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Abstract—In this paper, we show an equivalence be-
tween log-sum-exp approximation and entropy regulariza-
tion in K-means clustering, which is a well-known algo-
rithm for partitional clustering. We derive an identical
equation for updating centroids of clusters from the two
formulations. We also show experimental results which
support the theoretical results.

1. Introduction

Clustering is the task of grouping a set of objects in such
a way that objects in the same group or cluster are more
similar to each other than to those in other clusters [1]. In
centroid-based clustering, each cluster is represented by a
single mean vector or a centroid. K-means clustering [2] is
one of the most popular algorithms in centroid-based clus-
tering, and is categorized into hard clustering.

Dunn [3] developed a fuzzy version of K-means, fuzzy
c-means clustering, and Bezdek [4] improved it [5].
Miyamoto and Mukaidono [6] proposed an entropy regu-
larization of the crisp K-means clustering to derive a fuzzy
c-means clustering, and showed the equivalence to a maxi-
mum entropy approach proposed by Li and Mukaidono [7,
8], which is briefly reviewed in this paper.

In this paper, we show an equivalence between the en-
tropy regularization of K-means clustering by Miyamoto
and Mukaidono [6] and a log-sum-exp approximation [9]
of K-means clustering. Starting from the two different for-
mulations, we derive an identical equation which is used
for updating centroids of clusters. As a result, we conclude
that the entropy regularization, the maximum entropy ap-
proach and the log-sum-exp approximation are equivalent
to each other in K-means clustering. We also show exper-
imental results on a clustering benchmark dataset, which
support our theoretical results.

The rest of this paper is organized as follows. Section 2
summarizes the log-sum-exp approximation and entropy
regularization in the context of K-means clustering, and
shows the equivalence of them. Section 3 shows experi-
mental results, where an advantage of the log-sum-exp ap-
proximation and entropy regularization over the maximum
entropy approach is demonstrated by showing a nonmono-
tonic behavior of total entropy. Finally, Section 4 concludes
this paper.

2. K-Means Clustering

Given a set of points X = {x1, x2, . . . , xn} in d-
dimensional Euclidean space, K-means clustering aims to
partition the n points in X into K sets S 1, S 2, · · · , S K so as
to minimize the objective function

J (c1, c2, . . . , cK) =

n∑
i=1

min
k∈{1,2,...,K}

‖xi − ck‖
2 (1)

with respect to K centroids c1, c2, . . . , cK corresponding to
S 1, S 2, · · · , S K , respectively.

In this section, we first summarize two methods for solv-
ing the above problem of K-means clustering, log-sum-exp
approximation and entropy regularization, and then show
the equivalence of the two methods.

2.1. Log-Sum-Exp Approximation

The log-sum-exp function is a differentiable approxima-
tion of the max function [9] as follows:

f (x1, x2, . . . , xn) = log

 n∑
i=1

exp (xi)

 (2)

≈ max {x1, x2, . . . , xn} , (3)

which finds the maximum value in {x1, x2, . . . , xn}. Apply-
ing the log-sum-exp approximation to (1), we have

J (c1, c2, . . . , cK) = −T
n∑

i=1

max
k∈{1,2,...,K}

(
−
‖xi − ck‖

2

T

)
(4)

≈ −T
n∑

i=1

log

 K∑
k=1

exp
(
−
‖xi − ck‖

2

T

)
(5)

= J̃ (c1, c2, . . . , cK) , (6)

where T denotes a temperature. The necessary condition
for optimality of (6) is given by

∂J̃
∂ck

= −2
n∑

i=1

exp
(
−
‖xi − ck‖

2

T

)
K∑

k′=1

exp
(
−
‖xi − ck′‖

2

T

) (xi − ck) = 0, (7)



where 0 denotes a d-dimensional zero vector having all
components equal to zero. From (7), we have

ck =

n∑
i=1

exp
(
−
‖xi − ck‖

2

T

)
K∑

k′=1

exp
(
−
‖xi − ck′‖

2

T

) xi

n∑
i=1

exp
(
−
‖xi − ck‖

2

T

)
K∑

k′=1

exp
(
−
‖xi − ck′‖

2

T

)
. (8)

Each centroid ck is updated by (8) until all centroids con-
verge.

2.2. Entropy Regularization

The objective function J in (1) has another expression as
follows:

J ({ck} , {uik}) =

n∑
i=1

K∑
k=1

uik ‖xi − ck‖
2 , (9)

where uik denotes a nonnegative variable indicating the
membership of the ith point in the kth cluster. Using the
expression in (9), the entropy regularization of K-means
clustering is formulated as follows [6]:

min
{ck},{uik}

J ({ck} , {uik}) + T
n∑

i=1

K∑
k=1

uik log uik (10)

subj.to
K∑

k=1

uik = 1, for i = 1, 2, . . . , n, (11)

where the constraint condition enforces that uik is a proba-
bility that the ith point belongs to the kth cluster. The La-
grange function for this constrained optimization problem
is given by

L = J ({ck} , {uik}) + T
n∑

i=1

K∑
k=1

uik log uik

+

n∑
i=1

λi

 K∑
k=1

uik − 1

 , (12)

where λi for i = 1, 2, . . . , n denote the Lagrange multipli-
ers. Then we have the following necessary conditions for
optimality:

∂L
∂ck

= −2
n∑

i=1

uik (xi − ck) = 0, (13)

∂L
∂uik

= ‖xi − ck‖
2 + T

(
log uik + 1

)
+ λi = 0, (14)

∂L
∂λi

=

K∑
k=1

uik − 1 = 0. (15)

Solving (13) for ck, we have

ck =

n∑
i=1

uik xi

n∑
i=1

uik

. (16)

Solving (14) for uik, we have

uik = exp
(
−
‖xi − ck‖

2

T
−
λi

T
− 1

)
. (17)

Substituting this for uik in (15), we have

exp
(
−
λi

T
− 1

)
=

1
K∑

k=1

exp
(
−
‖xi − ck‖

2

T

) . (18)

Substituting this into (17), we have the final form of uik as
follows:

uik =

exp
(
−
‖xi − ck‖

2

T

)
K∑

k′=1

exp
(
−
‖xi − ck′‖

2

T

) . (19)

In the algorithm for this problem, ck and uik are alter-
nately updated by (16) and (19), respectively, until they
converge.

Miyamoto and Mukaidono [6] showed that the en-
tropy regularization is equivalent to the maximum entropy
method [7, 8] formulated as follows:

max
{uik}
−

n∑
i=1

K∑
k=1

uik log uik (20)

subj.to
K∑

k=1

uik = 1, J ({ck} , {uik}) = J0, (21)

where J0 is a parameter, and pointed out the difficulty of
determining J0.

In fact, let LEnt be the Lagrange function of the above
constrained maximization problem as follows:

LEnt = −

n∑
i=1

K∑
k=1

uik log uik +

n∑
i=1

λEnt
i

 K∑
k=1

uik − 1


+ µ (J ({ck} , {uik}) − J0) , (22)

where λEnt
i and µ denote the Lagrange multipliers. Then we

have a relationship between LEnt and L in (12) as follows:

LEnt = µ (L − J0) , (23)

where it is assumed that µT = −1 and λEnt
i = µλi. There-

fore, we arrive at the same necessary conditions for opti-
mality in (13)-(15) from the above maximum entropy for-
mulation.

In Section 3, we will demonstrate that the entropy in (20)
does not necessarily increase with the progress of the pro-
cedure.



Figure 1: Two-dimensional data and initial centroids.

Figure 2: Objective function values.

2.3. The Equivalence

The log-sum-exp approximation of K-means clustering
described in Section 2.1 derives an equation in (8) for up-
dating centroid ck. On the other hand, the entropy regu-
larization described in Section 2.2 derives two equations in
(16) and (19) for updating centroid ck and membership uik,
respectively. Substitution of (19) into (16) gives (8). This
proves the equivalence of the two methods.

3. Experimental Results

In this section, we show experimental results for con-
firming the above theoretical results numerically. We used
a synthetic 2-dimensional dataset, S1, with n = 5000 points
and K = 15 Gaussian clusters with different degree of
cluster overlap, which is publicly available at the web-
site “Clustering basic benchmark” [10]. Figure 1 shows
the data with blue points and 15 initial centroids with red
points.

Figure 2 shows the transition of the objective function
values, where the vertical and horizontal axes denote the
objective function value and the number of iterations of the
procedure for updating centroids, respectively. In this fig-
ure, the solid blue line with points denotes the value of the
objective function of the log-sum-exp approximation J̃ in
(6), and the broken orange line with points denotes that of
entropy regularization J in (1). In both methods, we set
the temperature as T = 109. This figure shows that the log-

Figure 3: Ground truth and obtained centroids.

Figure 4: Total entropy.

sum-exp approximation gives the similar objective function
values J̃ to the original objective function values J for K-
means clustering.

Figure 3 shows the obtained centroids with red points
after 14 iterations and the ground truth with yellow points
which are globally optimal ones. As shown in the above
section, both log-sum-exp approximation and entropy regu-
larization give the same result as each other in this example.
Note that the obtained red points do not coincide with the
yellow points exactly. The objective function values of the
log-sum-exp approximation and the entropy regularization
for the ground truth are shown in Figure 2 with solid blue
and broken yellow lines without points, which are lower
than the corresponding lines of obtained solutions. That is,
the obtained solutions are locally optimal ones.

Figure 4 shows the transition of total entropy in (20),
where the vertical and horizontal axes denote the total en-
tropy and the number of iterations of the procedure for up-
dating centroids, respectively. Although the maximum en-
tropy method [7, 8] is intended to maximize the total en-
tropy as formulated in (20), the derived procedure fails to
increase it monotonically as shown in Figure 4.

4. Conclusion

In this paper, we showed an equivalence between the
log-sum-exp approximation ant the entropy regularization
in K-means clustering by deriving the same equation for
updating centroids from the two formulations, and demon-



strated that the centroids converged to the same local opti-
mum by the two methods using a synthetic 2-dimensional
dataset. Furthermore, we also demonstrated that the de-
rived procedure does not necessarily increase the total en-
tropy monotonically in spite of the equivalence between
the entropy regularization method and maximum entropy
method which is formulated as a constrained maximization
problem of the total entropy.
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