\L(db)2 if g =2,
0 if g > 4.
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Here the kth Bernoulli number By, is defined by the generating series
x - ¥
1 Z Bkﬁ’
k=0

and the polylogarithm function Li, is defined by

o0 n

Liy(z) = Y %

for any integer p and ((3) ==Y 0, &

n=1 np3 "

One sees that the power series FLS(ZU)V)g(T) with even g are analytic in a common neighborhood
at zero, independently of g. Moreover, it is proved in [4] that for any closed 3-manifold M, the

power series FASZJQ(N) (1) with even ¢ is analytic in a neighborhood at zero, where the neighbor-
hood can be chosen independently of g. They conjectured such analyticity of the SO(N) and
Sp(N) free energy of a closed oriented 3-manifold M, which was discussed in [5].

In the next section, when Gy = SO(N) or Sp(N), by a concrete computation of the second

term in the formula (5), we show their conjecture for lens spaces.

3. REsuLTS

In this section, we give an explicit presentation of the SO(N) and Sp(N) free energy for
lens spaces and show that the genus g terms of SO(N) and Sp(N) free energy for a rational
homology 3-sphere agree up to sign.

We have

Theorem 4. The SO(N) and Sp(N) free energy of the lens space L(d,b) is presented by

(1 B
3 {9 =17 P PLig o (e7/) ~ Lig (7)) + ay (7)) if g is even,

29-2_ 1)B,_,
(g— 1!

( N S
FLG(];,b),g(T) =\ o [ d* 9(22 gL13fg(€ /2d) o §L13fg(6 /d))

1
—2279Li_,(e™?) + §Li3_g(67)} + a'g(T)} if g is odd,

\

where e, is 1 for Gy = SO(N) and —1 for Gy = Sp(N),

7'3 71'27' 7'2 7'3 .
ag(t) =4 _ T -1 il d— )\ T if g=2
24( ) + 1508 L(db) 5 if g =2,
0 if g > 4,
2
T ™ .
alg(T):{ 510gd—z(d—1) lfg:]_,
0 if ¢ > 3.

In particular, Ff((;(])v)g (1) and Ff&(é\;)g (1) are analytic in a neighborhood at zero, where we can

choose the neighborhood independently of g.
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Proof. In the case that Gy = SO(N) with even N = 2n, we show the required formula by
calculating the right-hand side of (5) as follows.
The first term of the right-hand side of (5) is given by

AL(d,b)
4
where 7 = (N — 1)h.
We calculate the second term of the right-hand side of (5). For j € N, let m(j) be the number
of positive roots « such that («, p) = j. By definition,

> Flasp)h) =Y m(j) f(ih)

acV JEN

A A 3
Cuoy - dimsoy - h = NN — 1)(N = 2)h = =22 (;— - T> ,

Further, by Lemma 5 below,

> fon = Y I G+ Y 2 pn)

acWv j:odd jreven
1<j<n—1 1<j<n—1
2n—j7—1 . 2n—j7—2 .
—f(jh —f(7h).
+ % s—F(h) + Z s—1(ih)
n<j<on—3 n<j<on—3

From the definition of sinh, we have the following presentation of f(x),

oo

By, 2k
(6) £ =3 s

where By, is the kth Bernoulli number. So, it follows that

OéE‘I’+
~. B 2n—j-1
2k 2%k B Qk -2k
= h
2 S h] > DINAEE DS
k=1 1<5<2n—2 1<j<n—1 jreven
1<5<2n—-2
00 . ()
Boy. 2n—j—1 . Bay,
7 — h2k 2k h2k o 22k 1
(7) 2 2k (2k)! 2 AR 2k (2k)! ) >
k=1 1<j<2n—-2 k=1 1<j<n-1

By using 2n —1 = N —1 = 7/h, from the formulas (6.7), (6.8), and (6.10) in [4], the first term
of (7) is presented by

. By o 2n—j—1 .4 _1 (1 = 28) By h* 72 & Boyios _
h — == T2+

N N Y e

1N (1 =28)Bogh® 2

- 5 Z (28)’ Fs (T)a

s=0
where we put
Feven i BZZ+25 7_21_1_2.

ar 21+2 )21 + 25)



Using the formula

zn: 2k Mjsz:& 2k + 1 B (n+1)2k+172s
T T Tk 2w ) T2 ’

the second term of (7) is presented by

o0

Boy, 2k 2k— 1

E h 1 -2 E ]
k=1 2k(2k) 1<j<n—1

00 k

Bak o o1y ) (n—3)*H 21-% 1 [ 2k +1 1oy

= -2 S 47 B T \2k+1-2s

;%(%) A AT +; 2k + 1 25 2% =3)

S Boy, 2k 2k—1
= h -2

2 g™ )

i
I

1)2k+1 1 Fol=% /941 1
2%k+1 Bo.(9n — 1)2k+1-2s( 2 2k+1-2s
2k+1 3) +; 2k + 1 ( 25 ) 2s(2n = 1) 3)

i

— L Boy, o2k— D) Tl (1)2k+1
— 2k(2k 2k +1°2
00 k
Bsy, 21725 _ 1/ 2k +1 1
R20-1(1 _ 92k~1 B, 2k+1-25( £\ 2k+1-2s
+22k(2k) ( )2 2%k + 1 25 27 )

m

1

| 2k 2k+1 2, 2k+1
- (Z 2Rk 1)1 Z 2k+1 57 )

s=1

(212 — 1) By, 25—1
h S
+ Zsl (29)]

= Bay T\ 2k+1-2s Lo o Bay 2%+1-2s
8 (kz:: k1252 (2) ;2k(2k+1—2s)!T

o0 B o0
_ -1 2k 2k+1 2k+1
1 (S 5 - 6 Y ™)

S (21725 - ]-)B2s

= Byt 05 T\2141 2 2s = Boy 195 2+1
8 (; Q2522 12; 20+ 1)1(20 + 25)

_ Z (1 — (222:)'1)B28 h2571(2172stodd( /2) Fodd( )),

where we put
oo

B
Fodd 20+2s 20+1
120: o0 +25) (20 + 1)
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Thus, it turns out that

> f(e.p)h)

aG\II_;,_
1 — (1— 25)B2sh2s_2 ZOO 228 ! B2s 25—1(61—2s rodd L odd

— _ Feven h S 2 SFO 2 FO .
2 s=0 (28)' ’ + s§= ( ) (T/ ) 2 s ( ))

Hence, from the formula (5), with the replacement of (7, h) to (7/d, h/d), we obtain

(1 [ (1 —25)Ba,s
5{ (25)!

(1 _ 22571)828
(2s)!

A
(d272steven(7_/d) _ Fseven(T)) + %(7‘355,0 - 7'55,1)}
if g =2s,

{dHS <21‘23F:dd(7/2d) - 1Egd%/d))
_ (212SF;dd(T/2) _ lFod2d( ))} it g =254 1.

2 S

SO(N
Fy™(r) =

e

\

From Lemma 7 below, we obtain the required formula for Gy = SO(N) with even N.
In the case that Gy = SO(N) with odd N = 2n + 1, from Lemma 6 below, it follows that

00 o _ 92k—1
Z F((a, p)h :Z%BE p2k Z 2n2 ]j2k+ 1 ;k Z ]-2k
=1

acl 1<j<2n—1 jodd
1<j<2n—1

By a similar calculation, we obtain the required formula for Gy = SO(N) with odd N = 2n+1.
We obtain the required formula for Gy = Sp(NV), since

Sp(N SO
ity (T) = (1 Fjgiy (),

by Proposition 8 below.

In particular, we see that for any g, Fs(g(b) ) (1) and Ff&(’g?g(ﬂ are analytic in the unit disk,
which is not trivial, since the function Liz_,(e”) for ¢ > 4 has poles at 27v/—1Z. Hence,
Ff((;(b];f)g(T) and Ff@(g)g(ﬂ are analytic in a neighborhood of zero, where we can choose the

neighborhood independently of g. 0]

Lemma 5. For j € N, let m(j) be the number of positive roots c of 6§09, such that («, p) = j.
We have that

m—jtl  ip s .
== it jrodd, 1 <j<n—1,

2"777 if j:even,1 <j<n-—1,

m(j) = % if j:odd,n <j <2n—3,
w if j:even,n < j < 2n — 3,
0 otherwise.

Proof. The set of positive roots of s0,, is
\If+:{6k:|:6‘l|1§k<l§n},

(ek,€1) = Ok, and p = Zz;i(n— k)eg. Since (e — ey, p) =1 —k for 1 < k <1 < n, it holds that
for j € N, the number of ¢, — g; with (g —¢;,p) =jisn—jif 1 <j <n—1 and 0 otherwise.
7



Since (e +£;,p) =2n—k — [ for 1 <k <[ < n, it holds that for j € N, the number of g, + ¢
with (e, +¢5,p) =7 is .
it if j:0dd,1<j<n-—1,

é if jreven,1 <j<n-—1,
nd=lif jiodd,n < j < 2n—3,
2n—j—2 e -, .
5 1f].evgn,n§]§2n—3,
0 otherwise.
Then, we obtain the required formula. (]

Lemma 6. For j € N, let m(j) be the number of positive roots v of 509,11 such that («, p) = j.
We have that

1 if j=211<1<n,
2n—j—1 ¢ -, < i< _
m(j) = T% %fj..odd,n+1_j._ 2n — 1,
=7 if jreven,n+1<j<2n—2,
0 otherwise.
Lemma 7. We have
72 ™ 32 nir
——log(—7) - — 4+ — — — 3 if s=0
Fseven(T) — —Li3,25(6‘r) + _ IOg(—T) _ 5 if s = 1,
_ By o .
25 — 3)Ir27% - fs>2
(2s — 3)!IT 55 — 9 if s > 2,
1 2
—7log(—7) — ZTQ — % +7 if s =0,
FsOdd(T) = _Li2*25(67) + _l —_ 1 if s = 1,
T 2
—(25 = 2)lrt 7% if s > 2.

Proof. The first formula follows from [4], by noting that F¢¢"(7) equals (6.8) in [4]. As
FoU(r) = 9, F®*"(7) and 0,Li,(e") = Li,_i(e7) for any integer p, the second formula follows
from the first formula. O

We show a relation between the genus g terms of SO(N) and Sp(N) free energy for a rational
homology 3-sphere, which we used in the proof of Theorem 4.

Proposition 8. For any rational homology 3-sphere M and any g,
Sp(N SO(N
ity (1) = (D' ().

Proof. Noting that 7 = N — 1 for g = so and that 7 = N + 1 for g = sp, it follows from (2)
that

W, (D)= D capg(D)N +1)H2 9002,

0<g<d+1
Weo,(D) = Y Caog(D)(N = 1)*279p92
0<g<d+1
for a connected trivalent graph D of degree d. Hence,
(=) Weo, (D) [vron = (=1)" D Coog(D)(=N —1)**>9po 2

0<g<d+1
8



= Y (1) g(D)(N + 1)H79h92,

0<g<d+1

Comparing We, (D) and (—1)Ws, (D)|n_s_n by Proposition 9 below, we have
Cop,g(D) = (=1)7¢s0,4(D)

for any ¢. Since log Z); is a linear sum of such D, it follows from (3) that

Cop.d,g(M) = (=1)%Cs0,0,4(M)

for any rational homology 3-sphere M, any d, and any g. Further, since

()= Y cag(M)r**

d>0,d>g—1

by definition, we obtain the required formula. O

Proposition 9. For a connected trivalent graph D of degree d, We, (D) is obtained from
(=1)Wson (D) by replacing N with —N, i.e., Wep (D) = (—1)"Weo (D)|No—n-

This proposition was proved up to sign in [3, Chapter 13], while we give a complete proof in
another way in Section 5. As a corollary of Theorems 3 and 4, we obtain

Corollary 10. For the lens space L(d,b) and any even g,

1
FSU(N)( )_FSO(N)( )_ FSp(N) ( )

9 L@h),g\T) T Frah),g\T) T T Lb).g

Proof. The first equality follows from Theorems 3 and 4 and the second equality follows from
Proposition 8. |

4. OBSERVATION

In this section, we review the descriptions of Wy, and W, given by Bar-Natan in [1, 2] and
observe new weight systems related to the free energy.
We consider the weight system Wy,,. We double any edge and replace any trivalent vertex

of D in the following:
\/
-

0 1

FIGURE 1

This diagrammatic interpretation comes from the fact that gly, = V ® V* for the defining
representation V' of gly and the gl weight system at a trivalent vertex is defined by the Lie
bracket. We note that the gl and sly weight systems agree on a trivalent graph, since an
abelian ideal of gl does not contribute on any trivalent vertex applied with the gl weight
system. Let D be a connected trivalent graph and v(D) the set of trivalent vertices. Given a
map m, : v(D) — {0,1}, called a vertex marking of D, choosing one of the two possibilities for

the replacement of a trivalent vertex depending on m,,, connecting up, we obtain an orientable
9



surface Sp,, of the genus ¢(Sp,n,) with bp ,,, boundary components. It is showed that for a
connected trivalent graph D of degree d,

(8) W5[N (D) — Z(_l)smu NbD’m” hd,

where s, = 37, c,p)ymu(2) and the sum is over all possible vertex marking m, of D. On

the other hand, It holds that 2 — 2¢(Spm,) = x(D) + bp,m,, where x(D) denotes the Euler
characteristic of D. As the degree of D is a half of the number of trivalent vertices and
X(D) = —d, we get

(9) Wiy (D) = 3 (—1)me N#2-20(Dm) .
For example, if D = x; @ x5 and my, (1) = 0, my(x3) = 1, then s,,, =1 and Sp,,, = @ is

a torus with one boundary component, i.e., ¢(Spm,) = 1, bpm, = 1. This contributes —Nh to
Wiy (D). We get that Wy, (D) = 2N*h —2Nh = 2N (N? — 1)h.

Moreover, we have the following description of the weight system W,,,. We replace any
trivalent vertex and any edge in the following:

Y -3

— -
0 1

FIGURE 2

We denote by e(D) the set of edges of a connected trivalent graph D. Given a map
me : e(D) — {0,1}, called an edge marking of D, choosing one of the two possibilities for
the replacement of an edge depending on m,, connecting up, we obtain an orientable or a
nonorientable surface Sp . of the genus ¢(Sp . ) with bp ,,, boundary components. Then, we
have

(10) WsoN (D) — Z(_I)Sme Nbtome pd — Z(_l)smv N&+2-9" D m, hd,

Me my

where s, = 37 .y me(y), the sum is over all possible edge marking m. of D, and ¢'p ,, =
29(Spm.) if the surface Sp,,, is orientable and ¢'p . = g(Spm,) if the surface Sp.,, is

nonorientable. For example, from , we obtain Sp,,, = @ is a projective plane with

two boundary components. This contributes —N?h to Wi, (). We get that W, () =
N3h —3N?h +3Nh — Nh = N(N — 1)(N — 2)h. We remark that the inner product for soy
here is the one in [2] multiplied by 3.

Using the above descriptions of Wy, and W,,, , we show Lemma 1.

Proof of Lemma 1 By noting that bp,,, > 0 in (8) and that bp,, > 0 in (10), Lemma 1

follows from the above descriptions (9) and (10) and Proposition 9. O
10



Let us observe new weight systems related to the GG free energy. We recall the presentation
(2) of W,, (D) for g = sl, s0,sp and a connected trivalent graph D of degree d,

(11) WoD)= 3 cyy(D)r> 9ho 2,
0<g<d+1

for some ¢, ,(D) € Z. For g = sl, 50, 5p and any g, we get the weight system wg, ; : A(0)conn —
Q[[7]] defined by
d+2—g ; _
| egqe(D)T ifd>g—1,
Wy, o(D) := { 0 otherwise,
for a connected trivalent graph D of degree d.
We study relations among the weight systems wyg, 4, Wso, o and ws, 4. Since only orientable
surface appears in the above description of the weight system Wy, , wq, o = 0 for any odd g,
and Proposition 9 implies

Proposition 11. For any connected trivalent graph D and any g,
Wso,,g(D) = (=1)7wep, 4(D).

We consider the weight systems ws, , for even g and ws,, , for any g. In the case that g = 0,
we have
Proposition 12. For any connected trivalent graph D,
1
w50*70(D) = §w5[*70(D)'

Proof. One sees that two different vertex markings m, and m. of D induce the same edge
marking of D if and only if m](z) — m,(z) = 1 (mod 2) for any vertex = of D. Conversely,
if an edge marking m, of D gives an orientable surface, then there exists a vertex marking of
D which induces the edge marking m.. Noting that only edge marking of D such that gives
orientable surface contributes to ws,, o(D), we obtain the required formula. 0J

Moreover, we obtain

Proposition 13. The family {we, 4] g is even,g > 0} U {wso, 4|9 > 0} of the weight systems
are linearly independent in the space spanned over Q by these weight systems.

To show Proposition 13, we need some lemmas. We define tD ( resp. uD ) for a connected
trivalent graph D in A(()conn to be a connected trivalent graph obtained by replacing a trivalent

vertex in D with A( resp./ga\ ), which was introduced by Vogel in [9]. By the AS and THX

relations, these replacements are independent of a choice of a trivalent vertex. We have the
following lemma (for example, see [9]).

Lemma 14. For any simple Lie algebra g and any connected trivalent graph D in A(D)conn,
1
Wg( -O-) = CgWg( — ), Wg( tD) = §CgWg( D),

where Cy is the quadratic Casimir of g.

From Lemma 14, we also have
11



Lemma 15. For any simple Lie algebra g and any connected trivalent graph D in A(D)conn,
() > dio
W.(uD) = W,(D) = L W,(D).
(uD) (D) = Gt Wa(D)

Here {a;} are the eigenvalues of the g-homomorphism from g ® g to itself defined by x @ y —
Yool 04] ® [0, y] with the Casimir element )", 800, where {ga} is a basis of g, {gl,} is the
dual basis on the Killing form, and d; is the dimension of the eigenspace of .

Proof. From Lemma 14, for J)\: /ga\, there exists a scalar Ay such that

Wl &)= Wl ﬁ)zé%( E)%WQ( L.

and so Wy(uD) = Ay W,(D). Applying to this D = @, we get that

Ay = Wal(T0)/Wa( ().
The second equality can be obtained from [9, Proposition 6.2]. O
Using Lemmas 14 and 15, we get the following lemma.

Lemma 16. For the connected trivalent graph T, , = tmun@ of degree m + 3n + 1,
We, (Tnn) = 2N™FH(N? 4 12) (N2 — 1)pmontt

= 20" () 12) ()7 — DR
Weo, (Trnn) = (N —2)™"(N? —9N? + 54N — 104)"N(N — 1)h™!

T

= (5~ D™(7)* = 6(5)° +39(5) = 58)"((5)* = VA",
where 7 = Nh for Wy, and 7 = (N — 1)h for Ws,,.
Proof. We have that Cg,, = 2N and Cs,,, = 2(N — 2) and calculate
Wy (1)) =2N (V> - 1),

Way ((T0)) = 2N3(N? = 1)(N* +12),

Waon () = N(N = 1)(N —2),

SUN(@)) N(N — 1)(N — 2)(N® — 9N? + 54N — 104).
From Lemmas 14 and 15, we obtain the required formulas. O

Now let us show Proposition 13.
Proof of Proposition 13 From Lemma 16, we calculate that for g > 3,

Wet, 2(Ty—20) = —27971wy, m(Ty—20) =0if m > 4, m is even,
wso*,O(Tg—Q,O) TIt! wso*,l(Tg—ZO) = _(9 - 2)7'9,

4) —1)(g—2)(g—6) __
wso*,2(Tg—2,0) %7’9 ! wso*,?)(Tg—?,O) = _(g )(g 6 )(g )Tg 2,

2 b



Wio, g(Ty—20) = (=1)7'7, wo, m(Ty—2,0) = 0if m > g,

and that for any even g with g > 4,

We, o(Ty a=2) = =2 12‘%27%, Wet, (T a=2) = 0if m > g + 2, m is even.
[ > 2
Then, we get the proposition. O

5. PROOF OF PROPOSITION 9

Let us state some results about the spy weight system. From [1], we get the following
diagrammatic description of the sp, weight system with N = 2n, which comes from that sp
has a basis Eij — En+jn+z' (1 S i,j S n), Ein-l—j + Ejn—l—i (1 S 1 S j S n), and En+z'j + En+jz'
(1 <i<j<mn). and that the inner product is given by (Ej;, E) = str(EijEw) (1 <1i,7,k,1 <
2n). Let D be a connected trivalent graph, v(D) the set of vertices of D, and Yj(o,e) the

set of the diagrams and the diagrams obtained by the 2?”—rotation or 4?”—rotation of the above

T
o
b

FIGURE 3
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= =
= ==

diagrams except the first and second diagrams. We double any edge in D and replace each
vertex with one diagram in Y := Yj(o, ) U Yy(e,0), in such a way that connecting up, the two
ends of each edge in any double edge have the same symbol. Such a replacement defines a
map m : v(D) — Y, called an admissible vertex marking of D, and we obtain an orientable or
a nonorientable surface Sp,, with bp ,, boundary components with even symbols o and even
symbols e. We comment that the symbol o ( resp. e) corresponds to index i ( resp. n+1i )
with 1 <7 < n in the above basis of sp,. Then, we have

Wapy (D) =273y (1) mnbrom pd,

where s, is the number of <= and =<Z§ in Sp,,, and the sum is over all possible admissible
vertex marking m of D. We note that the symbols o and e correspond to the symbols P and
(@ respectively in [1].

We have a simpler description of the weight system Wy, . We denote by e(D) the set of
edges of a connected trivalent graph D and Y’ the set of the diagrams We replace any trivalent

e S G S S e

FIGURE 4
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vertex in the same way as the weight system W,,, and replace each edge with one diagram
in Y, in such a way that connecting up, the two ends of each arc in any doubled vertex have
the same symbol. Such a replacement defines a map m' : e(D) — Y, called an admissible
edge marking of D, and we obtain an orientable or a nonorientable surface Sp,, with bp .
boundary components with even symbols o and even symbols e. Then, we have

Wiy, (D) = 32(= 1) bon b,

where s, is the number of 2<% and ;=<5 in Sp,, and the sum is over all possible admissible
edge marking m’ of D. For example, when D = , m'(y1) = 2o, m'(y2) = o<, and

m/(ys) = o=, the surface Sp @ is a nonorientable surface of the genus 1 with 2

boundary components and so contributes n?h to We (). We compute that Wi, () =
8nh + 12n*h + 4nh = 2n(2n + 1)(2n + 2)h = N(N + 1)(N + 2)h.
Now let us prove Proposition 9.

Proof of Proposition 9  Let D be a connected trivalent graph. One sees that an admissible
edge marking m' : v(D) — Y in the above description of W, induces an edge marking
me : (D) — {0, 1} in the description of Wy, in Section 4, by ignoring the symbols o and e. Let
me : e(D) — {0,1} be an edge marking. We construct an admissible marking m' : v(D) — Y’
which induces m, as follows. Let B be a boundary component of the surface Sp,,. . We
decompose B into a sequence a3 ... a0 of arcs, where «; is one of two arcs in the diagram
or —>and f; is one of three arcs in the diagram Y . Let p; be the intersection point
of ;1 and «; for 1 < i < k, where Sy := B, and ¢; be the intersection point of «; and f; for
1 <1 < k. Next, we assign p; and ¢; with o or e in such a way that ¢;_; and p; for 1 < <k
are assigned with the same symbol, where ¢y := ¢, and that if «; is an arc in the diagram
~ (resp. == ), then p; and ¢; are assigned with the same symbol (resp. the different
symbol). As the number of a; which is an arc in the diagram < is even and an assignment
of p; determines such an assignment, such two assignments exist. A surface Sp,, with any
boundary component given one of two possible assignments is said to be decorated. It follows
from the definition of Y’ that a decorated surface Sp ,,, determines Sp ,,y for an admissible edge
marking m’ : e(D) — Y’ inducing m,. For any edge marking m,, there exist 2°P.m¢ admissible
edge markings m’ that induces m,. Moreover, it holds that for any admissible edge marking
m/, there exists an edge marking m, such that a decorated surface Sp,,. coincides with Sp .
Noting that the number of .« ., « o on each boundary component of Sp,, is even, one
also sees that if admissible edge markings m/ and m/, induce the same edge marking m,, then
S, = Sml, (mod 2). Consequently, we obtain that

(12) WspN (D) — Z(—l)smIQbD’mean’me hd,

me

where the sum is over all possible edge marking m, : e(D) — {0,1}, m’ is an admissible edge
marking inducing m., and d is the degree of D. Moreover, by the definition of s,, and s,,, we
have that s,,, = sy + jm, Where jy, is the number of ;[ ><Z5, $2<Z¢ in Sp . Hence, we obtain
that

(13) Wapy (D) = D (=1)%me I (2p)P2me pft =y ™ (1) ome It NPDome .
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From the formula (10), to prove Proposition 9, it is enough to show that d + bpm, = Ju
(mod 2). We remark that 2 — g’D’m, = —d+bp ;. . In the case that j,, = 0, one sees that Sp
is an orientable surface and that —d + bp . = 2 — 29(Spw) = 0 = Jju (mod 2). Suppose
that j,y # 0. From the definition of an admissible edge marking, we see that the surface Sp
is nonorientable. Replacing all {ox=g (resp. <=t ) with ¢ ¢ (resp. &2 ), we get an
orientable surface S%, . Then, it follows that g, ., = 29(Sp /) + jm = jm (mod 2) and so
we get that —d + bpm, = 2 — gp,,y = Jm (mod 2). This completes the proof of Proposition
9. l

Remark. Proposition 9 is noted as Exercise 6.37 in [2]. It can also be obtained from a
result on the weight system associated with the super Lie algebra osp(m,n) in [9], noting that
osp(m, 1) = so,, and that osp(1,n) = sp,,.
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