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ABSTRACT 
 

Cooling and refrigeration systems are inevitable in chemical productions, 

pharmaceutical industries, data center cooling, factories and manufacturing plants, 

preservation of food/beverage/agricultural products, and to attain thermal comfort in 

residential/commercial buildings. Most of the conventional cooling/refrigeration systems 

are vapor compression based and consume a huge amount of electricity. This electricity is 

generated from centralized power plants which are predominantly fossil fuel based and 

ultimately releases greenhouse gases during power generation. Hence, conventional 

cooling/refrigeration systems are indirectly accountable for global warming by consuming 

electricity. Moreover, the working fluid of those systems are basically high GWP (global 

warming potential) refrigerants. A significant percentage of working fluid is leaked from 

the high-pressure side of the system and thus directly contribute to global warming. The 

summation of indirect and direct warming impact namely, total equivalent warming impact 

(TEWI) of these systems are alarmingly high. A high performance thermally-powered 

adsorption cooling system (ACS) can resolve this critical environmental concern. 

From the above mentioned perceptions, this research work rigorously focuses on – 

(i) quantitative assessment of global warming: conventional vs. adsorption cooling 

systems, (ii) adsorbent characterization (surface area, pore volume, pore size distribution, 

specific heat capacity) for next generation cooling systems, (iii) modification of pore 

structure to enhance the quality of carbon based adsorbent, (iv) investigation of adsorption 

characteristics of novel adsorbent/adsorbate pairs. 

A quantitative assessment of global warming has been performed by evaluating the 

TEWI for conventional and adsorption cooling systems considering similar operating 

conditions. The results reveal that, the environmental adversity of existing conventional 

cooling systems is significantly higher with compared to adsorption cooling systems. 

Employment of an adsorption cooling system instead of a conventional one in residential 

applications can cut the environmental impact to half or even more than that. 

Approximately, 70% to 85% global warming impact reduction is conceivable for medium 

and low temperature applications. However, COP values of the current adsorption cooling 

systems are very poor. There are huge prospects to enhance the performance by deploying 

superior adsorbent/adsorbate pair. Therefore, next objective of this research is to determine 
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various porous and thermophysical properties of adsorbent materials to identify the best 

adsorbent. 

High surface area and pore volume of adsorbent leads to higher adsorption capacity. 

Whereas, low specific heat capacity is expected for faster desorption. Hence, porous 

properties (surface area, pore volume, pore size distribution) and specific heat capacity of 

six different types of silica gel (total thirteen samples including subcategories) have been 

experimentally investigated with temperature ranging from 30 to 100 °C. Specific heat 

capacity of four types activated carbon (Maxsorb III, H2 treated Maxsorb III, KOH–H2 

treated Maxsorb III, KOH treated spherical phenol resin) and two thermal conductivity 

enhancer (EC–1000 and EC–1500) have been measured. The specific heat capacity data 

are successfully fitted with Green and Perry equation. These porous properties and specific 

heat capacity data are essential to design and simulate adsorption cooling systems. 

As of the adsorbents for adsorption heat pump (AHP) application, activated carbon 

sample possesses very high surface area and high adsorption affinity for refrigerant vapor. 

However, they contain a significant percentage of ultramicropores (< 0.7 nm). Commonly 

used refrigerant molecule clusters are unable to enter into such tiny pores and no adsorption 

occurs there. Hence, these ultramicropores decrease thermal conductivity and increase 

specific heat capacity of the material which ultimately degrade the performance of an 

adsorption cooling system. Chemical vapor deposition (CVD) of various carbonaceous 

materials has been performed at elevated temperature to block those unusable pores. 

Porosity analysis of these modified activated carbon samples has been carried out to 

compare the adsorbent quality improvement than parent sample. Pyrolization of methane 

(Tpyr = 1000 °C, ṁ = 50 mL/min, t = 30 min) and benzene (Tpyr = 800 °C, ṁ = 25 mL/min, 

t = 10 min) removes the ultramicropores and most of the mesopores in activated carbon 

and improves its suitability in AHP applications. 

Finally, adsorption isotherm and isosteric heat of adsorption of two novel 

adsorbent/adsorbate pairs have been investigated. The selected working fluid is HFC32 

having low GWP and two adsorbents are activated carbon synthesized from biomass 

(mangrove wood and waste palm trunk). The experimental data shows remarkably high 

uptake for both the pairs. The Dubinin Astakhov (D–A) and Tóth models are efficaciously 

employed to correlate the adsorption isotherms of the assorted pairs. A modified Clausius–

Clapeyron model is adopted to determine the isosteric heat of adsorption (Qst) data. Change 

of Qst with respect to surface coverage is also reported.  
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Chapter 1  

Introduction 
Equation Chapter 1 Section 1 

Temperature is the most significant environmental variable that needs to be 

controlled for both living and non-living beings to live a healthy and comfortable life. 

Outdoor temperature variation depends on the location and season changing pattern of that 

region. However, indoor heat can be regulated by installing refrigeration/air-conditioning 

systems. Development of modern mechanical vapor compression refrigeration (MVCR) 

system started few hundred years ago. At that era, achieving cooling was more important 

than worrying about saving the environment. Nowadays, usage of cooling/refrigeration 

systems in the whole world have enormously increased. Hence, these cooling systems are 

greatly responsible for environmental degradation such as global warming. A huge natural 

catastrophe is obvious if the concept of current cooling system is not changed. Adsorption 

cooling technique is the most prospective candidate resolve this critical issue. A 

quantitative assessment of global warming has been performed for both conventional 

system (MVCR) and adsorption cooling system (ACS). The results of the analysis of 

confirms the fact that current MVRC releases 60 to 85% more global warming gases than 

ACS. Hence, adsorption cooling systems are becoming more popular gradually. However, 

these systems have poor performance and huge size. Therefore, this chapter discusses 

about the motivation of this thesis and the approach to improve the existing adsorption 

cooling systems by material characterization, material modification and finding novel 

functional pairs. The ultimate goal and outline of this thesis are presented in the later part 

of the chapter. 

 

1.1 Background 

Ozone layer depletion and global warming are the most alarming environmental 

issues nowadays. Conventional mechanical vapor compression refrigeration (MVCR) 

systems are the major contributor of these global issues [1]. An MVCR can release global 

warming gases directly (refrigerant leakage having high GWP) and indirectly (electricity 

generation process that is used to drive the MVCR system and materials extraction process 

that is used to build the system). Rules and regulations defined in Montreal (1987) and 
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Kyoto (1997) protocols have already phased out the ozone depleting refrigerants such as 

CFCs and HCFCs. Currently used refrigerants still have high global warming potential and 

needs to be replaced with low GWP refrigerants to diminish the direct warming impact 

[2]. Moreover, indirect global warming impact can be reduced by decreasing the electricity 

consumption and increasing the lifetime of the system. All these requirements are satisfied 

in adsorption cooling systems. Natural refrigerants (e.g. water, ethanol, ammonia) are used 

in adsorption cooling system hence there is no direct emission. Electricity consumption is 

80 to 90 % lower than conventional cooling systems and life time is almost double [3]. 

Hence, indirect emission can also be significantly reduced. However, the adsorption 

cooling technique started developing few decades ago and still have a lot of scopes for 

improvement. 

 

1.2 Refrigeration technique 

1.2.1 Mechanical vapor compression refrigeration (MVCR) system 

A simple MVCR system with basic components is depicted in Fig. 1.1. A working 

fluid flows through the various sections of this system, changes its phase due to pressure 

variation and provides the desired cooling. 

 
Fig. 1.1.  Mechanical vapor compression refrigeration (MVCR) system. 
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Liquid refrigerant is accumulated into the reservoir and a certain amount is pumped 

to the evaporator through the expansion valve. The capillary end of expansion device 

sprinkles the liquid refrigerant to evaporator section and vaporizes due to low pressure. 

During evaporation, latent heat of vaporization is collected from the surroundings which 

cools down the space at some degree. This vapor refrigerant is then pumped to the 

compressor section and get compressed at very high pressure. Temperature of the vapor 

refrigerant increases a lot due to the high pressure. This superheated vapor is passed 

through the condenser coil and cooled down naturally. Heat is rejected to the environment 

and the refrigerant changes its phase to liquid due to temperature drop. This liquid 

refrigerant is collected again into the reservoir and pumped to evaporator. In this way, the 

cycle continues until the desired temperature is reached.  

 

1.2.2 Adsorption cooling system (ACS) 

A two bed adsorption cooling system is illustrated in Fig. 1.2. The major difference 

with conventional MVCR is the replacement of mechanical compressor with thermal 

compressor namely, adsorption/desorption bed. Additionally, commonly used refrigerants 

in MVCR system are HFC based and possess very high GWP. However, natural 

refrigerants (e.g. water, ammonia, CO2, ethanol) with negligible GWP is used in the ACS. 

 

The adsorption/desorption bed contains the adsorbent material. This material are 

porous and can adsorb the refrigerant molecule. The adsorption stage is analogous to the 

suction of refrigerant by the compressor for a MVCR. When one bed is adsorbing the 

refrigerant, the other bed is desorbing the refrigerant by flowing hot water through the heat 

exchanger of the bed. The desorption process is analogous to the release of refrigerant from 

the discharge line of the compressor. The adsorption and desorption bed switches their 

operation after a certain duration. This switching can be controlled by the valves V1 – V4. 
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Fig. 1.2.  Adsorption cooling system (ACS). 

 

1.3 Advantages and shortcomings 

The following Table 1.1 illustrates the major benefits and drawbacks of both 

mechanical vapor compression and adsorption cooling systems. Adsorption cooling 

systems is undoubtedly more environment friendly than the conventional systems. 

However, the drawbacks are of major concern and needs to be resolved to design an 

efficient system.  
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Table 1.1. Comparison of mechanical vapor compression and adsorption cooling system. 

 MVCR ACS 
Advantages • Compact size 

• High COP 

• Low cost 

• Wide operating temperature 

range 

• Commercially available and 

lots of choices 

• Low electricity consumption 

• Natural refrigerant 

• Waste heat utilization 

• Low temperature heat source 

required 

• Low noise and less vibration 

• Less moving parts 

• Long lifetime (≈ 25 years) 

• Lower maintenance required 

Shortcomings • High electricity consumption 

• High GWP refrigerant 

• High pressure, more leakage 

• Noisy and more vibration 

• High voltage required 

• A lot of moving parts 

• Short lifetime (≈ 15 years) 

• Large size 

• Initial cost very high 

• Low thermal COP 

• Insufficient data about 

functional pairs 

• Limited operating temperature 

range 

• Few manufacturers 

 

1.4 Motivation and objectives 

The motivation of this research is originated from the drawbacks of adsorption 

cooling systems. Adsorption cooling technology is still tender and there are insufficient 

data about the adsorbents, refrigerants and other parameters that affects the system 

performance. Hence, the research mainly stresses, firstly, on the characterization of 

commonly used adsorbents. Porous properties such as surface area, pore size, pore volume, 

pore size distribution of six types silica gel samples have been reported. Specific heat 

capacity of those silica gel samples, four types of activated carbons and two types of 

thermal conductivity enhancer is also investigated. Secondly, selective removal of 

unusable ultramicropores from activated carbon have been studied. Two organic 

compounds (methane and benzene) are used for the pore blocking process. Thirdly, 

adsorption characteristics of two biomass derived activated carbon with low GWP 
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refrigerant R32 is experimentally investigated. The carbon samples have benchmark 

uptake which indicates the development of a promising adsorption cooling system to cope 

with the next generation cooling applications. To achieve the above mentioned objectives, 

following initiatives have been taken and the results are reported in this thesis: 

I. A quantitative assessment of annual total equivalent warming impact generated 

from conventional vapor compression system and adsorption cooling system 

have been performed. The results of this assessment suggests the superiority of 

adsorption cooling system from the environmental safety perspective. 

II. Porous and thermophysical properties of the adsorbents are most important to 

simulate and predict the performance of existing cooling systems. Hence, porous 

properties such as surface area, pore volume, pore size distribution of RD, type 

A, type B, indicator type A, chromatorex and home silica gel samples have been 

experimentally investigated. N2 adsorption technique is adopted for the 

experiment and DFT analysis is performed to obtain pore size distribution. 

III. Specific heat capacity of adsorbents greatly affect the desorption process. 

Researchers typically use a constant value of specific heat capacity to determine 

the adsorption bed characteristics. However, the specific heat capacity changes 

with temperature. Hence, the specific heat capacity of the above mentioned 

silica gels have been measured using differential scanning calorimetry. The 

measurement temperature range is chosen from 30 to 100 °C which is the typical 

operating temperature range of an adsorption cooling system. 

IV. Specific heat capacity of four types activated carbon (Maxsorb III, H2 treated 

Maxsorb III, KOH-H2 treated Maxsorb III, and spherical phenol resin derived 

activated carbon) and two types of thermal conductivity enhancer (EC-1000 and 

EC-1500) have been measured. 

V. Specific heat capacity data of silica gel, activated carbon and expanded graphite 

is fitted with a temperature depended Green–Perry equation and the adjustable  

parameters have been optimized to fit with the equation. 

VI. Unusable ultramicropores of activated carbon degrades the performance of a 

system. Removal of those pores can improve the quality of the adsorbent and 

hence enhance the performance of the cooling system. Chemical vapor 

deposition at elevated temperature is performed to block those ultramicropores. 

Methane and benzene is used as the carbon source to deposit into the pores. 
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VII. Adsorption isotherm of two novel pairs M–AC/R32 (R32 onto mangrove 

derived activated carbon) and WPT–AC/R32 (R32 onto waste palm trunk 

derived activated carbon) have been experimentally investigated. Highly 

accurate thermogravimetric analysis (TGA) data shows remarkably high uptake. 

VIII. Experimental data is theoretically analysed and successfully correlated with 

well-known D–A and Tóth models. The adjustable parameters are optimized to 

minimize the fitting error at an acceptable range. 

IX. Variation of isosteric heat of adsorption with surface coverage have been 

theoretically determined with a temperature dependent modified Clausius-

Clapeyron equation. 

 

1.5 Organization of the thesis 

The thesis includes seven chapters explaining the various theoretical and 

experimental findings. Adsorption characterization, pore structure modification and 

adsorption characteristics have been studied for novel pairs. The arrangement of the thesis 

is as follows: 

 

Chapter 1: Introduction 

Chapter 2: Literature review: Scientific advancement of cooling systems 

Chapter 3: TEWI comparison of cooling systems 

Chapter 4: Specific heat capacity measurement of potential adsorbents 

Chapter 5: Pore shaping to enhance the quality of adsorbents 

Chapter 6: Adsorption characteristics and isosteric heat of adsorption determination for 

biomass derived activated carbon/R32 pair 

Chapter 7: Overall conclusions and recommendations 

 

The key points of each chapter are given as follows:  

Chapter 1 gives an overview of the working principle of conventional vapor 

compression system. Their advantages and limitations are compared to make a decision 

which system is better and where are the scopes of improvement. Finally, this chapter 

clarifies the motivation and objectives of the thesis. 
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Chapter 2 provides a comprehensive literature review of the historical progress of 

cooling systems. The conventional vapor compression system became very popular after 

the invention of Freon in 1930. However, adsorption cooling system attracted the attention 

of people in 1970 when energy crisis and heavy environmental pollution started to occur. 

The development of adsorption cooling system and the scope of improvement related to 

this research work is also discussed in this chapter.  

 

Chapter 3 explains the procedure to assess environmental impact of a cooling system. 

Same operating conditions are set and some necessary assumptions are considered to 

evaluate total equivalent warming impact (TEWI) from both mechanical vapor 

compression refrigeration (VCR) system and adsorption cooling system (ACS). Three 

types of applications have been considered for this assessment: residential cooling, 

medium temperature applications and low temperature applications. Results of assessment 

are compared to know which system causes more environmental damage and how severe 

that is. 

 

Chapter 4 explains the N2 adsorption technique to evaluate the porous properties of 

any adsorbent material. Differential scanning calorimetric (DSC) method is also described 

to measure the specific heat capacity of the adsorbent material for a particular temperature 

range. Since this properties greatly affect the performance of an adsorption cooling system, 

it is necessary to evaluate this parameters before designing an actual system. Most 

commonly used adsorbents such as silica gel and activated carbons are experimentally 

investigated. Pore size distribution and specific heat capacity variation of the same sample 

with different particle sizes is also observed. The comparison of their porous properties 

and specific heat capacity gives an insight of which adsorbent could be better for cooling 

system. 

 

Chapter 5 illustrates the method to modify the pore structure of activated carbon to 

enhance its quality as an adsorbent. Pyrolysis of organic materials onto activated carbon 

has been performed in an inert environment at elevated temperature. Carbon atoms are 

deposited and block undesired micropores/mesopores. Pyrolization material (methane and 

benzene), time, flow rate and temperature is varied to find the optimum value that blocks 
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only the unusable pores. Porous properties of modified activated carbon is also determined 

with N2 adsorption experiment to understand the effect of pyrolization. 

 

Chapter 6 presents the adsorption isotherms of two novel adsorbent/adsorbate pairs 

at adsorption temperature 30, 50, 70 and 90 °C. The adsorbents are mangrove and waste 

palm derived activated carbon. The selected adsorbate is current generation working fluid 

HFC32 having low GWP. Experimental data is fitted with two well-known adsorption 

isotherm model known as D–A and Tóth. Isosteric heat of absorption is also quantified for 

both the pairs as a function of adsorption temperature and surface coverage. A modified 

Clausius-Clapeyron method is adopted to study the behaviour of isosteric heat of 

adsorption. 

 

In Chapter 7, the thesis ends with the major findings where the originality and 

contribution of the author, and recommendations for future improvement have been made. 

It is concluded that RD silica gel with large particle size have better porous properties and 

specific heat capacity among all the studied silica gel samples. Among the investigated 

carbon samples, spherical phenol resin based sample is found to be superior. However, the 

possibility of using natural adsorbents and consolidated composite samples need to be 

explored. Pore shaping concept explained in chapter 5 is very effective to improve the 

quality of adsorbent. The method needs more research to get better selective removal. 

Finally, studied adsorption characteristics of biomass derived activated carbon with R32 

refrigerant opens the door to design a high performance next generation cooling system. 



  
 

 
 

Chapter 2  

Literature review: Scientific advancement 

of cooling systems 
Equation Chapter (Next) Section 1 

High demand of heating, ventilation, air conditioning, and refrigeration (HVAC&R) 

system has created a highly competitive global market for the HVAC&R manufacturing 

industries. The technology is available for the past 200 years and each component of the 

system has already been grown to a matured stage because of its extremely potential 

business opportunity. Researchers have invented the most efficient heat exchangers, 

developed advanced compressors for wide-ranging applications, identified and 

characterized various refrigerants which are suitable for specific applications, introduced 

auxiliary circuits (e.g. subcooling, superheating) to increase the efficiency of the system. 

Therefore, current systems are very compact, sophisticated and energy consumption is also 

low (high COP). However, it possesses one major drawback – the system has negative 

impact on the environment. It produces huge amount of greenhouse gases by releaising 

high GWP refrigerants to the environment. The system also contributes indirectly to global 

warming by consuming electricity. Both the problems can be resolved to a great extent by 

replacing the mechanical compressor by a thermal compressor (also called adsorption bed) 

and by switching from high GWP synthetic refrigerants to natural refrigerants. However, 

the switching is not so straightforward, since the thermodynamic properties of the 

refrigerants are different. The compatibility of the functional pair must be verified before 

using in an adsorption cooling system. Adsorbents with superior porous and 

thermophysical properties is required to design an efficient adsorption cooling system. 

Hence, all the potential adsorbents should be characterized accurately and new high quality 

adsorbents could be synthesized. This chapter discusses about the historical development 

of conventional mechanical vapor compression system and adsorption cooling system. 

Moreover, a summary of the literatures related to this research work is also presented in 

this chapter. 
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2.1 Mechanical vapor compression refrigeration (MVCR) system 

2.1.1 History 

“Abortion of a Young Steam Engineer’s Guide” – a book written by Oliver Evans 

and published in 1805, describes a closed refrigeration cycle which is able to produce ice 

by using ether under vacuum condition. However, he did not propose any system. Later, 

Jacob Perkins patented a design of cooling system in 1834 and John Hague made the design 

into a working model [4]. The working fluid of the system was ether. The schematic and 

photograph of first ever built freezing system is shown in Fig. 2.1. James Harrison made a 

practical vapor compression refrigeration system and patented in 1856 using ether, alcohol 

or ammonia. David Boyle (1871) and John Enright (1876) made MVCR system with NH3; 

Linde (1882), Franz Windhausen (1886) and T.S.C. Lowe (1887) used CO2 as working 

fluid; Raoul Pictet (1875) designed a system with toxic refrigerant SO2; C. Vincet (1878) 

used anaesthetic methyl chloride as refrigerant; Palmer (1890) used ethyl chloride; 

Edmund Copeland and Harry Edwards (1920) used isobutene; dichloromethane 

(CARRENE) was commercially used by renowned manufacturer Carrier for their 

centrifugal compressors in 1926 – 1933 [4]. 

 
Fig. 2.1.  (a) Schematic of J. Perkins model (b) Perkins apparatus built by J. Hague [4]. 

 

2.1.2 Refrigerants 

Selecting refrigerant is the most significant task before designing a cooling system. 

Table 2.1 shows the expected properties of a refrigerant with reasons. 
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Table 2.1. Expected properties in a refrigerant. 

 Desired property Significance 
● Low freezing and boiling point Operation range depends on these points 

● High COP To reduce the power consumption cost 

● Zero ozone depleting potential 

(ODP) and low global warming 

potential (GWP) 

To ensure environmental safety 

● High critical temperature and 

pressure 

Power consumption depends on critical points 

● High latent heat of vaporization A high enthalpy of vaporization means more 

heat removal during cooling 

● Temperature – pressure relation To understand the refrigeration cycles and 

leakage probability. 

● High vapor density To reduce the size of the compressor 

● High thermal conductivity  For efficient heat transfer 

● Non-flammable, non-toxic, 

non-corrosive 

To avoid health hazards and ensure safety  

● Cost and availability To reduce the manufacturing cost 

 

People were not very concerned about the environment even few decades ago. 

Hence, they were using any refrigerant that was fulfilling their requirements. For example, 

CFCs and HCFCs such as R11, R12, R22, R113, R114, R115, R123, R124 are frequently 

used in the cooling applications. Most of these refrigerants have high ozone depleting 

potential and high global warming potential [5,6]. These refrigerants are gradually phasing 

out because of the regulations of Montreal and Kyoto protocol [2,7,8]. 

Current generation refrigerants are HFC and HFC blends such as R32, R134a, 

R152a, R404A, R410A, R507A [6]. These refrigerants do not have ODP but they have 

high GWP. Hence, many of them will be phasing out soon according to Montreal and 

Kyoto protocol. The refrigeration industries are trying to find very low GWP refrigerants 

such as HFOs and also trying to use natural refrigerants in their system. CO2 system is 

commercially available in the market. However, they operate in very high pressure 

transcritical region. None of these refrigerants are perfectly meeting all the desirable 
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conditions of an ideal refrigerant. Therefore, the refrigeration industry is in a great crisis 

and they are unable to develop a vapor compressor cooling system that have very low 

environmental impact.  

 

2.1.3 Heat exchanger 

A heat exchanger is a medium that is used to transfer thermal energy (i.e. enthalpy) 

between two or more fluids. In heat exchangers, there are usually no external heat and 

work interactions [9]. A vapor compression refrigeration system requires heat exchanger 

in both evaporator and condenser. Heat exchanger design for cooling system is one of the 

most challenging task. The efficiency of the cooling system greatly depends on the material 

and geometry of the heat exchanger [10]. Heat exchanger classification according to their 

shape is shown in Fig. 2.2. A heat exchanger is typically made of heat transfer elements 

such as a core or matrix containing the heat transfer surface, and fluid distribution elements 

such as headers, manifolds, tanks, inlet and outlet nozzles, pipes, or seals. Shell and tube 

type heat exchanger is typically used in the evaporator and condenser [11]. Numerous 

researchers are designing new heat exchangers and testing the performance of their 

invented prototype [12] as shown in Fig. 2.3.  

 

 
Fig. 2.2.  Classification of heat exchanger according to construction [9]. 
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Fig. 2.3.  (a) Modified shell and tube heat exchanger with combined segmental-disk 

baffle, (b) Simulation result of velocity path line [12]. 

 

2.1.4 Compressor 

Compressor is that component of the conventional cooling system, which consumes 

about 90% of the electricity. Previous generation compressors had constant speed and 

hence they consumed more electricity [13]. Current generation advanced compressors are 

inverter type that is capable of varying speed according to the temperature requirement. 

They are highly efficient, have high COP and consume low power. Some modern 

compressors from renowned compressor manufacturer Bitzer is shown in Fig. 2.4. 
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Fig. 2.4.  Modern compressor models (a) Semi-hermetic reciprocating compressor, (b) 

Semi-hermetic screw compressor, (c) Open type reciprocating compressor, (d) Hermetic 

scroll compressor, (e) CO2 booster rack [14]. 

 

2.2 History of adsorption cooling system 

Faraday discovered the adsorption phenomena in 1848. He found that cooling could 

be obtained by adsorbing NH3 onto AgCl. Later, G. E. Hulse (1920) proposed a cooling 

system with silicagel/SO2 as working pair to preserve the food in train. The heat source of 

this system was from propane combustion and the heat exchanger fluid was air. The 

evaporation temperature could reach up to 12 °C. R. Plank and J. Kuprianoff proposed 

another adsorption cooling system with activated carbon/methanol pair. In 1930s, Freon is 

invented and the vapor compression became very popular. Hence, the development of 

adsorption cooling system halted for a very long time. In 1970s, energy crisis started to 

happen and in 1990, environmental pollution became very serious. Hence, the adsorption 

cooling technology again attracted the attention of researchers. In 1986, a commercial 

(a) (b)

(c)

(d) (e)



CHAPTER 2 

 
LITERATURE REVIEW: SCIENTIFIC ADVANCEMENT OF 

COOLING SYSTEMS 
 

 

16 
 

adsorption chiller was marketed by Nishiyodo Kuchouki Co., Ltd. The working pair of 

that system was silica gel/water [15]. The schematic of that chiller is shown in Fig. 2.5. 

The chilling water temperature was 3 °C and heat source temperature was 50 – 90 °C. 

 

 
Fig. 2.5.  Silica gel/water adsorption system from Nishiyodo Kuchouki Co., Ltd. 

 

In 2003, a Japanese company named Macom commercialized silica gel/water 

adsorption chiller. Chilling water output of that system was 14 °C, heat source temperature 

75 °C with a COP of 0.6. 

 

In 2003, Tokai Optical Co., Ltd. introduced an adsorption CCHP system powered by 

waste heat. They claimed that 10% energy consumption and 12% CO2 emission could be 

reduced annually by installing such a system. 

 

2.3 Material characterization 

Silica gel (SG), activated carbon powder (ACP), activated carbon fiber (ACF), 

zeolite, metal oxide framework (MOF) are the most popular options to use as adsorbent. 

Many researchers are developing consolidated composites by using a small amount binders 

with these adsorbents [16–18]. The consolidation would increase the packing density and 

the adsorption bed would be smaller. The porous and thermophysical properties of these 

materials are very important to predict the performance of an adsorbent. 
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2.3.1 Porous properties measurement 

Adsorption capacity and kinetics of an adsorbent mainly depends on the surface area, 

pore volume and pore size distribution of that material. The porous properties of some 

common adsorbents that are reported by the researchers are presented in Table 2.2. These 

information implicates which adsorbents are microporous and which are mesoporous. 

Adsorbate choice depends on the porous pore types. Surface area and pore volume 

indicates which sample would adsorb more amount of adsorbate. Hence, these data are 

very important before designing an adsorption cooling system. 

 

Table 2.2. Porous properties of some common adsorbents. 

Adsorbent Name BET Surface 
area  
(m2 g–1) 

Pore width  
 
(Å) 

Pore volume  
 
(cm3 g–1) 

Activated carbon (Maxsorb III) [19] 3045 11.20 1.70 

Activated carbon from waste palm trunk [20] 2927 16.80 2.41 

Activated carbon from Mangrove [20] 2924 14.70 2.13 

Activated carbon fiber (A20) [21] 1900 21.60 0.765 

Activated carbon fiber (A15) [21] 1400 21.75 1.028 

Silica gel (RD) [22] 650 21.00 0.35 

Silica gel (type A) [22] 650 22.00 0.36 

Zeolite (AQSOA Z01) [23] 132 7.40 0.087 

Zeolite (AQSOA Z02) [23] 590 3.70 0.2769 

Natural zeolite [24] 29 4  –  

MOF MIL-101 Cr [25] 4100 10, 16 2.0 

 

2.3.2 Specific heat capacity 

Specific heat capacity of an adsorbent is one of the key thermophysical parameter to 

design and optimization of an adsorption chiller. When the adsorption bed is designed, the 

equations contain the specific heat capacity term. Mitra et al. analysed the performance of 
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a two-stage air-cooled silica gel/water adsorption system. The following equation (2.1) is 

for the adsorption bed mentioned in their article.  

 

( ) ( ) ( )
/ // / / // /

/ , / , / ,/

I II I III II I II I II I IIads des ads des
p sg sg ads cw hw p w cw hw out cw hw inbed ads des

dT dMc M M h m c T T
dt dt

φ
φ λ

  + = − −     
    (2.1) 

 

Most of the researchers consider a constant value of specific heat capacity for their 

calculation [26–29]. Boelman et al.[30], Chihara & Mizuki [31] Saha et al. [32], Myat et 

al. [33], Thu et al. [34], Mitra et al. [35] and Ali & Chakraborty [36] have considered a 

constant specific heat capacity of silica gel in their investigations. Jribi et al. [37] used the 

specific heat capacity of Maxsorb III to be 1.375 kJ kg–1 K–1 to simulate an activated 

carbon/CO2 based adsorption cooling system. Askalany et al. [38] assumed 0.930 kJ kg–1 

K–1 for the specific heat capacity of granular activated carbon to estimate the performance 

of adsorption cooling system. Chan et al.[39] considered the specific heat capacity of 

zeolite 13X/CaCl2 composite to be 0.836 kJ kg–1 K–1 for their system. However, the 

temperature of the beds is not always constant. Specific heat capacity of a material also 

varies with temperature. Hence, the calculation would be affected if a constant value is 

considered. 

 

There are few literatures that present a detailed analysis of specific heat capacity 

with a function of temperature for the porous materials. Aristov [40] reported an 

approximation to present the specific heat of adsorbate-adsorbent pair and verified for 

CaCl2/silica gel and zeolite 4A composite during water adsorption. Jiang et al. [41] 

measured the heat capacities and thermodynamic properties of powder MOF materials 

using temperature modulated differential scanning calorimetry (TMDSC). Kloutse et al. 

[42] measured specific heat capacity of five MOFs: MOF-5, Cu-BTC, Fe-BTC, MIL-53 

(Al) and MOF-177 over a wide temperature range. They proposed polynomial fitting for 

their experimental data [43]. Uddin et al. measured the specific heat capacity of four types 

of activated carbon samples and two graphite samples within 30 – 150 °C temperature 

range. They correlated their experimental data with a temperature dependent specific heat 

capacity model, namely Green – Perry model. 

 



CHAPTER 2 

 
LITERATURE REVIEW: SCIENTIFIC ADVANCEMENT OF 

COOLING SYSTEMS 
 

 

19 
 

2.4 Pore modification  

The application area of adsorbents are very wide. Each application requires a certain 

set of characteristics. For example, activated carbon sample contains some percentage of 

ultramicropores (< 0.7 nm) and mesopores (> 2 nm) along with the regular micropores. In 

adsorption cooling applications, the ultramicropores do not participate in the adsorption 

due to their tiny size. Moreover, the mesopores slow down the adsorption rate. Hence, 

removal of these pores would definitely improve the performance of an adsorption cooling 

system. 

 

Kawabuchi et al. [44] have investigated the chemical vapor deposition (CVD) of 

carbon from benzene and cyclohexane on a certain activated carbon fiber (ACF) sample. 

They varied the pyrolization temperature to find the optimum condition and obtained good 

result at 700 – 800 °C temperature. Sample mass increased about 11% due the pyrolysis 

of benzene and deposition of carbon in the pores. After a certain amount of deposition, 

reduction of pore size appeared to be limited by the thickness of the benzene plane and no 

further carbon deposit took place because the pore could no longer accept benzene. Their 

target application was molecular sieve separation of CH4 from CO2. The reshaped pores 

are capable of doing the task more efficiently and the target is fulfilled. Moreover, 

cyclohexane decomposed too rapidly and blocked all the pores. Thus, high molecular 

sieving selectivity could not be obtained with cyclohexane. 

 

Verma et al. [45,46] observed the effect of heat treatment on activated carbon. The 

application is targeted to the gas separation. Their results shows that alteration of pore 

occurred and the sample is improved towards the targeted application. Kim et al. [47] 

investigated the decomposition of methane onto various types of activated carbon. The 

target application was CO2 free hydrogen production. At 1123 decomposition temperature, 

most of the pores of activated carbon are blocked and the surface area becomes about 20 

– 60 m2/g. Sotowa et al. [48] modified a pitch-based activated carbon fiber by CVD of 

pyridine. Pyrolization temperature is varied from 500 to 725 °C. Surface area of parent 

sample (2149 m2/g) decreased to 1265 m2/g after the pyrolization. However, the pore size 

distribution of modified sample is not reported in that article. To the best of our knowledge, 
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pore modification of activated carbon was never targeted for the enhancement of the 

performance of adsorption cooling system. 

 

2.5 Adsorption isotherm model 

Adsorption isotherm of various functional pair is investigated and correlated with 

the well-established models. Dubinin–Astakhov [49,50], Tóth [51], Freundlich [52,53] and 

Langmuir [54,55]  models are the widely used isotherm models which fits well with most 

of the functional pairs. Governing equation of D–A and Tóth models are represented by 

(2.2) and (2.6), respectively. The following Table 2.3 shows the fitting parameters of those 

model for various functional pairs investigated by the researchers. 

 

D–A equation: 0

ln
exp

n
sPRT

PW W
ME

         = −        

   (2.2) 

Here,  mW CV=      (2.3) 

( )expm t tV V T Tα = −    (2.4) 

k

s s

C C

P T
P T

 
=  
 

   (2.5) 

 

Tóth equation: 

( )( )
0 1

1 t t

bPC C
bP

 
 

=  
 +  

  (2.6) 

Here,  0

stQ
RTb b e=      (2.7) 
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Table 2.3. Correlation coefficients of D–A and Tóth model from literature.  

Functional pairs Tóth isotherm parameters D–A isotherm parameters 

 C0 b0 Qst t k W0 E n 

Type A Silica 

gel/water [56] 

0.4  

kg kg–1 

(4.65±0.9)  

× 10–10  

kPa–1 

(2.71±0.1)  

× 103  

kJ kg–1 

10 

– – – – 

RD type Silica gel/ 

water [56] 

0.45  

kg kg–1 

(7.30±2)  

× 10–10 

kPa–1 

(2.693±0.1) 

× 103  

kJ kg–1 

12 

– – – – 

AQSOA-Z01 

zeolite/water [23] 
– – – – – 

0.21 

kg kg–1 

4 

kJ mol–1 

5 

AQSOA-Z02 

zeolite/water [23] 
– – – – – 

0.31 

kg kg–1 

7  

kJ mol–1 

3 

Natural zeolite/ 

water [24] 
– – – – 

5.05 0.1219 

kg kg–1 

– 1.4 

Maxsorb III/ 

ethanol [57] 
– – – – – 

1.2 

kg kg–1 

139 

kJ kg–1 

1.8 

KOH-H2 treated 

Maxsorb III/ 

ethanol [57] 

– – – – – 

1 

kg kg–1 

152 

kJ kg–1 

1.9  

H2 treated Maxsorb 

III/ethanol [57] 
– – – – – 

1.2 

kg kg–1 

138 

kJ kg–1 

2  

Maxsorb III/CO2 

[58] 

2.3061  

kg kg–1 

1.842  

× 10–7  kPa–1 

19.297  

kJ mol–1 

0.799 4.504 1.54 

cm3 g–1 

5.25 kJ 

mol–1 

1.326 

Consolidated 

Maxsorb III/CO2 

[17] 

2.05  

kg kg–1 

6.67 × 10–5 

kPa–1 

22.5  

kJ mol–1 

0.6 4.844 1.109 

cm3 g–1 

5.42 kJ 

mol–1 

1.29 

Spherical activated 

carbon SAC2/ 

HFC32 [59] 

3.9981  

kg kg–1 

2.2 × 10–7  

kPa–1 

19.067  

kJ mol–1 

1.8873 3.65 3.1344 

cm3 g–1 

3.4981 

kJ mol–1 

1.0217 
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2.6 Isosteric heat of adsorption 

Molecular interaction during adsorption and change in energy level of the adsorbate 

molecules is known as isosteric heat of adsorption (Qst). The amount of released heat is 

partially absorbed by the adsorbent which causes a rise in adsorbent temperature and thus 

influences the rate of adsorption. Qst depends on the functional pair. The isosteric heat of 

adsorption at constant uptake is evaluated from adsorption isotherm data using Clausious-

Clapeyron (C-C) equation (2.8) written as: 

( ) ln
1

st C CQ M P
R

T

−− ∂
=

 ∂  
 

   (2.8) 

The numerical value of isosteric heat of adsorption (Qst) might vary due to the 

adopted isotherm models. For low pressure refrigerant such as ethanol, the isosteric heat 

of adsorption can be expressed by equation (2.9). D–A model fitting parameters are used 

to determine the Qst.  

( )
1

2

0

ln ln
n

st s
WQ RT P E

T W
  ∂  − = + −  ∂    

  (2.9) 

Chakraborty et al. [60] proposed a modified equation to determine the Qst for high 

pressure gases. Equation (2.10) represents the equation of that model: 

1
, ( )

n n
Chak m D A g

PQ kRT A TE A Tv
n T
α −

−
∂ = + + +  ∂ 

  (2.10) 

Another well-known model to investigate the Qst with surface coverage for high 

pressure gas using D–A fitting parameters is proposed by Rahman et al. model [61].  

( ) ( )
1 1 n
n n

st fg
TQ h E ln ln
n
α − = + − Θ + − Θ  

  (2.11) 

When the temperature is above critical, the equation takes the following form: 

( ) ( )
1 1 n
n n

st
TQ kRT E ln ln
n
α − = + − Θ + − Θ  

  (2.12) 
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Isosteric heat of adsorption for some commonly used adsorbent/adsorbate pair is 

presented in the Table 2.4. 

 

Table 2.4. Isosteric heat of adsorption of some common adsorbents from articles. 

Functional pair Average isosteric heat of adsorption 

Type A Silica gel/water [56] 2710 ± 100 kJ kg–1 

RD Silica gel/water [56] 2693 ± 100 kJ kg–1 

Natural zeolite/water [24] 2500 to 3800 kJ kg–1 

Maxsorb III/ethanol [62] 1002 kJ kg–1 

Spherical phenol resin based activated carbon 

(KOH6–PR)/ethanol  [63] 

995 kJ kg–1 

Activated carbon fiber (A–15)/ethanol [21] 1050 kJ kg–1 

Maxsorb III/CO2 [58] 19.297 kJ mol–1 

Spherical activated carbon SAC2/HFC32 [59] 19.067 kJ mol–1 

 



  
 

 
 

Chapter 3  

TEWI of cooling systems 
Equation Chapter (Next) Section 1 

Conventional cooling and refrigeration systems already evolved to efficient design, 

have higher COP and compact size. However, the compressor section of such system 

consumes a tremendous amount of electricity and contribute indirectly to global warming. 

The working fluids of these systems are typically HFC or HFC blends which possess very 

high global warming potential (GWP). A significant percentage of this working fluid is 

leaked from the high-pressure side of the system and directly contribute to global warming. 

The summation of indirect and direct warming impact namely, total equivalent warming 

impact (TEWI) of the vapour compression cooling systems are significantly high. 

Adsorption cooling system (ACS) is capable of resolving this critical issue. 

 

In ACS, the mechanical compressor of the traditional cooling system is replaced by 

a thermal compressor, namely, a pair of adsorption beds. Highly porous adsorbent material 

(silica gel, activated carbon, zeolite and so forth) is the key component of an adsorption 

bed. These materials have the capability to capture and hold certain types of fluid. This 

phenomenon is known as adsorption. Upon heating, the adsorbed fluid is liberated from 

the pores (desorption process) and gets thermally compressed. Waste heat from industries, 

thermal power plants, brick fields, automobiles and solar thermal energy are the most 

prospective heat sources for the desorption process to occur. Since there is no mechanical 

compressor, the electricity consumption is deficient which significantly minimizes indirect 

warming impact. Moreover, natural or alternative refrigerants are used as the working fluid 

which has zero/negligible GWP. Hence, the direct warming impact is also shallow. 

 

In this chapter, the working principle and governing equations of a waste heat driven 

adsorption cooling system will be elaborated. Besides, TEWI assessment procedure will 

be explained and compared for both vapour compression and adsorption cooling systems. 
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3.1 Background 

The main objectives behind the invention of cooling systems are to attain thermal 

comfort during summer and to preserve various goods (fish, meat, vegetable, and so forth) 

that usually rots very fast at ambient conditions [4,64]. The conventional cooling systems 

have four major building blocks: evaporator, compressor, condenser and expansion device. 

A working fluid (namely refrigerant) flows through these components, changes its phase 

due to pressure variation and removes heat from a low-temperature source to a relatively 

higher temperature sink [65]. Electricity is required to run this cooling system, and the 

mechanical compressor consumes about 90% of that electricity. Electricity generation 

sources are mainly fossil fuel based and release greenhouse gases during electricity 

production [66–68]. Briefly, a cooling system indirectly contributes to global warming by 

using electricity. Moreover, refrigerant leakage is inevitable from joints and seals, 

mechanical failure or during servicing [69,70]. Currently employed refrigerants in the 

cooling systems have a very high global warming impact. Hence, the leaked refrigerant 

contributes directly to global warming. The summation of indirect and direct warming 

impact namely, total equivalent warming impact (TEWI) of the conventional cooling 

systems are significantly high [71–74]. Hence, the adsorption cooling system is becoming 

popular which can be driven by solar thermal energy or any other low-temperature heat 

sources [23,75–77]. Electricity consumption of this system is very low. Moreover, natural 

refrigerants can be used as working fluids which have zero or negligible global warming 

impact [78–80]. According to history, Faraday discovered the adsorption cooling 

phenomenon in 1948. He observed that NH3 adsorption onto AgCl could produce cooling. 

G. E. Hulse proposed an adsorption refrigeration system with silica gel as adsorbent and 

SO2 as the refrigerant in the 1920s [15]. Nowadays, many renowned industries such as 

Mitsubishi [81], Tokyo Boeki Machineries [82], Bry-Air [3], Mayekawa [83], and SorTech 

[84] are commercially manufacturing high capacity adsorption chillers. TEWI is assessed 

and compared for both mechanical vapor compression system and adsorption cooling 

system in this chapter. 
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3.2 Calculation procedure 

3.2.1 Operation principle 

A simple vapour compression system with subcooling and superheating is shown in 

Fig. 3.1. Corresponding P-h diagram and the state of refrigerant in a refrigeration cycle is 

shown in Fig. 3.2. In this cycle, when the refrigerant leaves the evaporator (point a), a 

certain amount of superheat is applied to prevent damage and to increase the efficiency of 

the system. The refrigerant is then fed to the suction line of the compressor (point a'). 

Vapour refrigerant discharges from the compressor (point b") after a non-isentropic 

compression. The hot vapour refrigerant is then cooled and condensed in the condenser 

through an isobaric process. Released refrigerant from the condenser (point c) is subcooled 

to ensure that the entire refrigerant is in the liquid state. After subcooling (point c'), the 

refrigerant is collected into a reservoir. The refrigerant then goes through an expansion 

device, enter into the evaporator (point d'), evaporate isobarically until it reaches 

evaporator exhaust (point a) and the cycle continues to repeat. 

 

 
Fig. 3.1.  Schematic of a simple vapor compression refrigeration system. 
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Fig. 3.2.  A typical P-h diagram and refrigeration cycle. 

 

In a refrigeration cycle, the refrigerant encounters isobaric, isentropic, non-isentropic 

and isenthalpic processes as shown in Fig. 3.2. The following set of equations can be 

written from the state diagrams. 

 

' 'd d a aP P P P= = =   (3.1) 

" ' 'b b b c cP P P P P= = = =   (3.2) 

a evaT T=   (3.3) 

'a eva supT T T= +   (3.4) 

' 'c dh h=   (3.5) 

' 'a bS S=  (3.6) 

b c conT T T= =  (3.7) 

'c con subT T T= −  (3.8) 

' '

" '

b a
isen

b a

h h
h h

η
−

=
−

 (3.9) 

 

Unlike VCR, work input of an adsorption cooling system is thermal energy instead 

of electricity. The mechanical compressor of a VCR is replaced with a thermal compressor 

namely adsorption bed [85–92]. Other three components of the system are the same as 
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VCR. Some additional components are also required in the adsorption cooling system for 

the cooling to occur. The complete system schematic is shown in Fig. 3.3. 

 

 
Fig. 3.3.  Adsorption cooling system by using waste heat/solar thermal energy. 

 

A pair of beds alternately works as adsorption bed and desorption bed for 

uninterrupted cooling. State points and refrigeration cycle is similar for VCR and 

adsorption cooling system if the operating conditions are same. So the same set of 

equations can be used for the adsorption cooling system. Since, superheating and 

subcooling is not required for ACS, equation (3.4), (3.8) and (3.9) are irrelevant. 

 

3.2.2 TEWI 

Every refrigeration system contributes to global warming either directly or 

indirectly. TEWI is the overall quantity of direct and indirect GWP released from a system. 

 

The compressor (desorption bed for an adsorption cooling system) and condenser 

sections operate at a high temperature and pressure than the atmospheric. Although all the 

sections are properly sealed, a significant amount of leakage (about 20%) can occur from 

joints and seals, due to mechanical failure or during servicing [69,93]. This leakage will 

lead to performance degradation and will increase energy consumption [94,95]. Moreover, 

the leaked refrigerants have high GWP which will eventually contribute directly to global 

warming [73]. 

Indirect emission occurs due to the electricity consumption of the refrigeration 

system since major share of the electricity is generated from fossil fuel.  
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A cooling system is mostly made with metals such as stainless steel, aluminium, 

copper. These materials production requires a lot of energy which indirectly contribute to 

global warming.  

 

Hence, TEWI can be assessed from the following equation: 

[ ]
    

          = ( )     ( )r m

TEWI direct emission indirect emission
GWP L y E y m GWPε

= +

× × + × × + ×
 (3.10) 

Here, 

GWPr  global warming potential of the selected refrigerant [kg-CO2 eq.] 

L  annual leakage rate of charged refrigerant [%] 

y  duration to calculate TEWI [year] 

E  electricity consumption [kWh] 

ε  CO2 emission factor for per unit electricity generation [kg-CO2 eq./kWh] 

m  mass of the raw materials which are used for constructing the cooling system [kg] 

GWPm  CO2 emission factor for per unit raw material production [kg-CO2 eq./kg] 

 

3.2.3 TEWI of conventional cooling system 

Operating conditions and assumptions are required to set before the TEWI 

assessment of a conventional VCR system. The complete set of parameters are listed in 

Table 3.1. 

 

Electricity consumption amount is required to determine the indirect emission of the 

cooling system. Electricity consumption depends on the COP of the system which is 

ultimately obtained from the thermodynamic properties of the refrigerant by using 

REFPROP [96] and the equations from (3.1) to (3.9). Thermodynamic quantities of room 

air-conditioning system is listed in Table 3.2. A similar data set can be evaluated for 

medium and low-temperature system. These thermodynamic data of room air-conditioning 

system, medium temperature system and low-temperature system is used to draw 

refrigeration cycle which is shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6, respectively. 
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Table 3.1. Operating conditions and assumptions to calculate TEWI of a VCR system. 

Parameter Quantity 

Evaporation temperature for specific 
applications, Teva 

12 °C (room air-conditioning)  
–7 °C (medium temperature applications)  
–25 °C (low temperature applications) 

Condensation temperature, Tcon 40 °C 
Selected refrigerants R32 (Difluoromethane: CH2F2) 

R134a (1,1,1,2-Tetrafluoroethane: C2H2F4) 
R404A(44% R125, 4% R134a, 52% R143a) [96] 

GWP of the considered  
refrigerants, GWPr 

GWPR32 : 675 kg-CO2 eq.[97], 
GWPR134a : 1300 kg-CO2 eq.[64],  
GWPR404A : 3922 kg-CO2 eq.[98] 

Cooling load, Qc 10 kW 
Suction gas superheat, Tsup 8 °C 
Degree of subcooling, Tsub 5 °C 
Isentropic efficiency of the  
compressor, ηisen 

70 % (room air-conditioning) 
65 % (medium temperature applications) 
60 % (low temperature applications) 

Initial refrigerant charging amount 1 kg for per kW room air-conditioning cooling 
load 
2 kg for per kW medium temperature load 
3 kg for per kW room air-conditioning load [7] 

Annual leakage rate of refrigerant, La 15 % [69,70] 
GWP for electricity generation, ε 0.518 (kg-CO2/kWh) [99] 
Product weight (indoor +  
outdoor unit), m 

60 kg (10 kW room air-conditioning) [100,101] 
80 kg (10 kW medium temperature system) 
100 kg (10 kW low temperature system) 

Weight percentage of raw materials to 
build a cooling system 

Stainless steel: 50 % 
Copper: 20 % 
Aluminium: 20 % 
Others (refrigerant, plastic, paint etc.): 10 % 

GWP of per kg material  
production, GWPm 

Stainless steel: 2.13 kg-CO2 eq. [102] 
Copper: 4.97 kg-CO2 eq. [103] 
Aluminum: 9.17 kg-CO2 eq. [103] 

System lifespan 15 years 
System runtime 12 hours/day 
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Fig. 3.4.  T-s and P-h diagram of room air-conditioning cycle with R32. 

 

 
Fig. 3.5.  T-s and P-h diagram of Medium temperature (–7 °C) refrigeration cycle with 

R134a. 

 

 
Fig. 3.6.  T-s and P-h diagram of low temperature (–25 °C) refrigeration cycle with 

R404A. 
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Table 3.2. Thermodynamic quantities at state points of room air-conditioning system. 

State  

point 

 Explanation Temp. 

   T 

(°C) 

Pressure 

    P 

(kPa) 

Enthalpy 

     h 

(kJ kg–1) 

Entropy 

      s 

(kJ kg–1 K–1) 

a Saturated vapor 12.00 1174.18 516.80 2.111 

a' Superheated vapor 20.00 1174.18 527.36 2.148 

b" Hot vapor with non-isentropic 

compression  

78.97 2478.31 571.15 2.186 

b' Hot vapor with isentropic 

compression 

68.91 2478.31 558.02 2.148 

b Saturated vapor 40.00 2478.31 512.71 2.009 

c Saturated liquid 40.00 2478.31 275.61 1.252 

c' Subcooled liquid 35.00 2478.31 265.08 1.218 

d' Expanded two-phase 

refrigerant when subcooled 

12.00 1174.18 265.08 1.229 

d Expanded two-phase 

refrigerant without subcooling 

12.00 1174.18 275.61 1.266 

 

Equations (3.11) to (3.14) are used to determine the maximum theoretical COP, 

actual COP, electricity consumption and required mass flow rate of refrigerant, 

respectively. The performance of a system can be estimated by these equations. 

273.15 eva
carnot

con eva

TCOP
T T

+
=

−
 (3.11) 

' '

" '

a d

b a

h hCOP
h h

−
=

−
  (3.12) 

c
p

QE
COP

=   (3.13) 

' 'a d

c

h hm
Q
−

=   (3.14) 
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Assessed system performance and environmental impact is summarized in Table 3.3. 

Apparently, the COP decreases for lower evaporation temperature requirement because of 

higher compression ratio. Hence, the electricity requirement and indirect warming impact 

both increases.  

 

Table 3.3. Results of assessment: conventional cooling system. 

 

                                            System type 

Parameter 

Room  

air-

conditioning  

(R32) 

Medium 

temperature 

refrigeration 

(R134a) 

Low-

temperature 

refrigeration 

(R404A) 

COPcarnot 10.018 5.663 3.818 

COP 5.989 3.029 1.660 

Refrigerant flow rate, ṁ (kg h–1) 137.257 236.251 143.344 

Discharge temperature of refrigerant (°C) 78.971 69.950 160.416 

Discharge pressure of refrigerant (kPa) 2478.310 1016.592 2478.31 

Compression ratio 2.111 4.509 7.408 

Annual electricity consumption (kWh) 7312.923 14462.196 26392.087 

Annual indirect warming impact for 

electricity consumption (t-CO2 eq.) 

3.788 7.491 13.671 

Total indirect warming impact for 

building the cooling system (t-CO2 eq.) 

0.234 0.311 0.389 

Annual indirect warming impact for 

building the cooling system (t-CO2 eq.) 

0.016 0.021 0.026 

Annual direct warming impact (kg-CO2 

eq.) 

1.013 3.900 17.649 

Annual TEWI (t-CO2 eq.) 4.816 11.412 31.346 

 

A small 10 kW conventional cooling system can produce 4.816 – 31.346 tonne 

equivalent CO2 emission every year depending on the application. The emission amount 

could be higher if the system is situated in an underdeveloped or developing country where 

electricity is primarily generated from coal, gas and other fossil fuel based sources. 
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Additionally, TEWI would increase for tropical countries where the exterior temperature 

is higher than the considered temperature. Environmental impact would further increase, 

(i) for lower temperature applications because COP and isentropic efficiency is lower, (ii) 

with aging of the system because the system would be more prone leakage and will 

consume more electricity, (iii) if selected refrigerant have higher GWP or poor 

thermodynamic property in the operation condition. 

 

3.2.4 TEWI of adsorption cooling system 

Operating conditions and assumptions for the adsorption cooling system is 

summarized in Table 3.4. Same operating temperatures (Teva and Tcon), operation hours and 

cooling capacity have been set for the adsorption cooling system to compare the results 

with the conventional cooling system. Natural refrigerants (GWP = 0) have been chosen 

to decrease environmental impact. Three different functional pairs have been selected for 

three different applications. Silica gel/water pair is suitable for the temperature range of 

room air-conditioning systems. Moreover, medium temperature and low-temperature 

applications require different working fluids such as methanol and ammonia [104]. 

Activated carbon is suitable for the adsorption of these refrigerants.  

 

COP of the adsorption cooling system can be expressed in two ways which are 

shown in equations (3.15) and (3.16). Thermal input is very high compared to cooling 

output for adsorption cooling system. Hence, thermal COP is usually very low. Moreover, 

electricity input is much lower for an adsorption cooling system, and therefore electrical 

COP is very high. Thermal COP of the chiller for room air-conditioning system is the range 

of 0.5 – 0.6 [3,105]. COP decreases for lower evaporation temperature. In this assessment, 

we have considered COP values 0.6, 0.4 and 0.2 for room air-conditioning, medium 

temperature and low-temperature cooling systems, respectively. 
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eva
thermal

des

QCOP
Q

=  (3.15) 

eva
elctrical

in

QCOP
E

=  (3.16) 

Here,  

Qeva evaporator cooling capacity [kJ] 

Qdes required thermal input for desorption [kJ] 

Ein required electrical power input [kWh] or [kJ] 

 

The adsorption chillers require a small amount of electricity to run the pumps (chilled 

water, cooling water) and control the valves. A 10 kW chiller requires about 0.8 kW 

electricity according to the manufacturer's specification [3]. Medium and low-temperature 

applications require a considerably higher amount of electricity which is shown in Table 

3.4. The required amount of adsorbent and refrigerant also increases for lower temperature 

applications. 

 

An adsorption system has two or more beds. The frames of the beds are usually made 

of stainless steel. The beds contain adsorbent and heat exchangers. Hence, the weight of 

an adsorption system is about ten times or higher than the conventional system of the same 

cooling capacity. The weight of a 10 kW solar room air-conditioning cooling system is 

about 900 kg according to manufacturer’s specification. Weight of medium and low-

temperature systems have been considered higher due to the higher adsorbent and heat 

exchanger requirement. The weight percentage of steel, aluminium, copper and other 

materials have been modified due to the constructional differences with the conventional 

cooling system. The system has a higher lifetime and requires lower maintenance than the 

conventional systems because there are very few moving parts in this system. 
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Table 3.4. Operating conditions and assumption for adsorption cooling system. 

Parameter Quantity 

Evaporation temperature for specific 

applications, Teva 

12 °C (room air-conditioning) 

–7 °C (medium temperature applications) 

–25 °C (low temperature applications) 

Condensation temperature, Tcon 40 °C 

Selected refrigerants R717 (Ammonia: NH3), 

R718 (Water: H2O), 

MetOH (Methanol: CH3OH) 

Functional adsorbent/adsorbate pairs Silica gel/water (room air-conditioning) [3,82] 

Activated carbon/methanol (medium 

temperature applications) [106] 

Activated carbon/ammonia (low temperature 

applications) [107,108] 

GWP of the considered  

refrigerants, GWPr 

GWPwater : 0 kg-CO2 eq. [1], 

GWPethanol: 0 kg-CO2 eq.[109], 

GWPammonia : 0 kg-CO2 eq. [8]. 

Cooling load, Qc 10 kW 

COPthermal 0.6 (room air-conditioning) [3,105] 

0.4 (medium temperature applications) 

0.2 (low temperature applications) 

Electricity consumption (for pumps 

and valves) 

0.8 kW (room air-conditioning) [3] 

1.4 kW (medium temperature applications) 

2.0 kW (low temperature applications) 

Required adsorbent amount (two 

beds) 

50 kg (room air-conditioning) [3] 

70 kg (medium temperature applications) 

90 kg (low-temperature applications) 



CHAPTER 3 
 

TEWI OF COOLING SYSTEMS 
 

 

37 
 

Initial refrigerant charging amount 30 kg (room air-conditioning) [3] 

50 kg (medium temperature applications) 

70 kg (low-temperature applications) 

Annual leakage rate of refrigerant, La 15 % 

GWP for electricity generation, ε 0.518 (kg-CO2/kWh) [99] 

Product weight (only main  

module), m 

900 kg (10 kW room air-conditioning) [3] 

1200 kg (10 kW medium temperature system) 

1500 kg (10 kW low-temperature system) 

Weight percentage of raw materials to 

build a cooling system 

Stainless steel: 60 % 

Copper: 10 % 

Aluminium: 10 % 

Others (refrigerant, adsorbent, cooling/ 

chilled water etc.): 20 % 

GWP of per kg material  

production, GWPm 

Stainless steel: 2.13 kg-CO2 eq. [102] 

Copper: 4.97 kg-CO2 eq. [103] 

Aluminum: 9.17 kg-CO2 eq. [103] 

System lifespan 25 years [3] 

System runtime 12 hours/day 

 

The results of the assessment for the adsorption cooling system is summarized in 

Table 3.5. Thermal COP, electricity consumption, indirect emission due to electricity 

consumption, direct emission and TEWI of the considered solar cooling systems are lower 

than the conventional system. Since the weight of the adsorption cooling system is much 

higher, the indirect warming impact for building the cooling system is higher. However, 

TEWI of the solar cooling systems is much lower than the conventional systems. 
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Table 3.5. Results of assessment: adsorption cooling system. 

 

                                            System type 

 

 

Parameter 

Room  

air-

conditioning  

(Silica gel/ 

water) 

Medium 

temperature 

refrigeration 

(Activated 

carbon/ 

methanol) 

Low 

temperature 

refrigeration 

(Activated 

carbon/ 

ammonia) 

COPthermal 0.6 0.4 0.2 

COPelectrical    

Annual electricity consumption (kWh) 3504 6132 8760 

Annual indirect warming impact for 

electricity consumption (t-CO2 eq.) 

1.815 3.176 4.538 

Total indirect warming impact for 

building the cooling system (t-CO2 eq.) 

2.423 3.230 4.038 

Annual indirect warming impact for 

building the cooling system (t-CO2 eq.) 

0.097 0.129 0.162 

Annual direct warming impact (kg-CO2 

eq.) 

0 0 0 

Annual TEWI (t-CO2 eq.) 1.912 3.306 4.699 

 

3.3 Results comparison and discussions 

The conventional vapour compression system is very compact in size and COP is 

also high. COP of adsorption cooling system is very low because of huge loss of thermal 

energy conversion during operation. Hence, COP of adsorption cooling system is often 

referred as thermal COP. Electrical COP (ratio of cooling capacity to electricity input) is 

much higher for the solar cooling system which is shown in Fig. 3.7. COP decreases for 

both conventional and solar cooling system when the evaporation temperature requirement 

is lower. 

 

In Fig. 3.8, electricity consumption is compared between the conventional and solar 

cooling system. Inevitably the consumption is lower for the adsorption cooling system 
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since the desorption (often referred as thermal compression) is carried out by waste heat 

or solar thermal input. 

 

Indirect and direct emissions are individually drawn in Fig. 3.9 for conventional and 

solar cooling system for three different applications. Last two bars of each application are 

the TEWI for that particular application which is obtained by aggregating the direct and 

indirect emissions. 

 

 
Fig. 3.7.  COP variation for different applications: conventional vs solar cooling system. 
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Fig. 3.8.  Electricity consumption: conventional vs adsorption cooling system. 

 

 
Fig. 3.9.  Indirect, direct and total equivalent warming impact comparison. 
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Since the solar cooling system has low electricity consumption, indirect emission is 

also lower for all three applications. However, the dimension and weight of the adsorption 

cooling system are much higher than the conventional system. Hence, indirect emission 

for raw materials production is higher for the adsorption cooling system. Additionally, 

direct emission for the adsorption cooling system is zero because of deploying natural 

refrigerants as working fluid. 
 

3.4 Conclusions 

In this assessment, performance and environmental impact of conventional and solar 

cooling system have been evaluated and compared. Three different applications: room air-

conditioning (Teva at 12 °C), medium temperature application (Teva at –7 °C) and low-

temperature applications (Teva at –25 °C) have been considered for both the systems. R32, 

R134a and R404A have been selected as working fluid for the conventional VCR system. 

Whereas, silica gel/water, activated carbon/methanol and activated carbon/ammonia pairs 

have been considered for the adsorption cooling system. A constant cooling load of 10 kW 

is considered for all the applications. The results indicate that COP of the conventional 

cooling system is much higher than thermal COP of the solar cooling system. However, 

electrical COP of the solar cooling system is considerably high due to the thermal input 

for desorption (thermal compression). 
 

Indirect emission for electricity consumption is considerably higher for the 

conventional cooling system. It happens due to the huge electricity consumption by the 

mechanical vapor compressor. However, the weight of the used raw materials is very high 

that build the adsorption cooling system. Hence, annual indirect warming impact to build 

the system is relatively higher for the adsorption cooling system. In the case of direct 

emission, the adsorption cooling system is better because it uses natural refrigerants and 

the GWP of those refrigerants are zero. Currently deployed refrigerants (R32, R134a, 

R404A etc.) in conventional VCR systems have high GWP and hence the direct warming 

impact is higher. However, the situation might change if low GWP refrigerants are 

introduced in conventional systems. 
 

Currently, TEWI (summation of indirect and direct emissions) is very high for 

conventional cooling systems. Therefore, now is the appropriate time to switch from 

conventional systems to adsorption cooling technology. 



  
 

 
 

Chapter 4  

Specific heat capacity and porosimetry 

measurement of potential adsorbents 
Equation Chapter (Next) Section 1 

Silica gel, activated carbon and zeolites are the most commonly used adsorbents for 

adsorption cooling, dehumidification, and gas separation applications. Porosimetry (e.g. 

surface area, pore volume, pore size distribution) and thermophysical properties (e.g. 

specific heat capacity) determination are very significant to simulate the performance 

when the material is employed in a real application. For example, porous properties of the 

adsorbent are required to find a suitable adsorbate for that adsorbent and to predict 

adsorption isotherm of that adsorbent-adsorbate pair. Moreover, specific heat capacity data 

of an adsorbent is very siginificant to design an adsorption bed. Generally, the researchers 

consider a constant value of specific heat capacity when they determine the performance 

of an adsorption bed. However, the bed temperature varies during adsorption/desorption 

and the specific heat capacity also changes with temperature. Hence, the precise bed 

performance determination requires the accurate specific heat capacity value for that 

particular temeparture. Specific heat capacity for a particular temperature range and 

porosimetry measurement of silica gel and carbon based materials have been performed 

and reported in this chapter. 

 

4.1 Silica gel 

Silica gel (SG) has been extensively using as an adsorbent in dehumidifying 

applications, separation process, purification of gases, cryocooler design and adsorption 

cooling systems (ACS) in the last few decades. Material properties such as the specific 

heat capacity, surface area, pore volume, pore size distribution are critical parameters in 

adsorption simulation and system design. This chapter discusses about the experimental 

investigation of the porous properties and specific heat capacity of several types (RD, type 

A, type B, type A indicator, home SG, high purity Chromatorex SG) of silica gels. Type 

B silica gels are found to have the lowest surface area and the highest total pore volume. 

RD silica gels of large particle size (above 0.7 mm) have the highest surface area. Pore 
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size distribution result shows that type B and home silica gels have comparitvely larger 

mesopores than the other samples. The specific heat capacity of these materials is 

measured employing a heat flux type differential scanning calorimeter (DSC). Since the 

decomposition temperature of most silica gels is about 120 °C, the specific heat capacity 

of the samples is measured within 30 °C to 100 °C. The specific heat capacity of the 

measured samples varies between 0.8 to 1.10 kJ kg–1 K–1 in the measurement temperature 

range. RD silica gel of the smallest particle size shows highest and indicator type silica gel 

shows the lowest specific heat capacity. Specific heat capacity model proposed by Green 

and Perry is employed to fit the experimental data. The model fits well with experimental 

data with less than 0.4% error in the measurement range. 

 

4.1.1 Introduction 

Silica gel has an incompletely dehydrated polymeric structure of colloidal silicic acid 

which exhibits an excellent capacity for adsorption of water. It is frequently used for 

commercial applications like adsorption cooling [30,110,111], dehumidification [112–

114], separation [113,114], and recently desalination [115–118]. The adsorption 

refrigeration technology employing silica gel is escalating in recent decades because it is 

environment-friendly and it requires a low-grade heat source to drive the system [22,118–

121]. In the design and optimization of such adsorption cycles, surface area, pore volume, 

pore size distribution and the specific heat capacity of the silica gel are key thermo-

physical parameters to measure. In general, higher surface area and smaller specific heat 

capacity of silica gel is desired to design an efficient adsorption cooling system. 

Adsorbents with higher surface area increases the adsorption uptake. Besides, lower 

specific heat capacity material retains smaller amount of heat during desorption and 

requires lower thermal input. It is obvious that the adsorption cycles involve rapid thermal 

fluctuation due to alternate heating and cooling [122–124]. Hence, it is logical to perceive 

that specific heat capacity of the adsorbent is not constant instead a function of 

temperature. Yet it is found that many researchers adopted the average value of specific 

heat of adsorbent in their simulation models of adsorption processes [30–35]. On the other 

hand, Aristov [40,125] proposed an approximation to calculate the specific heat of dry 

adsorbent CaCl2/silica gel KSK as a function of temperature at various water uptake. 

Author considers specific heat capacity of water in the liquid state and found it is closer to 
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the experimental value. However, detailed analyses of specific heat capacity of porous 

silica gel at various temperatures are not available in open literature. 

 

There are two methods to measure the specific heat capacity, which are indirect 

methods and direct methods. Indirect methods require other physical properties, like 

thermal diffusivity and thermal conductivity to calculate the specific heat capacity. The 

flash method and laser flash method can be used to measure the thermal diffusivity, heat 

capacity and thermal conductivity if the density of both the specimen and reference 

material are known [126–129]. The desirability of direct calorimetric information rather 

than indirect thermometric data has been recognized by advanced workers in differential 

thermal analyzer for many years. For the direct methods, the specific heat capacity 

measured by calorimeters, e.g. adiabatic calorimeters, reaction calorimeters, bomb 

calorimeters and differential scanning calorimeters (DSC) [130,131]. Specific heat 

capacity measurement by DSC is a powerful and accurate method with relatively simple 

working process. The DSC can measure the specific heat capacity of milligram level 

sample correctly and the results can be obtained in wide range of temperature rather than 

a single temperature condition. Several works on the development and measurement 

techniques using DSC have been reported. Watson  and O’Neill [132,133] described the 

advantages of DSC over the traditional thermal analyzer especially the use of differential 

temperature amplifier to adjust the sample and reference signal. The effect of sample mass 

and rate of heating does not influence so much to measure the heat capacity [134,135]. It 

was found that the heating rate and sample geometry influence the DSC thermograms and 

the apparent specific heat capacity during melting process [136]. The reduction of 

instrument baseline defects resulting from the imbalances using comprehensive heat flow 

was achieved by Danley [131,137]. In the present study, porous properties and the specific 

heat capacities of several types of silica gel have been measured using a 3Flex and heat 

flux type DSC, respectively. 
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4.1.2 Experimental 

4.1.2.1 Materials 

Six different types of silica gel (total 13 samples including subcategories) are 

experimentally investigated in this study.Table 4.1 summarizes the common properties of 

all the samples. This information is obtained from the specification data sheet of the silica 

gel manufacturer. 

 

Table 4.1. Physical properties of silica gel samples. 

Sample Type Particle 

shape 

Particle diameter  

(mm) 

Sample name Bulk 

density 

(kg m–3) 

Manufacturer 

RD type 

Spherical D ≥ 3.3 RD on 6 730 Fuji Silysia 

Spherical D ≥ 1.0 RD on 18 730 Fuji Silysia 

Spherical D ≈ 0.7 to 1.18 RD 14–24 730 Fuji Silysia 

Granular D ≈ 0.25 to 1.0 RD 2060 730 Fuji Silysia 

Granular D ≈ 0.075 to 0.25 RD 730 Fuji Silysia 

Type A 
Granular D ≈ 1.7 to 4.0 A 5–10 730 Fuji Silysia 

Granular D ≤ 0.5 A thru 40 730 Fuji Silysia 

Type B 
Spherical D ≈ 1.7 to 4.0 B 5–10 500 Fuji Silysia 

Granular D ≤ 0.5 B thru 40 500 Fuji Silysia 

High purity 

Chromatorex 

silica gel 

Spherical D ≈ 0.075 to 0.5 
MB3A 

30–200 
730 Fuji Silysia 

Indicator type A 
Spherical D ≥ 3.3 A on 6 F 730 Fuji Silysia 

Spherical D ≈ 1.7 to 4.0 A 5–10 730 Fuji Silysia 

Home silica gel Granular D ≥ 0.5 B on 40 500 Fuji Silysia 

 

4.1.2.2 Porosimetry analysis 

Porosimetry measurement (surface area, pore volume, and pore size distribution) 

have been performed using a “3FLEX – high resolution surface characterization analyzer” 

apparatus from Micromeritics Instrument Corporation (Fig. 4.1). This apparatus is ideally 

suited for the characterization of silica gels, MOFs, zeolites, activated carbons, and a wide 
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variety of porous and nonporous materials. Relative pressure (P/P0) can be as low as 1.3 × 

10–9 and up to 1.0. Minimum surface area that can be measured by N2 adsorption at liquid 

nitrogen boiling temperature (77 K) is 0.01 m2/g. 3FLEX contains several software 

advancements including a new advanced dosing method that allows the user to mix both 

pressure and volume increments [138]. 

 

 
Fig. 4.1. Photograph and internal schematic diagram of 3FLEX apparatus [138]. 

 

4.1.2.3 Differential scanning calorimetry 

Schematic diagram of the differential scanning calorimeter (DSC–60A from 

Shimadzu Corporation) apparatus is shown in Fig. 4.2. The heart of the apparatus is the 

DSC unit, which is depicted in Fig. 4.3. The furnace section of the DSC unit has two slots 

to put samples.  

 

 
Fig. 4.2.  Schematic diagram of a differential scanning calorimetry (DSC) apparatus. 

DSC UnitN2 Flow 
Controller

N2
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Fig. 4.3.  Schematic diagram of the DSC furnace unit [139]. 

 

An empty pan is always placed on the left slot and the sample to be measured is 

placed on the right slot of the furnace. Both the slots have thermocouples at the bottom to 

track, record and control the temperature change. When the measurement starts, a metallic 

cover encloses the furnace which prevents foreign elements to enter inside. Moreover, dry 

N2 gas is flown to the sample at 50 ml/min rate to remove the water vapor and other 

contaminants that are released from sample during the measurement. The temperature 

ranges to measure specific heat capacity of this apparatus is from –140 °C to 600 °C. 

Moreover, heating/cooling rate of the apparatus can be programmed from ±0.01 °C/min to 

±99.9 °C/min. 

 

4.1.3 Measurement procedure 

4.1.3.1 Porosimetry measurement 

The silica gel samples have been degassed for at least six hours in vacuum condition 

at 100 °C prior to the measurement. The sample amount is about 100–200 mg. Since the 

sample amount is small, precise mass measurement is an important prerequisite. Hence, 

mass of each sample have been measured at least 5 times using a microbalance (AND BM–

22) which has a resolution of ±1 µg. The N2 adsorption/desorption isotherm have been 

obtained at 77 K by employing liquid nitrogen. Pore size distribution and pore volume 

have been determined by DFT method whereas, surface area have been calculated by BET 

method. 
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4.1.3.2 Specific heat capacity measurement 

About 25–50 mg silica gel is placed inside the Aluminium sample pan. The opening 

is then sealed with an Aluminium lid by providing marginal pressure so that the silica gel 

particles are not crushed inside. Silica gel have high affinity to water vapor and the samples 

already contain the water vapor along with other foreign materials. These unwanted 

substances need to be removed before the measurement to acquire precise specific heat 

capacity data. Hence, the prepared sample is parched in a typical oven at 100 °C overnight. 

Subsequently, the sample is dried in a vacuum oven at 100 °C for 4 hours to eliminate 

remaining water vapor and other foreign elements. Mass measurement is done immediately 

after bringing out the sample from the heater so that no foreign elements can influence the 

measurement. Experimental conditions of the specific heat capacity measurement is 

summarized in Table 4.2. 

 

Table 4.2. Experimental conditions of specific heat capacity measurement. 

Sample degassing duration ≥ 12 hours 

Heating/cooling rate 10 °C/min 

Number of thermodynamic–isothermal cycles 3 

Isothermal time 60 min 

Mass of aluminium pan and lid [mg] ≈ 30 mg 

Dimension of aluminium pan [mm] 5.6 mm×2.8 mm 

Dimension of aluminium lid [mm] 5.2 mm×1.4 mm 

Mass of sample 25 – 50 mg 

Temperature range of measurements 30 – 100 ºC 

 

Final specific heat capacity data calculation requires three DSC data: (a) Baseline 

data/DSC of blank pan: empty pan with sealed lid is placed on the both slots of the furnace 

and DSC data is collected for the measured temperature range; (b) DSC of standard 

sample: an empty pan with sealed lid is placed on the left slot and a sealed pan containing 

standard sample (α-Alumina) is put on the right slot of the furnace. The amount of the 

standard sample should be close to the chosen sample mass. (c) DSC of chosen sample: 
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previously prepared and dried sample is put on the right slot of the furnace while a sealed 

empty pan is kept on the left slot.  

 

Three cycles of heating/cooling have been performed and the final data to calculate 

Cp is taken from third heating phase. First two cycles are to remove the foreign materials 

which has been again adsorbed in the meantime. In Fig. 4.4, first heating phase have a 

large spike in the DSC signal. This indicates power consumption by the water vapor and 

other impurities. Second and third heating phase do not have such unusual spike which 

points out that all the impurities are removed in the first heating phase with nitrogen flow. 

 

 
Fig. 4.4.  Temperature program and corresponding DSC signal. 

 

4.1.4 Results and discussion 

4.1.4.1 Porosimetry  

Experimentally measured data of surface area and total pore volume is summarized 

in Table 4.3. Selected RD type silica gel have five different particle sizes. Surface area and 

total pore volume is similar for the first three samples (large particle size). Moreover, 

remaining two smaller particle sized samples have comparatively lower surface area and 

lower total pore volume. PSD plot of the RD type silica gel samples are shown in Fig. 4.5. 

All the RD silica gel samples contain both micropores and mesopores. First two samples 

(large particle) have sharp peak at about 1.18 nm and 1.25 nm pore width, respectively. 

However, the smaller particle samples have two peaks – one is at about 0.74 nm and 
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another is at about 1.20 nm. Hence, the PSD indicates that smaller particle samples have 

smaller micropores than the larger particle samples. 

 

Both the samples of type A silica gels have almost similar surface area and pore 

volume. The difference is in the PSD as shown in Fig. 4.6. Smaller particle (D ≤ 0.5 mm) 

samples have small micropores, regular micropores and also mesopores. Pores are in the 

range of 0.69 – 0.86 and 1.1 – 5.13 nm width. However, the large particle sample (D ≈ 1.7 

to 4.0 mm) have pores in the range from 1.09 – 5.03 nm width with a sharp peak at 1.18 

nm. 

 

Porosimetry of Type B silica gels are different from all the other samples. These 

samples have lower density according to manufacturers’ specification (Table 4.1). Their 

surface area is lowest and pore volume is highest among all the samples. The PSD are also 

interesting of these samples (Fig. 4.7). These samples also contain micropores and 

mesopores. However, the amount of mesopores are much higher and the size of mesopores 

are larger than the other samples (2.4 – 14 nm).  

 

Chromatorex silica gel has high surface area like large particle RD and type A silica 

gels. However, their pore volume is comparably higher than those samples. There are two 

peaks in PSD (Fig. 4.8) at the same position like RD and type A silica gels. However, the 

pore width range of Chromatorex silica gel is relatively wider than type A silica gels.  

 

Two indicator type samples have almost equal surface area and total pore volume 

(approximately 710 m2/g). The PSD of these samples in Fig. 4.9 shows that higher particle 

diameter sample have one sharp peak at 1.18 nm and the pores are in the range of 1.00 – 

6.25 nm width. However, the smaller diameter sample (D ≈ 1.7 to 4.0 mm) have another 

peak at 0.8 nm which means smaller micropores are present in this sample. 

 

Home silica gel have low surface area and high pore volume like type B silica gels. 

They also have more mesopores like type B silica gel which is in the range of 2.40 – 9.80 

nm (Fig. 4.10). 
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Table 4.3. Porous properties of the selected silica gel samples. 

Silica gel 
type 

Particle 
diameter  

(mm) 

BET surface Area 
(m2/g) 

Total pore 
volume 
(cm3/g) 

Pore size distribution 

Peak 
(nm) 

Range 
(nm) 

RD type 

D ≥ 3.3 769.0582 ± 7.0300 0.38078 1.18 1.06 – 5.43 

D ≥ 1.0 776.4119 ± 10.4633 0.36586 1.25 1.00 – 5.53 

D ≈ 0.7 to 1.18 774.8605 ± 9.0833 0.39184 0.74, 
1.18 

0.68 – 0.86, 
1.09 – 5.18 

D ≈ 0.25 to 1.0 621.5522 ± 4.7102 0.27096 0.75, 
1.21 

0.68 – 0.86, 
1.02 – 4.07 

D ≈ 0.075 to 0.25 630.6937 ± 4.3943 0.26378 0.73, 
1.20 

0.60 – 0.86, 
1.00 – 4.20 

Type A 
D ≈ 1.7 to 4.0 740.3478 ± 6.0242 0.36177 1.18 1.09 – 5.03 

D ≤ 0.5 747.2496 ± 8.8508 0.36523 0.74, 
1.18 

0.69 – 0.86, 
1.10 – 5.13 

Type B 
D ≈ 1.7 to 4.0 486.6904 ± 1.7464 0.80323 1.40, 

6.90, 
1.20 – 1.70, 
2.40 – 14.0 

D ≤ 0.5 556.8693 ± 2.1949 0.79211 1.40, 
6.10 

1.20 – 1.80, 
2.40 – 12.0 

High purity 
Chromatorex 
silica gel 

D ≈ 0.075 to 0.5 752.5088 ± 6.0601 0.42233 0.73, 
1.18 

0.68 – 0.85, 
1.10 – 6.98 

Indicator 
type A 

D ≥ 3.3 710.9865 ± 5.1527 0.38623 1.18 1.00 – 6.25 

D ≈ 1.7 to 4.0 704.0182 ± 6.0323 0.37793 0.80, 
1.24 

0.73 – 0.85, 
1.10 – 5.58 

Home silica 
gel D ≥ 0.5 564.9241 ± 1.8672 0.70015 1.40, 

5.40 
1.20 – 1.80, 
2.40 – 9.80 
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Fig. 4.5.  Pore size distribution of RD silica gels. 

 

 

 
Fig. 4.6.  Pore size distribution of type A silica gels. 
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Fig. 4.7.  Pore size distribution of type B silica gels. 

 

 
Fig. 4.8.  Pore size distribution of high purity chromatorex silica gel. 
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Fig. 4.9.   Pore size distribution of indicator type A silica gels. 

 

 

 
Fig. 4.10.  Pore size distribution of home silica gel. 
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4.1.4.2 Specific heat capacity 

Specific heat capacity of all the previously mentioned samples have been measured 

and illustrated in the following sections. Experimental data of all the samples is listed in 

Table 4.4. 

 

4.1.4.2.1 RD type 

There are five samples of RD type silica gel with different particle sizes. The largest 

particle size (D ≥ 3.0 mm) shows smaller specific heat capacity value. In Fig. 4.11, it can 

be clearly seen that specific heat capacity tends to increase when the particle diameter 

decreases. This could be due to the internal structural difference when they were 

manufactured. 

 

 
Fig. 4.11.  Specific heat capacity of RD type silica gels. 
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4.1.4.2.2 Type A 

Specific heat capacity of type A silica gel samples with two different particle sizes 

have been measured and shown in Fig. 4.12. The one with smaller particle diameter (D ≤ 

0.5 mm) has a slightly lower Cp value than the larger particle sized (D ≈ 1.7 to 4.0 mm) 

one. 

 

 
Fig. 4.12.  Specific heat capacity of type A silica gels. 

 

4.1.4.2.3 Type B 

Type B silica gels also have two samples like type A. Their particle sizes are also 

similar. The specific heat capacity of these samples are similar as indicated in Fig. 4.13. 

However, type B silica gels have lower specific heat capacity value than type A silica gels. 

 

4.1.4.2.4 Chromatorex – high purity silica gel for chromatography  

Chromatorex silica gel particles are very fine and the diameter is 0.075 to 0.50 mm. 

The specific heat capacity is 0.888 kJ kg K–1 at 30 °C and increases up to 0.966 at 100 °C 

(Fig. 4.14). 
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Fig. 4.13.  Specific heat capacity of type B silica gels. 

 

 
Fig. 4.14.  Specific heat capacity of high purity chromatorex silica gel. 
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4.1.4.2.5 Indicator – type A silica gel of green color 

Specific heat capacity of two samples with different particle sizes of indicator type 

silica gels have been measured and shown in Fig. 4.15. These types of silica gels are 

actually type A. However, they are transparent when dehydrated and change the color to 

green after vapor adsorption. Cp value of the samples almost overlap for lower temperature 

and relatively high for the large particle sample in the high temperature region. 

 

 
Fig. 4.15.  Specific heat capacity of indicator type A silica gels. 

 

 

 

 

 

 

 

 

 

0.6

0.7

0.8

0.9

1.0

1.1

20 30 40 50 60 70 80 90 100 110

Sp
ec

ifi
c 

H
ea

t C
ap

ac
ity

 (k
J 

kg
-1

K
-1

)

Temperature (°C)

Indicator Type A (D ≈ 1.7 to 4.0 mm) – Experimental

Indicator type A (D ≈ 1.7 to 4.0 mm)  – G-P Model

Indicator Type A (D ≥ 3.3 mm) – Experimental

Indicator Type A (D ≥ 3.3 mm) – G-P Model



CHAPTER 4 

 
SPECIFIC HEAT CAPACITY AND POROSIMETRY 
MEASUREMENT OF POTENTIAL ADSORBENTS 

 
 

59 
 

4.1.4.2.6 Home silica gel 

Continual high humidity can damage the internal structure of a building. Home silica 

gel is a dry desiccant which is used to control the humidity and prevent shabbiness of a 

building. Specific heat capacity of home silica gel is shown in Fig. 4.16. 

 

 
Fig. 4.16.  Specific heat capacity of home silica gel. 
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Table 4.4. Experimental specific heat capacity data of silica gels. 

Specific heat capacity (kJ kg–1 K–1) 
Sample name 

and particle  
size 

(mm) 
 
Temp. 
(°C) 

RD type Type A Type B Chromatorex Indicator type A Home 

D ≥ 
3.3 

D ≥ 
1.0 

D ≈ 
0.7 to 
1.18 

D ≈ 
0.25 to 

1.0 

D ≈ 
0.075 to 

0.25 

D ≈  
1.7 to 

4.0 

D ≤  
0.5 

D ≈ 
1.7 to 

4.0 

D ≤  
0.5 

D ≈  
0.075 to  

0.5 

D ≈  
1.7 to 

4.0 

D ≥ 3.3 D ≥ 0.5 

30 0.870 0.915 0.934 0.934 0.946 0.889 0.889 0.814 0.822 0.888 0.823 0.805 0.875 

35 0.879 0.940 0.951 0.953 0.963 0.914 0.903 0.830 0.832 0.904 0.840 0.830 0.898 

40 0.889 0.950 0.958 0.964 0.971 0.924 0.911 0.839 0.841 0.912 0.848 0.845 0.909 

45 0.902 0.959 0.966 0.974 0.980 0.933 0.920 0.848 0.849 0.920 0.856 0.856 0.919 

50 0.911 0.967 0.974 0.982 0.989 0.941 0.927 0.855 0.858 0.928 0.863 0.864 0.927 

55 0.921 0.975 0.982 0.991 0.997 0.949 0.936 0.864 0.866 0.935 0.870 0.874 0.936 

60 0.931 0.983 0.990 1.000 1.006 0.957 0.943 0.872 0.874 0.942 0.876 0.883 0.944 

65 0.940 0.991 0.997 1.008 1.015 0.965 0.950 0.880 0.881 0.948 0.884 0.893 0.953 

70 0.949 0.999 1.006 1.017 1.023 0.972 0.958 0.890 0.889 0.955 0.892 0.904 0.962 

75 0.958 1.008 1.013 1.027 1.032 0.981 0.965 0.899 0.897 0.961 0.899 0.914 0.972 

80 0.966 1.015 1.020 1.036 1.040 0.988 0.972 0.909 0.905 0.966 0.906 0.925 0.980 

85 0.976 1.023 1.029 1.046 1.051 0.997 0.981 0.920 0.912 0.973 0.913 0.936 0.991 

90 0.986 1.032 1.037 1.056 1.060 1.005 0.989 0.932 0.920 0.979 0.920 0.950 1.001 

95 0.996 1.040 1.045 1.066 1.069 1.014 0.998 0.942 0.927 0.988 0.928 0.960 1.013 

100 1.008 1.051 1.055 1.076 1.079 1.025 1.008 0.954 0.935 0.996 0.939 0.973 1.025 
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Green and Perry (1997) [140] proposed a thermodynamic equation to express the 

specific heat capacity. Experimental data have been fitted with that well-known equation.  

2pc T
T
γα β= + +   (4.1) 

The adjustable parameters α , β , and γ  of the equation are determined and 

summarized in equation (4.1). G-P model fitting error (RMSD) is less than 0.4% for all 

the silica gel samples.  

 

Table 4.5. List of adjustable parameters for G–P model fitting. 

Sample name and particle size α  β  γ  Fitting error 

RD type 

D ≥ 3.3 0.81968 0.00186 –6.039580 0.11% 
D ≥ 1.0 0.90328 0.00146 –24.32286 0.27% 
D ≈ 0.7 to 1.18 0.90310 0.00150 –10.47861 0.14% 
D ≈ 0.25 to 1.0 0.91269 0.00179 –12.70729 0.19% 
D ≈ 0.075 to 
0.25 0.90461 0.00173 –6.675290 0.15% 

Type A 
D ≈ 1.7 to 4.0 0.87783 0.00145 –24.94680 0.27% 
D ≤ 0.5 0.85473 0.00151 –8.273520 0.14% 

Type B 
D ≈ 1.7 to 4.0 0.75558 0.00194 4.0729700 0.27% 
D ≤ 0.5 0.78585 0.00150 –8.259000 0.20% 

Chromatorex D ≈ 0.075 to 0.5 0.87437 0.00121 –18.71797 0.14% 

Indicator 
type A 

D ≈ 1.7 to 4.0 0.79843 0.00138 –12.09580 0.18% 
D ≥ 3.3 0.78465 0.00186 –30.33435 0.39% 

Home D ≥ 0.5 0.84120 0.00180 –13.12172 0.31% 
 

4.1.5 Conclusions 

BET surface area, total pore volume, pore size distribution and specific heat capacity 

of six different silica gel samples (13 samples including all the subcategories) have been 

measured and reported in this chapter. Type B silica gel samples have the lowest surface 

area and highest pore volume among all the samples. Home silica gel also have similar 

porous properties. Highest surface area is found for RD type (large particle) silica gels and 

lowest pore volume is found for RD type (small particle) silica gels. All the silica gels have 

both micropores and mesopores. However, type B and home silica gels have more 
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mesopores and the size of mesopores are also larger for these samples. Specific heat 

capacity increases with temperature. Specific heat capacity is highest for RD silica gel 

(smallest particle) and lowest for indicator type silica gels. Specific heat capacity data of 

all the samples are fitted with G-P model and the adjustable parameters were determined 

for each sample. The fitting error for all the samples are less than 0.4%. Hence, specific 

heat capacity of a particular sample at any unknown temperature can be predicted using 

the G-P equation and the fitting parameters unless any structural change occurs to the 

sample. These porosimetry and specific heat capacity data is very significant to design and 

simulate adsorption cooling systems (ACS). 
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4.2 Carbon materials 

The studied carbon samples include (i) parent Maxsorb III with different particle 

sizes, (ii) surface treated Maxsorb III (H2 and KOH-H2) (iii) recently developed spherical 

activated carbon (KOH treated phenol resin, KOH6-PR), and (iv) expanded graphite. 

Details information about the samples are summarized in Table 4.6. The specific heat 

capacity of these materials is measured at temperatures ranging from 30°C to 150°C using 

a heat flux type differential scanning calorimeter (DSC). The specific heat capacity 

measurement procedure is same as silica gel which is mentioned in the previous sections. 

 

Table 4.6. Adsorbent materials used in the experiment. 

Sample name Sample type Supplier/ Source Particle 

diameter 

D50 (μm) 

Maxsorb III [62] Activated carbon 

(AC) powder 

Kansai Coke & Chemicals 

Co. Ltd., Japan 

105 

H2 treated  

Maxsorb III [62] 

Surface treated AC 

powder 

Materials Chemistry & 

Eng. Kyushu University 

107 

KOH-H2 treated 

Maxsorb III [141] 

Surface treated AC 

powder 

Materials Chemistry & 

Eng. Kyushu University 

100 

Spherical Phenol 

resin (KOH6) 

[142] 

Surface treated AC 

powder 

Materials Chemistry & 

Eng. Kyushu University 

23 

 EC-1000 Expanded graphite 

Powder 

Ito Graphite Co., Ltd., 

Japan 

15 

 EC-1500 Expanded graphite 

Powder 

Ito Graphite Co., Ltd., 

Japan 

7 

 

4.2.1 Results and discussion 

To minimize the impact of heating rate and sample weight, many test measurements 

have been performed in order to optimize it considering the volume of the sample holder 

and the density of powder adsorbents. It is noteworthy to mention that the heating rate of 

10 ºC/min and sample weight 4-5 mg is found appropriate for the present measurement 
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because it can reproduce data with highest precision. To avoid edge effects in the 

calculated results, specific heat capacity values are furnished for temperature range of 30–

150 ºC. This temperature range represents the typical operating condition of adsorption 

heat pump systems. The numerical values of specific heat capacities of some adsorbents 

are shown in Table 4.7. 

 

Table 4.7. Specific heat capacity of adsorbent materials. 

Specific heat capacity [kJ kg–1 K–1] 

Temperature 
 

[ºC] 

Maxsorb 
III 

H2-treated 
Maxsorb 

III 

KOH-H2 
treated 

Maxsorb III 

Phenol 
resin 

(KOH6) 

Expanded 
graphite 

(EC-1500) 

30 0.844 0.949 1.060 0.751 0.738 

40 0.857 0.961 1.075 0.755 0.768 

50 0.876 0.969 1.098 0.756 0.794 

60 0.896 0.981 1.120 0.758 0.818 

70 0.914 0.994 1.135 0.768 0.842 

80 0.931 1.007 1.164 0.774 0.862 

90 0.950 1.023 1.184 0.783 0.880 

100 0.969 1.035 1.200 0.789 0.899 

110 0.984 1.054 1.215 0.788 0.920 

120 0.998 1.084 1.237 0.795 0.947 

130 1.019 1.105 1.262 0.823 0.974 

140 1.042 1.142 1.289 0.860 0.999 

150 1.068 1.181 1.324 0.942 1.029 
 

Specific heat capacity of reference sample (α-Al2O3) is measured and verified with 

literature [143]. It can be seen from Fig. 4.17 that the measured values of α-Al2O3 agrees 

well over the entire temperature range whilst the deviation is within ±0.3%. The heat flow 

calibration of the system is done by using reference indium and a good agreement was 

found with the standard value [144]. 
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Fig. 4.17.  Results of DSC measurements for the reference material (α-Al2O3). 

 

Fig. 4.18 shows the specific heat capacity of the parent Maxsorb III, H2 treated 

Maxsorb III and KOH-H2 treated Maxsorb III at selected temperature range. It is found 

that KOH-H2 treated Maxsorb III shows the highest specific heat capacity among the 

Maxsorb III-based adsorbents. This might be attributed to the contribution of surface 

functional group (–COOH) which is formed during surface treatment. The details of 

surface treatment and functional group formation can be found elsewhere (Kill et al.[145] 

2013, El-Sharkawy et al. [141]). The average value of specific heat capacity of parent 

Maxsorb III, H2 treated Maxsorb III and KOH-H2 treated Maxsorb III is found to be 0.89, 

0.98 and 1.11 kJ kg–1 K–1, respectively. These findings agree well with fitted correlation 

for the specific heat of the activated carbon reported by Xiao et al. [146]. The computed 

value using the correlation is 0.98 kJ kg–1 K–1 for the same temperature range. 
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Fig. 4.18.  Comparison of specific heat capacity of parent Maxsorb III, H2 treated Maxsorb 

III and KOH-H2 treated Maxsorb III. 

 

The effect of particle size on specific heat capacity is also investigated and the results 

for Maxsorb III are depicted in Fig. 4.19. Again, it is noted that the data provided here are 

the mean values of four successive measurements. It is found that the specific heat capacity 

increases with increase in particle size. This finding might be attributed to lack of 

homogeneity of the adsorbent sample with respect to particle size. Furthermore, it should 

be mentioned that even though utmost care was taken to ensure uniform spreading of the 

powder samples, it was not possible to ensure close packing. There might still be trace 

amount of trapped gases in between the solid particles which could result in variable heat 

flow, eventually causing uncertainties in the specific heat measurements.  
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Fig. 4.19.  Specific heat capacity of different particle size Maxsorb III. 

 

Newly developed adsorbent based on KOH treated phenol resin (KOH6-PR) is 

reported to have high adsorption capacity, nearly 2 kg of ethanol/kg of adsorbent [142]. 

The specific heat capacity of such material is shown in Fig. 4.20. Similar to above results, 

an increase in specific heat at higher temperature is observed for this adsorbent. 

Interestingly, specific heat capacity of the KOH6-PR is found to be the lowest among all 

the selected porous adsorbents. 
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Fig. 4.20.  Specific heat capacity of phenol resin based and KOH6 activated carbon. 

 

Expanded graphite, even though not an adsorbent, has been a popular thermal 

conductivity enhancer in several composite adsorbents. Hence, its specific heat capacity is 

also of interest in addition to the carbonaceous adsorbents discussed above. In this study 

two types of expanded graphite namely EC-1500 and EC-1000 are evaluated in Fig. 4.21. 

It is again evident that the specific heat capacity of the sample increases in a continuous 

manner within the experimental temperature range. The marginal difference in specific 

heat capacity observed for different samples might be attributed to different particle size 

similar to the case of Maxsorb III discussed earlier. 
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Fig. 4.21.  Comparison of specific heat capacity of expanded graphite. 

 

Furthermore, it is evident from the results that specific heat capacity of adsorbents 

measured in this study show significant dependency on temperature. For example, KOH-

H2 treated Maxsorb-III shows an increase of more than 13% in specific heat capacity for 

rise in temperature from 30 ºC to 100 ºC. Such conditions are typically encountered in 

adsorption systems wherein the heat input to the adsorber beds depend significantly on the 

specific heat capacity of the adsorbent used. Due to lack of data, several simulation models 

assume constant specific heat, which may eventually lead to inaccuracy in energy 

calculations. Therefore, it is necessary to formulate a temperature dependent correlation 

for specific heat capacity which can be beneficial for such thermal calculations in 

adsorption applications. 

 

 The measured specific heat capacities of all the selected samples are again fitted 

with the G-P model of equation (4.1). The values of constant α , β  and γ  for the 

carbonaceous materials studied in this study are summarized in Table 4.8. 
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Table 4.8. Coefficients of specific heat capacity correlation fitting. 

Sample name α β γ 

Maxsorb III 0.20008 0.00199 3605.41 

H2 treated Maxsorb III ‒1.36136 0.00502 73677.53 

KOH-H2 treated Maxsorb III ‒0.01482 0.00291 18193.19 

Maxsorb III (D~146 µm) 1.39449 0.00031 ‒40609.74 

Maxsorb III (D~96 µm) ‒0.03810 0.00253 17870.74 

Maxsorb III (D~33 µm) ‒0.32708 0.00280 28676.45 

Spherical phenol resin (KOH6) ‒1.77159 0.00513 89854.07 

Expanded graphite (EC–1000) ‒1.23137 0.004895 58943.45 

Expanded graphite (EC–1500) ‒1.10813 0.00239 1758.57 

 

4.2.2 Conclusions 

The specific heat capacities of various carbon-based materials employed in 

adsorption processes have been evaluated experimentally. Widely known activated carbon 

i.e., parent and surface treated Maxsorb III, recently developed KOH treated spherical 

phenol resin (KOH6-PR) and carbon based thermal conductivity enhancer (expanded 

graphite) for composite adsorbents have been investigated for the first time. The specific 

heat capacities for such materials have been measured using a wide range of temperature 

(30 to 150ºC) which is the practical operation range of adsorption cycles for cooling, 

dehumidification and desalination. It is observed that surface treated adsorbents show 

higher specific heat capacity values which might be contributed to the surface functional 

group. Some notable findings are: (i) the specific heat capacities of all the selected 

adsorbents exhibit increasing trend with temperature, (ii) KOH-H2 treated Masxorb III 

shows the highest specific heat capacity (1.11 kJ/kg·K) and (iii) KOH6-PR possess the 

lowest specific heat capacity (0.792 kJ/kg·K). The influence of particle size on the specific 

heat capacity has been investigated wherein higher particle size were found to possess 

higher value. A temperature dependent correlation is used to model the experimental data. 

This fitting equation can be utilized for thermal calculations of practical adsorption 

systems and is essential for precise system design and performance evaluation.



 

 
 

Chapter 5  

Pore shaping to enhance the quality of 

adsorbents 
Equation Chapter (Next) Section 1 

Activated carbon is widely used as an adsorbent because it is highly microporous. 

The pore size distribution of commercial and synthesized activated carbons contain a 

significant percentage of pores which are less than 0.7 nm (ultramicropores) size. There 

are some mesopores in the parent samples (2 – 4 nm). In adsorption cooling applications, 

commonly used refrigerant molecule clusters are unable to enter into such tiny 

ultramicropores and no adsorption occurs there. Hence, these ultramicropores degrade the 

performance of an adsorption cooling system (ACS). Moreover, another essential property 

of a good adsorbent is high thermal conductivity and lower specific heat capacity. Trapped 

air molecules and foreign elements inside these pores cause a reduction of the thermal 

conductivity and increase the specific heat capacity. Additionally, the presence of 

mesopores might cause slower kinetics. The objective of this research work is to remove 

those unusable pores by chemical vapor deposition (CVD) and enhance the quality of 

commercial activated carbon namely Maxsorb III. Pyrolysis of methane gas and liquid 

benzene on Maxsorb III have been performed to block the unusable pores. Pyrolysis 

temperature range is from 800 °C to 1000 °C for various time duration (5 min to 30 min) 

and flow rate (5 ml/min to 50 ml/min). Porosimetry change of the pyrolyzed samples have 

been compared with the parent Maxsorb III. Pyrolization of methane (Tpyr = 1000 °C, ṁ = 

50 mL/min, t = 30 min) and benzene (Tpyr = 800 °C, ṁ = 25 mL/min, t = 10 min) removes 

the ultramicropores and most of the mesopores which might improve the quality of 

activated carbon. 

 

5.1 Background 

Adsorption based systems appear to be the next generation of refrigeration and heat 

pump applications because of the viewpoint of minimal electricity usage, driven by low 

temperature waste heat, global warming impact and ozone layer depletion (ODP) problems 

[19,77,147]. Selection of appropriate adsorbent/refrigerant pair is prerequisite to build an 
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efficient adsorption cooling system (ACS). Because of the microporous structure, large 

surface area (approximately 3140 m2/g) [148] along with huge pore volume and easy 

availability, activated carbon (AC) is the utmost potential element for ACS [19]. However, 

commercial Maxsorb III contains ultramicropores which might degrade the performance 

of the system. Hence, removal of these ultramicropores would enhance the adsorbent 

quality and performance of the system. 

 

Researchers are trying to control the pore size of carbon for various applications 

[44,45,149–154]. Kawabuchi et al. [44] controlled pore size of activated carbon fiber 

(ACF) by CVD of carbon from benzene and cyclohexane. They found that 700 – 800 °C 

temperature is very effective and about 11% weight increases because of the carbon 

deposition. They also found that Cyclohexane decomposes rapidly in the operating 

temperature range and thus inferior to benzene as a carbon precursor. The objective was 

to enhance the molecular sieve separation of CH4 from CO2 which was explicitly achieved 

in this work. Subsequently, Kawabuchi et al. [48] used three heterocyclic compounds: 

pyridine, pyrrole, and thiophene to control the porosity and surface functionality of the 

active carbon fiber (ACF). Interestingly, they found improved selectivity during gas 

separation application by adsorptions of CO2/CH4 and O2/N2. Verma et al. [45] 

investigated heat treatment at 1100 K and carbon gasification on various carbon molecular 

sieve (CMS) and activated (AC). They found that the net effect of carbon gasification was 

shrinkage of pores in a particular size range, which introduced interesting possibilities for 

production of highly selective CMS. Afterwards, Verma [46] improved molecular sieving 

behavior of carbon by heat treatment, carbon gasification and chemisorption of propylene. 

Kinetic separation of O2 from Ar was improved because of this treatment which was the 

main objective of this research work.  

 

However, there is few research works until now which was targeted to enhance the 

performance of ACSs by pore shaping. In adsorption cooling system, activated 

carbon/ethanol, activated carbon/methanol, activated carbon/ammonia pairs are frequently 

used because of the high adsorption uptake and faster kinetics. However, the adsorbate 

molecules are unable to enter into the ultramicropores (<0.7 nm). Selective removal of 

those unusable pores will increase adsorption uptake, faster kinetics can be achieved 
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thermal conductivity and specific heat capacity will improve. Thus, the objective of this 

research work is to find the appropriate material and operating conditions of pyrolysis for 

pore size modification.  

 

Current research has been carried out with pyrolization material methane and 

benzene. Maxsorb III is pyrolyzed by CH4 and C6H6 for various pyrolization temperature, 

flow rate and time. The experiment has been conducted in an inert environment by flowing 

Argon at 100 sccm/min rate. 

 

5.2 Theory 

Commercial activated carbon contains ultramicropores (0.1 ≤ r < 0.7 nm), regular 

micropores (0.7 ≤ r < 2 nm) and few percentages of mesopores (2 ≤ r ≤ 4.4 nm) [148]. The 

concept of pore modification is illustrated in Fig. 5.1 (a) and (b). Pyrolization is done at 

much higher temperature than the boiling point of a material. At this high temperature, the 

pyrolization material decomposes inside the ultramicropores and block those unusable 

pores. 

 

 
Fig. 5.1.  (a) An overview of pores before pyrolysis; (b) modified pores after pyrolysis. 

 

SEM image of Maxsorb III depicted in Fig. 5.2 (a) shows the existence of pores. The 

length of benzene molecule is 0.7 nm and width is 0.34 nm. Hence, these molecules can  

 

ultramicropores 
(a) (b) 
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enter into the pores which are greater than 0.34 nm.  After pyrolization, carbon atoms of 

those benzene molecules are deposited on the pore wall and block those pores (Fig. 5.2 

(b)).  

 

 
Fig. 5.2.  (a) SEM image of Maxsorb III; (b) benzene pyrolization mechanism. 

(a) 

(b) 
Size of benzene molecules
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deposit on the pore wall
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5.3 Experimental 

5.3.1 Materials 

5.3.1.1 Maxsorb III 

The following Table 5.1 shows the thermophysical properties of the commercial 

activated carbon. Pore structure of this sample is modified using various pyrolization 

materials. 

 

Table 5.1. Thermophysical properties of Maxsorb III [16,43,148]. 

Manufacturer Kansai Coke & Chemical Company Ltd., Japan. 
Surface area 3140 m2/g 
Micropore volume 1.70 ml/g 
Total pore volume 2.01 ml/g 
Apparent density 0.31 g/ml 
pH 4.1 
Average particle diameter 72 μm 
Mean pore diameter 2.008 nm 
Pore size distribution 0.1 – 4.4 nm 
Specific heat capacity 0.844  kJ kg–1 K–1 (at 30 °C) 
Thermal conductivity 0.066 W m–1 K–1(at room temperature) 
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5.3.1.2 Methane 

Methane gas has been used as a pyrolization substance for the pore modification. 

The common properties of methane is shown in Table 5.2. 
 
Table 5.2. Properties of methane [96,155]. 

Chemical formula CH4 
Structural formula 

 
Molecular weight 16.043 g·mol−1 
Melting point −182.5 °C 
Boiling point −161.48 °C 
Flash point −188 °C 
Density 656.88 kg m−3 (at 25 °C and 1 atm) 
Chemical safety Flammable 
Critical temperature −82.586 °C 
Critical pressure 4599.2 kPa 

 

5.3.1.3 Benzene 

Another pyrolization material that is used for the pore modification is benzene. 

Benzene is liquid at room temperature. The common properties are depicted in Table 5.3. 
 
Table 5.3. Properties of benzene [96,155]. 

Chemical formula C6H6 
Structural formula 

 
Molecular weight 78.114 g·mol−1 
Melting point 5.558 °C 
Boiling point 80.069 °C 
Flash point −11 °C 
Liquid density 873.59 kg m−3 (at 25 °C) 
Safety and hazard Flammable, irritant, health hazard 
Critical temperature 288.87 °C 
Critical pressure 4907.3 kPa 
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5.3.2 Furnace 

The core part of the furnace unit is made of ceramic. A pictorial view of the unit is 

shown in Fig. 5.3 and the technical specification is presented in Table 5.4. 

 

 
Fig. 5.3.  Photograph of the ceramic furnace unit. 

 

Table 5.4. Specification of the furnace unit [156]. 

Manufacturer Asahi Rika Corporation 
Model no ARF−50 KC 
Furnace body  Ceramic 
Temperature maximum limit 1200 °C 
Supply voltage 100V AC 
Electrical capacity 700 W 
Ambient humidity 35 to 85% 
Sensors K, J, R, B, N, PL−II, Pt100, JPt100 
Selected sensor K 
Scale range −200 °C to 1370 °C 
Control PID 

 

5.3.3 Temperature controller 

Temperature controller of the furnace unit is made by Shinko Technos Co., Ltd. The 

schematic of the controller is shown in Fig. 5.4 and the technical specification is 

summarized in Table 5.5. 
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Fig. 5.4.  Schematic of temperature control unit. 

 

Table 5.5. Specification of the temperature control unit. 

Manufacturer Shinko Technos Co., Ltd. 
Model no BC−230−H 
Controller model PC−935 
Supply voltage 100/110V AC or 200/220V AC, 50/60Hz 
Control current Max 30A 
Ambient temperature 0 to 40 °C 
Ambient humidity 35 to 85% 
Sensors K, J, R, B, N, PL−II, Pt100, JPt100 
Selected sensor K 
Scale range −200 °C to 1370 °C 
Control PID 

 

5.3.4 Procedure 

The first step is to prepare the sample for pyrolysis. A boat made of Al2O3 is used to 

hold the sample during degassing and pyrolization. Alumina is used because it has high 

melting point (2072 °C) and do not react with Maxsorb III or pyrolization material. 

Maxsorb III contains many foreign elements which needs to be removed before the 

pyrolysis. Hence, the sample is heated in a vacuum oven at 100 °C for 12 hours. A small 

amount of sample is used (≈ 0.2g) for the experiment. Thus, the precise mass measurement 

is very important. The sample mass is measured at least five times to minimize any mass 

related errors. The sample boat is then pushed in the middle of a clean quartz tube. The 

tube was then inserted into the pyrolization oven. Both end of the quartz tube was covered 

with rubber stopper and Teflon. It was ensured that there was no leakage. Argon gas was 
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then flown into the quartz tube at 100 sccm rate from one end through the stopper. Target 

temperature, rising rate and holding time has been set to the temperature controller. After 

reaching the target temperature, methane gas has been flown at same rate. Ar and methane 

was flowing at the same time from the same end of quartz tube. Exhaust gas is discharged 

by a tube through the other end of quartz tube. A cooling bath is used to reduce the 

temperature before releasing the gas to environment. Unlike CH4, benzene is liquid at room 

temperature. When pyrolyzed with benzene, an HPLC column is used to precisely control 

the flow of liquid benzene. The liquid benzene is introduced into the quartz tube from the 

same end where Ar is flowing. A tape heater is wrapped around that end of quartz tube to 

evaporate the benzene. Argon acts as carrier gas and push the vapor benzene into the pores. 

When the pyrolization is finished, both the Argon and pyrolization material flow is 

stopped. The sample is kept inside the quartz tube until it reaches the room temperature by 

natural cooling. The complete setup and procedure is shown in Fig. 5.5. 

 

 
Fig. 5.5.  Schematic diagram of the experimental setup for pyrolysis. 

 

5.4 Results and discussion 

Commercial Maxsorb III is pyrolyzed with methane and benzene at 800 to 1000 °C 

for various mass flow rate, temperature and time. The conditions and effect of pyrolization 

is summarized in Table 5.6 and Table 5.7. The table also contain the data of porosimetry 

analysis. Fig. 5.6 and Fig. 5.7 shows the plot of nitrogen adsorption isotherm and pore size 

distribution of parent and methane pyrolyzed Maxsorb III. Likewise, Fig. 5.8 and Fig. 5.9 
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shows the plot for benzene pyrolyzed samples. The PSD curves are drawn by minimizing 

the roughness of distribution so that all the peaks can be seen clearly. NLDFT model for 

N2 at 77 K on carbon slit pores is considered to evaluate the PSD. The regularization value 

is considered 0.0001 for this model. 
 

Methane is in gaseous phase at room temperature. The flow rate of carrier (Argon) 

gas and methane is considered constant in this experiment. The time of pyrolization is also 

considered fixed and only the temperature varied. Mass of the yield increased with 

pyrolization temperature. Surface area, pore volume and PSD peaks decrease with the 

pyrolization temperature. At 1000 °C, the PSD peak of 0.8 nm is completely vanished (Fig. 

5.7). This indicates that the most of the unusable pores are removed. However, the usable 

pores also decreased at this temperature. 
 

Benzene is in liquid phase at room temperature. In order to achieve similar flow rate 

of methane pyrolization experiment, the liquid benzene flow rate have to be very low. 

Hence, an HPLC pump is used to precisely control the flow rate. Vapor benzene flow rate 

can be calculated from the liquid flow rate by the following equation (5.1). 

22.4liq liq
vap

m
m

M
ρ × 

= × 
 



  (5.1) 

Here, the unit of mass flow rate, molecular weight and density is mL/min, g/mol and 

g/L respectively. 

Pyrolysis at 900 °C for 30 minutes at 50 mL/min gas benzene flow rate remove all 

the pores from Maxsorb III and the surface area becomes zero. N2 adsorption do not occur 

(Fig. 5.8) and there is no peak in the PSD plot (Fig. 5.9). When the temperature is decreased 

to 800 °C keeping the pyrolization time and flow rate constant, similar incident occurs. 

This indicates that pyrolization time and flow rate should be decreased too. 
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Fig. 5.6.  Ad/desorption isotherm of N2 onto parent and CH4 pyrolyzed Maxsorb III. 

 

 
Fig. 5.7.  Comparison of PSD among parent and methane pyrolyzed Maxsorb III. 
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Tₚ = 1000 °C, t = 30 min – ads. Tₚ = 1000 °C, t = 30 min – des.
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Table 5.6. Maxsorb III pyrolization with methane (CH4). 

Initial 
mass 

before 
degassing 

[g] 

Initial 
mass after 
degassing  

[g] 

Pyr. 
temp. 

 
[°C] 

Gas flow rate 
[mL/min] 

Pyr. 
time 

 
[min] 

Final mass 
after 

pyrolysis 
[mg] 

Mass 
increase 

 
[%] 

BET Surface 
area 

 
[m2/g] 

Total 
pore 

volume 
(cm3/g) 

Pore size distribution 

Ar CH4 Peak (W, dV/dW) 
[nm, cm3 g–1 nm–1] 

Range  
[nm] 

Parent Maxsorb III 3140 2.01 (1.67, 1.6) 0.1 – 4.4 

0.2223 0.2004 800 50 50 30 0.2027 1.15 2762.07 ± 19.15 1.37 (0.77, 0.85), (1.08, 2.30), (1.30, 
1.72), (1.42, 0.67), (1.63, 0.82), 
(1.94, 1.13), (2.30, 0.85), (2.53, 0.64) 

0.68 – 3.60 

0.2000 0.1885 850 50 50 30 0.2355 24.27 1786.63±25.31 0.90 (0.80, 0.57), (1.08, 1.23), (1.30, 
1.10), (1.41,0.43), (1.63, 0.56), (1.94, 
0.73), (2.30, 0.53), (2.53, 0.39) 

0.76 – 3.57 

0.2044 0.1879 900 50 50 30 0.2511 33.63 1916.21 ± 18.67 0.94 (0.80, 0.78), (1.08, 1.38), (1.30, 
1.18), (1.41, 0.44), (1.63, 0.57), 
(1.94, 0.73), (2.30, 0.49), (2.53, 0.34) 

0.68 – 3.52 

0.2116 0.1897 1000 50 50 30 0.3318 74.91 760.68 ± 17.33 0.39 (1.17, 0.66), (1.30, 0.42), (1.41, 
0.22), (1.63, 0.25), (1.94, 0.28), 
(2.30, 0.15), (2.52, 0.10) 

1.09 – 3.50 
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Table 5.7. Maxsorb III pyrolization with benzene (C6H6). 

Initial mass 
before 

degassing 
 

[g] 

Initial 
mass after 
degassing  

 
[g] 

Pyr. 
temp. 

 
 

[°C] 

Liquid 
C6H6 

flow rate 
 

[mL/min] 

Gas flow rate 
[mL/min] 

Pyr. 
time 

 
 

[min] 

Final 
mass after 
pyrolysis 

 
[mg] 

Mass 
increase 

 
 

[%] 

BET Surface 
area 

 
 

[m2/g] 

Total 
pore 

volume 
 

[cm3/g] 

Pore size distribution 

Ar C6H6 Peak (W, dV/dW) 
[nm, cm3 g–1 nm–1] 

Range  
[nm] 

Parent Maxsorb III 3140 2.01 (1.67, 1.6) 0.1 – 4.4 

0.2107 0.1972 900 0.20 50 50 30 0.4341 120.13 0.1104 ± 0.0387 0.0012 (19.2, 0.0016), (21.0, 
0.00014), (25.0, 0.00009), 
(29.9, 0.00007) 

17.5 – 33.9  

0.2018 0.1998 800 0.20 50 50 30 0.4721 136.29 0.2739 ± 0.0423 0.0022 (9.91, 0.00032), (12.9, 
0.0016) 

9.49 – 21.9 

0.2127 0.2047 800 0.10 50 25 10 0.3572 74.50 975.75 ± 17.51 0.5005 (1.09, 0.70), (1.3, 0.77), 
(1.41, 0.31), (1.63, 0.34), 
(1.94, 0.40), (2.3, 0.26) 

1.05 – 3.76  

0.2073 0.1692 800 0.02 50 05 05 0.2221 31.26 2587.47 ± 26.02 1.2811 (0.77, 0.78), (1.08, 2.01), 
(1.3, 1.64), (1.42, 0.63), 
(1.63, 0.78), (1.94, 1.06), 
(2.30, 0.77) 

0.67 – 3.76 

0.2043 0.1951 800 0.02 50 05 10 0.2450 25.58 2165.79 ± 22.47 1.0770 (0.77, 0.72), (1.08, 1.49), 
(1.30, 1.42), (1.41, 0.53), 
(1.63, 0.67), (1.94, 0.89), 
(2.30, 0.63) 

0.69 – 3.76 
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Fig. 5.8.  Ad/desorption isotherm of N2 onto parent and C6H6 pyrolyzed Maxsorb III. 

 

 

 
Fig. 5.9.  Comparison of PSD among parent and benzene pyrolyzed Maxsorb III. 
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At this point, the pyrolysis temperature is set to 800 °C, the flow rate is decreased to 

half (0.25 mL/min) and the pyrolysis time is one third (10 min). For this conditions, all the 

pores were not blocked. However, the yield amount is still high and surface area is about 

one third of parent Maxsorb III. Smaller micropores around 0.8 nm were completely 

blocked and a lot of usable pores are decreased too. 

 

At same pyrolysis temperature, the flow rate (5 mL/min) and pyrolization 

temperature is further decreased. At this conditions, surface area and pore volume change 

is not so significant. Smaller micropores still remains and the improvement is not so 

significant. Hence, the pyrolization time is increased to 10 min keeping all the other 

conditions unchanged. Some of the regular micropores and mesopores were removed at 

this condition. 

 

5.5 Conclusions 

In this work, the pore structure of commonly used activated carbon (AC) have been 

reshaped using organic compounds. The AC variant is commercially available Maxsorb 

III and the pyrolization fluids are methane and benzene. For both the fluids, an increase in 

pyrolization temperature – increase the yield amount; decrease the surface area and pore 

volume. Since methane atom have only one carbon, it requires higher temperature to get 

the same effect as benzene when all the other conditions are similar. Pyrolysis at 1000 °C 

with methane for 30 min at 50 mL/min flow rate, most of the smaller micropores and 

mesopores were removed. This might increase the quality of adsorbent. However, some 

usable pores are also decreased. Similar pore removal phenomenon happens for benzene 

pyrolysis temperature at 800 °C for 10 min pyrolization time at 25 mL/min flow rate. The 

removal of useable pores are lower in this case. 



  
 

 
 

Chapter 6  

Adsorption characteristics of biomass 

derived activated carbon/R32 Pair 
Equation Chapter 6 Section 1 

Activated carbon (AC) is widely used for adsorption heat pump applications due to 

the higher uptake, faster kinetics, high surface area and pore volume. Raw materials of 

commercially available ACs are typically petroleum coke, mosaic coke, phenol resin and 

so on. Recently developed biomass derived activated carbon from mangrove (M–AC) and 

waste palm trunk (WPT–AC) have superior surface properties than commercial ACs. They 

are abundantly available in the nature and low-cost. Adsorption characteristics of low 

GWP HFC refrigerant R32 onto M–AC and WPT–AC have been experimentally 

investigated. At adsorption temperature 30 °C, the uptake of M–AC/R32 and WPT–

AC/R32 pairs are 2.04 and 2.392 kg kg–1, respectively. These values are remarkably higher 

than most of the available adsorbent/adsorbate pairs available for cooling applications. 

Two well-known isotherm models (D–A and Tóth) are employed to fit R32 adsorption 

isotherms of assorted pairs. Isosteric heat of adsorption for both the pairs have also been 

assessed with Clausius-Clapeyron model and D–A fitting parameters. 

 

6.1 Background 

The regulations set by Montreal (1987) and Kyoto (1997) protocols have already 

phased out the chlorofluorocarbons (CFCs) and most of the hydrochlorofluorocarbons 

(HCFCs) [8,157–159]. HFCs and natural refrigerants are most promosing to replace the 

existing ones [160,161]. Most of the adsorption cooling applications uses natural 

refrigerants as adsorbate. For example: silica gel/water [30,56,90,92], zeolite/water 

[39,162,163], activated carbon/ethanol [19,21,77], activated carbon/methanol [106,164], 

activated carbon/ammonia [165–167], activated carbon/CO2 [58,168,169]. Most of these 

pairs have lower adsorption uptake or limited operation range (temperature and pressure). 

Pure HFC refrigerants (R32, R134a, R152a) and HFC blends (R404A, R410A, R507A 

etc.) have wider opreation range. However, the HFC blends have very high GWP (R404A: 

3922; R410A: 2088, R507A: 3985) and unsuitable for using in the adsorption heat pump 
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system [64,170]. Hence, one of the pure HFCs with moderate GWP could be the potential 

candidate to use with activated carbon if it has higher adsorption uptake. Saha et al. [171] 

investigated the activated carbon/R134a pair and found that the maximum uptake could be 

0.926 kg kg–1. Ghazy et al. [172] carried out an experiment on Maxsorb III/R152a and 

their results shown a maximum uptake of 1.3 kg kg–1. Sultan et al. [59] and Askalany et 

al. [173] investigated the activated carbon/R32 and found that the maximum uptake could 

be as high as 2.25 kg kg–1. Among these three refrigerants, GWP of R152a is the lowest, 

R32 possess moderate (675) and R134a has the highest (1430) value. Since, R152a have 

flammability issue and uptake is also moderate, R32 is the best choice for AHP.  

Biomass derived activated carbons synthesized by Pal et al. [20] have been employed 

to carry out this experiment. Some crucial contributions in study are: 

 

• Experimental investigation of adsorption isotherms of R32 onto two biomass 

derived ACs. 

• Dubinin Astakhov (D–A) and Tóth equations are employed to correlate R32 

adsorption isotherms of assorted pairs.  

• Determination of the isosteric heat of adsorption for both the pairs. 

 

6.2 Experimental 

6.2.1 Materials  

6.2.1.1 M–AC and WPT–AC 

Indonesian mangrove wood and Malaysian waste palm trunk are used as raw 

materials to prepare the activated carbons. Activation of these carbons are performed at 

high temperature using potassium hydroxide (KOH) at a ratio of 1:6 (carbonized sample: 

KOH). The details procedure is illustrated by Pal et al. in their article [20]. The physical 

properties of the adsorbents are depicted in Table 6.1. 
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Table 6.1. Physical and adsorption properties of the selected adsorbents [20]. 

 M–AC 
(activated carbon 
from mangrove 
wood) 

WPT–AC 
(activated carbon 
from waste palm 
trunk) 

Total surface area [m2 g–1] 2924 2927 

External surface area [m2 g–1] 34.19 62.52 

Total pore volume [cm3 g–1] 2.18 2.51 

Micropore volume [cm3 g–1] 2.13 2.41 

Average pore width [nm] 1.47 1.68 

Carbonization temperature [°C] 600 600 

Activation temperature [°C] 900 900 

Carbonized sample : KOH 1:6 1:6 

Activation yield [%] 37.54 27.27 

Average particle size range [μm] 42.70 31.19 

Particle size range [μm] 23.07 – 71.52 16.94 – 55.70 

Thermal conductivity at RT [W m–1 K–1] 0.052 ±0.003 0.044 ± 0.003 

Maximum ethanol uptake [kg–1 kg–1] 1.65 1.9 

Isosteric heat of adsorption [kJ kg–1] 1092 1086 
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6.2.1.2 R32 

The adsorbate of this experiment is R32. The refrigerant is chosen due to its wider 

operation range over natural refrigerants and moderate GWP value. Common properties 

of this refrigerant is listed in Table 6.2. 

 

Table 6.2. Properties of the selected refrigerant. 

Refrigerant or adsorbate R32 

Refrigerant type Hydrofluorocarbon (HFC) 

Alternate names  Difluoromethane; Freon 32; Methylene difluoride; 

Carbon fluoride hydride; Genetron 32; HFC 32 [174] 

Chemical formula CH2F2 

Structural formula 

 

Molecular weight [g mol–1] 52.024  

GWP100 years [kg–CO2–eq.] 675 [59] 

ODP 0 

Critical pressure (MPa) 5.782 [96]  

Critical temperature (°C) 78.105 [96]  

Normal boiling point (°C) –51.651 [96] 

ASHRAE safety group A2L [175] 

ASHRAE flammability Yes (mild) [175] 

ASHRAE toxicity No [175] 

 

6.2.2 Instrumentation and procedure  

The schematic diagram of the experimental apparatus is shown in Fig. 6.1. This is a 

magnetic suspension adsorption measurement unit (MSB-GS-100-10M) manufactured by 

Bel Japan, Inc. Sample mass is recorded with an accuracy of 20 μg. The pressure transducer 

model is PAA-35X made by Keller. The measurement range is up to 10 MPa (absolute) 
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with an uncertainty of ±0.1% of full scale. Tubes containing R32 gas are inside an air 

chamber with a controlled temperature to prevent condensation. 

 
1: Magnetic suspension balance; 2: Sample holder basket; 3: Oil jacket; 4: Isothermal oil 
bath and circulator; 5: Sheathed heater; 6: Sinker; 7: Liquid refrigerant reservoir; 8: 
Isothermal oil bath; D.P.: Diaphragm pump; R.P.: Rotary pump; T.M.P.: Turbo molecular 
pump; P1–P4: Pressure gauges; T: Thermocouple; V1–V8: Valves; C1: Controlled valve. 
 
Fig. 6.1.  Schematic diagram of magnetic suspension adsorption measurement unit [58]. 

 

About 50 – 60 mg sample (M–AC or WPT–AC) is inserted into the basket and 

hanged on the hook of the magnetic balance. The basket is then covered by the metal 

jackets and other supplemental tools to make the whole arrangement leak-proof. Vacuum 

and high pressure leakage test is performed to ensure the accuracy of the experiment. The 

sample is then regenerated at 130 °C in vacuum condition for several hours. 

 

The oil circulator of the liquid refrigerant reservoir temperature is set to –6 °C. Gas 

refrigerant of room temperature is introduced into the reservoir. Since the reservoir 

temperature is low, R32 changes its phase to liquid. The liquid reservoir is filled only for 
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two minutes to prevent overflow. Both the adsorption chamber and liquid refrigerant cell 

temperature is then set to adsorption temperature. The valve C1 is used to precisely control 

the introducing pressure to the adsorption chamber. For example, to get enough data points 

of an adsorption isotherm at 30 °C adsorption temperature, evaporation temperature of 

liquid refrigerant reservoir unit is also set to 30 °C. Saturation pressure of R32 at 30 °C is 

1927.5 kPa. For the first point of the isotherm, the C1 valve is slightly open to insert R32 

gas into the tube (until the valve V2) at 500 kPa pressure. If overcharged, the vacuum 

pump removes the extra amount. This 500 kPa pressure corresponds to the evaporation 

temperature –14.33 °C, which means, a certain target pressure can be reached without 

lowering evaporator cell temperature. When the target pressure is reached, valve V2 is 

opened to start the adsorption. The mass of the sample starts increasing during adsorption. 

The mass change is detected by the magnetic balance and recorded in the computer. When 

the balance reaches equilibrium (mass change < 20 μg, pressure change < 300 Pa), V2 is 

closed. The tube is then charged again with a predefined amount for the second point of 

the adsorption isotherm. The process continues to repeat and all the data points are obtained 

up to saturation condition. 

 

6.3 Adsorption isotherms 

Adsorption isotherms of R32 onto M–AC and WPT–AC samples have been 

experimentally determined at temperatures of 30, 50, 70, 90 °C and pressure ranging from 

0 to 3 MPa. D–A and Tóth isotherm models have less information loss from the statistical 

point of view [176] and hence, these two models are used in this study to fit the 

experimental data.  

 

6.3.1 D–A adsorption isotherms 

The Dubinin–Astakhov (D–A) adsorption isotherm model has been adopted by the 

researchers since the model can successfully predict the adsorption uptake for various 

refrigerant–adsorbent pairs. The governing equation of D–A isotherm model can be 

expressed by equation (6.1) [17,53,177]: 
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0

ln
exp

n
sPRT

PW W
ME

         = −        

   (6.1) 

Here, 

mW CV=   (6.2) 

( )expm t tV V T Tα = −    (6.3) 

The numerical value of Vt at triple point of R32 (–136.81 °C) can be found in 

REFPROP which is 0.69966 cm3 g–1. Besides, the thermal expansion coefficient α has 

been considered constant (0.0025 K–1) in the articles [17,58,178]. However, some 

researchers have proposed the value of α as temperature dependent (1/T) [179,180]. 

 

Thermal expansion occurs during adsorption and a volume correction to the DA 

model is required. The specific volume of the adsorbed phase (Vm) is estimated using the 

equation (6.3) for a wide range of temperatures for high pressure gases.  

 

Since, the phase of a fluid is unknown at T > TC, Ps is calculated at this region by 

pseudo-saturated vapor pressure equation (6.4). 

k

s s

C C

P T
P T

 
=  
 

  (6.4) 

Critical pressure (Pc) of R32 is 5.782 MPa as mentioned in Table 6.2. The parameter 

k is a heterogeneity parameter which can be obtained from the correlation fitting of D–A 

model. Hence, four adjustable parameters W0, E, n and k are determined from the 

correlation fitting of experimentally obtained data. 

 

6.3.2 Tóth adsorption isotherms 

Adsorption isotherm model proposed by Tóth is another renowned model which can 

be expressed by the following equation: 
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( )( )
0 1

1 t t

bPC C
bP

 
 

=  
 +  

  (6.5) 

 

Here, 

0

stQ
RTb b e=   (6.6) 

where C and C0 are equilibrium adsorption uptake [kg kg–1] and saturated adsorption 

amount, respectively. P is the equilibrium pressure, t is heterogeneity constant and an 

adjustable fitting parameter of the Tóth model. It is noteworthy to mention that, for t = 1, 

the equation of Tóth model expresses Langmuir equation. Besides, b0 [kPa] is adsorption 

affinity at infinite temperature, R is the universal gas constant [J mol–1 K–1]; Qst is isosteric 

heat of adsorption [J mol–1]; and T is adsorption temperature [K]. 

 

6.3.3 Isosteric heat of adsorption  

The heat release during the adsorption process as a result of change in energy level 

of the adsorbate molecules is known as heat of adsorption. Isosteric heat of adsorption 

signifies the strength of interactions between refrigerant and adsorbent [181]. Basically, 

this parameter can be expressed by the function of adsorption uptake [171,182]. However, 

numerous studies have shown that it is also dependent on adsorption temperature 

[20,62,142]. Several models have been proposed by the researchers and Rahman et al. 

model [61] is adopted in this study. The model is based on the Clausius–Clapeyron model. 

Following two equations (6.7) and (6.8) express the isosteric heat of adsorption for below 

and above critical temperatures, respectively. 

 

For CT T< , 

( ) ( )
1 1 n
n n

st fg
TQ h E ln ln
n
α − = + − Θ + − Θ  

  (6.7) 
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For CT T≥ , 

( ) ( )
1 1 n
n n

st
TQ kRT E ln ln
n
α − = + − Θ + − Θ  

  (6.8) 

Here, Θ is surface coverage and can be expressed by equation (6.9). 

0 0

m

W W
W CV

Θ = =   (6.9) 

where, hfg [kJ kg–1] is called the latent heat of vaporization. It can be determined by 

subtracting gas phase enthalpy and liquid phase enthalpy at a certain adsorption 

temperature E, n and k are the D–A equation fitting parameters. α is the thermal expansion 

coefficient (0.0025 K–1) and R is the universal gas constant (8.314 J mol–1 K–1). 

 

6.4 Results and discussion 

The experimental adsorption isotherm data of M–AC/R32 and WPT–AC/R32 pairs 

are shown in Table 6.3 and Table 6.4, respectively. A certain amount of vapor refrigerant 

is charged and adsorbed in the adsorbent. At a particular adsorption temperature – the 

initially charged refrigerant pressure (Pinitial), final pressure after adsorption equilibrium is 

reached (Pequilibrium), and saturated adsorbed amount (C) is presented in the data tables.  
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Table 6.3. Experimental adsorption isotherm data of M–AC/R32 pair. 

Tads 
[°C] 

Pinitial 
[kPa] 

Pequilibrium 
[kPa] 

C 
[kg kg–1] 

Tads 
[°C] 

Pinitial 
[kPa] 

Pequilibrium 
[kPa] 

C 
[kg kg–1] 

30.10 503.071 44.280 0.091 69.98 504.494 49.205 0.040 
30.02 547.296 88.830 0.185 70.16 554.667 98.728 0.079 
30.00 592.654 133.543 0.283 70.00 603.855 148.233 0.118 
30.00 936.633 207.215 0.439 70.00 1250.595 264.105 0.207 
30.00 1010.617 281.203 0.581 70.02 1367.750 381.230 0.296 
30.00 1084.379 355.531 0.707 70.00 1484.047 499.448 0.380 
30.00 1158.786 429.970 0.820 70.00 1602.318 619.094 0.462 
30.00 1232.620 504.596 0.924 70.01 1722.677 740.124 0.538 
30.00 1307.404 579.339 1.022 70.00 2043.664 889.678 0.626 
29.99 1381.880 654.092 1.115 70.00 2190.602 1042.294 0.709 
30.00 1657.373 750.504 1.234 70.00 2343.192 1199.086 0.789 
30.00 1752.101 847.444 1.352 70.00 2500.237 1359.873 0.865 
30.00 1849.561 944.707 1.472 69.99 2655.906 1525.771 0.940 
30.00 1947.187 1042.159 1.594 70.00 2323.725 1619.669 0.981 
30.00 2045.443 1140.336 1.713 69.99 2415.780 1714.599 1.021 
30.00 2143.367 1238.194 1.825 70.00 2611.478 1826.490 1.068 
30.00 2239.972 1337.375 1.921 70.00 2621.769 1925.335 1.108 
30.00 2338.766 1436.969 1.993 70.00 2722.176 2026.575 1.149 
30.00 2439.069 1537.901 2.040 69.99 2832.001 2149.589 1.197 
    70.01 2925.974 2859.056 1.453 
50.04 505.739 46.848 0.063 89.98 703.653 73.238 0.040 
50.13 551.448 93.647 0.124 90.02 777.475 147.094 0.078 
50.00 597.072 140.407 0.185 90.00 1450.038 294.298 0.154 
50.00 1145.045 239.030 0.312 90.00 1597.299 444.232 0.230 
50.00 1241.111 338.027 0.433 90.00 1747.641 596.757 0.305 
50.00 1341.468 437.531 0.544 90.01 1900.580 752.587 0.378 
50.00 1441.851 537.845 0.647 90.00 2852.083 1118.905 0.535 
49.99 1541.269 638.687 0.740 90.00 2411.384 1287.255 0.600 
50.00 1641.878 740.258 0.828 90.00 2579.971 1462.087 0.664 
50.01 1742.457 842.241 0.910 90.00 2758.878 1645.999 0.728 
50.01 1844.503 945.276 0.989 90.00 2441.001 1749.574 0.762 
50.00 1948.451 1048.848 1.065 90.02 2547.439 1855.880 0.796 
50.01 2050.479 1153.142 1.139 90.00 2654.252 1964.756 0.830 
50.00 2154.632 1258.513 1.212 90.01 2764.276 2078.075 0.864 
50.01 2259.145 1364.765 1.285 90.00 2575.193 2144.486 0.885 
49.99 2876.912 1652.810 1.478 90.00 2642.397 2212.183 0.904 
50.00 1960.664 1960.245 1.578 90.00 2702.472 2280.081 0.924 
50.01 2257.346 2256.773 1.725 90.00 2778.657 2350.679 0.944 
50.00 2552.096 2551.473 1.824 90.00 2759.620 2407.285 0.960 
50.00 3002.768 2848.961 1.981 90.00 2820.549 2489.568 0.983 
    90.00 2878.716 2841.428 1.077 
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Table 6.4. Experimental adsorption isotherm data of WPT–AC/R32 pair. 

Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

30.02 603.293 53.089 0.113 70.13 602.879 59.548 0.042 

30.04 658.106 106.439 0.224 70.25 662.742 119.346 0.084 

30.00 1010.456 188.552 0.394 70.00 1122.642 223.487 0.157 

30.00 1092.271 270.872 0.548 69.99 1226.886 328.380 0.231 

30.00 1174.859 353.447 0.687 69.99 1332.446 434.475 0.304 

30.00 1256.472 435.904 0.811 69.99 1436.774 541.304 0.376 

30.00 1339.456 518.670 0.926 69.99 1543.828 649.208 0.445 

30.00 1422.307 601.369 1.035 70.00 1651.599 758.131 0.511 

29.99 1105.586 645.319 1.091 70.00 1760.574 868.235 0.575 

30.00 1148.104 689.135 1.147 69.99 1871.406 979.649 0.637 

30.00 1491.531 761.572 1.239 70.01 1999.312 1094.011 0.696 

30.00 1564.117 833.774 1.332 70.00 1597.948 1146.963 0.724 

30.01 1636.594 906.005 1.427 70.00 1649.381 1199.960 0.750 

30.00 1708.926 977.831 1.525 70.01 2200.040 1315.996 0.807 

30.00 1780.717 1049.941 1.628 70.00 2315.609 1434.298 0.863 

30.00 1853.376 1121.687 1.732 70.00 2434.810 1555.058 0.919 

30.00 1875.417 1188.376 1.832 70.00 2555.078 1678.701 0.974 

30.00 1942.038 1254.674 1.931 69.99 2629.057 1797.815 1.026 

30.00 1907.613 1311.243 2.012 70.00 2489.773 1881.087 1.063 

30.00 1913.496 1362.894 2.081 70.00 2576.039 1966.588 1.099 

30.00 1965.774 1414.600 2.141 69.99 2763.685 2069.796 1.144 

30.00 1916.625 1456.865 2.183 70.00 2565.086 2130.026 1.169 

30.00 1959.720 1498.868 2.217 70.00 2623.721 2190.390 1.195 

30.00 1951.347 1536.525 2.241 70.00 2685.988 2252.339 1.221 

30.00 1888.978 1565.579 2.257 70.00 2596.801 2294.028 1.239 

30.00 1918.451 1593.870 2.271 70.00 2640.853 2336.059 1.257 

30.00 1946.195 1622.568 2.282 70.00 2684.222 2378.957 1.274 

30.00 1675.836 1626.195 2.283 70.01 2724.390 2421.598 1.292 



CHAPTER 6 

 
ADSORPTION CHARACTERISTICS OF BIOMASS DERIVED 

ACTIVATED CARBON/R32 PAIR 
 

 

97 
 

Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

30.00 1679.093 1630.109 2.285 70.00 2619.732 2444.560 1.302 

30.01 1682.539 1633.537 2.286 70.00 2793.953 2488.342 1.320 

30.00 1936.275 1657.356 2.295 70.00 2867.198 2833.738 1.461 

30.00 1759.998 1665.261 2.298 70.00 3096.948 2869.391 1.470 

30.00 1818.431 1676.701 2.302 70.00 3147.048 2876.492 1.481 

30.00 1919.637 1695.815 2.308 89.95 603.762 62.510 0.028 

30.00 1848.643 1707.294 2.312 90.29 667.118 125.485 0.057 

30.00 1929.752 1724.570 2.318 90.00 1129.029 234.938 0.106 

30.00 1927.599 1740.431 2.324 89.99 1237.442 345.465 0.156 

30.00 1943.180 1755.777 2.328 90.00 1349.095 457.360 0.207 

30.00 1958.489 1771.195 2.334 90.00 1460.050 570.347 0.257 

30.00 1972.881 1786.528 2.338 89.98 1574.647 685.014 0.307 

30.00 1988.961 1801.996 2.343 90.02 1686.869 800.668 0.356 

30.00 2004.897 1815.937 2.348 90.00 1803.138 918.587 0.404 

30.00 2019.437 1825.510 2.352 90.00 1919.826 1038.146 0.452 

30.00 2028.537 1832.897 2.354 90.01 2040.316 1160.035 0.499 

30.00 2085.839 1843.910 2.358 90.01 2161.741 1284.502 0.546 

30.00 2096.314 1857.489 2.363 90.00 2286.448 1411.613 0.592 

30.00 2111.074 1872.079 2.370 90.00 2413.927 1542.576 0.637 

30.00 2125.261 1886.348 2.375 90.00 2850.854 1805.568 0.724 

30.00 2139.378 1900.967 2.383 89.99 2501.595 1897.682 0.754 

30.00 2154.240 1914.921 2.392 90.00 2592.138 1991.619 0.783 

50.03 606.017 56.685 0.072 90.00 2686.732 2088.302 0.813 

50.19 660.042 113.291 0.139 90.00 2634.879 2163.006 0.835 

49.98 1117.903 211.838 0.260 90.01 2607.651 2223.057 0.853 

50.00 1214.501 310.513 0.376 90.00 2668.905 2284.384 0.871 

50.00 1314.141 409.991 0.486 90.00 2731.184 2346.817 0.891 

50.00 1414.484 510.078 0.589 90.00 2547.822 2371.724 0.898 

50.00 1513.289 610.685 0.684 89.99 2566.310 2397.575 0.905 
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Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

Tads 

[°C] 

Pinitial 

[kPa] 

Pequilibrium 

[kPa] 

C 

[kg kg–1] 

50.00 1611.627 711.576 0.773 90.00 2594.622 2424.259 0.912 

50.00 1715.119 813.384 0.858 89.99 2620.922 2450.292 0.921 

50.01 1816.132 915.801 0.939 90.01 2644.597 2476.771 0.928 

50.00 1917.259 1018.624 1.017 90.00 2724.367 2511.814 0.938 

50.00 2015.580 1121.806 1.093 90.00 2660.350 2531.326 0.944 

50.00 2123.233 1226.650 1.170 90.00 2677.779 2551.351 0.949 

50.00 2227.926 1332.487 1.248 90.00 2700.602 2570.941 0.955 

50.00 2327.369 1438.800 1.325 90.00 2718.227 2591.178 0.961 

50.00 2432.060 1546.135 1.405 90.01 2739.172 2610.436 0.966 

50.00 2540.077 1654.910 1.486 90.01 2758.224 2630.828 0.972 

50.00 2647.296 1765.412 1.570 90.00 2780.362 2651.360 0.977 

50.00 2761.651 1878.556 1.656 90.00 2802.247 2672.492 0.983 

50.00 2870.666 2460.203 2.050 90.00 2817.008 2708.076 0.993 

50.00 2921.545 2877.164 2.180 90.00 2849.484 2833.646 1.029 

50.00 3658.428 2875.575 2.181 90.01 2914.041 2856.943 1.033 

50.00 2941.994 2891.848 2.191 90.01 3082.952 2905.995 1.045 

50.00 2961.009 2894.235 2.195 90.00 3273.872 2915.172 1.053 

50.00 2971.577 2909.000 2.188 90.00 3357.038 2938.202 1.058 

50.00 2985.549 2912.936 2.188     

49.99 2964.338 2918.589 2.190     

50.00 2979.908 2919.599 2.192     

 

Experimentally obtained data of M–AC/R32 pair is correlated with D–A and Tóth 

models. Empirical and fitted data is plotted in Fig. 6.2 and Fig. 6.3. The plots show good 

fitting with both the isotherm models. Correlation coefficients for this pair is shown in 

Table 6.5. The RMSD (root-mean-square deviation) fitting error for D–A and Tóth model 

is 3.60% and 6.09%, respectively. 
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Fig. 6.2.  R32 adsorption onto M–AC: experimental and D–A model. 

 

 

 
Fig. 6.3.  R32 adsorption onto M–AC: experimental and Tóth model. 
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Table 6.5. Correlation coefficients of the isotherm models for M–AC/R32 pair. 

Isotherm parameters D–A Tóth 

C0 [kg kg–1] – 3.28 

b0 [kPa–1] – 5.23 × 10–8 

Qst [kJ mol–1] – 23.407 

t [–] – 1.75 

k [–] 2.08 – 

W0 [cm3 g–1] 2.34 – 

E [kJ mol–1] 4.055 – 

n [–] 1.18 – 
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The isosteric heat of adsorption (Qst) trend for M–AC/R32 pair is shown in Fig. 6.4. 

The plot indicates that, for a particular temperature, Qst tends to decrease with surface 

coverage. For higher adsorption temperature, the trend line shifts to lower values. When 

the adsorption temperature exceeds critical value, the trend line starts shifting upward with 

temperature increment. However, the change is very slight. In the plot of Fig. 6.4, Qst of 

three temperatures are below critical and only one (Tads = 90 °C) is above critical. 

Coincidentally, Qst trend line of 70 °C and 90 °C almost overlaps. 

 

 
Fig. 6.4.  Isosteric heat of adsorption for M–AC/R32 pair at various adsorption 

temperature below and above critical. 
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Fig. 6.5.  R32 adsorption onto WPT–AC: experimental and D–A model. 

 

 
Fig. 6.6.  R32 adsorption onto WPT–AC: experimental and Tóth model. 
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Table 6.6. Correlation coefficients of the isotherm models for WPT–AC/R32 pair. 

Isotherm parameters D–A Tóth 

C0 [kg kg–1] – 3.53 

b0 [kPa–1] – 5.12 × 10–8 

Qst [kJ mol–1] – 23.512 

t [–] – 1.55 

k [–] 4.24 – 

W0 [cm3 g–1] 2.60 – 

E [kJ mol–1] 3.591 – 

n [–] 1.11 – 
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The isosteric heat of adsorption (Qst) trend for WPT–AC/R32 pair is plotted in Fig. 

6.7. The plot has similar behavior like the previous pair. Qst tends to decrease with surface 

coverage and trend line shifts to lower values for higher adsorption temperature. For T > 

TC, the trend lines start shifting upward with temperature increment. However, the change 

is not that much. In the plot of Fig. 6.7, Qst trend line of 30 °C and 90 °C nearly coincides 

on one another. 

 

 
Fig. 6.7.  Isosteric heat of adsorption for WPT–AC/R32 pair at various adsorption 

temperature below and above critical. 
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6.5 Conclusions 

In this study, adsorption isotherm of low GWP refrigerant R32 onto two biomass 

derived activated carbon is experimentally investigated. The samples are M–AC (from 

mangrove wood) and WPT–AC (from palm trunk). The experiment has been carried out 

for a wide range of adsorption temperatures 30, 50, 70 and 90 °C. Adsorption data is 

successfully correlated with two prominent isotherm models: D–A and Tóth. Isosteric heat 

of adsorption has been evaluated with modified Clausius-Clapeyron model for both the 

pairs. 

 

M–AC/R32 pair has a very high adsorption uptake of 2.04 kg kg–1 at 30 °C and 

1537.9 kPa. Whereas, WPT–AC/R32 pair has even higher uptake of 2.392 kg kg–1 at 30 

°C and 1914.9 kPa. Both the uptake values are higher than commercially available 

activated carbon powder reported by Askalany et al. [183]. Uptake of WPT–AC/R32 is 

higher than the uptake of phenol resin based activated carbon (2.34 kg kg–1) reported by 

Sultan et al. [59]. To the best of our knowledge, it is the highest R32 adsorption capacity 

onto any adsorbent available in the articles. 

 

Correlation fitting of M–AC/R32 and WPT–AC/R32 agrees well with D–A and Tóth 

models with an acceptable error margin. Isosteric heat of adsorption (Qst) values from Tóth 

fitting are 23.407 and 23.512 kJ mol–1 for M–AC/R32 and WPT–AC/R32, respectively. 

However, surface coverage (Θ) and adsorption temperature (Tads) dependent Clausius-

Clapeyron model shows that Qst decreases from 30.48 (at Θ=0.01) to 17.81 kJ mol–1 (at 

Θ=0.90) at 30 °C adsorption temperature for M–AC/R32 pair. For similar conditions, Qst 

changes from 29.96 to 17.07 kJ mol–1 for WPT–AC/R32. 

 

The outcome of the study indicates that, the incredibly high adsorption uptake of low 

GWP HFC32 refrigerant onto biomass derived activated carbons might lead to develop an 

enhanced adsorption system for next generation cooling applications.  

 

 

 

 



  
 

 
 

Chapter 7  

Conclusions and recommendations 
Equation Chapter (Next) Section 1 

7.1 Overall conclusions 

The main objective of this thesis is to establish some methods to enhance the 

performance of an adsorption cooling systems. The necessity to switch from conventional 

vapor compression system is illustrated by quantitative assessment of global warming 

impact for both conventional and adsorption cooling system. Since adsorption cooling 

concept is fairly new, there are a lot of scopes to improve the performance of this system. 

Material characterization, modification of adsorbent material, and exploring the possibility 

to use new adsorbent/adsorbent pairs have been investigated in this research work. The 

significant findings of this research is summarized in the following sections. 

 

Comparison of environmental impact: conventional vs. adsorption cooling system: 

(i) Three types of cooling applications (room air-conditioning, medium and low 

temperature application) with same operating conditions have been 

considered for both conventional and adsorption cooling system. 

Evaporation temperature of these three applications is set to 12, –7 and –25 

°C. Condensation temperature is considered as 40 °C and the cooling load is 

10 kW. R32, R134a and R404A refrigerants are chosen for conventional 

cooling systems since these are currently used in the existing systems. 

Contrarily, silica gel/water, activated carbon/methanol, and activated 

carbon/ammonia pairs have been chosen for adsorption cooling system. 

(ii) Total equivalent warming impact (TEWI) have been assessed by aggregating 

indirect and direct global warming impact. Indirect warming impact is 

evaluated considering two factors – (a) electricity consumption by the 

system, (b) extraction process of the raw materials that is used to build the 

cooling system. Direct impact is due to the global warming potential of the 

leaked refrigerant from the system. 

(iii) The results indicate that, annual TEWI for conventional system for room air-

conditioning application is about 4.816 t-CO2 eq. Besides, an adsorption 
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cooling system can cause about 1.912 t-CO2 eq. global warming for the 

considered operating conditions. Hence, global warming can be reduced 

about 60% for room air-conditioning system. 

(iv) Adsorption cooling system is even better for lower temperature cooling 

applications. TEWI of medium temperature (–7 °C) and low temperature (–

25 °C) adsorption cooling system causes 70% and 85% less global warming 

than conventional vapor compression systems. 

(v) Thermodynamic properties have been determined and refrigeration cycles 

have been plotted on P-h and T-s diagram for these three applications. 

(vi) Co-efficient of performance (COP) of both the systems have computed based 

on the considerations and refrigeration cycle to compare the efficiency 

among the systems. COP values of conventional vapor compression systems 

are 5.989, 3.029 and 1.54 for room air-conditioning, medium and low 

temperature application, respectively. On the other hand, thermal COP of 

adsorption cooling systems are 0.6, 0.4 and 0.2 for the same applications. 

However, electrical COP values (12.5, 7.143, 5 respectively) are very high 

for the same adsorption cooling systems. 

 

Hence, replacing conventional vapor compression cooling system by adsorption 

based systems can tremendously decrease the global warming impact. However, 

adsorption cooling systems have a lot of scope for improvement. Many properties of most 

commonly used adsorbents are still unavailable in the literature. These data are required to 

simulate and predict the performance of a system. 

 

Characterization of adsorbents: 

(i) Porosimetry of six types of silica gels (RD, type A, type B, type A indicator, 

home, high purity Chromatorex) have been experimentally investigated. RD 

silica gel have five samples with different particle sizes. Each of the type A, 

type B and indicator type A silica gels have two different particle size 

samples. All these samples contain both micro and mesopores. 

(ii) RD silica gel with large particle diameter have higher surface area (about 775 

m2/g) than the smaller particle (about 625 m2/g) one. Pore width of large 
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particle samples are in the range from 1 – 5.5 nm. Whereas, the smaller 

particles have additional micropores in the range from 0.6 – 0.86 nm. 

(iii) Type B and home silica gels have more mesopores and the size of mesopores 

are also larger for these samples. The micropore range is 1.20 – 1.80 nm and 

mesopore range is 2.40 – 14.0 for type B silica gel. For home silica gel, 

micropore rang is almost similar 1.20 – 1.80 and mesopore rang is 2.40 – 

9.80 nm. These two samples have lowest BET surface area than other silica 

gel samples. 

(iv) Specific heat capacity of all these silica gels have been measured within 30 

– 100 °C temperature. The temperature range is not increased beyond 100° 

because the chemical structure of silica gel could be destroyed at higher 

temperature. Specific heat capacity of all these samples tend to increase with 

temperature. A temperature depended specific heat capacity model (known 

as Green and Perry model) is successfully correlated with the experimental 

data. 

(v) RD silica gel of five different particle sizes show variations in specific heat 

capacity. In the measured temperature range, largest particle (D ≥ 3.3 mm) 

sample show lowest specific heat capacity (0.870 to 1.008 kJ kg–1 K–1) and 

smallest (0.075 to 0.25 mm) particle sample have highest specific heat capacity 

(0.946 to 1.079 kJ kg–1 K–1). This might occur due the more mobile atoms on 

the surface of large particle silica gel samples. 

(vi) Lowest specific heat capacity is found for type B silica gel (0.822 to 0.935 kJ 

kg–1 K–1). 

(vii) Four types of activated carbon (Maxsorb III, H2 treated Maxsorb III, KOH–

H2 treated Maxsorb III, KOH6 treated spherical phenol resin) samples and 

two thermal conductivity enhancer graphite (EC–1000 and EC–1500) 

samples have been reported within 30 – 150 °C. Spherical phenol resin based 

carbon shows lowest specific heat capacity (0.751 to 0.942 kJ kg–1 K–1) and 

KOH-H2 treated Maxsorb III have the highest value (1.060 to 1.324 kJ kg–1 

K–1). Commercially available parent Maxsorb III have moderate (0.844 to 

1.068 kJ kg–1 K–1) value.  
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(viii) Between the two thermal conductivity enhancer EC–1500 have the lowest 

specific heat capacity (0.738 to 1.029 1.068 kJ kg–1 K–1) in the measured 

temperature range. 

(ix) Higher surface area leads to higher adsorption amount. Lower specific heat 

capacity is preferred for faster desorption since the adsorbent material itself 

consumes low power. Hence, RD silica gel of higher particle diameter is best 

among the silica gel samples. Contrarily, activated carbon synthesized from 

spherical phenol resin is superior than the other three.  

 

Pore structure modification of activated carbon: 

(i) Pore size distribution of activated carbon (Maxsorb III) shows the presence 

of a significant amount of ultramicropores (< 0.7 nm pore width) and 

mesopores. Since these pores do not contribute to the adsorption process, 

removal of these unusable pores could enhance some thermophysical 

properties of the adsorbent. Hence, chemical vapor deposition (CVD) of 

methane and benzene have been performed by varying temperature (800 to 

1000 °C), flow rate (5 o 50 ml/min).and time (5 to 30 min). The objective is 

to find the optimum parameters which would remove most of the unusable 

pores without affecting the regular micropores. 

(ii) Pyrolization of activated carbon with methane has been carried out for 800, 

850, 900 and 1000 °C. Flow rate of methane and carrier gas (Argon) is kept 

constant at 50 mL/min. Pyrolization time for all the cases is 30 min. Most of 

the unusable micro and mesopores are removed at 1000 °C pyrolization 

temperature. However, a significant amount of usable pores is also blocked. 

Additionally, the surface area reduces from 3140 m2/g to 760 m2/g after 

pyrolization. 

(iii) One molecule of benzene has more carbon atoms than methane. Hence, 

similar experimental conditions (Tpyr = 800 °C, ṁ = 50 mL/min, t = 30 min) 

block all the existing pores and surface area becomes zero. Numerical 

experiments have been carried out to find out the optimum condition. At 800 

°C, 25 mL/min flow rate for 10 min pyrolization duration blocks the unusable 

pores. At this condition, blocking of usable pores are less than methane. 
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Adsorption characteristics of novel adsorbent/adsorbate pairs: 

(i) Adsorption isotherm of R32 onto mangrove and waste palm trunk based 

activated carbon (M–AC/R32 and WPT–AC/R32) has been experimentally 

investigated for the first time ever. The experiment has been carried out for 

a wide range of adsorption temperatures 30, 50, 70 and 90 °C. The Dubinin 

Astakhov (D–A) and Tóth models are successfully employed to correlate the 

adsorption isotherms of the assorted pairs. A modified Clausius–Clapeyron 

model is adopted to evaluate the isosteric heat of adsorption (Qst) data. 

(ii) Both the pairs have remarkably high uptake. For example, adsorption amount 

of M–AC/R32 pair is 2.04 kg kg–1 at 30 °C and 1537.9 kPa. Moreover, WPT–

AC/R32 pair has even higher uptake (2.392 kg kg–1 at 30 °C and 1914.9 kPa) 

which exceeds the highest uptake value mentioned in the literatures. 

(iii) D–A and Tóth models are successfully employed to correlate the 

experimental data. The adjustable parameters of these two models are 

optimized with a marginal error. 

(iv) Isosteric heat of adsorption (Qst) values found from Tóth model are 23.407 

and 23.512 kJ mol–1 for M–AC/R32 and WPT–AC/R32, respectively. 

Furthermore, a temperature dependent modified Clausius-Clapeyron model 

is adopted to observe the variation of isosteric heat of adsorption with surface 

coverage. The isosteric heat of adsorption have a decreasing trend with 

surface coverage at any particular adsorption temperature. Isosteric heat of 

adsorption decreases from 30.48 kJ mol–1 (at one percent coverage) to 17.81 

kJ mol–1 (at ninety percent coverage) at 30 °C adsorption temperature for M–

AC/R32 pair. For similar conditions, isosteric heat of adsorption changes 

from 29.96 to 17.07 kJ mol–1 for WPT–AC/R32. The curve shifts downwards 

for higher adsorption temperature (when Tads < TC). The trend line starts 

moving upward for adsorption temperature higher than critical. 
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7.2 Recommendations 

The following recommendations are made by the author for future researchers which 

are related to the topics higlighted in this thesis: 

(i) Temperature dependent specific heat capacity data of promising adsorbents 

(e. g. natural and synthetic zeolites, MOFs, consolidated composites) are still 

unavailable in the literatures. Measurement of specific heat capacity of these 

samples would be beneficial for the future researchers to accurately simulate 

an adsorption cooling system. 

(ii) Adsorbed phase (adsorbent + adsorbate) specific heat capacity could be 

measured to illustrate the actual thermal scenario that is occurring during the 

adsorption process. 

(iii) Different organic compounds (pyrene, methylpyrene, thiophene etc.) can be 

used for the pyrolization of carbon adsorbents to achieve better selectivity 

for the removal of unusable pores. 

(iv) Pore shaping concept can be extended for other prospective adsorbents to 

obtain faster kinetics, increase higher thermal conductivity, decrease isosteric 

heat of adsorption. 

(v) Computer simulation can be performed for the biomass derived activated 

carbons to understand the system behavior. 

(vi) Possibility to synthesize superior activated carbons can be explored from 

residential/industrial waste materials. 

(vii) Adsorption characteristics of biomass derived activated carbon with next 

generation working fluids (HFOs, natural refrigerants) can be studied.
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