九州大学学術情報リポジトリ Kyushu University Institutional Repository

Fundamental group of simple C^* -algebras with unique trace II

Nawata, Noriko Graduate School of Mathematics, Kyushu University

Watatani, Yasuo Department of Mathematical Sciences, Kyushu University

 $\verb|https://hdl.handle.net/2324/25433|$

出版情報: Journal of Functional Analysis. 260 (2), pp.428-435, 2011-01-15. Elsevier

バージョン:

権利関係:(C) 2010 Elsevier Inc.

FUNDAMENTAL GROUP OF SIMPLE C^* -ALGEBRAS WITH UNIQUE TRACE II

NORIO NAWATA AND YASUO WATATANI

ABSTRACT. We show that any countable subgroup of the multiplicative group \mathbb{R}_+^{\times} of positive real numbers can be realized as the fundamental group $\mathcal{F}(A)$ of a separable simple unital C^* -algebra A with unique trace. Furthermore for any fixed countable subgroup G of \mathbb{R}_+^{\times} , there exist uncountably many mutually nonisomorphic such algebras A with $G = \mathcal{F}(A)$.

1. Introduction

Let M be a factor of type II_1 with a normalized trace τ . Murray and von Neumann introduced the fundamental group $\mathcal{F}(M)$ of M in [13]. The fundamental group $\mathcal{F}(M)$ of M is a subgroup of the multiplicative group \mathbb{R}_+^{\times} of positive real numbers. They showed that if M is hyperfinite, then $\mathcal{F}(M) = \mathbb{R}_+^{\times}$. In our previous paper [14], we introduced the fundamental group $\mathcal{F}(A)$ of a simple unital C^* -algebra A with a unique normalized trace τ based on the computation of Picard groups by Kodaka [8], [9], [10]. We compute the fundamental groups of several nuclear or nonnuclear C^* -algebras. K-theoretical obstruction enable us to compute the fundamental group easily.

There has been many works on the computation of fundamental groups of the factors of type II_1 . Voiculescu [22] showed that the fundamental group $\mathcal{F}(L(\mathbb{F}_{\infty}))$ of the group factor $L(\mathbb{F}_{\infty})$ of the free group \mathbb{F}_{∞} contains the positive rationals and Radulescu proved that $\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}_{\infty}^{+}$ in [19]. Connes [3] showed that if G is an countable ICC group with property (T), then $\mathcal{F}(L(G))$ is a countable group. Recently, Popa showed that any countable subgroup of \mathbb{R}_{+}^{\times} can be realized as the fundamental group of some factor of type II_1 with separable predual in [17]. Furthermore Popa and Vaes [18] exhibited a large family \mathcal{S} of subgroups of \mathbb{R}_{+}^{\times} , containing \mathbb{R}_{+}^{\times} itself, all of its countable subgroups, as well as uncountable subgroups with any Haussdorff dimension in (0,1), such that for each $G \in \mathcal{S}$ there exist many free ergodic measure preserving actions of \mathbb{F}_{∞} for which the associated II_1 factor M has fundamental group equal to G.

In this paper we show that any countable subgroup of \mathbb{R}_+^{\times} can be realized as the fundamental group of a separable simple unital C^* -algebra with unique trace. Furthermore for any fixed countable subgroup G of \mathbb{R}_+^{\times} , there exist uncountably many mutually nonisomorphic such algebras A with $G = \mathcal{F}(A)$. We apply a method of Blackadar [1] and Phillips [16] to the type II_1 factors of Popa [17]. Our new examples are nonnuclear.

On the other hand, for an additive subgroup E of \mathbb{R} containing 1, we define the positive inner multiplier group $IM_{+}(E)$ of E by

$$IM_{+}(E) = \{ t \in \mathbb{R}_{+}^{\times} | t \in E, t^{-1} \in E, \text{ and } tE = E \}.$$

Then we have $\mathcal{F}(A) \subset IM_+(\tau_*(K_0(A)))$. Almost all examples provided in [14] satisfy $\mathcal{F}(A) = IM_+(\tau_*(K_0(A)))$. We should note that not all countable subgroups of \mathbb{R}_+^{\times} arise as $IM_+(E)$. For example, $\{9^n \in \mathbb{R}_+^{\times} \mid n \in \mathbb{Z}\}$ does not arise as $IM_+(E)$ for any additive subgroup E of \mathbb{R} containing 1. Therefore if the fundamental group a C^* -algebra A is equal to $\{9^n \in \mathbb{R}_+^{\times} \mid n \in \mathbb{Z}\}$ and A is in a classifiable class by the Elliott invariant, then $\tau_* : K_0(A) \to \tau_*(K_0(A))$ cannot be an order isomorphism. Matui informed us that there exists such an AF-algebra.

2. Hilbert C^* -modules and Picard groups

We recall some definitions and notations in [14]. Let A be a simple unital C^* -algebra with a unique normalized trace τ and \mathcal{X} a right Hilbert A-module. (See [11], [12] for the basic facts on Hilbert modules.) We denote by $L_A(\mathcal{X})$ the algebra of the adjointable operators on \mathcal{X} . For $\xi, \eta \in \mathcal{X}$, a "rank one operator" $\Theta_{\xi,\eta}$ is defined by $\Theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_A$ for $\zeta \in \mathcal{X}$. We denote by $K_A(\mathcal{X})$ the closure of the linear span of "rank one operators" $\Theta_{\xi,\eta}$. We call a finite set $\{\xi_i\}_{i=1}^n \subseteq \mathcal{X}$ a finite basis of \mathcal{X} if $\eta = \sum_{i=1}^n \xi_i \langle \xi_i, \eta \rangle_A$ for any $\eta \in \mathcal{X}$, see [7], [23]. It is also called a frame as in [6]. If A is unital and there exists a finite basis for \mathcal{X} , then $L_A(\mathcal{X}) = K_A(\mathcal{X})$. Let $\mathcal{H}(A)$ denote the set of isomorphic classes $[\mathcal{X}]$ of right Hilbert A-modules \mathcal{X} with finite basis.

Let B be a C^* algebra. An A-B-equivalence bimodule is an A-B-bimodule \mathcal{F} which is simultaneously a full left Hilbert A-module under a left A-valued inner product $A\langle\cdot,\cdot\rangle$ and a full right Hilbert B-module under a right B-valued inner product $\langle\cdot,\cdot\rangle_B$, satisfying $A\langle\xi,\eta\rangle\zeta=\xi\langle\eta,\zeta\rangle_B$ for any $\xi,\eta,\zeta\in\mathcal{F}$. We say that A is M-orita equivalent to B if there exists an A-B-equivalence bimodule. The dual module \mathcal{F}^* of an A-B-equivalence bimodule \mathcal{F} is a set $\{\xi^*;\xi\in\mathcal{F}\}$ with the operations such that $\xi^*+\eta^*=(\xi+\eta)^*$, $\lambda\xi^*=(\overline{\lambda}\xi)^*$, $b\xi^*a=(a^*\xi b^*)^*$, $B\langle\xi^*,\eta^*\rangle=\langle\eta,\xi\rangle_B$ and B-A-equivalence bimodule. We refer the reader to [20],[21] for the basic facts on equivalence bimodules and Morita equivalence.

We review elementary facts on the Picard groups of C^* -algebras introduced by Brown, Green and Rieffel in [2]. For A-A-equivalence bimodules \mathcal{E}_1 and \mathcal{E}_2 , we say that \mathcal{E}_1 is isomorphic to \mathcal{E}_2 as an equivalence bimodule if there exists a \mathbb{C} -liner one-to-one map Φ of \mathcal{E}_1 onto \mathcal{E}_2 with the properties such that $\Phi(a\xi b) = a\Phi(\xi)b$, $_A\langle\Phi(\xi),\Phi(\eta)\rangle = _A\langle\xi,\eta\rangle$ and $_A\langle\Phi(\xi),\Phi(\eta)\rangle = _A\langle\xi,\eta\rangle$ for $a,b\in A$, $\xi,\eta\in\mathcal{E}_1$. The set of isomorphic classes $[\mathcal{E}]$ of the A-A-equivalence bimodules \mathcal{E} forms a group under the product defined by $[\mathcal{E}_1][\mathcal{E}_2] = [\mathcal{E}_1\otimes_A\mathcal{E}_2]$. We call it the Picard group of A and denote it by Pic(A). The identity of Pic(A) is given by the A-A-bimodule $\mathcal{E}:=A$ with $_A\langle a_1,a_2\rangle=a_1a_2^*$ and $_A\langle a_1,a_2\rangle_A=a_1^*a_2$ for $_A\langle a_1,a_2\rangle_A=a_1^*a_2$ for

any $\xi, \eta \in \mathcal{E}_{\alpha}^{A}$. Then \mathcal{E}_{α}^{A} is an A-A-equivalence bimodule. For $\alpha, \beta \in \operatorname{Aut}(A)$, \mathcal{E}_{α}^{A} is isomorphic to \mathcal{E}_{β}^{A} if and only if there exists a unitary $u \in A$ such that $\alpha = ad \ u \circ \beta$. Moreover, $\mathcal{E}_{\alpha}^{A} \otimes \mathcal{E}_{\beta}^{A}$ is isomorphic to $\mathcal{E}_{\alpha \circ \beta}^{A}$. Hence we obtain an homomorphism ρ_A of $\operatorname{Out}(A)$ to $\operatorname{Pic}(A)$. An A-B-equivalence bimodule \mathcal{F} induces an isomorphism Ψ of $\operatorname{Pic}(A)$ to $\operatorname{Pic}(B)$ by $\Psi([\mathcal{E}]) = [\mathcal{F}^* \otimes \mathcal{E} \otimes \mathcal{F}]$ for $[\mathcal{E}] \in \text{Pic}(A)$. Therefore if A is Morita equivalent to B, then Pic(A) is isomorphic to Pic(B). Since A is unital, any A-A-equivalence bimodule is a finitely generated projective A-module as a right module with a finite basis $\{\xi_i\}_{i=1}^n$. Put $p=(\langle \xi_i, \xi_j \rangle_A)_{ij} \in M_n(A)$. Then p is a projection and \mathcal{E} is isomorphic to pA^n as a right Hilbert A-module with an isomorphism of A to $pM_n(A)p$ as a C^* -algebra.

Define a map $\hat{T}_A: \mathcal{H}(A) \to \mathbb{R}_+$ by $\hat{T}_A([\mathcal{X}]) = \sum_{i=1}^n \tau(\langle \xi_i, \xi_i \rangle_A)$, where $\{\xi_i\}_{i=1}^n$ is a finite basis of \mathcal{X} . Then $\hat{T}_A([\mathcal{X}])$ does not depend on the choice of basis and \hat{T}_A is well-defined. We can define a map T_A of $\operatorname{Pic}(A)$ to \mathbb{R}_+ by the same way of \hat{T}_A . We showed that T_A is a multiplicative map and $T_A(\mathcal{E}_{id}^A) = 1$ in [14]. Moreover, we can show the following proposition by a similar argument in the proof of Proposition 2.1 in [14].

Proposition 2.1. Let A and B be simple unital C^* -algebras with unique trace. Assume that \mathcal{F} is an A-B-equivalence bimodule and \mathcal{X} is a right Hilbert A-module. Then

$$\hat{T}_B([\mathcal{X} \otimes \mathcal{F}]) = \hat{T}_A([\mathcal{X}])\hat{T}_B([\mathcal{F}]).$$

We denote by Tr the usual unnormalized trace on $M_n(\mathbb{C})$. Put

$$\mathcal{F}(A) := \{ \tau \otimes Tr(p) \in \mathbb{R}_+^{\times} \mid p \text{ is a projection in } M_n(A) \text{ such that } pM_n(A)p \cong A \}.$$

Then $\mathcal{F}(A)$ is equal to the image of T_A and a multiplicative subgroup of \mathbb{R}_+^{\times} by Theorem 3.1 in [14]. We call $\mathcal{F}(A)$ the fundamental group of A. If A is separable, then $\mathcal{F}(A)$ is countable. We shall show that the fundamental group is a Morita equivalence invariant for simple unital C^* -algebras with unique trace.

Proposition 2.2. Let A and B be simple unital C^* -algebras with unique trace. If A is Morita equivalent to B, then $\mathcal{F}(A) = \mathcal{F}(B)$.

Proof. By assumption, there exists an A-B-equivalence bimodule \mathcal{F} , and \mathcal{F} induces an isomorphism Ψ of Pic(A) to Pic(B) such that $\Psi([\mathcal{E}]) = [\mathcal{F}^* \otimes$ $\mathcal{E} \otimes \mathcal{F}$ for $[\mathcal{E}] \in \text{Pic}(A)$. Since $\mathcal{F}^* \otimes \mathcal{F}$ is isomorphic to \mathcal{E}_{id}^B , Proposition 2.1 implies

$$\hat{T}_A([\mathcal{F}^*])\hat{T}_B([\mathcal{F}]) = T_B([\mathcal{F}^* \otimes \mathcal{F}]) = 1.$$

For $[\mathcal{E}] \in \operatorname{Pic}(A)$,

$$T_B([\mathcal{F}^* \otimes \mathcal{E} \otimes \mathcal{F}]) = \hat{T}_A([\mathcal{F}^*])\hat{T}_B([\mathcal{E} \otimes \mathcal{F}]) = \hat{T}_A([\mathcal{F}^*])T_A([\mathcal{E}])\hat{T}_B([\mathcal{F}])$$

by Proposition 2.1. Therefore $T_B([\Psi(\mathcal{E})]) = T_A([\mathcal{E}])$ and $\mathcal{F}(A) = \mathcal{F}(B)$.

3. New examples

Proposition 2.2 of [1] and Phillips, Lemma 2.2 of [16].

An idea of our construction comes from the following results of Blackadar,

Lemma 3.1 ([1](Blackadar)). Let M be a simple C^* -algebra, and let $A \subset M$ be a separable C^* -subalgebra. Then there exists a simple separable C^* -subalgebra B with $A \subset B \subset M$.

Lemma 3.2 ([16](Phillips)). Let M be a unital C^* -algebra, and let $A \subset M$ be a separable C^* -subalgebra. Then there exists a separable C^* -subalgebra B with $A \subset B \subset M$ such that every tracial state on B is the restriction of a tracial state on M.

The following lemma is just a combination of the two results above.

Lemma 3.3. Let M be a simple C^* -algebra with unique trace $\hat{\tau}$, and let $A \subset M$ be a separable C^* -subalgebra. Then there exists a simple separable C^* -subalgebra B with $A \subset B \subset M$ such that B has a unique trace τ that is a restriction of $\hat{\tau}$.

Theorem 3.4. Let G be a countable subgroup of \mathbb{R}_+^{\times} . Then there exist uncountably many mutually nonisomorphic separable simple nonnuclear unital C^* -algebras A with unique trace such that the fundamental group $\mathcal{F}(A) = G$.

Proof. First we shall show that there exists a separable simple unital C^* algebra A with unique trace such that $\mathcal{F}(A) = G$. There exists a type II_1 factor M with separable predual such that $\mathcal{F}(M) = G$, which is constructed by Popa [17]. Let $S_1 \subset M$ be a countable subset that is weak operator dense in M. We denote by $\hat{\tau}$ the unique trace of M. We enumerate the countable semigroup $G \cap (0,1]$ by $\{t_m : m \in \mathbb{N}\}$. Since $\mathcal{F}(M) = G$ and M is a factor of type II_1 , for any $m \in \mathbb{N}$ there exist a projection p_m in M such that $\hat{\tau}(p_m)=t_m$ and an isomorphism ϕ_m of M onto p_mMp_m . Define $B_0\subset M$ be the unital C^* -subalgebra of M generated by S_1 and $\{p_m : m \in \mathbb{N}\}$. By Lemma 3.3, there exists a separable simple unital C^* -algebra A_0 with a unique trace τ_0 such that $B_0 \subset A_0 \subset M$. Let $B_1 \subset M$ be the C^* subalgebra of M generated by A_0 , $\bigcup_{m\in\mathbb{N}}\phi_m(A_0)$ and $\bigcup_{m\in\mathbb{N}}\phi_m^{-1}(p_mA_0p_m)$. By the same way, there exists a separable simple unital C^* -algebra A_1 with a unique trace τ_1 such that $B_1 \subset A_1 \subset M$. We construct inductively C^* algebras $B_n \subset A_n \subset M$ as follows: Let $B_n \subset M$ be the C^* -subalgebra of Mgenerated by A_{n-1} , $\bigcup_{m\in\mathbb{N}}\phi_m(A_{n-1})$ and $\bigcup_{m\in\mathbb{N}}\phi_m^{-1}(p_mA_{n-1}p_m)$. By Lemma 3.3, there exists a separable simple unital C^* -algebra A_n with a unique trace τ_n such that $B_n \subset A_n \subset M$. Then we have

$$B_0 \subset A_0 \subset B_1 \subset A_1 \subset \dots B_n \subset A_n \cdots \subset M$$
,

and $\phi_m(A_{n-1}) \subset p_m A_n p_m$ and $\phi_m^{-1}(p_m A_{n-1} p_m) \subset A_n$ for any $m \in \mathbb{N}$. Set $A = \overline{\bigcup_{n=0}^{\infty} A_n}$. Then A is a separable simple unital C^* -algebra A with a unique trace τ . By construction, $\phi_m(A) = p_m A p_m$ for any $m \in \mathbb{N}$. Hence $G \subset \mathcal{F}(A)$. Since $\pi_{\tau}(A)''$ is isomorphic to M,

$$\mathcal{F}(A) \subset \mathcal{F}(\pi_{\tau}(A)'') = \mathcal{F}(M) = G$$

by Proposition 3.29 of [14]. Thus $\mathcal{F}(A) = G$. Moreover A is not nuclear, because A is weak operator dense in a factor M that is not hyperfinite.

Next we shall show that there exist uncountably many mutually nonisomorphic such examples. Let E be a countable additive subgroup of \mathbb{R} . We enumerate by $\{r_m :\in \mathbb{N}\}$ the positive elements of E. Since M is a factor

of type II_1 , there exist a natural number k and a projection $q_m \in M_k(M)$ such that $\hat{\tau}(q_m) = r_m$ for any $m \in \mathbb{N}$. Define $S_2 \subset M$ to be the union of the matrix elements of q_m for running $m \in \mathbb{N}$. Let C_0 the C^* -subalgebra of M generated by S_2 and A. By a similar argument as the first paragraph, we can construct a separable simple unital C^* -algebra C with unique trace such that $\mathcal{F}(C) = G$ and $C_0 \subset C \subset M$. Then it is clear that E is contained in $\tau_*(K_0(C))$. Since no countable union of countable subgroups of \mathbb{R} can contain all countable subgroups of \mathbb{R} , we can construct uncountably many mutually nonisomorphic examples by the choice of E.

Remark 3.5. In fact, we show that there exist uncountably many Morita inequivalent separable simple nonnuclear unital C^* -algebras A with unique trace such that the fundamental group $\mathcal{F}(A) = G$ in the proof above.

Remark 3.6. We can choose a C^* -algebra A in the theorem above so that A has stable rank one and real rank zero and $\tau_*: K_0(A) \to \tau_*(K_0(A))$ is an order isomorphism by using Lemma 2.3, Lemma 2.4 and Lemma 2.5 of [16]. Then we have the following exact sequence by Proposition 3.26 of [14]:

$$1 \longrightarrow \operatorname{Out}(A) \xrightarrow{\rho_A} \operatorname{Pic}(A) \xrightarrow{T} \mathcal{F}(A) \longrightarrow 1$$

Remark 3.7. We do not know whether any countable subgroup of \mathbb{R}_{+}^{\times} can be realized as the fundamental group of a separable unital simple nuclear C^* -algebra with unique trace.

We denote by Ell(A) the Elliott invariant $(K_0(A), K_0(A)_+, [1]_0, K_1(A))$.

Corollary 3.8. For any countable subgroups G_1 and G_2 of \mathbb{R}_+^{\times} , there exist separable simple nonnuclear unital C^* -algebras A and B with unique trace such that $Ell(A) \cong Ell(B)$, $\mathcal{F}(A) = G_1$ and $\mathcal{F}(B) = G_2$.

Proof. Let M_1 and M_2 be a type II_1 factors with separable preduals such that $\mathcal{F}(M_1) = G_1$ and $\mathcal{F}(M_2) = G_2$ constructed by Popa [17]. By Theorem 3.4, there exist separable simple nonnuclear unital C^* -algebras $A_0 \subset M_1$ and $B_0 \subset M_2$ with unique trace such that $\mathcal{F}(A_0) = G_1$ and $\mathcal{F}(B_0) = G_2$. Moreover, we can assume that the traces τ_{A_0} and τ_{B_0} of A_0 and B_0 induces order isomorphisms of K_0 -groups and $K_1(A_0) = K_1(B_0) = 0$ by Remark 3.6. By a similar argument in the proof of Theorem 3.4, we can construct separable simple nonnuclear unital C^* -algebras $A_0 \subset A_1 \subset M_1$ and $B_0 \subset A_1 \subset M_2$ $B_1 \subset M_2$ with unique trace τ_{A_1} and τ_{B_1} such that $\mathcal{F}(A_1) = G_1$, $\mathcal{F}(B_1) = G_2$, $(\tau_{A_0})_*(K_0(A_0)) \subset (\tau_{B_1})_*(K_0(B_1))$ and $(\tau_{B_0})_*(K_0(B_0)) \subset (\tau_{A_1})_*(K_0(A_1)).$ We may assume that τ_{A_1} and τ_{B_1} induce order isomorphisms and $K_1(A_1) =$ $K_1(B_1) = 0$. Moreover, we may assume that for any projection $p \in A_0$ (resp. B_0) with $\tau(p) \in G_1$ (resp. G_2), there exists an isomorphism ϕ of A_1 to pA_1p (resp. B_1 to pB_1p) such that the restriction $\phi|_{A_0}$ (resp. B_0) is an isomorphism of A_0 to pA_0p (resp. B_0 to pB_0p) by the proof of Theorem 3.4. We construct inductively C^* -algebras $A_n \subset A_{n+1} \subset M_1$ and $B_n \subset B_{n+1} \subset M_2$. Define $A = \overline{\bigcup_{n=0}^{\infty} A_n}$ and $B = \overline{\bigcup_{n=0}^{\infty} B_n}$. Then A and B are separable simple nonnuclear unital C^* -algebras with unique trace such that the traces τ_A and τ_B induce order isomorphisms of K_0 -groups, $\mathcal{F}(A) = G_1$, $\mathcal{F}(B) = G_2$ and $K_1(A) = K_1(B) = 0$. A similar argument in the proof of Theorem 3.4 shows $(\tau_A)_*(K_0(A)) = (\tau_B)_*(K_0(B))$. Since τ_A and τ_B induce order isomorphisms of K_0 -groups, $Ell(A) \cong Ell(B)$.

For a positive number λ , let $G_{\lambda} = \{\lambda^n \in \mathbb{R}_+^{\times} \mid n \in \mathbb{Z}\}$ be the multiplicative subgroup of \mathbb{R}_+^{\times} generated by λ . In the below we shall consider whether G_{λ} can be realized as the fundamental group of a nuclear C^* -algebra.

Proposition 3.9. Let λ be a prime number or a positive transcendental number. Then there exists a simple AF-algebra A with unique trace such that $\mathcal{F}(A) = G_{\lambda}$.

Proof. Let λ be a prime number. Consider a UHF-algebra $A = M_{\lambda^{\infty}}$. Then $\mathcal{F}(A) = G_{\lambda}$ as in Example 3.11 of [14]. Next we assume that λ is a positive transcendental number. Let R_{λ} be the unital subring of \mathbb{R} generated by λ . Then the set $(R_{\lambda})_{+}^{\times}$ of positive invertible elements in R_{λ} is equal to G_{λ} . The proof of Theorem 3.14 of [14] shows that there exists a simple unital AF-algebra A with unique trace such that $\mathcal{F}(A) = G_{\lambda}$.

Let \mathcal{O} be an order of a real quadratic field or a real cubic field with one real embedding. Then $\mathcal{O}_+^{\times} = G_{\lambda}$ is singly generated and the generator $\lambda > 1$ is called the fundamental unit of \mathcal{O} by Dirichlet's unit theorem. We refer the reader to [15] for details. The proof of Theorem 3.14 of [14] implies the following proposition.

Proposition 3.10. Let λ be a fundamental unit of an order of a real quadratic field or a cubic field with one real embedding. Then there exists a simple AF-algebra A with unique trace such that $\mathcal{F}(A) = G_{\lambda}$.

Note that if p is a prime number and $n \geq 2$, then the subgroup G_{λ} of R_{+}^{\times} generated by $\lambda = p^{n}$ can not be the positive inner multiplier group $IM_{+}(E)$ for any additive subgroup E of \mathbb{R} containing 1. In fact, on the contrary, suppose that $G_{\lambda} = IM_{+}(E)$ for some E. Then there exists a unital subring R of \mathbb{R} such that $G_{\lambda} = R_{+}^{\times}$ by Lemma 3.6 of [14]. Then $\frac{1}{p} = \frac{1}{\lambda} + \cdots + \frac{1}{\lambda} \in R_{+}^{\times}$. This contradicts that $\frac{1}{p} \notin G_{\lambda}$. However, we have another construction.

Example 3.11. For $\lambda = 3^2 = 9$, Matui shows us the following example: Let A be an AF-algebra such that

$$K_0(A) = \{ (\frac{b}{9^a}, c) \in \mathbb{R} \times \mathbb{Z} \mid a, b, c \in \mathbb{Z}, b \equiv c \bmod 8 \},$$

$$K_0(A)_+ = \{(\frac{b}{\Omega^a}, c) \in K_0(A) : \frac{b}{\Omega^a} > 0\} \cup \{(0, 0)\} \text{ and } [1_A]_0 = (1, 1).$$

Then

$$\mathcal{F}(A) = G_9 := \{9^n \in \mathbb{R}_+^{\times} \mid n \in \mathbb{Z}\}\$$

Moreover $\tau_*: K_0(A) \to \tau_*(K_0(A))$ is not an order isomorphism and $\mathcal{F}(A) \neq IM_+(\tau_*(K_0(A)))$.

Furthermore Katsura suggests us the following examples: Let $\lambda = p^n$ for a prime number p and a natural number $n \geq 2$. Then there exists a simple AF-algebra A with unique trace such that $\mathcal{F}(A) = G_{\lambda}$.

First consider the case that $\lambda \geq 8$. Define

$$E = \{ (\frac{b}{p^{na}}, c) \in \mathbb{R} \times \mathbb{Z} \mid a, b, c \in \mathbb{Z}, b \equiv c \bmod (p^n - 1) \}$$

$$E_{+} = \{(\frac{b}{p^{na}}, c) \in E : \frac{b}{p^{na}} > 0\} \cup \{(0, 0)\} \text{ and } [u]_{0} = (1, 1).$$

Then there exists a simple AF-algebra A such that $(K_0(A), K_0(A)_+, [1_A]_0) =$ (E, E_+, u) by [4]. The classification theorem of [5] and some computation yield that $\mathcal{F}(A) = G_{\lambda}$.

Next consider the case that $\lambda = 2^2 = 4$. Let

$$E = \{ (\frac{b}{16^a}, c) \in \mathbb{R} \times \mathbb{Z} \mid a, b, c \in \mathbb{Z}, b \equiv c \bmod 5 \}$$

$$E_+ = \{(\frac{b}{16^a}, c) \in E : \frac{b}{16^a} > 0\} \cup \{(0, 0)\} \text{ and } [u]_0 = (1, 1).$$

Consider a simple AF-algebra A such that $(K_0(A), K_0(A)_+, [1_A]_0) = (E, E_+, u)$. Then $\mathcal{F}(A) = G_4$.

References

- [1] B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27 (1978), 1021-1026.
- [2] L. G. Brown, P.Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C^* -algebras, Pacific J. Math. **71** (1977), 349-363.
- A. Connes, A factor of type II_1 with countable fundamental group, J. Operator Theory 4 (1980), 151-153.
- [4] E. Effros, D. Handelman and C. L. Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no. 2, 385–407.
- G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), 29-44.
- M. Frank and D. Larson, A module frame concept for Hilbert C*-modules, Contemporary Mathematics 247 (1999), 207-233.
- T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and Ktheory, Trans. Amer. Math. Soc. 352 (2000), 3429-3472.
- K. Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C^* -algebras, J. Operator Theory, **37** (1997), 357-369.
- K. Kodaka, Picard groups of irrational rotation C^* -algebras, J. London Math. Soc. (2) **56** (1997), 179-188.
- [10] K. Kodaka, Projections inducing automorphisms of stable UHF-algebras, Glasg. Math. J. **41** (1999), no. 3, 345–354.
- [11] E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Note Series. 210, Cambridge University Press, Cambridge, 1995.
- [12] V. M. Manuilov and E. V. Troitsky, Hilbert C*-Modules, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence, RI, 2005.
- [13] F. Murray and J. von Neumann, On rings of operators IV, Ann. Math. 44, (1943). 716 - 808.
- [14] N. Nawata and Y. Watatani, Fundamental group of simple C*-algebras with unique trace, to appear in Adv. Math.
- [15] J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss. vol. 322, Springer-Verlag, New York, 1999.
- [16] N.C. Phillips, A Simple separable C^* -algebra not isomorphic to its opposite algebra, Proc. Amer. Math. Soc. 132 (10) (2004), 2997-3005.
- [17] S. Popa, Strong rigidity of II_1 factors arising from malleable actions of w-rigid groups, I, Invent. Math. 165 (2006), 369-408.
- [18] S. Popa and S. Vaes, Actions of \mathbb{F}_{∞} whose II₁ factors and orbit equivalence relations have prescribed fundamental group, J. Amer. Math. Soc. 23 (2010), 383-403.
- [19] F. Radulescu, The fundamental group of the von Neumann algebra of a free group with infinitely many generators is \mathbb{R}_{+}^{*} , J. Amer. Math. Soc. 5 (1992), 517-532.
- [20] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998.

- [21] M. A. Rieffel, *Morita equivalence for operator algebras*, Operator algebras and applications, Part I (Kingston, Ont., 1980), pp. 285–298, Proc. Sympos. Pure Math., **38**, Amer. Math. Soc., Providence, R.I., 1982.
- [22] D. Voiculescu, Circular and semicircular systems and free product factors, in Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progr. Math. 92, Birkhäuser, Boston, 1990, 45–60.
- [23] Y. Watatani, Index for C^* -subalgebras, Memoir AMS **424** (1990).

(Norio Nawata) Graduate School of Mathematics, Kyushu University, Motooka, Fukuoka, 819-0395, Japan

(Yasuo Watatani) Department of Mathematical Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan