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STEPWISE MULTIPLE COMPARISON
PROCEDURES FOR NORMAL VARIANCES

By

Tsunehisa IMADA™*

Abstract

In this study we discuss stepwise multiple comparison procedures for normal
variances intended to obtain higher power compared to the single step procedures
proposed by Imada (2018A, 2018B). Specifically, we construct the sequentially
rejective step down procedure and the step up procedure for the multiple compar-
ison with a control. Furthermore, we construct the closed testing procedure called
Ryan-Einot-Gabriel-Welsch’s procedure for the all-pairwise multiple comparison.
Finally, we give some numerical results regarding critical values and power of the
test intended to compare the procedures.

Key Words and Phrases: Closed testing procedure, Sequentially rejective step down procedure,
Step up procedure.

1. Introduction

Assume there are independent normal random variables X7, Xo,..., X and X
is distributed according to normal N (uy, ai) for k =1,2,...,K. For testing whether
1 = pig = --- = pug or not by the analysis of variance the assumption o? = o3 =

- = 0% is necessary. The assumption is also necessary for multiple comparison pro-

cedures proposed by Dunnett (1955) and Tukey (1953) for checking specific differences

among fi1, {2, - - -, . When the hypothesis 0 = 03 = -+ = 0% is rejected, we oc-
casionally want to find the pair of,ajz satisfying o? # 0]2-. Imada (2018A) discussed
the multiple comparison with a control for comparing of with 03,0%,...,0% simulta-
neously and the all-pairwise multiple comparison for 0%,03,...,0% based on the single

step procedures (cf. Dunnett (1955) and Tukey (1953)). For the multiple comparison
with a control Imada (2018A) determined the critical value for pairwise comparison
satisfying a specified significance level exactly and formulated the power of the test un-
der a specified alternative hypothesis. For the all-pairwise multiple comparison Imada
(2018A) determined two kinds of conservative critical values for pairwise comparison for
a specified significance level using Bonferroni’s inequality and the improved Bonferroni’s
inequality respectively and calculated the power of the test by Monte Carlo simulation.
Furthermore, Imada (2018B) determined the critical value for pairwise comparison of
the all-pairwise multiple comparison satisfying a specified significance level exactly.

In this study we discuss stepwise multiple comparison procedures for normal vari-
ances intended to obtain higher power. There are various types of stepwise multiple

* Department of Management, Tokai University, 9—1-1 Toroku Higashi-ku Kumamoto, Japan 862-8652
Japan. tel +81-96-386-2731, timada@ktmail.tokai-u.jp



2 T. IMADA

comparison procedures. For the multiple comparison with a control Imada (2017) in-
dicated that the power of the sequentially rejective step down procedure is not higher
than that of the closed testing procedure and confirmed that the difference of the power
between the two stepwise procedures is fairly small through the simulation results. For
the all-pairwise multiple comparison Ryan-Einot-Gabriel-Welsch’s procedure (cf. Ryan
(1960), Einot and Gabriel (1975) and Welsch (1977)) is the well known closed testing
procedure. Imada (2017) constructed another type of closed testing procedure which
enables us to test the intersection of plural mutually disjoint hypotheses at a time and
indicated that the power of Holland-Copenhaver (1987)’s sequentially rejective step down
procedure is not higher than that of the proposed closed testing procedure specifying the
total number of populations. Imada (2017) confirmed that the power of the proposed
closed testing procedure is uniformly higher than that of Holland-Copenhaver’s proce-
dure and is not higher than that of Ryan-Einot-Gabriel-Welsch’s procedure through the
simulation results.

In this study we focus on the sequentially rejective step down procedure and the
step up procedure for the multiple comparison with a control. For these procedures
we determine the critical value at each step of the test for a specified significance level
and formulate the power of the test under a specified alternative hypothesis. Next, we
construct the closed testing procedure called Ryan-Einot-Gabriel-Welsch’s procedure for
the all-pairwise multiple comparison. Finally, we give some numerical results regarding
critical values and power of the test intended to compare the procedures.

2. Multiple comparison with a control

First, we consider the multiple comparison with a control for comparing o? with
03,0%,...,0% simultaneously. For pairwise comparison we consider the one-sided test
and the two-sided test. For the one-sided test we set up a null hypothesis and its
alternative hypothesis as

Hl(}lzzaf:ai VS. Hl(},zA:af<ai for k=2,3,..., K. (1)

For the two-sided test we set up a null hypothesis and its alternative hypothesis as

Hl(?,zzaf:a,% VS. Hl(?le:a%;éaz for k=2,3,..., K. (2)
We consider the simultaneous test of HY%,H@, . ,Hl(l}( for ¢« = 1,2 using a sample
Tk1, Th2, - - -5 Thp, from N(,uk,az) for k=1,2,...,K.

2.1. Single step procedure

First, we discuss the single step procedure for HY%,HI(Z%, .. ,Hl(Z}< fori = 1,2

proposed by Imada (2018A). Letting

Nk Nk = \2
1 o Dy (TR — Tg)
T = Tkiy, Vi =

n ne — 1
1=

for k=1,2,..., K, we use the statistic

2

1%

k

Fl,k: 2
1
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for testing HI(Z,)€ for i = 1,2. If no,ng,...,ng are unbalanced, it is preferable to set up
an appropriate critical value for each H ﬁc However, we set up a common critical value
for all H 1(Z1)c5 for simplicity. First, we consider (1). If Fy, > c for a specified positive
critical value ¢, we reject H 1(1,2 Otherwise, we retain H 1(1,2 The probability that at least

one hypothesis among H1(,12)7 Hf’lg7 ey Hl(ll)( is rejected is

P F .
(Qgcang 1,k > C)

We determine ¢ so that

P Fip>c)= 3
(,max Fi>c)=a (3)
for a specified significance level o under the assumption that 02 = 03 = -+ = 0%. (3)

is equivalent to
P(Fip<c,Fi3<c,....Fig<c)=1-a.

Imada (2018A) derived

oo K c)\lykzl
P(F1,2SC;F1,3§07--~7F1,K§C):/ fl(l’l){H/ fk(ka)dxk}dxl
0 s Jo

where fy(7,) denotes the probability density function of y2-distribution with degrees of
freedom ng — 1 for k =1,2,..., K and

ng — 1

ny — 1

1,k =

for k =2,3,..., K. Next, we consider (2). If F} ; < ¢1 or ca < Fyj, for specified critical
values ¢y, co satisfying 0 < ¢ < ¢z, we reject H ﬁz Otherwise, we retain Hﬁg Since

-1 -1 -1 -1
Fip<corc<Fiy & FL,C <cyrore < FU67

we restrict ¢y, co as

1

cg=c; =c>1.

Then, we obtain
-1 -1 -1 -1
Fip<corc<Fiy & Fj, <c orc<F.

Furthermore, letting
G = max{Flyk, F;]}},

we obtain

1

Fip<corec<Fi & Gip>ec.

The probability that at least one hypothesis among HI(QQ), Hl(zd), o H 521)( is rejected is
1 —P(GLQ S C,Gl)g S C7'-'7G1,K S C).

We determine ¢ so that

P(G1,2§C,G1?3§C,...,G17K§c):1fa
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for a specified significance level o under the assumption that 0% = 03 = .-+ = o%.

Imada (2018A) derived

P(Gi2<¢,Gizg<c,....,Gi g <c)= / fi(z1) {H/

Next, we consider the power of the test. First, we consider the power of the test for (1).
Assume

CA1, kT

xk)d;ﬂk} dzy.

A1 kT

07 =Y1205 =71305 = =0t and 0 =02, form=1+1,1+2,....K  (4)

where 0 < 112 < 1,0 < v13 < 1,...,0 < y1; < 1. We focus on the all pairs power
defined by Ramsey (1978). If | = 2, the power of the test under (4) is

oo

P(FLQ > C) = f1’2($)d$

CY1,2

where f; 2(v) is the probability density function of F-distribution with degrees of freedom
(ng —1,ny — 1). If [ > 2, the power of the test under (4) is

P(Fy;>cfori=2,3,..., / fi(z {H/ (2 dxl}dxl
A1, i1, ﬂl

by Imada (2018A). Next, we consider the power of the test for (2). Assume

0} =120 = Y1305 ==y 0f and 0 =02, form=1+1,1+2,....K  (5)

where y12 # 1,713 #1,...,71,; # 1. If | = 2, the power of the test under (5) is

€71,2

P(GLQ > C) =1 —/ flﬁg(’l))d’l}

“1y1,2
If | > 2, the power of the test under (5) is

l

0o CA1,i71,i%1
P(G1’1>CfOYZ:2,3,,l):/ fl(l'l)H{].—/ fl(xl)dwl}dxl
0 i=2 c

“IA1i71,6T

by Imada (2018A).

2.2. Sequentially rejective step down procedure

Dunnett and Tamhane (1991) discussed a step down procedure for the multiple
comparison with a control for normal means. It is called the sequentially rejective
step down procedure. In this Section we construct the sequentially rejective step down
procedure for (1) and (2). First, we consider (1). We determine ¢; as the minimum ¢
satisfying

P(Fl’k > C) <«
2

for all k =2,3,..., K under the assumption that 07 = 03 = = 0%.. Here

P(Fy>c)= /OO fix()dv
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where f1 1 (v) is the probability density function of F-distribution with degrees of freedom
(ng—1,n1—1). Next, we determine ¢, (m = 2,3,..., K—1) as the minimum c satisfying

P( max Fjp>c)<a
k=l1,l2,....lm

for I1,1s, ..., 1y chosen from 2,3, ..., K arbitrarily under the assumption that 0% = 03 =
--- = 0% Here

k=l1,l2,....Im

00 m eA1,1; 21
P( max Fyp > C) =1 —/ f1($1) H/ flj (Jilj)dl‘lj dx.
0 =170

Apparently cx_1 > cx_9 > -+ > c;. Arranging Fy 2, F13,..., F1 g in order of a size of
value, assume
Foy<Foy < < Fg_y-

H(l), g ,H(l) denote hypotheses corresponding to F{q), F2), ..., Fx_1). Then,

(1) 77 (@2) (K-1)
we test H((ll)), H((;)), ey H((Il()il) sequentially as follows.
Step 1.
Case 1. If Fix_1) < cx—1, we retain H((ll)),H((Ql)), ceey H((Il{)il) and stop the test.

Case 2. If Fix_1) > cx—1, we reject H((Ilg_l) and go to the next step.
Step 2.
Case 1. If Fix_9) < cx—2, we retain H((ll)),H((Ql)), ceey H((;()_Q) and stop the test.

Case 2. If Fix_9) > cx—2, we reject H((Ilg_Q) and go to the next step.

We repeat similar judgments till up to Step K — 1.

The sequentially rejective step down procedure for (2) is similarly constructed using
01’27 G1737 ey GI,K instead of Fl’g, F1’3, ey Fl,K-

Next, we consider the power of the test. First, we introduce notations which were
used by Hayter and Tamhane (1991) and Dunnett et al. (2001). Let Wy, Wa, ..., W,
be statistics. Let by,bs,...,b; be constants satisfying b; < by < --- < ;. Calculating
Wi, Wa, ..., W, based on observations, we assume W) < Wgy < - < Wy, If Wiqy >
b1, W(Q) > bo,. .., W(l) > by, we denote

(Wi, Wa,...,W;) > (b1, b2, ..., by). (6)
If Wiy < b1, Wy < bo, ..., Wy < by, we denote

(Wi, Wa, ..., W) < (b1, ba, ..., by). (7)
The events (6) and (7) are recursively divided into plural disjoint events. We discuss
the process only for (6). The process for (7) is similar. Specifically under (6) there are

[ kinds of ranges regarding the value of W; as follows.

W, >bl, by > Wy >b_1, bj_1 > W; > b_g, ey by > W, > b;.
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Corresponding to each range of W; the ranges of Wi, Ws, ..., W;_; are determined as
follows.

Wi > b = (Wi, Wa,...,Wi_1) > (b1, b2, ..., bi—1),
by > Wi > b1 = (Wi, Wa,...,Wi_1) > (b1,b2,...,bi_2,b;),
b1 >Wi>bo = (Wi, Wa,...,Wi_1) > (b1,ba,...,b01—3,bi-1,b;),

by > W, > by = (W, Wa,...,Wi;_1) > (bs,bs,....b).

By repeating the similar step each event is divided into plural disjoint events. Finally
the range of each of Wy, Ws, ..., W, is determined in each event.

We consider the power of the test for (1). The all-pairs power of (4) by the step
down procedure is the probability that HS)» Hl(?, e Hfll) are rejected till up to Step
K — 1. Therefore, if | = K, the power is given by

P((F1727F173’ .. '7F17K) > (617027 e ,CK_l)). (8)

Next we consider the power for | < K. When H, 2, Hi 3, ..., Hy, are rejected till up to
Step K —1, other hypotheses Hy ;/ (I’ > [41) also may be rejected. Specifically following
disjoint events Ey,F1,Es,...,Fx_;_1 can occur.

FEy : Non of H1(ll)+1a Hl(ll)_ﬂ, ceey Hl(ll)( is rejected.

E7 : One of Hl(,ll)+17 H1(lz)+27 ey Hl(ll){ is rejected.

E5 : Two of H§}1)JFI,H1(}Z)JFQ, e 7Hl(lf)< are rejected.

FE5 : Three of Hfll)-s-1’H1(11)+2’ ey Hl(lf)( are rejected.

Er_;: Al g® g

i+ 142
Y go JH 1(11) are rejected and other hypotheses are retained in the step down

. H1(11)< are rejected.

1,31 l,i0 """
test, Hl(,li)l,Hl(}i)z, ceey H&)m are rejected till Step m and other hypotheses are retained
at Step m + 1. Therefore the event is expressed by
(Friys Fryigy -3 F1,,) > (CK—ms CK—mt1s -+, CE—1)
and
Fl,j < CK—m-—1 for all ] 75 il,ig, ey Zm

Therefore the power is given by

P((Fi2,Fi13,...,F11) > (CK—141,CK—1425 - -y CK—1),
Fim <cg_yforallm=#23,...,1)
+ Z P((Fi2, Fiz, .., P Fimy) > (Ck—1 ¢k —1415 - -+ CK—1),
ml;é2,3 ..... l
Fim <cg_j—q forallm##2,3,...,1,my) (9)

+ Z P((Fra, Fiz, . P Fumg Fims) > (Ck—1-1,Ck -1y -+, 1),

Fim <cg_j—o forallm#£23,...,1,m,ma)
+ e +P((F1’2,F153,.. ~7F1,K) > (61762, .. .7CK,1)).
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Each probability in (9) is expressed as the sum of multiple integration. The specific
expressions of (9) for K = 3,4 are given in Appendix. (Since we give numerical results
for K = 3,4,5 in Section 4, we should also give the specific formulae for K’ = 5. However,
they need many pages. ) The power of the test for (2) under (5) is similarly expressed
using Gl)g, G1)3, ey GI,K instead of o, Fi3,...,F1 k.

2.3. Step up procedure

Dunnett and Tamhane (1992) discussed a step up procedure for the multiple com-
parison with a control for normal means. In this Section we construct the step up

procedure for (1) and (2). First, we consider (1). Assuming 0 = 05 = --- = 0%, we
determine the critical values c1, cs,...,cx_1 recursively as follows. First, we determine

¢1 as the minimum c satisfying P(F1, < ¢) > 1 —a« for k = 2,3,..., K. Next, we
determine co as the minimum c satisfying

P((Fi,,F1,) < (c1,0)) > 1 -«

for ly,ly chosen from 2,3,..., K arbitrarily. We repeat similar steps. Specifically, we
determine ¢, (m =2,3,..., K — 1) as the minimum c satisfying

P((Friy Fiy, -5 F1,,) < (e1,62,63,00056me1,0)) 21— @
for Iy,1s,..., 1y chosen from 1,2, ..., K arbitrarily. The condition
cp<cp<cg<--<cCg-1 (10)

is necessary for constructing the step up procedure. (10) can be mathematically proved
only for K = 2,3. However, (10) is true for K < 5 in the numerical results in Section
5. We give the specific formulae of P((F} 2, F13) < (c1,¢2)) and P((Fi2, F13,F14) <

(c1,c2,¢3)) in the Appendix. Arranging Fy o, F13,...,F1 k in order of a size of value,
assume

Fay < Foy < -+ < Fe—y.-

H((ll)), H((Ql)), ceey H((Ilg_l) denote hypotheses corresponding to F{1y, F2), ..., F{x_1). Then,
we test H((ll)), H((Ql)), ey H((]l()_l) sequentially as follows.
Step 1.

Case 1. If F(1) > c1, we reject H((ll))7 H((Zl)), N H((Il()fl) and stop the test.

Case 2. If F(;) < ¢1, we retain H((ll)) and go to the next step.
Step 2.

Case 1. If F(g) > ca, we reject H((Zl)), H((g)), . ,H((Il()_l) and stop the test.

Case 2. If F(3) < ca, we retain H((Ql)) and go to the next step.

We repeat similar judgments till up to Step K — 1.

The step up procedure for HI(QQ), Hl(Qg, ceey Hl(QI)( is similarly constructed using G 2,
G1’37 RN GI,K instead of Fio,Fi3,...,F1 k.
Next, we consider the power of the test. First, we consider the power of the test

for (1). The all-pairs power of (4) by the step up procedure is the probability that H 1%),
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Hg), cey HS) are rejected till up to Step K — 1. Therefore, if | = K, the power of (4) is
given by P(min{Fi 2, Fi 3,...,Fi x} > c1). Next, we assume [ < K. When H1(12), H1(13),
cen Hf}l) are rejected till up to Step K — 1, other hypotheses Hq (I’ > 1 + 1) also may
be rejected. Specifically, the disjoint events Ey,E1,Fs,....Fx_; defined in Subsection
2.2 can occur. If H f,li)le(,li)Z’ cee Hl(,li)m are retained and other hypotheses are rejected
in the step up test, H 1(71i)1 JH f)li)Q, o H l(,li)m are retained till Step m and other hypotheses

are rejected at Step m + 1. Therefore, the power of (4) is given by

P((Fiiq1,--., Fix) < (c1,¢2,. .. cx—p),min{F1 2, F13,...,F1 1} > cx_141)
K-l

+ Z P((Frig1y- s Frasry, s Fir) < (ciyce2,. .0 cx-1-1),
k1=1

min{F1 2, F13,..., F11, Fiipe, } > cx—1)

+ Z P((Fl,l+17"'aFI,l+k1a'-~7F1,l+/€2)"'7F1,K)S(clac2a"'7cK7l72)a

I41<k; <ko<K
min{F1 2, F13, ..., F10, Fiigr,, Friske b > Cx—i—-1))
K-l
4 +ZP(min{FLQ,FLg,...,FLK}>cl).

1=1

(11)
Here the notation ~ means omitting. Each probability in (11) is expressed as the sum
of multiple integration. The specific formulae for K = 3,4 are given in Appendix.
The power of the test for (2) under (5) is similarly expressed using G 2,G13,-..,G1 K
instead of Fy 2, F13,...,F1 k.

3. All-pairwise multiple comparison for normal variances

We consider the all-pairwise multiple comparison for 0f,03,...,0%. Intended to
compare o7 and of for 1 < k <1 < K we set up a null hypothesis and its alternative
hypothesis as

L2 2 A L2 2
Hk;yl.o'k—o-l VS. Hk,l.o-k,#o'l

and consider the simultaneous test of all Hj;s. We use the statistic

for testing Hy, ;.

3.1. Single step procedure

We consider the single step procedure for Hy, ;s discussed by Imada (2018A, 2018B).
We specity a critical value ¢(> 1). If Fy; < clore< F1, we reject Hy ;. Otherwise,
we retain Hy ;. Letting

Gri = maX{FN,Fl;ll},

we obtain
Fk,l <clore< Fk,l =4 GkJ > c.
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The probability that at least one hypothesis among Hj, ;s is rejected is

P G
(| max Gy >c).

We want to determine c so that

P( max Gp;>c¢)=a«

1<k<I<K
for a specified significance level o under the assumption that 0% = 03 = --- = 0%.
Letting
Nk, — 1
A = 2
k1,k2 g, — 1

for each pair (kq, ks) chosen from 1,2, ..., K, Imada (2018B) derived

P G
(| max Gri>c)

CAkp ka T1 Akg,1T2
=1- Z / /}\ /}\ fi(x)dz o fr,(x2)drs fr, (21)dz:.

1,k 1 I#£ky ko ¥ k1,171

It is difficult to formulate the power of the single step procedure under a specified
alternative hypothesis. We calculate the power using Monte Carlo simulation.

3.2. Closed testing procedure called Ryan-Einot-Gabriel-Welsch’s proce-
dure

Let I be an arbitrary subset of I = {1,2,..., K} with the cardinal number §(I;) >
2. Letting Iy = {s1,82,...,5k} (81 < 82 < --+ < 8g), define the hypothesis H_ as

Hr :62 =02 =...=¢

‘We obtain

}IIS = mSi,SjEIS,Si<Sj Hsi,sjv

using the notation defined in Subsection 3.1. Letting H be the family of hypotheses
consisting of all Hr s and all sorts of intersections of plural hypotheses Hr s, H is
closed. Each hypothesis in H is equal to single Hy, or Hy, NHp,N---N Hlsk where
Is,, Is,, ..., I, are disjoint. We construct the closed testing procedure called Ryan-

Einot-Gabriel-Welsch’s procedure for H. For testing H;, we use the statistic

G, = max G, s,
5i,5;€15,5;<s;

and determine the critical value ¢y, so that

P(G[S > C[s) = Q. (12)
If Gr, > cr,, we reject Hy,. Otherwise, we retain Hy,. If ngy = ng = -+ = ng and
1(Ls,) = $(Is,), cr,, = cr,,. Therefore, If ny = ny = -+ = ng, ¢y, satisfying (12) is

denoted by cy(r, -
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Next, we discuss how to test Hy, N Hy, N---NHy, where Iy, Is,,..., I, are
disjoint. Let M = §(Is,) + #(Is,) + -+ + §(Ls,). For I =1,2,...,k we determine cr, ,m
so that

1Is))

P(F[sl >CISZ,M) = 1—(1—04) M

Ifny=ng=--- =ng, I, M is denoted by CH(I,,), M- Intended to test HIS1 ﬁHI&2 N---N
Hlsk we set up the critical value cr,,,M for testing HISZ forl=1,2,..., k. If Flsl > cr,, M
for at least one I, HIS1 N HIS2 N---N Hlsk, is rejected. Otherwise, it is retained. Then,
the probability that Hy, N H;, N---NHy,, is rejected when Hy, N Hy, N---NHp,
is true is not greater than a. Because the probability that H; 0 Hy, N---NHy, is
rejected is

P(F;, > ¢, m for some 1) :1—P(F13l§01817Mforl:1,2,...,k:)

N sy
k
=1-[[PF1, <er,.m)
=1
= Q.

We specified the way to test each hypothesis in H satisfying the specified significance
level ae. We test the hypotheses in H hierarchically. Specifically, if a hypothesis and all
hypotheses inducing it are rejected, we reject the hypothesis. Otherwise we retain it.
It is difficult to formulate the power of the closed testing procedure under a specified
alternative hypothesis. We calculate the power using Monte Carlo simulation.

4. Numerical examples

In this Section we give some numerical examples regarding critical values and power
of the test intended to compare the procedures.

Let K =3,4,5 and a = 0.05. We set up two types of sample sizes for K = 3,4,5,
respectively. Specifically, if K = 3,

Sam.1 : (20, 20,20), Sam.2: (15,30, 15).

If K =4,
Sam.1 : (20,20,20,20), Sam.2 : (15,25, 15,25).

If K =5,
Sam.1 : (20,20, 20,20, 20), Sam.2 : (15,25, 20, 25, 15).

First, we consider the multiple comparison with a control. O-S means the one-sided
test (1) and T-S means the two-sided test (2). Furthermore, SS, SD and SU mean the
single step procedure, the sequentially rejective step down procedure and the step up
procedure, respectively. Table 1 gives critical values of SD and SU for O-S and T-S. The
critical value of SS is equal to cx_1 of SD.
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Table 1: Critical values of the sequentially rejective step down procedure and the step up

procedure

0O-S T-S
C1 C2 C3 Cq C1 C2 C3 C4
K =3 Sam.l1 SD | 2.169 2.444 — — 2.527 2.854 — —
SU | 2.169 2.465 — - 2.527 2.875 — -
Sam.2 SD | 2.484 2.725 — — 2.979 3.171 — —
SU | 2.484 2.740 — - 2.979 3.180 - -
K =4 Sam.l SD | 2.169 2444 2.602 — 2.527 2.854 3.052 —
SU | 2.169 2.465 2.620 - 2.527 2.875 3.060 -
Sam.2 SD | 2.484 2.753 2.899 — 2.979 3.216 3.362 -
SU | 2484 2.770 2.905 — 2.979 3.218 3.364 —
K=5 Sam.l1 SD | 2169 2.444 2.602 2.713 | 2.527 2.854 3.052 3.194
SU | 2.169 2.465 2.620 2.718 | 2.527 2.875 3.060 3.205
Sam.2 SD | 2.484 2.790 2934 3.032 | 2.979 3.293 3.425 3.523
SU | 2484 2.815 2.942 3.034 | 2.979 3.300 3.427 3.525

Next, we consider the power of the test. Let v be a positive constant which is less
than 1. For K = 3 we set up two cases of alternative hypotheses as follows.
Case 1. 0% =03 =02,
Case 2. 0% = o3 = ~03.

For K = 4 we set up three cases of alternative hypotheses as follows.

Case 1. 0% =~o3 =0} =03,
Case 2. 0% =03 =03 =073,
Case 3. 0} =03 = y03 = yo7.

Case 1. o0} =~03 =03 =03 =02,
Case 2. 0?2 =03 =~03 =03 =02,
Case 3. 0?7 = yo3 =03 =03 = 02,
Case 4. 0% = yo3 = y03 = y03 = yo?.

In Case 1 the power is the probability that Hi, is rejected. In Case 2 the power is
the probability that Hi5,H13 are rejected. In Case 3 the power is the probability that
Hiy5,Hq3,H14 are rejected. In Case 4 the power is the probability that Hyo,H13,H14,H15
are rejected. Tables 2 to 4 give the power of SS, SD and SU for O-S and T-S when v =
0.75,0.50,0.25. SD and SU are uniformly more powerful compared to SS. Although the
power of SS remarkably decreases as the number of hypotheses which should be rejected
increases for each «y, the power of SD and SU is comparatively stable independently of
the number of hypotheses which should be rejected. In each case the differences of the
power between SD and SU are not remarkably large.
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Table 2: Power for K = 3

0-S T-S
5 SS SD SU SS SD SU
Casel Sam.1 0.75 | 0.098 0.249 0.246 | 0.056 0.156 0.155
0.50 | 0.333 0.854 0.851 | 0.223 0.768 0.764
0.25 | 0.854 1.000 1.000 | 0.765 1.000 1.000
Sam.2 0.75 | 0.079 0.203 0.201 | 0.045 0.128 0.127
0.50 | 0.275 0.814 0.812 | 0.183 0.712 0.711
0.25 | 0.814 1.000 1.000 | 0.712 1.000 1.000
Case 2 Sam.1 0.75 | 0.038 0.179 0.189 | 0.018 0.104 0.103
0.50 | 0.189 0.829 0.833 | 0.109 0.725 0.724
0.25 | 0.757 1.000 1.000 | 0.634 1.000 1.000
Sam.2 0.75 | 0.039 0.145 0.150 | 0.020 0.080 0.081
0.50 | 0.162 0.733 0.736 | 0.099 0.597 0.599
0.25 | 0.669 0.999 0.999 | 0.548 0.998 0.998

Table 3: Power for K =4

0-S T-S
0% SS SD SU SS SD SU
Casel Sam.1 0.75 | 0.077 0.209 0.206 | 0.041 0.125 0.125
0.50 | 0.286 0.822 0.818 | 0.183 0.721 0.720
0.25 | 0.822 1.000 1.000 | 0.719 1.000 1.000
Sam.2 0.75 | 0.067 0.173 0.173 | 0.039 0.109 0.109
0.50 | 0.237 0.764 0.762 | 0.157 0.658 0.658
0.25 | 0.763 1.000 1.000 | 0.658 1.000 1.000
Case 2 Sam.1 0.75 | 0.028 0.126 0.128 | 0.012 0.068 0.069
0.50 | 0.153 0.755 0.752 | 0.084 0.632 0.631
0.25 | 0.710 1.000 1.000 | 0.575 1.000 1.000
Sam.2 0.75 | 0.030 0.107 0.108 | 0.016 0.061 0.062
0.50 | 0.132 0.651 0.648 | 0.081 0.527 0.528
0.25 | 0.612 0.999 0.999 | 0.492 0.997 0.997
Case 3 Sam.1 0.75 | 0.015 0.117 0.129 | 0.006 0.062 0.070
0.50 | 0.101 0.768 0.778 | 0.051 0.642 0.657
0.25 | 0.631 1.000 1.000 | 0.484 1.000 1.000
Sam.2 0.75 | 0.018 0.099 0.106 | 0.009 0.052 0.055
0.50 | 0.093 0.661 0.671 | 0.054 0.515 0.522
0.25 | 0.544 0.999 0.999 | 0.419 0.998 0.998
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Table 4: Power for K =5

O-S T-S

¥ SS SD SU SS SD SU

Casel Sam.1 0.75 | 0.065 0.184 0.203 | 0.033 0.106 0.123
0.50 | 0.256 0.798 0.818 | 0.158 0.686 0.710

0.25 | 0.798 1.000 1.000 | 0.685 1.000 1.000

Sam.2 0.75 | 0.057 0.152 0.165 | 0.032 0.093 0.102

0.50 | 0.211 0.733 0.753 | 0.137 0.621 0.642

0.25 | 0.733 1.000 1.000 | 0.620 0.999 1.000

Case2 Sam.1 0.75 | 0.023 0.101 0.101 | 0.010 0.051 0.052
0.50 | 0.132 0.709 0.705 | 0.070 0.574 0.574

0.25 | 0.676 1.000 1.000 | 0.533 0.999 0.999

Sam.2 0.75 | 0.025 0.090 0.090 | 0.013 0.050 0.051

0.50 | 0.118 0.624 0.623 | 0.070 0.495 0.494

0.25 | 0.597 0.999 0.999 | 0.470 0.998 0.998

Case 3 Sam.1 0.75 | 0.012 0.079 0.084 | 0.005 0.040 0.042
0.50 | 0.085 0.676 0.679 | 0.042 0.543 0.543

0.25 | 0.594 1.000 1.000 | 0.441 0.999 0.999

Sam.2 0.75 | 0.015 0.074 0.076 | 0.008 0.039 0.040

0.50 | 0.083 0.594 0.590 | 0.047 0.451 0.453

0.25 | 0.525 0.999 0.999 | 0.396 0.999 0.999

Case4 Sam.1 0.75 | 0.008 0.084 0.096 | 0.003 0.042 0.050
0.50 | 0.061 0.716 0.732 | 0.029 0.579 0.600

0.25 | 0.532 1.000 1.000 | 0.379 1.000 1.000

Sam.2 0.75 | 0.010 0.073 0.082 | 0.005 0.037 0.040

0.50 | 0.060 0.602 0.618 | 0.033 0.449 0.463

0.25 | 0.448 0.999 0.999 | 0.327 0.998 0.998

13

Next, we consider the all-pairwise comparison. SS and CT mean the single step
procedure and the closed testing procedure, respectively. Tables 5 to 10 give critical
values of CT for K = 3,4,5. The critical value of SS is equal to cx for balanced sample
sizes and is equal to c(y 5, .k} for unbalanced sample sizes.

Table 5 : Critical values of CT for K = 3 and Sam.1

C3 C2
3.037  2.527

Table 6 : Critical values of CT for K = 3 and Sam.2

C{1,2,3} C{1,2} €{1,3}
3.317 2.741  2.979

(0{1,2} = 0{2,3})

Table 7 : Critical values of CT for K = 4 and Sam.1

C4 C3 C2,4 C2

3.393  3.037 2895 2.527
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Table 8 : Critical values of CT for K = 4 and Sam.2

C{1,2,3,4} C{1,2,3} C{1,2,4} C{1,2},4 €{1,3},4 C{2,4},4 C{1,2} C{1,3} C{2,4}
3.614 3.376 3.030 3.257 3.505 2.558 2.789 2979 2270
(0{1,2,3} = C{1,3,4}» C{1,2,4} = C{2,3,4}, C{1,2},4 = C{1,4},4 = C{2,3},4 = C{3,4} 4,
C{1,2} = C{1,4} = C{2,3} = C{3,4}

Table 9 : Critical values of CT for K = 5 and Sam.1

Cs C4 C3,5 C2.5 C3 C2.4 C2

3.659 3.393 3.340 3.019 3.037 2895 2.527

Table 10 : Critical values of CT for K = 5 and Sam.2

C{1,2,3,4,5} C{1,2,3,4} C{1,2,3,5} C{1,2,4,5}
3.881 3.396 3.716 3.614

(c{1,2,3,4) = €{2,3,4,5}» €{1,2,3,5} = C{1,3,4,5})

C{1,2,3},5 €{1,2,4},5 C{1,2,5},5 €{1,35},5 C{2,3,4},5
3.484 3.345 3.758 3.892 3.054

(c{1,2,3},5 = €{1,3,4},5 = C{2,3,5},5 = C{3,4,5},5, C{1,2,4},5 = C{2,4,5},5) C{1,2,5},5 = C{1,4,5},5)

C{1,2},5 €{1,3}5 C{1,5},5 C€{2,3},5 C{2,4},5
3.417 3.518 3.685 2.756 2.653

(c{1,2},5 = C{1,4},5 = C{2,5},5 = C{4,5},5> C{1,3},5 = C{3,5},5> C{2,3},5 = C{3,4},5)

C{1,2,3} C{1,2,4} C{1,2,5} €{1,3,5} C{2,3,4}
3.151 3.031 3.376 3.493 2.794

(c{1,2,3} = €{1,3,4) = C{2,3,5} = C{3,4,5}, C{1,2,4} = C{2,4,5}, C{1,2,5} = C{1,4,5})

C{1,2},4 €{1,3}4 C{1,5},4 C{23}4 C{24}4
3.257 3.351 3.505 2.654 2.558

(6{1,2},4 = C{1,4},4 = C{2,5},4 = C{4,5},4, C{1,3},4 = C{3,5},4, C{2,3},4 = 6{3,4},4)

C{12} C{13} C{15} C{2.3} C{2.4}
2.789 2.861 2979 2346 2.270

(c{r2y = {14} = C2,5) = (4,5}, C{1,3} = (3,5}, C{2,3} = C(3,4})

Next, we consider the power of the test. For K = 3 we set up two cases of alternative
hypotheses as follows.
Case 1. 0?2 =~o3 =02 =1,
Case 2. 0% =702 =~%2=1.
In Case 1 the power is the probability that Hyo and Haz are rejected. In Case 2 the

power is the probability that Hyo, Hy3, Ho3 are rejected. For K = 4 we set up three
cases of alternative hypotheses as follows.

Case 1. ol=qo3=0
Case 2. 07 =03 = 0!
Case 3. 07 =~o3 =7

[\~]
[\~]

In Case 1 the power is the probability that Hys,Ho3,Ho4 are rejected. In Case 2 the
power is the probability that Hio,H13,H24,H3s4 are rejected. In Case 3 the power is the



probability that Hys,H13,Hs3,Ho4,Hss are rejected. For K = 5 we set up four cases of
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alternative hypotheses as follows.

In Case 1 the power is the probability that His,Ho3,H24,Ho5 are rejected. In Case 2
the power is the probability that Hio,H13,Ho4,Ho5,H34,H3s5 are rejected. In Case 3 the
power is the probability that Hio,Hy3,Ho3,Ho24,Ho25,H34,Hs5 are rejected. In Case 4
the power is the probability that Hio,H13,H14,Ho3,Ho4,Ho5,Hs4,Hss,Hys are rejected.
Tables 11 to 13 give the power of SS and CT when ~ = 0.75,0.50,0.25. CT is uniformly
more powerful compared to SS. Although the power of SS remarkably decreases as the
number of hypotheses which should be rejected increases for each n and ~y, the power of
CT is comparatively stable independently of the number of hypotheses which should be

Case 1.
Case 2.
Case 3.

0? =03 =0i=01=0
0? =03 =q0i=o0
2 2.2 _
01 =703 =79703 =
Case 4. o0} =03 =~%2 =

rejected.
Table 11: Power for K = 3
Case 1 Case 2
~y SS cT SS cT
Sam.1 0.75 | 0.039 0.082 | 0.002 0.013
0.50 | 0.592 0.729 | 0.472 0.679
0.25 | 0.999 1.000 | 0.999 1.000
Sam.2 0.75 | 0.022 0.051 0.002  0.013
0.50 | 0.507 0.668 | 0.387  0.600
0.25 1.000 1.000 | 0.998  0.999
Table 12: Power for K =4
Case 1 Case 2 Case 3
vy SS cT SS cT SS cT
Sam.1 0.75 | 0.017 0.022 | 0.003 0.016 | 0.000 0.000
0.50 | 0.385 0.554 | 0.299 0.544 | 0.218  0.502
0.25 | 0.998 0.999 | 0.997 1.000 | 0.998 1.000
Sam.2 0.75 | 0.006 0.014 | 0.002 0.013 | 0.000 0.001
0.50 | 0.295 0.492 | 0.240 0.470 | 0.136  0.429
0.25 | 0.994 0.999 | 0.993 0.998 | 0.992 0.998
Table 13: Power for K =5
Case 1 Case 2 Case 3 Case 4
vy SS CcT SS cT SS cT SS CcT
Sam.1 0.75 | 0.002 0.008 | 0.000 0.002 | 0.000 0.000 | 0.000 0.000
0.50 | 0.273 0.446 | 0.153 0.336 | 0.103 0.330 | 0.049 0.341
0.25 | 0.996 0.999 | 0.994 0.999 | 0.996 0.999 | 0.996 0.999
Sam.2 0.75 | 0.002 0.005 | 0.000 0.002 | 0.000 0.000 [ 0.000 0.000
0.50 | 0.242 0.407 | 0.115 0.286 | 0.072 0.339 | 0.028 0.378
0.25 | 0.987 0.999 | 0.986  0.997 | 0.994 0.999 | 0.992 1.000
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5. Conclusions

In this study we discussed stepwise multiple comparison procedures for normal vari-
ances. Specifically, we constructed the sequentially rejective step down procedure and
the step up procedure for multiple comparison with a control and constructed the closed
testing procedure called Ryan-Einot-Gabriel-Welsch’s procedure for all-pairwise multiple
comparison. We confirmed that our proposed stepwise procedures are uniformly more
powerful compared to the single step procedures proposed by Imada (2018A, 2018B)
through the numerical results.

Although we focused on the multiple comparison with a control and the all-pairwise
multiple comparison, we should also discuss other types of multiple comparisons for
normal variances. For example, we want to construct the multiple comparisons for
finding minimum variances. Among several treatments evaluated by normal response,
it enables us to find treatments having minimum variance. We want to discuss them
referring to the multiple comparisons with the best discussed by Hsu (1981, 1982, 1984,
1985) and Hsu and Edwards (1983).

Appendix
In this Appendix we give specific formulae regarding the sequential rejective step
down procedure and the step up procedure for K = 3,4.

A.1. Specific formulae of the power of the sequential rejective step down
procedure
First, let K = 3. We give the specific formulae of the power of the test for two

cases of alternative hypotheses.

Case 1. 0} = 1203 = 03

P(Fi12>co,F13<c1)+ P((Fi2,F1,3) > (c1,¢2))

=P(Fi2>co, Fi3<c1)+ P(Fi2>ca, Fi3>c1)+ Plea > Fia>c1,Fi3 > o)
= P(FLQ > CQ) +P(CQ > FLQ > 617F173 > 62)

00 o0 c2A1,271,221 00
:/ fl,z(x)der/ fi(x1) / Ja(x2)dxo / f3(w3)dws ¢ dry.
Cc271,2 0 C1A1,271,2%1 CcoA1,3%1

Case 2. 0} = 71203 = 71 303
P((F1,2,F13) > (c1,¢2))

= P(FLQ > CQ,FLg > 61) + P(CQ > F172 > 61,F173 > 62)

- /0 fl (xl) {/62)\1,271,2961 fg(xz)de} {~/Cl>\1,3’>’1,3561 f3($3)dm3} o
oo 21,271,271 oo
+/0 fi(z1) {/ﬁ/\lmmw1 f2($2)d$2} {/@hw:m‘w1 f3($3)d$3} dzy.

Next, let K = 4. We give the specific formulae of the power of the test for three cases of
alternative hypotheses. Although each probability in the following formulae is expressed
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by the multiple integration, we omit them.

Case 1. 0} = v 20% = 02 = 03

P(Fyg>cs, Fi3<co, F14<ca)+ P((Fi2,F13)> (c2,¢3), F1.4 <)

+P((F12, F1,4) > (c2,¢3), F13 < c1) + P((F1,2, F1 3, F1,4) > (c1,¢2,¢3))

=P(F12>c3,Fi3<co, F1a<ca)+P(Fi2>c3,F13>co,F14<0¢1)
+P(cg > Fio>co, Fi3>c¢3,F14<c1)+ P(Fi2>c3,F13<c,F14>c)
+P(c3 > Fio>co, Fi3<c1,F14>c¢3)+P(Fio>c3, Fi3>co,Fi1a>c¢1)

+P(F12 > c3,00 > Fi13>c¢1,F14 > c2)+ Pleg > Fir o> co, F13 > c3,F14 > 1)
+P(cg > F1 9> co,03 > Fi3>c¢1,F14a>c¢3)+ P(ca>Fi2>c¢1,F1 3> c¢3,F1 4> ¢2)
+P(cg > F1 2> c1,c3 > Fi 3> ¢, F14 > c3).
2

2 _ 2 _ _ 2
Case 2. 07 = 71,205 = 71,305 = 0}

P((Fi2,F13) > (ca,¢3), Fi.a < c1) + P((Fh2, F13, Fi.4) > (c1,¢2,¢3))

+
=P(Fi12>c3, F13>co,F1a<c1)+ Ples>Fr2>co,F13>c¢3,F140<c1)
+P(F172 > Cg,Fl’g > 62,F1’4 > Cl) +P(F1’2 > c3,Co > F1’3 > Cl,F1’4 > CQ)
+P(c3 > Fio>co, Fi3>c3,F1a>c1)+ Plez > Fia>co,c3 > Fi3>c1,Fia > c3)
+P(CQ > F172 > 01,F1,3 > 63,F1,4 > Cg) +P(CQ > Fl,g > c1,C3 > F1,3 > CQ,F1,4 > 63).
Case 3. 0} = 71203 = 71,305 = Y1407
P((Fi,2, F13,F14) > (c1,¢2,¢3))

= P(FLQ > Cg,FLg > CQ7F1’4 > 01) +P(F172 > c3,Co > F173 > Cl,F174 > CQ)
+P(03 > FLQ > CQ,FL?, > 03,F174 > 01) +P(03 > F172 > C9,C3 > F173 > 01,F1,4 > 63)
+P(Cg > F1,2 > Cl,Fl)g > C3,F1)4 > 02) +P(CQ > Fl)g > c1,C3 > F1)3 > CQ,F1,4 > (33).

A.2. Specific formulae regarding the step up procedure

A.2.1. Specific formulae of the probabilities used for determining critical

values

We give the specific formulae of P((Fy 2, F13) < (c1,¢2)) and P((F12, F1 3, F1,4) <
(¢1,ca,c3)) under the assumption that 0 = 05 = 03 = o7. Although each probability
in the following formulae is expressed by the multiple integration, we omit those of

P((Fy 2, F13,F14) < (c1,¢2,¢3)).
P((F12,F13) < (c1,c2))

=PFia<c,Fig<c)+Plci <Fia2<c3,Fi13<¢)

8] C1A1,2T1 C2A1,3%1
:/0 fi(w1) {/0 fz(xz)dxz} {/0 f3($3)d$3}d$1
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oo CoA1,271 c1A1,371
+/0 Ji(x1) {/Cl/\lﬁl f2(152)d332} {/o f3(ﬂf3)da:3} dx.

P((Fi,2, F13,F14) < (c1,c2,¢3))
=P(Fi2<c, (Fi3,F14) <(c2,¢3)) + P(c1 < Fi2 < c¢o, (F1 3, F1,4) < (c1,¢3))
+P(ca < Fi12 <c3,(F13,F14) < (c1,02))
=PFipo<c,Fiz<c,Fla<c3)+P(F1p<ci,co<Fi3<c3,F14 <c)
+P(c1 < Fio<cy, F13<ci,F1a<c3)+Plcs <Fio<co,c1 <Fi3<c3,F14<c)

+P(ca <Fio<cs,Fi3<c1,F1a<co)+Plea<Fi2<cs,c1 <Fi3<co, F14<ci).

A.2.2. Specific formulae of the power of the step up procedure

First, let K = 3. We give the specific formulae of the power of the test for two
cases of alternative hypotheses.
Case 1. 0} = 71 203 = 02

P(Fig>co, Fi3<c1)+P(Fi12>c1,Fi13>¢1)

0o oS C1A1,3T1
= d d d
/0 fi(x1) {/ml)m‘m fa(22) $2} {/0 fa(x3) 903} T
+/0°° fi(x1) {/:ilml,wl f2($2)d$2} {/:;m f3($3)d$3} dx;.

2 2 _ 2
Case 2. 07 = 71,205 = 71,303

P(FLQ > Cl,Fl,g > Cl)

= /OOO fi(w1) {/::1,271.29:1 f2($2)d$2} {/::1‘3711311 fs(xd)dxa} dx;.

Next, let K = 4. We give the specific formulae of the power of the test for three cases of
alternative hypotheses. Although each probability in the following formulae is expressed

by the multiple integration, we omit them.

Case 1. 0} = v 203 = 03 = 03

P(Fy 2> c3,(F13,Fi14) < (c1,62)) + P(F12 > 2, F13 <1, F1 4> ¢2)

+P(Fia>co, Fig>co, Fia<c)+P(Fio>c1,Fi3>c1,Fi4>c)
=P(Fig>c3, Fig<ci,Fia<ca)+P(Fi2>c3,c0 <Fir3<cy, F14<0¢)
+P(Fia2>co, Fizg<eci,Fia>co)+P(Fio>co, Fi3>co, F1a<ci)
+P(Fia>c1,Fis>c1, Fia> ).

2 _ 2 2 _ 2
Case 2. 07 = 71,205 = 71,305 = 0}

P(Fl’Q > 02,F173 > 62,F174 < Cl) +P(F172 > Cl,FLg > Cl;FlA > Cl).
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2 _ 2 2 _ 2
Case 3. 07 = 71,205 = 71,305 = V1,404

P(Fi3>c1,F13>c1,Fi4>c1).
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