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I. Introduction 
 

 

During the last decades, the world had experienced a continuous increase in the 
development and manufacturing of airplanes due to the travel time reduction and the safety 
this means of transportation offers. Moreover, the introduction of low-cost carriers made it 
possible for a huge number of people to travel via airplanes, and thus increased the demand 
for airplanes. Air traffic has improved people’s quality of life and made it possible to shrink 
the world borders. Besides this, it also created thousands of jobs all around the world. However, 
this beneficial increase in air traffic was accompanied by an increase of multiple environmental 
pollutions.  

One environmental pollution is the increase of greenhouse gases exhausted out of jet 
engines including a large amount of carbon dioxide which is detrimental to global warming, as 
well as pollutant emissions such as Nitrogen oxides NOx. Recent combustion chambers, aimed 
at low NOx emission and high combustion efficiency, tend to decrease the secondary air flow, 
which leads to increase the vibration in the combustion chambers caused by combustion 
instabilities. 

 The second environmental pollution is the noise produced by airplanes. Taking off and 
landing of large passenger airplanes are the noisiest periods during the flight which may 
influence on the comfort of people living in the residential areas around the airports.  

The objective of this research is to study the acoustic liners used in turbofan engines to 
reduce the generated noise as well as the combustion instabilities, and to elucidate the 
influence of a bias flow passing through a perforated face sheet on the absorption capabilities 
of acoustic liners.   

1. Background 
1.1. Engine Noise 

 

Noise certification regulation 
 

The widespread usage of large passenger airplanes and the annoyance caused by their 
noise made it a necessity to quantify the noisiness of airplanes. The International Civil 
Aviation Organization (ICAO) is an agency of the United Nations, which ensures safe planning 
and development of international air transport, and the noise certification for airplanes is one 
of the missions that this agency deals with. 

The Effective Perceived Noise level in decibel (EPNdB) is a number used to evaluate the 
loudness of an airplane for a human being on the ground, and it is calculated as the sum of the 
Effective Perceived Noise Level (a measure of sound level that takes into account the 
annoyance of spectral irregularities and the duration on human beings) on three different 
points situated nearby the runway as shown in Figure I-1: 

- During takeoff at a microphone at a distance of 6.5km from the brake release. 
- During takeoff at a microphone situated at a distance of 400m from the runway center 
- During landing at a microphone at a distance of 2km from the runway threshold. 
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Figure I-1 Noise certification reference points [1] 

 

Figure I-2 shows the certification levels since the issuance of Chapter 2 (effective since 
1972) until Chapter 14 (effective for all the new airplanes produced after 2017). 

Chapter 4 is aiming to reduce the allowable SPL by 10dB over the limit of Chapter 3, and 
Chapter 14 is a revision of Chapter 4 in which the limit is reduced by 7dB compared to Chapter 
4 and an extra elbow is added to the curve in order to account for the noise of lightweight 
airplanes, and this adds an extra constraint for lightweight airplane manufacturers. 

 

 

Figure I-2 ICAO noise standards [2] 
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Such stricter standard has a role to motivate airplane and airplane engine manufacturers 
to continuously improve the existing noise reduction devices as well as to develop new 
technologies in order to meet the even stricter standard in the future.   

    

Noise sources 
 

For large passenger airplanes with turbofan engines, noise sources are classified into two, 
i.e., the primary noise source consist of the engines noise, while the secondary noise source is 
the airframe noise.  

Figure I-3 shows the different sources of noise generated in the turbofan engines. The 
noise sources are classified into turbomachinery and jet sources. 

The turbomachinery sources consist of the fan, compressor, combustor as well as turbine, 
whereas jet sources consist of the core mixing (mixing between hot-core and the fan-bypass air 
flows) and bypass mixing (mixing between the fan-bypass and surrounding air flows). 

The fan noise consist of a broadband noise in addition to the tone noise. The tone noise is 
of high sound pressure level (SPL) and caused by the spinning of the fan with a specific 
frequency. Such that the fundamental frequency of the produced sound is the blade passing 
frequency BPF and it is calculated as the number of blades RN  of the fan times its rotational 

speed  . 

  

 RBPF N   (I.1) 

   

 

 

Figure I-3 Turbo fan noise sources [3] 
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Figure I-4 shows the levels of noise generated by different components of large passenger 
airplanes during takeoff and landing, and the main source of noise in the current airplanes is 
produced by the engines during takeoff. In addition to the engines, the airframe also produces 
a high noise level during landing due to the deployed flaps and landing gears in landing 
configurations. 

 

Figure I-4 Airplane noise components [4] 

 

Figure I-4 shows also that the highest noise is produced by the fan in case of approach 
while in the case of takeoff both jet and fan noises are predominant noise sources. 

 

1.2. Combustion instabilities 
 

In order to reduce exhausted pollutant emissions of Nitrogen oxides NOx out of jet engines, 
recent combustion chambers use lean premixed combustion technology. 

The fuel and air are premixed in advance before entering the combustion chamber. This 
helps homogenize the mixture leading to more uniform temperature as well as a reduced flame 
temperature. Such a combustion results in low NOx emission and high combustion efficiency. 
However, since the lean mixture is already rich in oxygen, contrary to old generation 
combustors, recent combustion chambers, aimed at low NOx emission and high combustion 
efficiency, tend to decrease the secondary air flow. This leads to undesirable combustion 
phenomena such as a lower stability flame and combustion dynamic phenomena giving rise to 
the vibration in combustion chambers, and one of these dynamic phenomena is the thermo-
acoustic instabilities. 

Figure I-5 shows a multi-burner assembly damaged by combustion instabilities as a result 
of lean premixed combustion. And Figure I-6 shows a new multi-burner assembly. These 
Figures show the irreversible damage that can occur to the combustor if combustor stability is 
not taken into account by dampening thermos-acoustic instabilities.  

Figure I-7 show a schematic of a combustion duct were an unsteady flame results in 
generation of sound waves. Dynamic oscillations in the combustion chamber is related to 
conditions where a resonant coupling occurs between perturbations in the heat release and 
pressure field. In these conditions where the heat release perturbations is in phase with an 
acoustic wave, the results can be damaging as shown in Figure I-5. The aforementioned 
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condition is referred to as Rayleigh’s criterion. Putnam [5] formulated mathematically this 
criterion giving the following equation: 

 

 
1

𝑇
න 𝑝ᇱ𝑞ᇱ𝑑𝑡

்

଴

> 0 (I.2) 

 

where 𝑝ᇱ denotes pressure fluctuations, 𝑞ᇱ denotes heat release oscillations and T is a period 
of time. 

One of the methods to solve this thermo-acoustic instability problem is to dissipate the 
acoustic waves enough to eliminate the acoustic oscillations. This method is studied further in 
the present research.  

 

 

Figure I-5 burner assembly damaged by 
combustion instability [6] 

 

Figure I-6 New burner assembly [6] 

 

 

 

Figure I-7 Schematic of thermo-acoustic coupling in a combustion duct. 
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1.3. Noise reduction technologies 
 

Different means have been used in order to reduce the noise generated by turbofan engines 
such as installing chevrons or virtual chevrons [4] dealing with the jet noise, and acoustic 
liners in order to reduce fan noise [7]. In this study, we will focus on the conventional and 
active acoustic liners with bias flow. 

Acoustic liners are used nowadays on most passenger airplanes because of their simplicity 
and effectiveness to attenuate fan noise. 

Figure I-8 shows the locations where the acoustic liners are installed. For noise reduction, 
the main location is along the inner wall of the nacelle, and the liners installed in this area are 
conventional acoustic liners and have the main function of reducing the acoustic noise, 
however, the acoustic liners are also installed in the combustor in order to reduce combustion 
instabilities generated by acoustic waves. The liners in the combustor have a bias flow passing 
through the aperture, where bias flow is caused by the secondary air flow in the combustor.  

 

 

 

 

 

Figure I-8 Location of acoustic liners [32] 
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As shown in Figure I-9, the acoustic liners consist of a perforated plate backed by a hard 
wall, with honeycomb support used to separate the two plates. They are fixed in the inner 
walls of the engine nacelle, in order to damp acoustic waves produced by the fan. 

Conventional acoustic liners are known to well absorb acoustic energy in the range of 
frequency close to the resonance frequency. The noise produced by the engine, however, is 
broad, there comes the need for active acoustic liners, in order to optimally change the 
impedance of the liner to match the operating conditions of the engine. Various methods are 
used to technically realize active liners such as controllable piezoelectric [8] or bias flow [9] 
which is the topic of the present study.  

However active acoustic liners are still under investigation, an active method in this 
research refers to a method which adds mass, momentum or energy into the system, and these 
active methods are studied and developed to be further improved over the effectiveness of the 
conventional passive liner. Moreover, recent combustion chambers, aimed at low NOx emission 
and high combustion efficiency, tend to decrease the secondary air, which leads to increase the 
vibration in combustion chambers.  
This is why understanding how to keep the attenuation or damping performance with little 
secondary air is important. To realize it, we study the attenuation mechanism of the bias flow 
type liners. 

Figure I-10 shows an active acoustic liner where the blue arrows denote the direction of a 
bias flow passing through the backed plate.  

The reason for which a steady bias flow is chosen can be made clear by considering the 
formulae of the rate of dissipation of acoustic energy given in the textbook by Howe [10].  

 

 ∏ఠ ≈ 𝜌 න 𝐮 ∙ (𝛚 × 𝐯)𝑑ଷ𝐱 (I.3) 

 

where 𝜌 is the density, 𝐮 is the acoustic particle velocity, 𝛚 is the vorticity, and 𝐯 is the 
velocity. 

As demonstrated by Howe, the order of the term 𝛚 × 𝐯 is equal to 𝜀, the measure of the 
acoustic amplitude. Moreover the acoustic particle velocity 𝐮 only have the acoustic part and 
it is of the order of 𝜀, and as a result, the rate of production of vortical energy ∏ఠ is of second 
order (~𝑂(𝜀ଶ)). On the other hand, in the case of the acoustic model with no bias flow, both the 
velocity 𝐯 and the vorticity 𝛚 are of the order of 𝜀, thus 𝛚 × 𝐯 is of second order (~𝑂(𝜀ଶ)), 
leading to the production of vortical energy ∏ఠ of third order(~𝑂(𝜀ଷ)). As a conclusion, the 
bias flow increases the rate of dissipation of acoustic energy in Eq. (I.3) by an order of 
magnitude. 
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Figure I-9 Layout of acoustic liners. 
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Figure I-10 Acoustic liner with bias flow 
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2. Literature Survey 
 

Howe [11] theoretically proposed that a low frequency (low Strouhal number) sound 
wave can be significantly attenuated by a jet flow by converting the acoustical energy into 
energy of fluctuating vorticity, which is shed from the nozzle edge. Bechert [12] proposed 
another theory to explain this phenomenon, and this was supported via experimental data. 
Bechert [12] also proposed a simple theory to predict the optimum Mach number of bias 
flow to obtain the perfect attenuation. On the other hand, Howe's theory to predict the 
sound absorption coefficient including the effects of a bias flow is well supported by an 
experiment by Hughes and Dowling [13]. Hence, this led to the idea that the off-resonant 
performance of a resonator can be improved if a jet (or a bias flow) is introduced from an 
aperture of an acoustic liner. Lahiri et al. [14] collected this type of experimental data and 
showed that the application of a bias flow through the aperture widens the frequency 
range of dissipation, with the penalty of reduced peak performance near the resonant 
frequency. Zhao and Li [15] wrote a summary on tunable acoustic liners including a liner 
with bias flow. 

In the field of numerical simulation, Mendez et al. [16] performed a 3D simulation of 
a perforated plate with a circular aperture using the large eddy simulation (LES), and the 
results showed that LES can predict the acoustic behavior of resonators, and flow fields 
around the aperture can give an insight to the dissipation mechanism of acoustic liners. 
Then Mendez applied a homogeneous model of multi-perforated plates to an actual gas 
turbine combustor chamber, where the walls contain huge amount of holes. This method 
represents a fast and practical alternative to include the influence of perforated plates to 
the simulation.   

Ji and Zhao [17] performed a 2D lattice Boltzmann method (LBM) for an aperture with 
bias flow, and both made a comparison with Howe's theory, obtaining good agreements.  

Roche et al. [18] conducted a 3D as well as 2D axisymmetric numerical simulation of 
cylindrical acoustic liner under a normal incidence acoustic wave for different frequencies 
as well as sound pressure levels. They used the Direct Numerical Simulation (DNS) and 
good agreement was obtained between the theoretical model, 2D and 3D models 
concerning the acoustic properties such as reflection and absorption coefficients for a low 
SPL of 80dB which is considered within the linear domain. However in the case of high 
sound pressure level of 150db where non-linearity has large influence, this linear 
theoretical model is not describing the acoustic behavior properly anymore, but good 
agreement is obtain between 2D and 3D models, and this shows that by opting for a 2D 
simulation, calculation time can be reduced enormously without a loss in the accuracy of 
the results. Also, it is observed that a wider absorption spectra and lower peaks are 
obtained. 

DNS simulations were conducted by Tam et al. [19] for a 2D slit resonator of resonance 
frequency around 1 kHz for a range of frequencies of sound source from 1 kHz to 6 kHz 
and sound pressure levels of 130dB and 150dB. The absorption coefficients were obtained 
by evaluating the absorbed energy as the sum of the rate of viscous dissipation and the 
rate at which the energy is transferred to shed vortices. These simulations were validated 
by experiments using an acoustic impedance tube, in the same conditions. Good agreement 
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was obtained for the absorption coefficients, except for the case of sound source of 2 kHz 
and 130db where the experimental value is much larger than the simulation. 

Tam et al. [19] distinguish two regimes with regard to the mechanisms through which 
the absorption phenomena occurs in acoustic liners: 

- The low sound pressure level regime where the primarily mechanism of absorption is 
the viscous dissipation caused by the oscillatory boundary layer at the aperture of the 
perforated plate.  

- The high-pressure level regime where vortices develop at the opening of the aperture 
then they are shed away. The absorption is caused by a conversion of acoustic energy to 
vortical energy that is dissipated later on by viscous effects. 

Tam et al. [19] also conducted a series of experiments and Direct Numerical Simulation 
(DNS) to slit apertures with a 90° corner (straight aperture) and 45° corner (tapered 
aperture). The results obtained using the simulation supports the usage of computational 
aeroacoustics (CAA) as a design tool. 

Zhang, Q et al. [20] studied a two-dimensional resonator under normal acoustic wave, 
using DNS, and he validated his results using experimental data by Tam, et al. [21], where 
he found that the results of the experiment and the simulation are in good agreement, also 
he worked on the problem including a grazing flow which models actual conditions in 
operating engines.  

In the experimental field, Wada and Ishii [9] performed experiments for acoustic liners 
with a bias flow passing through the apertures of a perforated plate (circular straight 
perforations) and observed that the absorption range of the liner became wider and was 
not concentrated around the resonant frequency as in the case of the conventional liner. 
They compared the experimental results with Howe's extended theory proposed by Luong 
et al. [22], which considered the thickness of the perforated sheet and obtained good 
agreements. 

The macroscopic effect of the design parameters (such as the shape of the aperture and 
the flow velocity when a bias flow is applied through the aperture) on the impedance of an 
acoustic resonator was experimentally investigated via an acoustic impedance tube. The 
results revealed that the fully tapered aperture exhibited a wider absorption frequency 
range when compared to that of a straight circular aperture. However, little was known 
about the reason for such a behavior given the difficulty of visualizing the flow around the 
small apertures in the experimental setup using the impedance tube. 

In the present study, the acoustic performance of the liner and the flow field around 
the perforated plate is numerically solved using the compressible Navier–Stokes equations 
to understand the acoustic and fluid dynamic behavior of the liner and the effect of the 
shape of the perforation at a microscopic level. 

The aforementioned studies involve a long computational time and computational 
resources to perform 3D simulations. Thus, in the present study, the simulations are 
conducted using 2D large eddy simulations. For the 2D assumption to be acceptable, the 
impedance tube experiment is conducted on slit apertures where slit indicates that each 
plate has only one aperture with a high aspect ratio of 100. The aperture spans through 
the center of the plate. Subsequently, numerical simulations are conducted to focus on the 
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effect of bias flow on the absorption performance of the acoustic liner and flow field around 
the apertures. 

 

In the next chapter, the details of the numerical code and the models used are 
explained, then the implementation of the sound source and mass source to generate the 
acoustic waves and the bias flow are given while in Chapter 3 the methods used for post-
processing are explained.  

In Chapter 4, the impedance tube experiment is conducted on slit apertures where slit 
indicates that each plate has only one aperture with a high aspect ratio of 100. The 
aperture spans through the center of the plate. 

In Chapter 5, the numerical simulations conducted for conventional and active acoustic 
liners are validated with the results obtained from the experimental section. The 
simulations are conducted using 2D large eddy simulations, and are conducted to focus on 
the effect of bias flow on the absorption performance of the acoustic liner and flow field 
around the apertures. 

In Chapter 6, the theoretical models are developed by modifying the model by Hughes 
and Dowling [23] for a screen with slit apertures in order to account for the thickness as 
well as the cross-section of the aperture of the plate. The results are then compared to the 
experimental and numerical results from the previous chapters. 

Finally, few conclusions of the results obtained during this research are reported in 
Chapter 7. 
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Chapter 2 

 

II. Numerical Methods 
 

 

Nowadays numerical methods are widely used tools in many fields of engineering such as 
structural analysis, fluid dynamics, electromagnetic…, it is a mathematical field that 
implements algorithms in the interest of obtaining numerical solutions to problems defined by 
continuous functions. 

The extensive use of these methods is for the reason that complex geometries that wouldn’t 
be solved analytically can be modeled numerically with usually a great accuracy for 
engineering purposes. In addition, the advent of supercomputers and the immense 
improvement of the calculation capabilities of computers made it possible to deal with much 
more complex problems along with a reduction in computational time.  

This chapter intends to explain the numerical methods employed in this research. By 
understanding the physics and models in conjunction with the numerical schemes used, 
meaningful comparative conclusions can be drawn. 

All the simulations in this study are carried out with the large eddy simulation (LES) code 
upacs-LES developed by Japan Aerospace Exploration Agency (JAXA), which solves the 
compressible Navier Stokes equations by Finite Volume Method for multi-block structured 
mesh. 

The 6th-order compact scheme with the 10th-order compact filter is used to solve the 
convective terms of the conservation equations, while the second order central discretization 
is used for the viscous terms. 

The obtained space discretized equations are then integrated in time using the 3rd order 
Runge-Kutta explicit scheme.  

Henceforth the conservation equations of fluid dynamics are derived in order to 
understand the physics behind Computational Fluid Dynamics and Computational 
Aeroacoustics. The finite volume method is introduced, then its application to the Navier 
Stokes equations is demonstrated. The interpolation using high-order compact schemes is 
made clear and a basic explanation of the large eddy simulation formulation is given next.  
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1. Conservation Laws governing Fluid Dynamics 

 
In fluid dynamics, flowing fluid is studied to calculate properties such as density, pressure, 

velocity, temperature … 

These properties can be determined using the conservation laws of mass, momentum, and 
energy. They are stipulated as it follows: 

-the conservation of mass states that the rate of change of mass in a control volume is 
equal to the net change of mass flux over the control surfaces. 

-the rate of change of momentum is equal to the sum of forces applied on the fluid element 
surfaces. 

-the rate of change of energy is equal to the sum of the heat added to the fluid element 
and to the work done into it. 

 

The governing equations can be summarized in vectorial form as in Eqs. (II.1) to (II.5). 
For convenience, the components of coordinates and velocity are written in their indicial 
notation as 𝑥௜ and 𝑢௜ respectively, with 𝑖 from 1 to 3.  

  

j j

j jt x x

 
  

  

C VF FQ
 S  (II.1) 

 T, ,iu E Q  (II.2) 

T
, ,j j i ij ju u u p u H      

C
jF  (II.3) 

 

T

0, τ , τ  ij ij i
j

T
u

x


 
    

  
jV

F  (II.4) 

 

 T1 2 3 4 5, , , ,S S S S SS  (II.5) 

 

WhereQ in Eq. (II.2) represents the conservative variables vector composed of density, 

momentum vector and energy.  

Eqs. (II.3) and (II.4) represent consecutively the convective and diffusive terms. While Eq. 
(II.5) is the source term where 𝑆ଵ is the mass source, 𝑆2 𝑆ଷ, 𝑆ସ are the momentum sources in 
three directions and 𝑆ହ is the energy source.  

In general the source term S is considered to be null, however, in the present formulation 
and because of the need to create the mass source for the bias flow and the sound source, the 
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source term S has a finite value in specified regions where sound source and mass source are 
implemented. 

Since the governing equation are for the compressible case, the closer is achieved using 
the equation of state for perfect gas. 

 

p RT  (II.6) 

 

The viscous stress in Eq. (II.4) is calculated by Eq. (II.7). 

 

τ 2 Sij ij  (II.7) 

 

Where viscous strain-rate is defined by Eq. (II.8): 

 

1 1
S   

2 3
ji k

ij ij
j i k

uu u

x x x


  
       

 (II.8) 
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2. Calculation method 
 

2.1. Finite volume method 
 

The finite volume method is used in order to solve partial differential equations, and it is 
widely used in Computational Fluid Dynamics and Computational Aeroacoustics for certain 
advantages over the finite difference method. 

The first advantage is that the discretization is conservative because it is applied to the 
integral form of the governing equations to be solved 

The second advantage is that it doesn’t need coordinate transformation and thus it can be 
applied to both structured and unstructured grids. 

The concept behind the finite volume method begins by introducing the integral form of 
the Navier Stokes equations (II.1) over a control volume (t)V  function of time. 

 

 
(t) (t) (t)

C V
j j

V S V

dV dS dV
t t

 
  

   Q n F F S  
(II.9) 

 

Where  

Q      : conserved variables in vector form 

C
jF    : The convective fluxes of conserved variables 

V
jF    : The viscous flux of conserved variables 

n      : Unit normal vector directed outward of the surface 

S      : Rate of production of Q  

 

The numerical calculation of Eq. (II.9) by the Finite Volume Method require several 
modeling technics. 

The first model is to give the center point of each grid the average value of the property in 
consideration as in Eq. (II.10) and (II.11). 

 

 

1

V t

dV
V

 Q Q  
(II.10) 
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 

1

V t

dV
V

 S S  
(II.11) 

 

By this model, Eq. (II.9) can be written for a fixed control volume as in Eq. (II.12). 

 

 
(t)

C V
j j

S

V dS
t


  

  Q n F F  S  (II.12) 

 

The numerical calculations is then performed such that first the conservative variables 
are calculated at the boundaries of each control volume cell, once their values are known at 
the center of the cell. By using these values it is possible to calculate at the boundaries the 
convective flux in Eq. (II.3) as well as the viscous flux in Eq. (II.4). 

In section 2.2 the calculation of the viscous fluxes using the second-order central difference 
scheme is explained while in section 2.3 the calculation of the convective fluxes using the 6th 
order compact scheme is discussed. 

Figure II-1 shows a structured grid, with Cartesian coordinate convention. Eq. (II.13) is 
the discretized form of Eq. (II.12) that can be numerically solved.  

 

 1n n t
Q

V
 
 


Q Q F  (II.13) 

 

In Eq. (II.13), nQ  is the conserved variables at a step time n while 1nQ  is the conserved 

variables at step time n+1. 

The calculation of the flux term of the conservative variables  QF  for the control 

surface encompassing the control volume represented here by a cell grid as given in Figure II-1. 
The calculation method is given in Eq. (II.14). Here 1/2

C
iF and 1/2

V
iF  are respectively the 

convective and viscous fluxes at the boundaries of the cell with a cell center coordinates  T, ,i j k . 

The coordinates at the center of the boundaries in the 𝑖  direction are at coordinate 

 1 2, ,
T

i j k and  1 2, ,
T

i j k . The 𝑗 and 𝑘 directions are treated in the same manner.  
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 (II.14) 

 

 

 

Figure II-1 Coordinates at the center and surface boundaries 
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2.2. Second order central difference 
 

The accuracy of a numerical scheme, in general depends of the applied approximations. In 
this research the viscous terms of the governing equations in Eq. (II.4) are discretized using 
the second order central differentiation scheme.  

Let j be the physical property at the cell-centered node to be approximated. Let j be the 

cell average of the chosen physical property and the approximated value of j , this is due to 

the use of the Finite Volume method that is basically applied to integral forms of conservative 
variables as shown in Eqs. (II.9), (II.10) and (II.11). 

By replacing the integrand in Eq. (II.10) using the Taylor series expansion at the center 
of the cell we can write  

 

31 2

1 2 3

22 2 23 3

1 2 3
1 , 12 2 2

1 1

2

xx x

j j l l m
l l ml l mx x x j j

d d d
V x x x

        
 

   

     
              

      (II.15) 

 

Where  T

1 2 3h h hh=  is the local Cartesian coordinate defining every point in the grid 

cell with its origin in the center and 2 2i i ix h x      1,2,3i   and ix the dimension of the 

cell in each direction. 

The integration of Eq. (II.15) leads to the cancelation of the even order terms and the 
equation becomes  

 

 
3 23

4

2
1 48

l
j j

l l j

x

x

 


  
     

 h  (II.16) 

 

And thus from Eq. (II.16), the difference between the average value of the cell and the cell 
center value is of second order.  

 

 2

j j   h  (II.17) 

 

Eq. (II.17) explains the order of accuracy to which the estimated values of the viscous term 

1/2
V

iF  at the interface between two grid cells are achieved. 

In upacs-LES, the viscous stress is calculated by Eq. (II.18) as for a Newtonian fluid. 
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τ 2 Slm lm  (II.18) 

 

S𝑙𝑚 is the viscous strain-rate and it is defined by Eq. (II.19). 

The dummy variables l , m and n  take the values of the vectors , ,i j k  defining the 

Cartesian base. 

 

1 1
S   

2 3
l m n

lm lm
m l n

u u u

x x x


   
      

 (II.19) 

 

For example, the flux in the 𝑖 direction for the grid cell with center coordinates  T, ,i j k  at 

the boundary of coordinates  T
1 2, ,i j k can be calculated as in Eq. (II.20). 

 

1
2  

3 ji ki

u u v w

x x y z
  
                   


 

 (II.20) 

 

To calculate Eq. (II.20), it is necessary to estimate the gradient of each velocity 
components in each direction, this is done by simple central difference using the cell average 
velocities from the grid cells of coordinates  T, ,i j k and grid cell of coordinates  T1, ,i j k . 

Eq. (II.21) is an example to estimate the derivative of the velocity u in the 𝑖 direction 
using the value of the velocities at the cell centers 1iu   and iu  with ix  the distance between 

the two centers in the 𝑖 direction. 

  

1

1/ 2i i

i iu u

x x

u 



  




 


 

 

(II.21) 

 

And similarly all the gradients are estimated following the same method shown here and 
named second order central difference. 
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2.3. Compact schemes 
 

In Computational Aeroacoustics, there is a need to use numerical schemes leading to high 
accuracy results with low diffusion and dispersion errors and leading to good spectral 
resolution. 

Several schemes satisfy these necessary requirements. Some of the widely used schemes 
by researches in this field are the high order compact schemes. 

Kobayashi [24] formulated the high order compact schemes in finite volume method, and 
examined the stability, accuracy and spectral resolution of these methods. 

Compact schemes are based on the Pade approximation of flux at the center of the 
boundary surfaces of the grid cell using the averaged values at the cell centers. 

 In this research, the implicit 6th order compact scheme is used for the calculation of the 
convective flux and only this case is explained hereafter, more details included in Appendix A, 
where the compact scheme is used to solve burgers equation.  

For the implicit 6th order compact scheme, the interpolation of the value of a property   

at the interface of two grid cells with the index 1/ 2i  is done by the formula in Eq. (II.22). 

 In our research    is any of the conservative variables in Eq. (II.2). 

The average value at the adjacent grid cells in the line with j  and k  indexes fixed and 

i  indexed as 1i  , i , 1i  and 2i   are used to interpolate the values at the interface of the 
cells with indexes 1/ 2i  , 1/ 2i  and 3 / 2i  . The notation is shown in Figure II-2. 

 

   i6 1 1 i6 3 ii6 1 ii6 1 2

2 2 2

i i i i
i i i

a b         
  
       (II.22) 

 

The Pade interpolation method consists at finding the coefficients i6 , ii6a and ii6b   by 

expanding the function with the Taylor series around the point of index 1 / 2i  . 

For the 6th-order compact scheme, this is achieved with the coefficients as in Eq. (II.23). 

 

i6 ii6 ii6

1 29 1
,   ,    

3 36 36
a b     (II.23) 

 

As the Taylors series expansion assumes uniform spacing grid, the coefficients in Eq. 
(II.23) can only be applied to uniform spacing grids. 
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Figure II-2 Example of grid and notation for inner points 

 

Also, a 6th-order explicit compact scheme is applied for the points near the left boundary, 
which is given by the expression in Eq. (II.24). 

 

     1 ib6 1 0 ib6 2 1 ib6 3 2

2

a b c        


        (II.24) 

 

where the averaged values of the cells in Figure II-3 are used. 

 

Figure II-3 Example of grid and notation for left boundary 
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For the right boundary also the 6th-order explicit compact scheme is applied, which is given 
by the expression in Eq. (II.25). 

 

     1 ib6 ib6 ib 3

2

1 1 2 26N N N NN
N

Na b c       


          (II.25) 

 

where the average values of the cells in Figure II-4 are used. 

 

 

Figure II-4 Example of grid and notation for left boundary 

 

High wavenumber numerical noise may be caused by the mesh non-uniformity as well as 
the discrete treatment of the boundary conditions. To suppress these unphysical cell-to-cell 
numerical oscillation, the low-pass filters in the form of Eq. (II.26) are used. 

The compact filter is applied to the conservative variables in Eq. (II.2), where  and *  

are the unfiltered and filtered cell-center variables, respectively.  

The coefficients f  and fja  are given for different orders of accuracy as shown in 

Table II-1.  

 

2

1 1
* * *

0 2

N
i j i j

f i i f i fj
j

a





   
 




    (II.26) 

 

In Eq. (II.26), N is the maximum order of the filter. However, in upacs-LES the order of 
the filter is gradually shifted from the maximum order inside the calculation domain to the 
2nd order for the ghost cells near the boundary. 
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Table II-1 Coefficients of the compact Filter 

order 
0fa   1fa  2fa  3fa  4fa  5fa  fa  

10th 193 126

256
f

 

105 302

256
f

 
15 30

64
f 

 
45 90

512
f

 
5 10

256
f 

 
1 2

512
f

 

0.48 

8th 93 70

128
f

 
7 18

16
f

  7 1 2

32
f 

 
1 2

16
f

 
1 2

128
f 

 
 0.495 
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15 34
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f

  3 1 2

16
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1 2
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  0.4987 

4th 5 6

8
f

 
1 2

2
f

 
1 2

8
f 

 
   0.4997 

2nd 1 2

2
f   1 2

2
f

 
    0.49992 

  

 

In this research, the 10th-order compact filter is the maximum order chosen. Therefore, in 
this case, the relationship between the boundary points and filter order is given by Figure II-5 
and Figure II-6. 
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Figure II-5 Grid and notation for right boundary 
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Figure II-6 Grid and notation for left boundary 
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2.4. Third-order Runge-Kutta time integration 
 

The numerical simulations of turbulent flows with large eddy simulation require accurate 
and robust time-marching schemes. One of the prospective explicit time integration methods 
is given by the Runge-Kutta. These are high-order accuracy time integration methods by 
integration on different time stages. The Runge-Kutta methods are widely used in 
Computational Aeroacoustics.  

The idea behind the Runge-Kutta method is to estimate the right-hand side in Eq. (II.14) 
on different stages using different value of conservative properties Q in an interval of time 

between n t  and  1n t   and to use all these values to estimate the value of Q  at 

 1n t  . 

In upacs-LES the third-order Runge-Kutta method is implemented. Such that the flux of 
conserved variables in Eq. (II.14) are function of Q as written in Eq. (II.27). 

 

 
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
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 



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
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 
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Q Q

Q Q F Q

Q Q F Q

Q Q F Q

 (II.27) 

  

with the coefficient specified as 1 1 / 3  , 2 1 / 2   and 3 1   
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3. Large Eddy simulation 
 

Large eddy simulation is a method to calculate turbulent flows with much more accuracy 
than RANS. The need to employ this method came from the fact that the more accurate Direct 
Numerical Simulation is too expensive since it resolves all the eddies with no embedded models 
for turbulence, making DNS beyond the capabilities of nowadays supercomputers for practical 
problems.  

In RANS, on the other hand, it fails to develop a universal turbulence model that can be 
used to every situation, and this is mainly because large and small eddies are treated in same 
manner, but physically only the small eddies have an isotropic behavior and modeling these 
eddies would be a good idea, while the large eddies are anisotropic and dependent on the 
geometry of the domain simulated, thus turbulence models don’t capture them accurately. 

 A better way of action would be to compute the large eddies directly for every problem 
while the small eddies can be modeled. This methodology constitute what is referred to as the 
Large Eddy Simulation. 

 

3.1. Spatial Filtering in LES 
 

In the conventional Large Eddy simulation method the properties are filtered in space into 
large eddies, and small scale eddies, using the filtering operation in Eq. (II.28). The influence 
of small eddies is then supplemented by the use of a sub-grid scale models. 

 

      1 2 3, , ', ', ' ' 'x t G x x x t dx dx dx  
     (II.28) 

 

where x


is the location of the filtered quantity in space and 'x


 is a position vector. The 
function G is a low pass filter kernel that permits to eliminate the higher wavenumbers. The 
quantity to be filtered is denoted by   while the filtered quantity is denoted by  , where the 

overbar in this case representing the filtered quantities and not a mathematical averaging 
operation.  

 

One of the examples of the function G is known as the Top-hat filter [25] and is given by Eq. 
(II.29) as it follows: 

 

 
'3

'

21
, ',

0 2

i i

i i

x x
G x x

x x

    
  

   

   
 

(II.29) 

 

  is the called the filter cutoff width, and it is a measure of the size of the eddies to be retained 
in the calculation. Since in a discretized domain only the data at one point per cell is kept, 
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there is no need to have a filter cutoff width smaller than the grid size, that’s why in CFD, the 

cutoff width is of the same size as the grid size or equal to 3 x y z    for a non-uniform three-

dimensional grid. 

Eq. (II.28) is reported in all theoretical textbooks and papers explaining large eddy 
simulation, and this is called explicit filtering however this is rarely implemented in the CFD 
algorithms. The reason for this is that when the conservation equations are solved using the 
finite volume method, the equations are integrated over control volumes. These integrated 
equations take the form of a convolution with a top-hat filter as shown previously in Eqs (II.10), 
(II.11) and (II.12).   

 

3.2. Explicit and implicit sub-grid scale models  
In the large eddy simulation, eddies that are smaller than the grid size cannot be resolved 

accurately, however their effect is of great importance and a key to accurate numerical 
simulations. 

Sub-grid scale modeling accounts for the impact of these unresolved small scale eddies on 
the resolved Large eddies. 

Hickel et al. [26] explains the basics of implicit large eddy simulation, and Grinstein et 
al. [27] dedicated a whole textbook to treat the problem in much more details. 

By considering a nonlinear transport equation of a scalar  with the following general 

equation, with  F   a nonlinear flux function of the variable . 

 . 0
d

F
dt

     
(II.30) 

 

The application of the spatial filtering operation shown in Eq. (II.28) to the generic 
nonlinear transport in Eq. (II.28), the filtered form can be written as in Eq. (II.31). 

  . 0
d

G F
dt

      
(II.31) 

 

We note the discretized function N , which is used in the numerical simulation and it 

represents the filtered function projected over the grid points  N jx x    

Such that  

  ,N jx j     (II.32) 

 

Eq. (II.31) can be rewritten in a discretized form as in Eq. (II.33).  

    . .N
N N SGSG F G

t


 


      


 

(II.33) 
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where SGS  is equal to the error introduced by the discretization and it is equal to the 

difference between the continuous and discrete flux 

   SGS N NF F     (II.34) 

 

In the explicit SGS models try to give an approximation to the right-hand side of Eq. 
(II.33) such as Smagorinsky [28] or Vreman [29] eddy viscosity models. 

 

However since the explicit sub-grid scale models are just approximations, a modeling error 

M  is introduced to the Eq. (II.33) such that this error is equal to the difference in Eq. (II.35).

SGSM  is the explicit sub-grid scale model. 

   . .M SGS SGSG G M        (II.35) 

 

When these equations are implemented for computer calculations, an extra error called 
truncation error appears. It is the result of numerical approximations to the analytical 
functions and mathematical operations of the numerical schemes. These approximations are 
indicated with an upper arc in Eq. (II.36).  

 

         . . . .N N N N N SGS SGSG F G F G M G M             
     

  (II.36) 

 

Finally, we end up with a modified differential equation of the form  

 

    . .N
N N N M SGSG F G

t


   


       


  

(II.37) 

 

In this research, we use what is called an implicit large eddy simulation (ILES) method, 
contrary to the conventional LES where an explicit sub-grid scale model SGSM  is added. In 

ILES the numerical scheme errors and the sub-grid scale model are coupled. 

If the truncation error approximates the sub-grid scale stress, then it would be equivalent 
to an implicit sub-grid scale model. 

 .N SGSG      (II.38) 
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3.3. Filtered Navier Stokes equations in upacs-LES 
 

In upacs-LES the governing equations are based on the formulation given by Vreman et 
al [29] and implemented by Enomoto et al [30]. 

The Favre average operation of a physical property is used such that    . 

 Where



  is a mass-weighted filtered physical property like velocity and temperature… 

 This operation is only a change of variable and doesn’t inherit the properties of the filtering 
operation with the convolution operator. 

 

From the application of the filtering operator in Eq. (II.28) to the governing equations of 
fluid flow in Eq. (II.1) we get the filtered continuity equation. 

0i

i

u

t x

 
 

 


 
(II.39) 

 

Repeating the process to momentum equations in Eq. (II.1).  

 ˆ
0

ij iji ji

j i j

u uu p

t x x x

    
   

   

 
 

(II.40) 

Eq. (II.40) have the same form as the Navier Stokes equations. However, for solving the 
filtered velocity field an extra term appears due to the filtering operation and it is called the 

sub-grid scale stress  ij i j i ju u u u      . 

The viscous stress tensor included in Eq. (II.40) is calculated using the filtered properties. 
The hat symbol ̂  is used to refer to quantities calculated with filtered properties. 

1
ˆ 2

3ij ij kk ijS S     
 
   

(II.41) 

With the strain tensor calculated as 
1

2
ji

ij
j i

uu
S

x x

 
     

  and a viscosity function of the 

temperature   T    with the use of Sutherland’s law.  

 

ij  is the sub-grid scale stress approximated with same form as the viscous stress tensor, 

except that instead of the molecular viscosity, eddy viscosity is used.    

  1
2

3ij i j i j t ij kk iju u u u S S         
 
     

(II.42) 
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The filtered energy equation is obtained by application of the filtering operator to Eq. (II.1). 

The total energy E is also calculated with filtered variable as  1

1 2 i i

p
E u u 


 


   

       ˆ
ˆ 0

j j j

ij ij i
j j j

E p u q QE
u

t x x x

  
    

    
   


  

(II.43) 

 


jq is the heat flux vector calculated as a function of the filtered variables with Eq. (II.44). 

 

 p
j

r j

C T
q

P x

 
 




 

(II.44) 

 

And the effect of the dissipation by sub-grid scale on the large eddies is included as in Eq. 
(II.45). It is a function of the eddy viscosity t . 

 

j p t

j j rt j

Q C T

x x P x

   
      


 

(II.45) 

 

Since the governing equation are for the compressible case, the closer is achieved using 
the filtered equation of state. 

 

p RT   (II.46) 

 

Many sub-grid scale models are implemented in upacs-LES. Three of these models 
(Smagorinsky model,Vreman Model, and MILES) are introduced hereinafter. 

 

Smagorinsky model 

Smagorinsky et al. [28], developed a sub-grid scale model named after his name.  In this 
model Smagorinsky generalized the turbulence viscosity introduced by Boussinesq to the large 
eddy simulation.  

In the Smagorinsky model, the effect of the small scale eddies on the large resolved eddies 
is model with an eddy viscosity of the form of Eq. (II.47). 
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 2

t sC S     (II.47) 

 

ijS  is the strain tensor and  
1

2
ij ijS S S   is its magnitude. 

To complete the closure the Smagorinsky constant sC needs to be specified, and its value 

is known to vary with applications. In the literature we can find different used value, for 
example, Deardoff [31] recommends a value of 0.1sC   for a turbulent channel flow, even 

though the theoretical calculated coefficient is equal to 0.18sC  . This value may be reduced in 

order to reduce the excessive dissipation of this model. 

 

Vreman model 

 

Vreman [29] proposed a sub-grid scale model which corrects some of the drawback of the 
Smagorinsky model. The sub-grid dissipation vanishes for laminar shear flow near the wall 
boundaries due to the flow function B .  

The proposed eddy viscosity is of the form  

 

t c
ij ij

B
V 

 
  

(II.48) 

 

with 
12 13

2 2 2
11 22 11 33 22 33 23B               , the second invariant of the tensor, and 

j
ij

i

u

x







are the first-order derivatives of the filtered velocity field. 

The constant cV  is related to the constant of Smagorinsky sC  by the relation 22.5c sV C , 

and this value is often equal to 0.025cV   for turbulent flows. 

 

MILES  

The Monotonic Integrated Large Eddy Simulation (MILES) is a large eddy simulation 
approach. In MILES the implicit sub-grid scale models are built such that the discretization 
errors are coupled to the resolvable scales as shown in Eq. (II.38) where the truncation errors 
approximates the sub grid scale stress. 

In upacs-LES, this is simply obtained by having zero turbulence viscosity     

0t   

 

 



Chapter II: Numerical Methods 

  32 
 

 

4. Implementation of the sources 
 

This research simulates numerically using CFD conditions similar to the ones 
encountered in an impedance tube experiment [21]. The generation of the sound wave in the 
experiment using a loud speaker is simulated.   

4.1. Sound source model used in section V.1. 
 

The sound source used in this research is implemented in a specified region of the 
calculation domain. This is realized by the addition of the source term S  in Eq. (II.5) to the 
flux term in Eq. (II.14) throughout time integration procedure. 

In the case of the sound source, the source term vector becomes 

 

𝑺 = [𝑆ଵ, 𝑆ଶ, 0,0, 𝑆ହ]୘ 
(II.49) 

 

The first term 𝑆ଵ in Eq. (II.49) denotes the oscillations in the mass caused by the desired 
sound wave. 𝑆ଵ is given by Eq. (II.50) as follows: 

 

𝑆ଵ =
𝜌𝐴𝑢௔௖(𝑡)

𝑉௦௦
 (II.50) 

 

where 𝑉௦௦ is the volume of the sound source region and 𝑢௔௖ is the acoustic particle velocity 
changing sinusoidally in time as given in Eq. (II.51). 

 

𝑢௔௖(𝑡) = 𝑢௔ sin(𝜔𝑡) 
(II.51) 

 

Here  𝜔 denotes the angular frequency and 𝑢௔ denotes the amplitude of the acoustic 
particle velocity that leads to the amplitude of the specified acoustic pressure wave 𝑝௔. 

The amplitude of the acoustic particle velocity is calculated as 𝑢௔ = 𝑝௔ 𝑍଴⁄ , where 𝑍଴ = 𝜌𝑐 
denotes the characteristic impedance of the air.  

 

The second term 𝑆ଶ in Eq. (II.49) denotes the oscillations in the momentum caused by 
the desired sound source. 𝑆ଶ is given by Eq.(II.52) as follows: 

 

𝑆ଶ = 𝑆ଵ × 𝑢௔௖(𝑡) 
(II.52) 
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The fifth term 𝑆ହ in Eq. (II.49) denotes the relationship of the internal energy and the 
desired sound wave pressure amplitude. 𝑆ହ is given by Eq. (II.53) as follows: 

 

𝑆ହ = 𝑆ଵ ൬𝐶௩𝑇଴ +
1

2
(𝑢௔௖(𝑡))ଶ൰  (II.53) 

 

where  

𝐶௩ : Specific heat at constant volume 

𝑇଴ : Temperature  

 

In order to avoid any undesired oscillations caused by the introduction of the sound source, 
a time ramping function is introduced. 

  

 
3

0

min 1.0,
t

f t
t

  
      

 
 

(II.54) 

 

The function defined in Eq. (II.54) is then multiplied into the terms in Eq. (II.49) to give 

 

 
0t

S Sf t   (II.55) 

 

By doing so, the sound source is introduced gradually until the time t  of the solution 

reaches a certain chosen ramping time 0t . 

The desired sound amplitude pressure 𝑝ୟ in Pascal is calculated from the sound pressure 
level SPL of the sound wave using Eq. (II.56). 

 

2010
SPL

a refp p
 
 
   

 
(II.56) 

 

where refp  is an international reference sound pressure considered as the threshold of human 

hearing [32] and it is equal to  

 

 52 10 Parefp    (II.57) 

 



Chapter II: Numerical Methods 

  34 
 

4.2. Sound source model used in section V.2. 
 

The sound source used in this research is implemented in a specified region of the 
calculation domain. This is realized by the addition of the source term S  in Eq. (II.5) to the 
flux term in Eq. (II.14) throughout time integration procedure. 

The sound source is implemented in the solver as an energy source that changes 
sinusoidally in time as shown in Eq. (II.58) as follows: 

 

𝑆ହ = 𝑒௜ sin(𝜔𝑡) =
𝑝௔

𝛾 − 1
sin(𝜔𝑡) (II.58) 

 

Here 𝜔 denotes the angular frequency and 𝑒௜  denotes the amplitude of the internal energy that 
leads to the amplitude of the specified acoustic pressure wave 𝑝௔.In Eq. (II.58) 𝛾 is the specific 
heat ratio  

 

4.3. Mass source 
 

In order to add a bias flow exiting the cavity of the resonator in the direction of the acoustic 
tube and at the same time to simulate the reflection of the sound wave from the back wall of 
the cavity, a mass source is implemented to the solver code in the region near the back plate. 

To realize this, we add a source term to the Navier-Stokes equations. 

In order to successfully generate a bias flow through the aperture, in addition to defining 
the mass source, it is necessary to add momentum and energy source terms in addition to the 
mass. 

In our situation, we add a mass source
1S , the momentum source in the 𝑖 direction 

2S

and energy source 
5S .   

The source term vector becomes as follows: 

 

 T1 2 5, ,0,0,S S SS  (II.59) 

 

 

The following quantities are needed for the formulation of the source: 

𝜌     : Density 

𝑢୨ୣ୲    : Velocity at the aperture 

𝐴୨ୣ୲    : Aperture area 

𝑉୲୭୲ୟ୪   : Volume of the mass source region 
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Then the mass source 1S  can be calculated as  

 

total
1

total

m
S

V

  

(II.60) 

 

where 𝑚̇୲୭୲ୟ୪ is the required mass flow at the aperture and it is calculated by Eq. (II.61). 

 

 total jet jet  kg / sm u A  (II.61) 

 

And the momentum source in the 𝑖 direction 
2S  is defined by Eq. (II.62). 

 

total jet
2

total

m u
S

V



 (II.62) 

 

And the energy source
5S  is calculated as the sum of internal energy of the added mass 

plus its kinetic energy given by Eq. (II.63). 

 

 2

5 total v 0 jet
total

1 1

2
S m C T u

V
   
 

  (II.63) 

 

In this chapter, the general calculation procedure to Computational Fluid Dynamics is 
discussed. The derivation of the governing equations of fluid dynamics, and the numerical 
schemes used in this research are explained. A basic introduction to large eddy simulation 
method is given. At last the implementation method of the sound source, as well as the mass 
source in the CFD code, is presented.  

In the next chapter, we explain the post-processing tools used in this research. First, the 
two-microphone method used to estimate the absorption coefficient is presented, then a 
different method to estimate the absorption coefficient based on viscous dissipation is 
introduced.  
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Chapter 3 

 

 

III. Post-Processing Methods 
 

 

One of the important steps when dealing with Computational Fluid Dynamics is the post-
processing of the results obtained by the calculation. In this research, in addition to the 
conventional commercial tools to get fluid flow contours, the methods to calculate acoustic 
properties such as the absorption coefficient are used. 

 

1. Transfer Function Method 
 

The transfer function method [33] is a procedure to measure acoustic impedance. In this 
study, this method is used in both the experiments as well as the numerical simulations. This 
method is also called the two microphone method. The two microphone method gives accurate 
acoustic properties over a wide frequency range by using broadband excitation such as white 
noise. Moreover performing the transfer function method in the experiment is very fast 
compared to the standing wave method. Also in CFD, the benefit of the two microphone method 
over the standing wave method is that the impedance tube can be shorter which reduces the 
calculation time. In this section, the derivation of the transfer function method to obtain to 
necessary acoustic properties is given.  

To be accurate, the normal impedance tube deals with plane waves traveling in the duct. 
Such an assumption is only valid for sound waves for which wavelengths are longer than the 
tube diameter. The standard ISO 10534-2:1998[34] specifies the applicable frequency range as 
follows: 

 

 𝑓௟ <  𝑓 < 𝑓௨ (III.1) 

 

Here, 𝑓௟  is the lower limit frequency, which is stipulated by the accuracy of signal 
processing. 𝑓௨ is the upper limit frequency beyond which non plane wave modes exist inside 
the tube. 𝑓  is the excitation frequency from the sound source. 

The upper-frequency limit 𝑓௨ in the case of a circular pipe is obtained as follows: 

 

 𝑓௨ = 0.58
𝑐

𝑑
 (III.2) 
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where 𝑑 is the inner diameter and 𝑐 is the speed of sound. 

The upper-frequency limit 𝑓௨  is also limited by the distance  𝑠  between the two 
microphones used in order to ensure a certain phase difference. The standard ISO 10534-
2:1998[34] requires around a half wave length difference: 

 

 𝑓௨ = 0.45
𝑐

𝑠
 (III.3) 

 

The lower limit frequency depends on the microphone spacing and the accuracy of the 
analysis system. As a general guideline, when the microphone spacing is increased, the 
measurement accuracy is improved. 

The microphone spacing needs to exceed 5% of the wavelength of the measurement lower 
limit frequency as follows: 

 

 𝑓௟ = 0.05
𝑐

𝑠
 (III.4) 

 

Figure III-1 shows a normal incidence acoustic impedance tube setup using two 
microphones. The sound pressure at the location of microphone 1 is the sum of the incident 
pressure acoustic wave 𝑝ூ(𝑥ଵ) =  𝑝̂ூ𝑒௝௞௫భ at location of microphone 1 and the reflected acoustic 
wave 𝑝ோ(𝑥ଵ) = 𝑝̂ோ𝑒ି௝௞௫భ at the same location.  

 

 𝑝ଵ = 𝑝ூ(𝑥ଵ) + 𝑝ோ(𝑥ଵ) (III.5) 

 

while the sound pressure at the location of microphone 2 is the sum of the incident acoustic 
wave 𝑝ூ(𝑥ଶ) = 𝑝̂ூ𝑒௝௞௫మ  and the reflected acoustic waves 𝑝ோ(𝑥ଶ) = 𝑝̂ோ𝑒ି௝௞௫మ . Here 𝑝̂ூ  and 𝑝̂ோ 
are the complex amplitudes at the surface of the tested sample where 𝑥 = 0;  

 

 𝑝ଶ = 𝑝ூ(𝑥ଶ) + 𝑝ோ(𝑥ଶ) (III.6) 

 

𝐻ଵଶ is the transfer function of the resulting standing sound wave, and it is calculated as 
the ratio of the pressure at location 2 and pressure at location 1.  

 

 𝐻ଵଶ =
𝑝ଶ

𝑝ଵ
 (III.7) 
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Substituting Eqs. (III.5) and (III.6) into Eq. (III.7) and dividing both the numerator and 
the denominator by 𝑝̂ூ we get 

 

 𝐻ଵଶ =
𝑒௝௞௫మ + 𝑅𝑒ି௝௞௫మ

𝑒௝௞௫భ + 𝑅𝑒ି௝௞௫భ
 (III.8) 

 

where we define the reflection coefficient as 𝑅 = 𝑝̂ோ 𝑝̂ூ⁄ . 

By solving Eq. (III.8) for the reflection coefficient 𝑅 we get Eq. (III.9).  

 

 𝑅 =
𝐻ଵଶ𝑒௝௞௫భ − 𝑒௝௞௫మ

𝑒ି௝௞௫మ − 𝐻ଵଶ𝑒ି௝௞௫భ
 (III.9) 

 

By dividing the numerator by 𝑒௝௞௫భ and the denominator by 𝑒ି௝௞௫భ  of Eq. (III.9) and 
defining the distance between the two microphones as s = 𝑥ଵ − 𝑥ଶ we get Eq. (III.10) as follows:  

 

 𝑅 =
𝐻ଵଶ − 𝑒ି௝௞௦

𝑒௝௞ୱ −  𝐻ଵଶ 
𝑒ଶ௝௞௫భ (III.10) 

 

We define the transfer function of the incident wave as the ratio of the pressure of the 
incident acoustic wave at the location of microphone 2 to the location of microphone 1, and it 
is given by Eq. (III.11). 

 

 𝐻ூ =
𝑝ூ(𝑥ଶ)

𝑝ூ(𝑥ଵ)
=

𝑝̂ூ𝑒௝௞௫మ

𝑝̂ூ𝑒௝௞௫భ
= 𝑒௝௞(௫మି௫భ) = 𝑒ି௝௞௦ (III.11) 

 

In the same manner, the transfer function of the reflected wave is defined as the ratio of 
the pressure of the reflected acoustic wave at the location of microphone 2 to the location of 
microphone 1, and it is given by Eq. (III.12).  

  

 𝐻ோ =
𝑝ோ(𝑥ଶ)

𝑝ோ(𝑥ଵ)
=

𝑝̂ோ𝑒ି௝௞௫మ

𝑝̂ோ𝑒ି௝௞௫భ
= 𝑒௝௞ୱ (III.12) 

 

By replacing Eqs. (III.11) and (III.12) into Eq. (III.10) we get the following equation which 
determines the reflection coefficient at the surface of the sample we desire to measure.  
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 𝑅 =
𝐻ଵଶ − 𝐻ூ

𝐻ோ −  𝐻ଵଶ 
𝑒ଶ௝௞௫భ (III.13) 

 

It is to be noted that the reflection coefficient at the location 𝒙𝟏 of the microphone 1 is 
given by Eq. (III.14). 

 

 𝑅𝒙𝟏
=

𝐻ଵଶ − 𝐻ூ

𝐻ோ −  𝐻ଵଶ 
 (III.14) 

 

The surface impedance of the liner is obtained by using the reflection coefficient as given 
in Eq. (III.15) as it follows: 

 

 
𝑍

𝑍଴
=

1 + R

1 − R
 (III.15) 

 

with 𝑍଴ = 𝜌𝑐 is the characteristic acoustic impedance of air. 

On the other hand, the absorption coefficient α of the liner is expressed as the ratio of 
sound intensity absorbed 𝐼௔௕௦ and the incident sound intensity 𝐼௜௡௖. 

 

 𝛼 =
𝐼௔௕௦

 𝐼௜௡௖
 (III.16) 

 

The sound intensity is defined as the sound power per unit area. It can be calculated as 
the multiplication of sound pressure p  and acoustic particle velocity v .  

 

 𝐼 = 𝑝𝑣 =
𝑝ଶ

𝑍଴
 (III.17) 

 

By writing the absorbed intensity 𝐼௔௕௦ as the difference between the incident intensity 
 𝐼௜௡௖  and reflected intensity 𝐼௥௘௙, Eq. (III.16) becomes  

  

 𝛼 =
 𝐼௜௡௖ − 𝐼௥௘௙

 𝐼௜௡௖
= 1 −

𝐼௥௘௙

 𝐼௜௡௖
 (III.18) 

 

By substituting Eq. (III.17) in Eq. (III.18), the absorption coefficient can be written as a 
function of the reflection coefficient as it follows: 
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 𝛼 = 1 − 𝑅ଶ (III.19) 

 

The method described in this section is implemented in the commercial numerical 
computing environment MATLAB. This software allows to perform matrix manipulations, 
function plotting, and algorithm implementation.  

The discrete data obtained by the microphones in the acoustic impedance tube in both the 
experiments as well as the CFD calculations in this research are in the time domain. 
Consequently, the use of the fast Fourier transform procedure in MATLAB is necessary in 
order to obtain the discrete Fourier transform. The implementation code using Matlab is given 
in the Appendix C.  

Details on the use of the fast Fourier transform can be found in the textbook by Steven T. 
Karris [1]. As a result, we can write the pressure waves and the transfer functions in the 
complex frequency domain as defined in this section.  

 

 
 
 

 
 

 

 

Figure III-1 Sound impedance tube with Transfer Function Method 
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Mic2  

x=x2 

Tested sample  
Loud speaker  
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2. Viscous dissipation method 
 

Different from the previous method based on the pressure signals saved by the two 
microphones in CFD, in this method the calculation of the absorption coefficient is based on 
the evaluation of the viscous dissipation rate in CFD.  

The absorption coefficient in this evaluation is determined as the ratio of the absorbed 
acoustic power carried by the wave passing through the aperture to the total acoustic power 
traveling in the impedance acoustic tube. 

Viscous effects cause the absorption of acoustic waves in perforated plates (Tam et al. [25] 
and Zhang et al. [12]). Thus, it is important to calculate the energy rate at which acoustic 
energy is converted to viscous dissipation as given in Eq. (III.20). 

 

 𝐸୴୧ୱୡ୭୳ୱ
୴ = ම 𝐷ഥ(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

௏

 (III.20) 

 

Eq. (III.20) is the integration of the time-averaged dissipation rate 𝐷ഥ(𝑥, 𝑦, 𝑧) given in Eq. 
(III.21) over the volume V. This volume is assumed to be large enough to include the 
dissipation caused by the shed vortices as shown in Figure III-2. 

 

 𝐷ഥ(𝑥, 𝑦, 𝑧) =
1

𝑇
න 

்

଴

𝑑𝑡 (III.21) 

 

 

In Eq. (III.22),  is called the viscous dissipation function, and it denotes the rate of 
conversion of the viscous force work to internal energy. The viscous dissipation function is 
expressed for a Newtonian fluid as specified by Greitzer et al. [26]. 

 

 

 = τ௜௝

𝜕𝑢௜

𝜕𝑥௝
= 2𝜇 ቈ൬

𝜕𝑢

𝜕𝑥
൰

ଶ

+ ൬
𝜕𝑣

𝜕𝑦
൰

ଶ

+ ൬
𝜕𝑤

𝜕𝑧
൰

ଶ

቉
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

భ

 

 +2𝜇 ቈ−
1

3
൬

𝜕𝑢
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𝜕𝑤
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൰

ଶ

቉
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య

 

(III.22) 
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The viscosity of air 𝜇 is calculated via Sutherland’s law. Eq. (III.22) corresponds to the 
sum of three terms. ଵ denotes the dissipation caused by the normal deformation of the fluid 
element. ଶ is the dissipation caused by the dilatation of the fluid element. And finally, 
ଷ accounts for the dissipation caused by angular deformation when the considered fluid 
element undergoes shear deformation.  

 

The acoustic intensity of the incident sound wave is defined as 𝑝ூ
ଶതതത 𝜌଴𝑎଴ൗ   where 𝑝ூ  is 

the incident sound pressure. Thus the acoustic power through the aperture can be written as 
in Eq. (III.23), where sA  is the aperture area.    

 

 𝐸௜௡௖௜ௗ௘௡௧
௦ =

𝑝ூ
ଶതതത𝐴௦

𝜌଴𝑎଴
 (III.23) 

 

Integration domain 

Figure III-2 Integration domain 
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And the acoustic power through the impedance acoustic tube can be written as in Eq. 
(III.24), where tA  is the tubes area. 

 

 𝐸௜௡௖௜ௗ௘௡௧
௧ =

𝑝ூ
ଶതതത𝐴௧

𝜌଴𝑎଴
 (III.24) 

 

The term    2

viscous

s
incident i sE E p a A    denotes the rate at which acoustic energy is 

absorbed by the acoustic liner as a results of viscous dissipation.  

Finally, the absorption coefficient can be calculated by Eq. (III.25). 

 

 𝛼 =
൫𝐸௩௜௦௖௢௨௦

௏ 𝐸௜௡௖௜ௗ௘௡௧
௦⁄ ൯ × ൫𝑝ூ

ଶതതത 𝜌଴𝑎଴ൗ ൯𝐴௦

൫𝑝ூ
ଶതതത 𝜌଴𝑎଴ൗ ൯𝐴௧

=
𝐸௩௜௦௖௢௨௦

௏

𝐸௜௡௖௜ௗ௘௡௧
௦ ×

𝐴௦

𝐴௧
 (III.25) 

 

        

3. Tecplot 
 

A commercial software called Tecplot 360 EX 2015 was used to visualize and analyze the 
flow field and to calculate common fluid properties such as vorticity, velocity, pressure,.., from 
the conserved variables (density, momentum, and energy) obtained as a results of the 
numerical calculation using upacs-LES. 

With Tecplot, it is possible to draw contours, vectors, and streamlines colored with 
different fluid properties, and to perform animations for unsteady calculations.  

As it is not possible to calculate the viscous dissipation rate described in section III.2 using 
the Calculate Variables tool in Tecplot, the Tecplot macro function provided in the software 
was used.  

Macro commands are a set of instructions which enable to perform multiple actions in 
Tecplot. The instructions are written in a similar way as language programming. This also 
permits to perform actions such as looping and conditional commands. More details are in the 
scripting guide of Tecplot 360[35]. 
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Chapter 4 

 

IV. Impedance tube Experiment 
In order to obtain the acoustic properties of the resonators considered in this study, the 

acoustic impedance tube experiment is first conducted for validation purposes of the numerical 
simulations conducted in Chapter V as well as the validation of the theoretical models in 
Chapter VI.  

First, the experimental rig is described, then the acoustic resonators used in the 
experiment and their dimensions are given. Finally, the absorption coefficient results and the 
impedance of each resonator are shown.  

 

1.  Experimental configuration 
 

In this section, the experimental configuration used in this experiment is described. The 
impedance tube experimental rig is shown in Figure IV-1 and the schematic representation of 
the experimental rig is given in Figure IV-2.   

All experiments conducted in this study are based on the two-microphone method 
described in Chapter III.  

A tube made of plastic is used as a duct for the sound waves. The internal diameter of the 
tube is 100 mm and it has a length of 2 m.  

A full-range speaker (FF85WK, FOSTEX) shown in Figure IV-4 has a frequency range up 
to 28 kHz and a resonance frequency about 115 Hz. Because of this resonance frequency, the 
results for frequencies lower than 200Hz are ignored in our experiments. The loudspeaker is 
attached at one end of the tube to generate sound waves. At the other end of the tube, the 
resonator specimen under test is attached. The cavity of the resonator has a depth of 52 mm 
and it has an internal diameter of 100 mm. The diameter makes it possible to examine low-
frequency acoustic resonators since it exhibits a cut-off frequency of approximately 2000 Hz. 
Two different perforated plates made of aluminum with a thickness of 3 mm with different 
aperture geometry are installed between the cavity and tube sections. Such thick plates are 
selected to stiffen the plates to reduce the absorption caused by the vibration of the plates. 

In order to produce a bias flow through the perforated plate, two air supply holes are 
created on the cavity side wall and are connected to compressed air by using flexible pipes. A 
mass flow controller (KOFLOC 8550) is used to regulate the desired flow rate. The complete 
configuration in the case of bias flow resonator is as shown in Figure IV-6.  

The flow outlet is made by 30 mm × 1.0 mm slit in the flange where the loudspeaker is 
attached as shown in Figure IV-3. 

The white noise is generated by the computer and fed to an amplifier (INTEGRATED 
AMPLIFIER PM4200, Marantz) before it is finally fed to the loudspeaker. 
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Two free-field array microphones (GRAS 40PH) are attached to the impedance tube as 
shown in Figure IV-5 and they measure the pressure composed of the incident and reflected 
waves inside the tube. These microphones have a wide useful frequency range reaching up to 
20 kHz and a large dynamic range topping at around 135 dB. The two microphones are 
attached at distances corresponding to 148 mm and 218 mm from the face of the perforated 
plate of the resonator. Both microphones are attached to an AD recorder (TEAC LX-110) and 
the recorded data is stored in a computer. For each case, ten samples with a data length of 
600000 and sampling rate of 12 kHz are recorded.  

The experiment is conducted at atmospheric conditions, with a temperature of 
approximately 13 °C and a sea-level atmospheric pressure of 101.3 kPa. 

 

 

Figure IV-1 Acoustic impedance tube 

 

Figure IV-2 Schematic of the experimental setup 
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Figure IV-4 Loud speaker 

  

 

Figure IV-6 Model of active acoustic liner 

Figure IV-5 Installation of microphones 

Figure IV-3 Slit on the flange for 
outflow of jet 
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2. Perforated plates 
 

Figure IV-7 and Figure IV-8 show the geometry of the two plates with the slit apertures 
used. The diameter of the plates corresponds to 110 mm with a thickness of ℎ = 3 mm. Each 
plate has only one slit aperture spanning through the center. The straight aperture in 
Figure IV-7 exhibits a cuboid with a width of 𝐷 = 1 mm and length of 100 mm. The tapered 
aperture in Figure IV-8 exhibits a trapezoidal shape with a width of 7 mm at the base and 1 
mm at the top. Both plates have an open area ratio of P = 1.27%. The open area ratio is defined 
as the ratio of the area of the aperture to area of the impedance tube. The dimensions of the 
straight and tapered plates are summarized respectively in Table IV-1 and Table IV-2.  

The resonant frequency of a resonator is related to its aperture thickness ℎ, cavity depth 𝑙, 
and open area ratio 𝑃 and is given by Eq. (IV.1) as follows: 

 

 𝑓଴ =
𝑐

2𝜋
ඨ

𝑃

𝑙(ℎ + 𝛿)
 (IV.1) 

 

where 𝛿 denotes the end correction and 𝑐 denotes the speed of sound. 

For a straight slit resonator, the end correction is estimated by Eq. (IV.2) as follows: 

 

 𝛿 = 𝐾𝐷 ;  𝐾 =  −
2

𝜋
ln ቂsin ቀ

𝜋

2
ቁቃ (IV.2) 

 

Subsequently, the estimated resonant frequency of the straight slit aperture is 365 Hz. 

The results of the experiments discussed in a later section indicate that the resonant 
frequency for the straight aperture corresponds to approximately 340 Hz while the resonant 
frequency for the tapered aperture corresponds to approximately 460 Hz. 
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Figure IV-7 Straight aperture, unit: [mm] 

 

 
Table IV-1 dimensions of the straight slit aperture 

Width of the slit 1.0 mm 

Length of the slit 100 mm 

Open area ratio 1.27 % 

Tapering angle 0 deg. 

Number of apertures 1 

Plate diameter 110 mm 

Plate thickness 3.0 mm 

Material Aluminum 
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Figure IV-8 Tapered aperture, unit: [mm] 

 

 
Table IV-2 dimensions of the tapered slit aperture 

Width of the slit at the exit 1.0 mm 

Length of the slit 100 mm 

Open area ratio 1.27 % 

Tapering angle 45 deg. 

Number of apertures 1 

Plate diameter 110 mm 

Plate thickness 3.0 mm 

Material Aluminum 
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3. Conduction of the experiment 
 

Here, the procedure for measuring the sound absorption coefficient in this experiment is 
explained. 

 

Installation of the perforated plate 

 

The active resonator shown in Figure IV-6 is fixed to the acoustic tube by bolts and nuts. 
Different perforated plates can be placed between the cavity section and the acoustic tube 
section. After installing the perforated plate, the bolts and nuts are uniformly tightened to fix 
the perforated plate resulting in an active resonator. 

 

Measurement of acoustic data 
 

First, white noise is output from audio signal generation software (Wave Gene [23]) from 
the computer, and the sound source is generated by the loudspeaker through an amplifier. 
Next, the mass flow controller is used to adjust the jet flow rate. After that, using TEAC LX-
110, we record the acoustic data while paying attention so that the signal is not saturated. At 
this time, the measurement voltage is 1.0 V. For each case, ten samples with a data length of 
0.6 million and sampling rate of 12 kHz are recorded. 

 

Calculation of the sound absorption coefficient and impedance 
 

From the acoustic data acquired, the sound absorption coefficient and impedance 
(resistance and reactance) are calculated based on the theory of the two-microphone method 
presented in Chapter III.  

In this experiment, the above calculation was performed by the MATLAB program which 
is found in the Appendix C.  

During this experiment, the frequency to be evaluated is from 200 Hz to 750 Hz, taking 
into consideration the cut-off frequency as well as the resonance frequency of the loudspeaker 
and the structural resonance frequency of the perforated plates. 
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4. Results of the experiment 
 

Figure IV-9 and Figure IV-10 show the experimental absorption coefficient results for 
the straight and tapered slit resonators, respectively, for lower and higher sound pressure 
levels generated via the loudspeaker. 

In the case without bias flow, the tapered aperture exhibits a resonant frequency of 
approximately 460 Hz. Conversely, the straight aperture exhibits a resonant frequency of 
approximately 340 Hz. The higher resonant frequency obtained for the tapered aperture agrees 
with the theoretical prediction model developed by Tang [36] for circular apertures, which 
predicts a higher resonant frequency for the tapered circular aperture when compared to that 
of a circular straight aperture. 

In both apertures, the resonant frequency is shifted higher when the bias flow increases. 

In the no-bias flow case, with a sound pressure level of 100 dB, the straight aperture 
exhibits a narrow frequency range of acoustic energy absorption located around the resonant 
frequency with a high peak. Conversely, the tapered aperture exhibits a wider absorption 
frequency range with a reduced peak and an overall poor acoustic energy absorption. When 
the sound pressure level increases to 115 dB, the straight aperture absorption still exhibits a 
narrow frequency range although an overall improvement of the absorption coefficient is 
obtained with a higher peak. The absorption coefficient of the tapered aperture when an SPL 
of 115 dB is applied also improves with a wider absorption range. 

Introduction of the bias flow exhibits a tendency to widen the absorption range in the 
straight and tapered apertures, with a peak value reaching a maximum when the bias flow 
increases. A Further increase in the bias flow results in a reduced peak value. This behavior 
is similar to the results obtained by Wada and Ishii [37] and Tanaka et al. [38] for a liner with 
straight circular apertures. 

As shown in Figure IV-9 and Figure IV-10, when the bias flow is applied, the sound 
pressure level has almost no effect on the absorption performance such that the curves for 100 
dB and 115 dB exhibit almost identical values.  

The peak value of the absorption coefficient for the straight aperture is when a bias flow 
Mach number of approximately 4.85× 10ିଷ is applied. For the tapered aperture, the peak 
value of the absorption coefficient is at its maximum when a bias flow Mach number of 
approximately 9.71× 10ିଷ is applied.  

To better understand the sound absorption phenomenon of the active acoustic liners. The 
impedance of the tested resonators is also obtained and analyzed here. 

It is to be noted that the absorption coefficient α can also be expressed in terms of the 
resistance 𝑟 and reactance 𝑋 of the impedance [15] as in Eq. (IV.3). 

 

 α =
4𝑟

(1 + 𝑟)ଶ + 𝑋ଶ
 (IV.3) 
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From Eq. (IV.3) it can be determined that the peak sound absorption effect is always 
observed at the resonance frequency which means a zero reactance 𝑋 = 0. In that case ,the 
highest absorption coefficient α = 1 is obtained at resistance 𝑟 = 1.  

Figure IV-11 and Figure IV-12 show the resistive part of the impedance for the straight 
and tapered apertures for different bias flow velocities. The resistance for both apertures is 
found to change linearly as a function of frequency with a small negative slope. The resistance 
also increases when the bias flow is increased.  

In the case without bias flow, the difference in the resistance is large between the case of a 
sound pressure level of 100 dB and 115dB. With a higher resistance in the case of 115 dB sound 
source with the resistance at resonance going from 0.44 for the 100 dB case to 0.69 for the 
115dB case. This increase of the resistance results in a higher absorption coefficient as shown 
in Figure IV-9 and Figure IV-10 since and increase toward the optimum resistance value of 
𝑟 = 1 leads to higher absorption coefficient.  

However, in the case with bias flow, the difference in the resistance is barely noticeable 
between the case of a sound pressure level of 100 dB and 115dB. This leads to almost the same 
absorption coefficients.  

In the case without bias flow, the resistance of the straight aperture is higher than the 
resistance of the tapered aperture.  

Figure IV-13 and Figure IV-14 show the reactive part of the impedance for the straight 
and tapered apertures for different bias flow velocities. 

In the case without bias flow, the reactance of the tapered aperture is much lower at high 
frequencies compared with straight aperture. From Eq. (IV.3), it can be deduced that the main 
reason of the higher absorption obtained with the tapered aperture at higher frequencies is 
due to the lower value of the reactance. 

In the case of bias flow, the reactance just decreases slightly as the bias flow velocity is 
increased. However, the resistance increases significantly as the bias flow is increased. The 
reason of the broadening of the absorption frequency range when bias flow is introduced is due 
mainly to the increase in resistance. Near the resonance frequency, the resistance is almost 
equal to 𝑟 = 1 when the bias flow Mach number is approximately 4.85× 10ିଷ for the straight 
aperture. Also, the resistance is almost equal to one when a bias flow Mach number of 
approximately 9.71× 10ିଷ is applied in the case of the tapered aperture. 

When the bias flow is increased further, we can see that the resistance at the resonance 
frequency becomes higher than the optimum value of 𝑟 = 1. This leads to lower peak absorption 
coefficient. However, this also increases the absorption coefficient at off-resonance frequencies. 
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Figure IV-9 Absorption coefficient for the straight aperture 

 

 
Figure IV-10 Absorption coefficient for the tapered aperture 
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Figure IV-11 Resistance of the straight aperture 

 

 
Figure IV-12 Resistance of the tapered aperture 
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Figure IV-13 Reactance of the straight aperture 

 
 

 

Figure IV-14 Reactance of the tapered aperture 
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Chapter 5 

 

V. 2D Numerical Simulations 
 

In this chapter, the acoustic performance of the liner and the flow field around the 
perforated plate is numerically solved using the compressible Navier–Stokes equations to 
understand the acoustic and fluid dynamic behavior of the liner and the effect of the shape of 
the perforation at a microscopic level. 

Two different studies are conducted on different acoustic resonators dimensions and 
shapes. First, the numerical study of the resonators studies experimentally in Chapter IV are 
conducted with and without bias flow in the linear regime with a sound pressure level of the 
sound source of 100 dB, and also at 115dB where the regime is not perfectly linear. Then the 
numerical study of a resonator previously study by Tam et al. [21] is conducted at high sound 
pressure levels of 130 dB and 150 dB. 

 

1. Numerical Simulation of 2D acoustic liner based on our experiments 
 

In this section, the simulations are conducted using 2D large eddy simulations. For the 
2D assumption to be acceptable, the impedance tube experiment is conducted on slit apertures 
where slit indicates that each plate has only one aperture with a high aspect ratio of 100. The 
aperture spans through the center of the plate. 

Subsequently, numerical simulations are conducted and validated with the experimental 
results. Moreover, the effect of bias flow on the absorption performance of the acoustic liner 
and flow field around the apertures are discussed. 

 

1.1. Models and grid 
 

Figure V-1 shows the geometry and dimensions of the slit resonator analyzed. The length 
of the impedance tube is set to 500𝐷. The width of the aperture is 𝐷 = 1 mm and the thickness 
of the perforated plate is ℎ = 3𝐷 and it contains slits of dimensions shown in Figure V-2 and 
Figure V-3. The cavity has a depth of 𝑙 = 52𝐷 and a width of 𝑊 = 78.5𝐷. 
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The non-dimensionalized time t, coordinate variables  𝑥௜ , velocities 𝑢௜ , pressure p, and 
vorticity 𝛺 are calculated as follows: 

 

 𝑡 =
௧∗

஽/௖
  ,  𝑥௜ =

௫೔
∗

஽
 ,  𝑢௜ =

௨∗

௖
 ,   𝑝 =

௣∗

ఘ௖మ  , 𝛺 =
ఆ∗

௖/஽
 (V.1) 

 

The calculation domain consists of 36 blocks with a higher resolution in the blocks close 
to the aperture. The resolution is lower for the blocks away from it. This is because the length 
scale at a distance from the aperture is in the range of the wavelength. However, near the 
aperture, an oscillatory viscous wall layer called the Stokes layer is formed, and it should be 
captured. The Stokes layer exhibits a length scale that is extremely low when compared to the 
wavelength. 

The Stokes layer wavelength is calculated using Eq.(V.2) [39]. 

 

 𝜆௦௧௢௞௘௦ = ൬
4𝜋𝜈

𝑓
൰

ଵ/ଶ

 (V.2) 

 

 

where 

𝜆௦௧௢௞௘௦ : The Stokes layer wave length 

𝑓            : Frequency of oscillation 

𝜈            : Kinematic viscosity 

 

The Stokes layer should be resolved for the maximum frequency simulated within a 
minimum of eight grid points  𝜆௦௧௢௞௘௦ 8⁄  . 

The grid spacing in the aperture used in this study corresponds to D/79 in the 𝑦 direction 
and h/79 in the 𝑥 direction.  This resolution can resolve the Stokes layer and the viscous 
sublayer of the boundary layer with a dimensionless wall distance (𝑦ା) that corresponds to 1. 

The number of cells in the 𝑧 direction corresponds to one with the symmetric boundary 
condition applied on both sides. 

The non-dimensional time step is selected as ∆𝑡 = 3.15 × 10ିଷ, and leads to a CFL number 
lower than 1.  

Room temperature of 293.15 K and atmospheric pressure of 101.3 kPa are given as initial 
conditions for the numerical simulations. Given these conditions, density is 𝜌 = 1.2 kg/mଷ and 
speed of sound is 𝑐 = 343.2 m/s. The absorption coefficient for each case is calculated with data 
length equivalent to 10 incident waves such that each wave is captured by 20 data points. 

The 6th-order compact scheme with the 10th-order compact filter is used to solve the 
convective terms of the conservation equations, while the 2nd-order central discretization is 
used for the viscous terms. 
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The obtained space discretized equations are then integrated in time via the 3rd-order 
Runge–Kutta explicit scheme. 

The model analyzed in this section is shown in Figure V-4 and represents the case of the 
perforated plate backed by a cavity with a mass source region that can be activated to introduce 
a bias flow passing through the aperture. 

The geometry of the model and applied boundary conditions are shown in Figure V-4. It 
contains an outlet with a far-field boundary condition, which corresponds to a non-reflective 
boundary condition using the characteristic waves and the inner points to determine the 
boundary conditions. The cavity is backed by a non-slip wall boundary condition. Symmetric 
boundary conditions are applied to the sides, and non-slip walls are applied to the perforated 
plate. Additionally, a sound source is applied at a distance of 400D from the aperture. The 
details of the boundary conditions implementation is explained in details in Appendix B. 

When simulating the bias flow case, first, the bias flow jet is fully developed. The 
simulation is run for 72 hours and it requires about 1.5 million iterations. The convergence is 
verified by checking the convergence of the residuals and also by verifying the value of the bias 
flow at the aperture which should be equal to the desired bias flow. Then, the sound wave 
source is enabled. The time required for three waves to propagate is found to be enough for all 
the frequencies simulated before starting the sampling process. 

The simulations are conducted for frequencies from 200 Hz to 700 Hz for both tested plates 
and with sound pressure level (SPL) values corresponding to 100 dB and 115 dB for both plates. 

The results indicated that the SPL significantly affects the absorption performance for 
both the experiment and simulation. Therefore, we tested two different SPLs of 100 dB and 
115 dB. The reason for the dependency on SPL is discussed in the subsequent sections. 

 

 

 

 

 

 

Figure V-1 Layout of acoustic liners 
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Figure V-2 Straight aperture 

  

 

Figure V-3 Tapered aperture 

  

 

 

Figure V-4 Sources locations and boundary conditions 
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1.2. Numerical results and discussion 
 

1.2.1. Absorption coefficient.  
 

Figure V-5 compares results of the absorption coefficients obtained experimentally and 
numerically for the straight slit aperture. Incident sound pressure levels of approximately 100 
dB and 115 dB are considered. In the case without bias flow, at 100 dB SPL, the numerically 
and experimentally obtained results are in good agreement. At 350 Hz, a 10% difference is 
observed.  

The numerical results also indicate that the absorption performance is affected by the 
sound pressure level of the sound source. A higher absorption coefficient at 115 dB is obtained 
when compared to the 100 dB case for frequencies equal to and lower than the resonant 
frequency. However, the results obtained at higher frequencies do not capture this 
improvement in the absorption performance. 

When the bias flow of Mach number 𝑀 = 9.71 × 10ିଷ is applied, the numerical results are 
in good agreement with the experimental results. 

Figure V-6 shows a comparison of the absorption coefficients between results obtained 
experimentally and the results obtained via numerical simulations for the tapered slit 
aperture resonator. Incident sound pressure levels approximately corresponding to 100 dB and 
115 dB are considered. In the case without bias flow, at 100 dB SPL, the numerically and 
experimentally obtained results are in good agreement. 

The absorption coefficient results numerically obtained for the resonator are largely 
affected by the applied sound pressure level with a higher performance for the 115 dB sound 
pressure level source when compared to that of the 100 dB case. Additionally, the numerical 
and experimental results are in good agreement. 

In the case of 𝑀 = 9.71 × 10ିଷ bias flow, the numerically obtained values are in good 
agreement with the experimental results for the frequencies around the resonant frequency. 
For frequencies away from the resonant frequency, the numerical results are overestimated 
compared to the experimental results although the trend is still well captured. 
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Figure V-5 Absorption coefficients for the straight slit aperture 

 

 

Figure V-6 Absorption coefficients for the tapered slit aperture 
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1.2.2. Flow field.  
 

All the flow field snapshots are obtained with respect to the instant where the area 
average velocity oscillation at the inlet of the aperture corresponds to a maximum. It should 
be noted that each period T of the acoustic wave is divided into 20 steps.   

Figure V-7 and Figure V-8 show snapshots of the unsteady vorticity contour around the 
straight aperture in the case of sound pressure levels corresponding to 100 dB and 115 dB, 
respectively. Both cases occur at an excitation frequency of 350 Hz which is close to the 
resonant frequency. For the 100 dB case, a shear layer is generated near the wall, although 
shed vortices are absent. Conversely, for the 115 dB case, in addition to the shear layer, larger 
vortices are created at the extremities of the aperture with higher vorticity magnitude. The 
existence of the vortices is the reason for the improvement of the calculated absorption 
coefficient when compared with the 100 dB case. Such improvement is due to the conversion 
of acoustic energy to vortical kinetic energy, which is subsequently dissipated via viscous 
dissipation.  

Figure V-9 and Figure V-10 show snapshots of the unsteady vorticity contour around the 
straight aperture in the case of sound pressure levels corresponding to 100 dB and 115 dB, 
respectively. Both cases occur at an excitation frequency of 350 Hz, with an applied bias flow 
of Mach number M=9.71× 10ିଷ. At 100 dB, weak vortices embedded in the vorticity sheet are 
observed. At 115 dB, stronger vortices are shed on the right side of the aperture. The 
absorption coefficient is not affected despite the clear difference in the flow field between the 
two cases. This shows that the bias flow forces the resonator response to the linear regime. 

Figure V-11 and Figure V-12 show snapshots of the unsteady vorticity contour around the 
tapered aperture in the case of sound pressure levels corresponding to 100 dB and 115 dB. 
Both cases occur at an excitation frequency of 500 Hz. With respect to the 100 dB case, a shear 
layer is generated near the wall with weak vorticity magnitude. The absence of vortices is the 
reason as to why the weak absorption coefficient is obtained in the experiment and in 
numerical simulation. With respect to the 115dB case, in addition to the shear layer in the 
tapered aperture, the shear layer rolls up at the tip of the aperture creating vortices that are 
shed away. The shed vortices are the reason for the improvement in the absorption coefficient 
when compared to that in the 100 dB case. The sharp edge of the tapered aperture appears to 
aid in increasing the instability of the generated vortices, thereby resulting in their 
detachment from the aperture walls. 

Figure V-13 and Figure V-14 show snapshots of the unsteady vorticity contour around the 
tapered aperture in the case of sound pressure levels corresponding to 100 dB and 115 dB, 
respectively. Both cases occur at an excitation frequency of 500 Hz, with an applied bias flow 
of M = 9.71× 10ିଷ. With respect to the 100 dB case, a vorticity sheet is observed on the right 
side of the aperture. A jet is formed and accompanied by a shear layer that is formed near the 
walls of the aperture, and the shear layer rolls up to create a continuous vorticity sheet. 
However, at 115 dB, the shear layer creates discrete vortices of higher magnitude that are 
shed away. The absorption coefficient is not affected despite the clear difference in the flow 
field between the two cases. 

Figure V-15 and Figure V-16 show the time-averaged viscous dissipation (Eq. (III.21)) 
for an acoustic wave with instantaneous streamlines around the straight and tapered 
apertures, respectively. The cases of a sound source of 115 dB and relatively high frequency of 
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700 Hz are chosen. The frequency is selected to understand the reason for the wider absorption 
frequency range obtained for the tapered aperture. 

With respect to the straight aperture, viscous dissipation is caused by friction near the 
walls of the aperture with small vortices attached to the corners. With respect to the tapered 
aperture, in addition to the friction of walls, a large area of viscous dissipation is caused at the 
sharp edges of the aperture where vortices are generated. These vortices hold the converted 
acoustic energy that is absorbed via viscous dissipation. 

Time-averaged viscous dissipation integrated over the calculation domain (Eq. (III.20)) in 
Figure V-15 and Figure V-16, for the tapered aperture is approximately 2.8 times that for the 
straight aperture. The absorption coefficient for the tapered aperture is also approximately 2.8 
times that of the straight aperture. 

With respect to the 115dB SPL case for the straight aperture, the underestimation of the 
absorption coefficient at higher frequencies in the numerical simulation when compared to the 
experimental results is potentially attributed to the existence of vortices around the aperture 
in the experiment, thereby leading to the nonlinear response of the resonator. As shown in 
Figure V-16, vortices are absent in the simulation and thus the resonator response is in the 
linear regime.  
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Figure V-7 Non-dimensional vorticity 
magnitude, straight aperture, 350 Hz 
and 100 dB without bias flow 

 

Figure V-8 Non-dimensional vorticity 
magnitude, straight aperture, 350 Hz 
and 115 dB without bias flow 

 

 

Figure V-9 Non-dimensional vorticity 
magnitude, straight aperture, 
M=9.71× 𝟏𝟎ି𝟑, 350 Hz and 100 dB  

 

Figure V-10 Non-dimensional 
vorticity magnitude, straight 
aperture, M=9.71× 𝟏𝟎ି𝟑, 350 Hz and 
115 dB  
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Figure V-11 Non-dimensional 
vorticity, tapered aperture, 500 Hz and 
100 dB without bias flow 

 

 

Figure V-12 Non-dimensional 
vorticity, tapered aperture, 500 Hz 
and 115 dB without bias flow 
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Figure V-13 Non-dimensional vorticity 
magnitude, tapered aperture, M=9.71×
𝟏𝟎ି𝟑, 500 Hz and 100 dB 

 

Figure V-14 Non-dimensional 
vorticity magnitude, tapered 
aperture, M=9.71× 𝟏𝟎ି𝟑, 500 Hz 
and 115 dB 
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Figure V-15 Time-averaged viscous dissipation, straight aperture, without bias flow 700 Hz, 
115 dB t≅T/2 
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Figure V-16 Time-averaged viscous dissipation, tapered aperture, without bias flow 700 Hz, 
115 dB, t≅T/2 
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2. Numerical Simulation of 2D acoustic liner based on Tam’s experiments 
 

In a previous study, Tam et al. [21] conducted the Direct Numerical Simulations (DNS) 
for a 2D slit resonator of resonance frequency around 1 kHz for a range of frequencies of the 
sound source from 1 kHz to 6 kHz and sound pressure levels of 130 dB and 150 dB. The 
absorption coefficients were obtained by evaluating the absorbed energy as the sum of the rate 
of viscous dissipation and the rate at which the energy is transferred to shed vortices. These 
simulations were validated by experiments using an acoustic impedance tube, in the same 
conditions. Good agreement was obtained for the absorption coefficients, except for the case of 
the sound source of 2 kHz and 130 dB where the experimental sound absorption coefficient is 
much larger than the simulated one. 

In this research, the large eddy simulations of a 2D slit liner are conducted, and the results 
of these simulations are validated using DNS and experimental results obtained by Tam et al. 
[1]. Then the acoustic performance of the liner is investigated when a bias flow is introduced 
through the aperture. The aim is to understand how the bias flow influences the absorption 
capabilities of the 2D slit liner, and how to take account of these changes qualitatively and 
quantitatively.  

 

2.1. Models and grid 
 

Figure V-1 shows the geometry and dimensions of the slit resonator analyzed in this study. 
The chosen liner was previously studied by Tam et al. [21] experimentally and using Direct 
Numerical Simulation (DNS) for the case of a conventional acoustic liner under normal sound 
wave incidence. The perforated plate of thickness ℎ = 0.8 mm contains slits of width 𝐷 = ℎ. 
The cavity has a depth equal to 𝑙 = 36𝐷 and a width of 𝑊 = 28𝐷, where 𝐷 is the aperture 
width. 

The estimated resonance frequency for this geometry is calculated using the formulae for 
infinite length slit given in Eqs. (IV.1) and (IV.2). The resonance frequency is estimated to 𝑓଴ =

1257 Hz. 

The results obtained by Tam et al. [21] serves for the validation of the results obtained in 
the present research. Moreover, in this study, the focus is on the numerical simulation of the 
influence of bias flow on the absorption performance of a slit liner using LES. 

The models analyzed in this section are shown in Figure V-17 and Figure V-18. They 
both represent the case of the perforated plated backed by a cavity with and without bias flow 
passing through the aperture with the difference that the model in Figure V-17 is reduced to 
only one-half of the model in Figure V-18 in order to reduce the calculation cost and to verify 
the symmetry of the problem. 

The room temperature of 288.15 K and the atmospheric pressure of 101.3 kPa are given 
as initial conditions of the simulation.  
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The geometry of the model and the applied boundary conditions are shown in Figure V-17. 
It contains one outlet with a far-field boundary condition, while the cavity is backed by a non-
slip wall boundary condition, symmetric boundary conditions are applied to the sides to satisfy 
the condition of non-interaction between the apertures, and non-slip walls are applied to the 
perforated plate. The details of the boundary conditions implementation is explained in details 
in Appendix B. 

 In addition, a sound source is applied at a distance of 160.5D from the aperture with the 
properties presented in Table V-1. 

The relation between the acoustic pressure of the sound source wave and sound pressure 
level is calculated using Eq. (V.3). 
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 (V.3) 

 

where 

𝑝௔  : Acoustic pressure 

𝑆𝑃𝐿 : Sound pressure level in decibel 

 
On the other hand, the acoustic particle velocity is calculated as the ratio of the acoustic 

pressure and the characteristic impedance. 
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 (V.4) 

 

where 

𝑢௔   : Acoustic particle velocity 

𝑍଴   : Characteristic acoustic impedance of air  𝑍଴ = 𝜌𝑐 , the density of the air is 𝜌 =

1.22 kg/mଷ and the speed of sound is 𝑐 = 340.3 m/s 

 

The calculation domain is made of eight blocks with a higher resolution in the blocks close 
to the aperture. While the resolution is lower for the blocks away from it. This is because the 
length scale far from the aperture is in the range of the wavelength, however near the aperture, 
an oscillatory viscous wall layer called the Stokes layer is formed and it should be captured. 
The Stokes layer has a length scale that is very small compared to the wavelength. 

The grid spacing in the aperture is of 0.025 mm (0.0308D) necessary to resolve the Stokes 
layer within eight grid points  𝜆௦௧௢௞௘௦ 8⁄  . This value is calculated for a maximum frequency 
of 6 kHz. 
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The number of cells in the 𝑧 direction is equal to one, with symmetric boundary conditions 
applied from both sides. 

The non-dimensional time step is chosen to be ∆𝑡 = 1.05 × 10ିଶ leading to a CFL number 
lower than 1. 

 
 

Table V-1 Sound source conditions. 

130 dB 150 dB 
1 kHz 1 kHz 
1.1kHz - 
2 kHz 2 kHz 
3 kHz 3 kHz 
4 kHz 4 kHz 
6 kHz 6 kHz 

 
 

 

 

 

Figure V-18 Boundary conditions of full Resonator 

Figure V-17 Boundary conditions of half resonator with symmetry assumption 
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2.2. Numerical results and discussion 
 

2.2.1. Symmetry assumption verification 
In this section, the validity of the symmetry assumption of the model in Figure V-17 is 

investigated. A comparison of the flow field and the absorption coefficients using the two-
microphone method is given for both models shown in Figure V-17 and Figure V-18 under 
normal sound pressure levels of 130 dB and 150 dB in the cases with and without bias flow.  

Figure V-19 and Figure V-20 show the flow field for a conventional acoustic liner with 
sound pressure level of 130 dB and 150 dB, respectively. The flow is found to behave in a 
symmetrical way. 

Table V-2 compares the absorption coefficients in the case of the application of 1 kHz 
sound wave of 130 dB and 150 dB sound pressure levels, for the full domain and half-domain 
simulations. 

 
Table V-2 Absorption coefficients for resonator without bias flow 

150 dB 130 dB 
Full domain Half domain Full domain Half domain 

0.81 0.85 0.62 0.60 
 
 

Considering the agreement of the results of the full domain and half-domain simulations, 
only the half-domain model will be considered in the following section concerning the results 
for the conventional acoustic liner. Roche et al. [18] also considered the 2D axisymmetric and 
compared it to the full three-dimensional resonator and good agreement was obtained for the 
case of the conventional acoustic liner.  

On the contrary, Figure V-21 and Figure V-22 show the flow field for a bias flow active 
acoustic liner with sound pressure levels of 130 dB and 150 dB, respectively.  

The symmetry assumption in the bias flow case is not convenient anymore.  

Table V-3 compares the absorption coefficients in the case of the application of 1 kHz 
sound wave of 130 dB and 150 dB sound pressure levels, for the full domain and half-domain 
simulations when a bias flow is introduced. 

It can be seen that even though the flow field is different, the calculated absorption 
coefficients still agrees between full and half-domain cases. The full domain case will be 
considered in the next section and compared to the half-domain case. 

Table V-4 summarizes the conditions where the symmetry assumption is correct. 

 

 
Table V-3 Absorption coefficients for resonator with bias flow 

150 dB 130 dB 
Full domain Half domain Full domain Half domain 
0.86 0.85 0.76 0.75 
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Table V-4 Symmetry 

 130 dB 150 dB 
Without bias flow symmetric symmetric 
With bias flow Not symmetric Not symmetric 
   

 
 
 
 
 
 

 

0t  / 4t T

/ 2t T 3 / 4t T

Figure V-19 Snapshots of the unsteady flow at the aperture: Vorticity contours-130 dB 1 
kHz without bias flow 
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0t  / 4t T

/ 2t T 3 / 4t T

Figure V-20 Snapshots of the unsteady flow at the aperture: Vorticity contours-150 dB 1 kHz without 
bias flow 
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0t  / 4t T

/ 2t T 3 / 4t T
Figure V-21 Snapshots of the unsteady flow at the aperture: Vorticity contours-130 dB 1 kHz 
with bias flow 
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 0t  / 4t T

/ 2t T 3 / 4t T

Figure V-22 Snapshots of the unsteady flow at the aperture: Vorticity contours-150 dB 1 
kHz with bias flow 
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2.2.2. Absorption coefficient 
Two different methods are used to calculate the absorption coefficient in the CAA 

simulation of the resonator. The first method is the transfer function method, and it simulates 
the acoustic impedance tube used in the experiment. The second method is the viscous 
dissipation method, and it evaluates the acoustic power converted in viscous dissipation. The 
two different methods were explained in Chapter. III. 

 

2.2.2.1. Numerical Simulation of 2D Conventional Acoustic Liner 
Figure V-23 shows a comparison of the absorption coefficient for an incident sound 

pressure level equal to 130 dB, between results obtained experimentally in a normal incident 
impedance tube (EXP-130) and the direct numerical simulations (DNS-130) conducted by Tam 
et al. [21] and the results obtained in this study using LES.  

The results of the absorption coefficients calculated using the transfer function method 
(two-microphone method) TMM-130 and the viscous dissipation method VD-130 for 
frequencies equal or higher than 2 kHz in this study agree well with results obtained in the 
simulations using DNS by Tam et al [1], and in good agreement with the experiments by Tam 
et al [21] for frequencies equal or higher than 3 kHz. 

In DNS for a frequency of 2 kHz, a difference with the experimental value is observed with 
respect to the absorption coefficient. Similarly, the result obtained by the present LES agrees 
with DNS. Tam et al. [21] speculated that the reason for a very low absorption coefficient is 
caused by the absence of vortex shedding at this frequency in the DNS and maybe vortex 
shedding exists in the experiment. However, this speculation has not been verified. In the 
present LES simulation, there is no vortex shedding as shown in Figure V-19. 

For 1 kHz case, the results obtained using LES are different from the values obtained by 
Tam et al. [21]. For the case of 1.1 kHz, the absorption coefficient is at its maximum in our 
LES. The value obtained at 1.1 kHz using the viscous dissipation method is almost equal to 
the value obtained by Tam et al. [21] for the case of a sound source frequency of 1 kHz. However, 
for the case measured using the two-microphone method, the value still lower.  

Figure V-24 shows the absorption coefficient for a sound pressure level equal to 150 dB. 

The results obtained using the viscous dissipation method (VD-150) in this study are in 
good agreement with the results obtained in the experiments and in the simulation using DNS 
by Tam et al. [21]. 

On the other hand, the results obtained using the transfer function method (TMM-150) 
gives a higher value than the experimental value in the case of a sound source frequency of 1 
and 2 kHz. The value of the absorption coefficient is lower than the experimental result in the 
case of 3 kHz sound source frequency. 
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2.2.2.2. Numerical Simulation of 2D Active Acoustic Liner with a Bias Flow 
 

In this case, the model shown in Figure V-18 is simulated with a bias flow as a result of 
the mass source included in the solver and explained in Sec. II.4.2, and the mass source value 
is calculated so that the Mach number M=0.029 (9.86 m/s) is attained at the aperture. This 
value of the bias mass flow Mach number is chosen in a way to have a bias flow velocity higher 
than the acoustic particle velocity of the acoustic wave.  

Even though the two microphone method is originally developed for stationary flow field, 
the absorption coefficients for the resonator with bias flow are measured using this method 
since the flow in the duct is considered to be very small. 

At the exit of the tube, a far-field boundary condition is applied, the Mach number at the 
exit is set in accordance with the required bias flow velocity. 

Figure V-23 and Figure V-24 show the results obtained in this case and are compared 
with the results of the case with no bias flow. 

We notice in the case of a sound pressure level equal to 150 dB, that the value of the 
absorption coefficient at 1 kHz and 2 kHz, which is close the resonance frequency is of same 
values obtained by the transfer function method (two-microphone method) for the case with no 
bias flow. However, when compared with the values obtained using the viscous dissipation 
method as well as DNS and experiment by Tam et al. [21], a significant improvement is 
observed. 

When the sound source frequency is equal to 3 kHz, the absorption coefficient reduces 
considerably compared to the case with no bias flow.  

The behavior is different from what was obtained in our experimental results in the case 
of low sound pressure level sound source (linear regime) presented in Chapter IV.  

In the case of a sound pressure level equal to 130 dB, the absorption coefficient near the 
resonance frequencies of 1 kHz and 1.1 kHz is reduced and it is increased for higher frequencies 
when compared to the case with no bias flow. Similar behavior was obtained our experimental 
results in the case of low sound pressure level sound source (linear regime) presented in 
Chapter IV. 
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Figure V-23 Absorption coefficient: 130 dB 

Figure V-24 Absorption coefficient: 150 dB 
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2.2.3. Flow field 
 

First, the flow field is described for the case without bias, then, the effect of the 
introduction of a bias flow passing through the aperture of the resonator is investigated and a 
comparison of the flow behavior at the aperture with a conventional liner is highlighted. 

As described in the textbook by Greitzer et al. [40], the incoming flow to the aperture 
comes from all directions and the outgoing flow goes out mainly to the axial direction, and the 
flow separates at the inlet. The incoming sound waves induce sinusoidal jet flows in the 
aperture. 

 

 

2.2.3.1. Flow-field of the Conventional Acoustic Liner 
 

Figure V-20 shows snapshots of the unsteady vorticity contour around the aperture for 
the case of sound pressure level of 150 dB and frequency of 1 kHz.  

The flow is symmetrical with the aperture, and the vortices are generated at each side of 
the aperture periodically every half an acoustic wave generated in the tube. Next, these 
vortices are shed away from the aperture in different directions 

The shed vortices take away the kinetic energy of the sound wave, and the generation of 
the vortex plays an important role in the sound attenuation in this high SPL incoming sound 
wave.  

Figure V-25 shows the values of the average viscous dissipation rate 𝐷ഥ(𝑥, 𝑦) on different 
blocks of the calculation domain. The highest value is obtained inside the cavity where the 
vortices are retained within. The viscous dissipation at the aperture is very low and thus we 
can confirm that most the sound absorption is attributed to the shed vortices.  

Figure V-19 shows snapshots of the unsteady vorticity contour around the aperture for 
the case of a sound pressure level of 130 dB and a frequency of 1 kHz. 

In this case, the pumping by the incoming sound wave is smaller than that for the 150 dB 
incoming sound wave case, and the vortex generated at the aperture remains around the 
aperture and the vortices are not convected further upstream or downstream, and thus no 
vortex shedding is observed.  

The viscous dissipation of the vortex plays an important role in the sound attenuation in 
this low SPL incoming sound waves. 

However, Tam et al. [21] obtained a flow with vortices for this case, this may explain the 
lower value of the absorption coefficient obtained for this case. 

Figure V-26 shows the percentage of the absorption coefficient attributable to each term 
of the viscous dissipation function. vd1, vd2, and vd3 are the percentages for the terms ଵ, ଶ 
and ଷ. 

For the evaluated cases shown in Figure V-26, most of the absorption is caused by the 
shear deformation vd3 accounting for more than 60% of the total absorption.  



Chapter V: 2D Numerical Simulations 

 

  80 
 

 

 

 

 

 

 

 

 

 

Figure V-26 Percentage of the absorption caused by each term of the viscous dissipation term, cases without 
bias flow 
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Figure V-25 Instantaneous non-dimensional viscous dissipation rate (VD): 150 dB, 1 kHz 
without bias flow 
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2.2.3.2. Flow-field of the Active Acoustic Liner with a Bias Flow 
 

When the bias flow is introduced, the flow around the aperture is no longer symmetrical 
with respect to the y = 0 surface, thus only the full domain calculation is considered here.  

Figure V-22 shows snapshots of the unsteady vorticity contour around the aperture for 
the case of a sound pressure level of 150 dB and a frequency of 1 kHz.  

Fewer vortices are generated to the left side of the aperture, while, more intensive and 
extensive vortices are generated to the downstream direction which may take away larger 
energies from the incoming sound wave, compared with non-bias flow case. 

The vortices on the right side of the aperture are shed with a higher velocity. This makes 
sense since these vortices are shed with the bias flow velocity, however, the vortex shed to the 
left side is shed in the inverse direction of the bias flow. 

Because of the non-symmetrical behavior of the flow, the vortices are not always traveling 
downstream, but they stay concentrated near the aperture moving in a circular manner. 

Figure V-21 shows snapshots of the unsteady vorticity contour around the aperture for 
the case of a sound pressure level of 130 dB and a frequency of 1 kHz with an applied bias flow. 

In this case, a vortex shedding is observed from the right side of the aperture every 
acoustic wave generated in the tube, while no vortices are generated on the left side of the 
aperture. 

The generated vortices due to the incoming sound wave are small and the unsteady vortex 
is considered to be canceled out and/or be dissipated, so that a small number of vortices are 
visible in the downstream of the bias flow but the dissipated vortices are visible in the wake.  
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Chapter 6 

 

VI. Theoretical study of acoustic liners 
 

1. Derivation of the wave equation and Webster’s horn equation 
 

The wave equation is based on fluid dynamics governing equations and it describes the 
behavior of pressure or velocity while it propagates in time and space. The wave equation is 
generally a 3-dimensional equation. However, it can be reduced to a 1-dimensional equation. 
Such a reduced equation can describe properly the sound field in the case of a duct of constant 
cross-sections. For duct with a variable cross-section, the 1-dimensional wave equation is 
inappropriate and the 3-dimensional wave equation should be used instead, this increases the 
complexity of the problem.  

The Webster horn equation is a one-dimensional wave equation for sound waves in a rigid 
duct with variable cross-sections. Webster [41] presented a simplification of the 3 
dimensionality problem encountered in the wave equation and reduced it to a one-dimensional 
problem. Fluid motion in a variable cross-section duct cannot be one dimensional, however, if 
the area change is varying gradually, the transverse movement of the acoustic wave can be 
small enough to be ignored leading to an approximate equation known as the Webster’s horn 
equation. In this section, a review of the derivation of the Webster equation is given.  

 

1.1. Continuity equation 
The conservation of mass states that the rate of change of mass in a control volume is 

equal to the net change of mass flux over the control surfaces. In this section, the conservation 
of mass is applied in the case of variable cross-section duct as shown in Figure VI-1. This leads 
to Eq. (VI.1). 

 

 

Mass flow out 

𝜌𝑢𝐴௫ା∆௫ 

Mass flow in 

𝜌𝑢𝐴௫ 

Figure VI-1 Mass flux 

∆𝑥 
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𝜕

𝜕𝑡
(𝜌𝐴∆𝑥) = 𝜌𝑢𝐴|௫ − 𝜌𝑢𝐴|௫ା∆௫ (VI.1) 

 

Where డ

డ௧
(𝜌𝐴∆𝑥) is the rate of increase of mass inside the control volume in Figure VI-1. 

𝜌𝑢𝐴|௫ and 𝜌𝑢𝐴|௫ା∆௫ are respectively mass flow in and mass flow out of the control volume. 

Rearranging and taking the limit as ∆𝑥 → 0 results in Eq. (VI.2) which might be also 
rewritten as in Eq. (VI.3). 

 
𝜕

𝜕𝑡
(𝜌𝐴) = lim

∆௫→଴

𝜌𝑢𝐴|௫ − 𝜌𝑢𝐴|௫ା∆௫

∆𝑥
= −

𝜕

𝜕𝑥
(𝜌𝑢𝐴) (VI.2) 

 

 
𝜕

𝜕𝑡
(𝜌) +

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜌𝑢

𝐴

𝜕

𝜕𝑥
(𝐴) = 0 (VI.3) 

 

It is to be noted that in the case of a duct of constant cross-section the term ఘ௨

஺

డ

డ௫
(𝐴) 

reduces to zero leading to the well-known one dimensional continuity equation given in Eq. 
(VI.4). 

 

 
𝜕

𝜕𝑡
(𝜌) +

𝜕

𝜕𝑥
(𝜌𝑢) = 0 (VI.4) 

 

1.2. Momentum equation 
 

In this section, the momentum equations are derived in the case of variable cross-section 
duct as shown in Figure VI-2. 

 

 

 

Momentum flow out 

𝜌𝑢ଶ𝐴|௫ା∆௫ 

Momentum flow in 

𝜌𝑢ଶ𝐴|௫ 

Surface force 
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Surface force 
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Figure VI-2 Momentum flux 
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The conservation of momentum states that the rate of change of momentum is equal to 
the sum of forces applied on the fluid element surfaces. This results in Eq. (VI.5) where   

 

 

𝜕

𝜕𝑡
(𝜌𝑢𝐴∆𝑥) = 𝜌𝑢ଶ𝐴|௫ − 𝜌𝑢ଶ𝐴|௫ା∆௫ + 𝑝𝐴|௫ − 𝑝𝐴|௫ା∆௫ + 𝑝∆𝐴⫠|௫ା∆௫ ଶ⁄  

 

(VI.5) 

 

Equation (VI.5) then can be rearranged as it follows: 

 

 𝐴
𝜕

𝜕𝑡
(𝜌𝑢) =

𝜌𝑢ଶ𝐴|௫ − 𝜌𝑢ଶ𝐴|௫ା∆௫

∆𝑥
+

𝑝𝐴|௫ − 𝑝𝐴|௫ା∆௫

∆𝑥
+

1

2
∆𝐴⫠𝑝′ (VI.6) 

 

taking the limit as ∆𝑥 → 0 results in Eq. (VI.7)  

 𝐴
𝜕

𝜕𝑡
(𝜌𝑢) = −

𝜕

𝜕𝑥
(𝜌𝑢ଶ𝐴) − 𝐴

𝜕

𝜕𝑥
(𝑝) (VI.7) 

 

By expanding Eq.(VI.7) and replacing  డ

డ௧
(𝜌) with Eq. (VI.3), the momentum equation 

can be written as it follows: 

 

 𝜌
𝜕

𝜕𝑡
(𝑢) + u

𝜕

𝜕𝑥
(𝑢) +

𝜕

𝜕𝑥
(𝑝) = 0 (VI.8) 

 

It is to be noted that the momentum equation in the case of a duct of constant cross-section 
is written in the same way as in Eq. (VI.8). 

 

1.3. Webster horn equation 
To get the Webster wave equation, first, the continuity equation (Eq. (VI.3)) and 

momentum equation (Eq. (VI.7)) need to be linearized giving the following equations 

 

 
𝜕

𝜕𝑡
(𝜌) + 𝜌଴

𝜕

𝜕𝑥
(𝑢) +

𝜌଴𝑢

𝐴

𝜕

𝜕𝑥
(𝐴) = 0 (VI.9) 

 

 𝜌଴

𝜕

𝜕𝑡
(𝑢) +

𝜕

𝜕𝑥
(𝑝) = 0 (VI.10) 
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And using, in addition, the state equation 

 

 𝑝 = 𝑐ଶ𝛿𝜌 (VI.11) 

 

The linearized continuity equation written in Eq. (VI.4) when differentiated with respect 
to time becomes 

 
1

𝑐଴
ଶ

𝜕ଶ

𝜕𝑡ଶ
(𝑝) + 𝜌଴

𝜕ଶ

𝜕𝑥𝜕𝑡
(𝑢) +

𝜕

𝜕𝑡
(
𝜌଴𝑢

𝐴

𝜕

𝜕𝑥
(𝐴)) = 0 (VI.12) 

 

And using the linearized momentum equation, Eq. (VI.12) becomes 

 
1

𝑐଴
ଶ

𝜕ଶ

𝜕𝑡ଶ
(𝑝) −

𝜕

𝜕𝑥
൭

𝜕

𝜕𝑥
(𝑝)൱ −

𝜕

𝜕𝑥
(𝑝)

1

𝐴

𝜕

𝜕𝑥
(𝐴) = 0 (VI.13) 

  

Equation (VI.13) is called Webster’s horn equation and can also be written in the form of 
Eq. (VI.14).   

 

 
1

𝑐଴
ଶ

𝜕ଶ𝑝

𝜕𝑡ଶ
−

1

𝐴

𝜕

𝜕𝑥
൬𝐴

𝜕𝑝

𝜕𝑥
൰ = 0 (VI.14) 

 

1.4. Wave equation 
 

When the cross-section area 𝐴  is assumed to be constant, Webster’s horn equation 
reduces to the one dimensional wave equation given in Eq. (VI.15) as it follows: 

 
𝜕ଶ𝑝

𝜕𝑥ଶ
−

1

𝑐ଶ

𝜕ଶ𝑝

𝜕𝑡ଶ
= 0 (VI.15) 

 

Assuming a harmonic sound wave  

 

 𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒௜ఠ௧ (VI.16) 

 

By substituting the harmonic function into the wave equation. 

 

 𝜕ଶ𝑝(𝑥)

𝜕𝑥ଶ
𝑒௜ఠ௧ +

𝜔ଶ

𝑐ଶ
𝑝(𝑥)𝑒௜ఠ௧ = 0 (VI.17) 
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where 𝑘 =
ఠ

௖
  is the wave number. 

Dividing equation (VI.17) by 𝑒௜ఠ௧ gives the Helmholtz equation as follows: 

 

 
𝜕ଶ𝑝

𝜕𝑥ଶ
+ 𝑘ଶ𝑝 = 0 (VI.18) 

 

1.5. Helmholtz-like equation for Webster’s horn equation 
 

Assuming a harmonic sound wave  

 𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒௜ఠ௧ (VI.19) 

 

By substituting this harmonic function into Webster’s equation (VI.14) we get Eq. (VI.20) . 

 

 
1

𝐴

𝜕

𝜕𝑥
൬𝐴

𝜕𝑝(𝑥)

𝜕𝑥
൰ 𝑒௜ఠ௧ +

𝜔ଶ

𝑐ଶ
𝑝(𝑥)𝑒௜ఠ௧ = 0 (VI.20) 

 

Dividing equation (VI.25) by 𝑒௝ఠ௧ gives the Helmholtz like equation for Webster’s horn 
as follows: 

 

 
1

𝐴

𝜕

𝜕𝑥
൬𝐴

𝜕𝑝

𝜕𝑥
൰ + 𝑘ଶ𝑝 = 0 (VI.21) 

 

2. Helmholtz resonator 
 

A Helmholtz resonator impedance is decomposed into two components, namely the 
impedance of the aperture and impedance of the cavity. 

The total impedance of the resonator is then given by Eq. (VI.22) as follows: 

 𝑍୲ = 𝑍ୡୟ୴୧୲୷ + 𝑍ୟ୮ୣ୰୲୳୰ୣ (VI.22) 

 

where the impedance of the cavity is given by Eq. (VI.23) as a function of the wave number 
k and the cavity depth l as follows: 

 𝑍ୡୟ୴୧୲୷ = −𝑖 cot(𝑘𝑙) (VI.23) 
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The impedance of the aperture is given by Eq. (VI.24) as follows: 

 𝑍ୟ୮ୣ୰୲୳୰ୣ = 𝑟 + 𝑖𝑋 (VI.24) 

 

where 𝑟 and 𝑋 are the resistance and the reactance of the aperture, respectively. 

 

3. Conventional slit resonator model 
 

Ulf and Tor [42] proposed a theoretical model for straight slit apertures in the linear 
regime. The resistance of the aperture is given by Eq. (VI.25). 

 

 𝑟 =
1

2𝜌𝑐
ඥ2𝜇𝜌𝜔 ൬4 +

2ℎ

𝐷
൰ (VI.25) 

 

where ρ denotes density, 𝜇 denotes the viscosity of air, ω denotes angular frequency, h denotes 
the thickness of the plate, and D denotes the width of the aperture. 

Additionally, the reactance of the aperture is given by Eq. (VI.26) where 𝛿 denotes the 
end correction. 

𝑋 = 𝑘(ℎ + 𝛿) (VI.26) 

 

For a straight slit resonator, the end correction is estimated by Eq. (VI.27) as follows: 

𝛿 = 𝐾𝐷 ;  𝐾 =  −
2

𝜋
ln ቂsin ቀ

𝜋

2
ቁቃ (VI.27) 

 

 

 

Figure VI-3 Impedance decomposition of Helmholtz resonator 
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4. Absorption of sound by a perforated screen with a backing cavity 
 

Hughes and Dowling [23] investigated a plate with parallel slits, through which a bias 
flow was introduced. As a result, a theoretical model was obtained. In this section, a brief 
explanation of the model is given. 

The theoretical model assumes an infinitely thin screen with infinitely long slits spaced 
regularly at a distance d and having an open area ratio 𝜈. 

 

 

Figure VI-4 Perforated plate with bias flow and backed by a cavity 

Figure VI-4 shows the resonator in the case when a bias flow is introduced through the 
aperture and perturbed by an acoustic field. Assuming an incident planar harmonic waves of 
amplitude 1. 

The acoustic field inside the cavity can be formulated as it follows: 

 

 𝑝෤ଵ(𝑥) = 𝐴𝑒ି௜௞௫ + 𝐵𝑒௜௞௫ (VI.28) 

 

where A and B are the complex planar amplitudes of the right going and the left going waves 
inside the cavity. 

 The acoustic field on the right side of the perforated plate can be formulated as it follows 

 

 𝑝෤ଶ(𝑥) = 𝑅𝑒ି௜௞௫ + 𝑒௜௞௫ (VI.29) 

 

 𝜌𝑐𝑢෥2 = 𝑅𝑒−𝑖𝑘𝑥 − 𝑒𝑖𝑘𝑥 (VI.30) 

 

where R is the amplitude of the reflected wave and thus represents the reflection coefficient. 

0 
x 

2s d 
U 

Reflected wave 

Incident wave 

l 
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𝑝

𝜌𝑐𝑢
=

𝑅𝑒−𝑖𝑘𝑥 + 𝑒𝑖𝑘𝑥

𝑅𝑒−𝑖𝑘𝑥 − 𝑒𝑖𝑘𝑥
=

𝑅 + 𝑒2𝑖𝑘𝑥

𝑅 − 𝑒2𝑖𝑘𝑥
 (VI.31) 

 

At 𝑥 = 0 the impedance Z at the perforated wall is as follows:  

 

 𝑍 =
𝑅 + 1

𝑅 − 1
 (VI.32) 

 

Huges and Dowling [23] found out that the impedance Z is written as follows: 

 

 𝑍 = 𝑖 {(𝑘 𝜂⁄ ) − (1/ tan 𝑘𝑙)} (VI.33) 

 

where −𝑖/ tan 𝑘𝑙 represents the impedance caused by the presence of the cavity. And 𝑖 𝑘 𝜂⁄  is 
the portion of the impedance accounting for the presence of the slit and the bias flow. It is 
written in terms of perforated plate geometry and bias flow properties as follows:  

  

 𝑘 𝜂⁄ = (2𝑘𝑑 𝜋⁄ )[(ln 2/𝜑) − ln(𝜋𝜈)] (VI.34) 

 

where 𝜂 is the effective compliance and 𝜑 is a function of Strouhal number and accounts for 
the influence of the vortex shedding. 

The Strouhal number is defined as in Eq (VI.35).   

 

 𝑆௧ =
𝜔𝑠

𝑈
 (VI.35) 

 

where 

𝜔 : Angular frequency 

𝑠 : half width of the aperture 

𝑈 : Vorticity convection velocity 
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The effective compliance 𝜂 is defined as follows: 

 

 𝜂 =
𝑖𝜌𝜔𝑄

𝑝ଶ − 𝑝ଵ
 (VI.36) 

 

where 𝑝ଶ − 𝑝ଵis the pressure difference across the perforated plate and 𝑄 is the volume flow 
rate through the aperture. Using a simplified model of the fluctuating vorticity field, Hughes 
and Dowling [23] got the following expression for the flow rate 

  

 𝑄 = −{𝜋 (𝑖𝜔𝜌଴)⁄ }/{𝑖𝜋 (𝑘ଵ𝑑)⁄ − 𝑙𝑛(𝜋𝜈) + ln 2 𝜑(𝑆௧)⁄ } (VI.37) 

 

 

𝜑 is a function of Strouhal number and accounts for the influence of the vortex shedding. 

 

 

𝜑(𝑆௧) = 1 −
1

𝑆௧ ln 2
 

× ቊ
𝜋𝐼଴(𝑆௧)𝑒ିௌ೟ + 2𝑖 sinh(𝑆௧) 𝐾଴(𝑆௧)

𝜋𝑒ିௌ೟[𝐼ଵ(𝑆௧) + 𝐼଴(𝑆௧) (𝐼଴(𝑆௧) ln 2)⁄ ] + 2𝑖 sinh(𝑆௧) [𝐾଴(𝑆௧) (𝑆௧ln 2) − 𝐾ଵ(𝑆௧)⁄ ]
ቋ 

(VI.38) 

 

where 𝐼௡ and 𝐾௡ are modified Bessel functions of order n.  

For a screen with a backing plate, the reflection coefficient is given by Eq. (VI.39). 

 

 𝑅 =
2𝑘𝑑[(ln 2/𝜑) − ln(𝜋𝜈)] − (𝜋 tan(𝑘𝑙)⁄ ) − 𝑖𝜋

2𝑘𝑑[(ln 2/𝜑) − ln(𝜋𝜈)] − (𝜋 tan(𝑘𝑙)⁄ ) + 𝑖𝜋
 (VI.39) 

 

where 𝑖 is the imaginary unit, 𝑘 is the wave number, 𝑙 is the cavity depth  

 

5. Modified models based on Hughes and Dowling model 
5.1. Straight aperture model 
 

In this study since the used plate have finite thickness, and in order to account for the 
thickness of the aperture in the theoretical model, for a straight aperture of thickness h, the 
impedance of the aperture thickness 𝑍ௌ௧௥.௔௣௘௥௧௨௥௘  is given by Eq. (VI.40) and added to the 
impedance 𝑍 of the thin screen obtained from Eq. (VI.39) using Eq. (VI.32). The method is 
similar to what was proposed by Jing and Sun [43] for a circular aperture. 
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 𝑍ௌ௧௥.௔௣௘௥௧௨௥௘ = 𝑖𝑘ℎ (VI.40) 

 

The total impedance of the perforated plate backed by a cavity is then given by Eq. (VI.41) 
as it follows: 

 𝑍௧ = 𝑍 + 𝑍ௌ௧௥.௔௣௘௥௧௨௥௘ 𝜈⁄  (VI.41) 

 

where 𝜈 is the open area ratio. 

 

Figure VI-5 Perforated plate with straight aperture of finite thickness 

 

5.2. Tapered aperture model 
 

In this section, the reactance of the perforated plate with a tapered aperture is derived. 
The derivation is based on Webster’s horn equation under the assumption of a gradually 
changing cross-section. 

 

 

Figure VI-6 Perforated plate with tapered aperture 

 

b a 

h 

x 

D h 

0 h 

0 h 
x 



Chapter VI: Theoretical study of acoustic liners 

 

  92 
 

Figure VI-6 shows a resonator with a slit tapered aperture of trapezoidal shape with a 
width of 𝑏 at the base and 𝑎 at the top. The cross-sectional area 𝐴 is function of 𝑥 and it is 
written in Eq. (VI.42) as it follows: 

  

 𝐴 = (𝑚𝑥 + 𝑎)𝐿 (VI.42) 

 

where 𝐿 is the length of the slit, h is the thickness of the plate and 𝑚 is the slope of the 
tapering such that 𝑚 = (𝑏 − 𝑎)/ℎ 

Replacing the cross section in Eq. (VI.21) leads to the following equation: 

 

 
𝜕ଶ𝑝

𝜕𝑥ଶ
+

𝑚

(𝑚𝑥 + 𝑎)

𝜕𝑝

𝜕𝑥
+ 𝑘ଶ𝑝 = 0 (VI.43) 

 

Replacing 𝛼 = 𝑚𝑥 + 𝑎 in Eq. (VI.43) gives a differential equation of Bessel type as in Eq. 
(VI.44). 

 

 𝜕ଶ𝑝

𝜕𝛼ଶ
+

1

𝛼

𝜕𝑝

𝜕𝛼
+ ൬

𝑘

𝑚
൰

ଶ

𝑝 = 0 (VI.44) 

 

The general solutions for Eq. (VI.44) can be written in the form of Eq. (VI.45) as it follows: 

   

 𝑝 = 𝐶ଵ𝐽଴ ൬
𝛼𝑘

𝑚
൰ + 𝐶ଶ𝑌଴ ൬

𝛼𝑘

𝑚
൰ (VI.45) 

 

Which can also be written as in Eq. (VI.46) by replacing 𝛼 = 𝑚𝑥 + 𝑎 

 

 𝑝 = 𝐶ଵ𝐽଴൫(𝑚𝑥 + 𝑎)𝑘/𝑚൯ + 𝐶ଶ𝑌଴൫(𝑚𝑥 + 𝑎)𝑘/𝑚൯ (VI.46) 

 

where 𝐶ଵ  and are 𝐶ଶ are complex constants depending on the boundary conditions. 𝐽௡ and 
𝑌௡ are respectively Bessel functions of the first and second kind of order 𝑛. 
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-Determination of the constants 𝑪𝟏  and are 𝑪𝟐 

At the boundary 𝑥 = ℎ the acoustic impedance is equal to the impedance of the cavity. 

 

 𝑍௕ =
𝑝

𝜌𝑐𝑢
ฬ

௫ୀ௛

= −𝑖 cot(𝑘𝑙) (VI.47) 

 

where 𝑢 is the acoustic particle velocity. 

According to the linearized momentum equation the pressure and velocity are related as 
given in Eq. (VI.10). Assuming a harmonic sound wave 𝑢(𝑥, 𝑡) = 𝑢(𝑥)𝑒௜ఠ௧ and deriving with 

respect to time is written in the complex domain as it follows ௗ௨

ௗ௧
= 𝑖𝜔𝑢. 

By substituting it into the linearized momentum equation (VI.10) we get the expression 
for the particle velocity as in Eq. (VI.48).  

 

 𝑢 = −
1

𝑖𝜌𝑐𝑘

𝑑𝑝

𝑑𝑥
 (VI.48) 

 

By deriving the general solution of pressure given in Eq. (VI.46) with respect to x 
coordinate and replace it in Eq. (VI.48) we can get the expression for the particle velocity as it 
follows: 

 

 𝑢 =
1

𝑖𝜌𝑐
൭𝐶ଵ𝐽ଵ ቆ

(𝑚𝑥 + 𝑎)𝑘

𝑚
ቇ + 𝐶ଶ𝑌ଵ ቆ

(𝑚𝑥 + 𝑎)𝑘

𝑚
ቇ൱ (VI.49) 

 

Replacing the expression of pressure and velocity in Eq. (VI.47) we get the expression of 
the impedance at 𝑥 = ℎ as it follows: 

 

 
𝑍௕ = 𝑖

𝐶ଵ𝐽଴(𝑏𝑘/𝑚) + 𝐶ଶ𝑌଴(𝑏𝑘/𝑚)

ቆ𝐶ଵ𝐽ଵ ቀ
𝑏𝑘
𝑚 ቁ + 𝐶ଶ𝑌ଵ ቀ

𝑏𝑘
𝑚 ቁቇ

 
(VI.50) 

 

Dividing both the nominator and denominator with 𝐶ଶ  and solving for ஼భ

஼మ
 leads to Eq. 

(VI.51) as it follows: 
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𝐶ଵ

𝐶ଶ
=

𝑖𝑌଴ ቀ
𝑏𝑘
𝑚

ቁ − 𝑌ଵ ቀ
𝑏𝑘
𝑚

ቁ 𝑍௕

−𝑖𝐽଴ ቀ
𝑏𝑘
𝑚 ቁ + 𝐽ଵ ቀ

𝑏𝑘
𝑚 ቁ 𝑍௕

 (VI.51) 

In the same manner, the acoustic impedance at the boundary 𝑥 = 0 is calculated as in Eq. 
(VI.52).  

 𝑍௔ =
𝑝

𝜌𝑐𝑢
ฬ

௫ୀ଴

= 𝑖

𝐶ଵ

𝐶ଶ
𝐽଴(𝑎𝑘/𝑚) + 𝑌଴(𝑎𝑘/𝑚)

𝐶ଵ

𝐶ଶ
𝐽ଵ ቀ

𝑎𝑘
𝑚

ቁ + 𝑌ଵ ቀ
𝑎𝑘
𝑚

ቁ
 (VI.52) 

 

If the aperture is considered in isolation, the impedance 𝑍௕ of the cavity will be replaced 
by zero and this will result in the term ஼భ

஼మ
  reducing to 𝐶 as given in Eq. (VI.53). 

 

 𝐶 = −
𝑌଴ ቀ

𝑏𝑘
𝑚 ቁ

𝐽଴ ቀ
𝑏𝑘
𝑚 ቁ

 (VI.53) 

 

By replacing the coefficient 𝐶  obtained in Eq. (VI.53) in Eq. (VI.52) we get the impedance 
at the inlet of the aperture as in Eq. (VI.54). 

 

 𝑍்௔௣.௔௣௘௥௧௨௥௘ = 𝑖
𝐶𝐽଴(𝑎𝑘/𝑚) + 𝑌଴(𝑎𝑘/𝑚)

𝐶𝐽ଵ ቀ
𝑎𝑘
𝑚 ቁ + 𝑌ଵ ቀ

𝑎𝑘
𝑚 ቁ

 (VI.54) 

 

5.3. Impedance model of the slit tapered aperture with bias flow 
By combining the impedance derived from Hughes and Dowling’s model as in Eq.(VI.33) 

with the reactance of the tapered aperture derived in Eq. (VI.54) we get the total impedance 
of the slit tapered aperture with bias flow as follows: 

 

 𝑍௧௢௧௔௟ = 𝑍 + 𝑍்௔௣.௔௣௘௥௧௨௥௘ 𝜈⁄  (VI.55) 

  

5.4. Theoretical model results for the slit straight aperture 
In this section, Results obtained from theoretical models explained in the previous sections 

are compared to the results obtained by numerical simulation and also by the impedance tube 
experiment.  
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5.4.1. Straight aperture without bias flow 
 

For the straight slit aperture, Ulf and Tor [42] proposed a theoretical model which is 
explained in section VI.3.  

The straight aperture used in this study has a width D= 1 mm and a thickness h = 1 mm. 
This values are replaced in Eqs. (VI.26) and (VI.27) to obtain the impedance of the aperture, 
then using Eq. (VI.22) the total impedance of the resonator is obtained. 

Figure VI-7 compares results of the absorption coefficients obtained experimentally, 
numerically, and theoretically for the straight slit aperture. Incident sound pressure level of 
approximately 100 dB is considered in the case without bias flow. The numerical and 
experimental results are in good agreement with the theoretical results, especially at 
frequencies higher than the resonance frequency. At around 350 Hz, a 10% difference is 
observed with respect to the experimental results. The theoretical results are underestimated 
at frequencies lower than the resonant frequency. 

 

Figure VI-7 Comparison of the absorption coefficient between experiment, CAA and 
theoretical models results: case without bias flow 

5.4.2. Straight aperture with bias flow 
 

In the presence of a bias flow, unsteady vortex shedding from the apertures converts 
acoustic energy into vortical kinetic energy. Hughes and Dowling [23] approximated the 
vorticity convection velocity by the mean velocity at the aperture. Since in this section the 
perforated plate has a finite thickness, the modified theoretical model explained in section VI.1 
of this chapter is used.  

Using Eq. (VI.41), and replacing the Strouhal number defined as in Eq (VI.35) with 
𝑎 taken to be equal to half the apertures width D = 1 mm. 

The comparison is made for the straight aperture and with a 10 L/min (𝑀 = 4.85 × 10ିଷ), 
20 L/min (𝑀 = 9.71 × 10ିଷ) and 40 L/min (𝑀 = 1.94 × 10ିଶ) bias flow respectively. 
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Figure VI-8 shows the comparison of the absorption coefficient results obtained 
numerically, experimentally and with the theoretical model. In this case a bias flow Mach 
number of 𝑀 = 4.85 × 10ିଷ  is applied. Very good agreement is obtained between the 
theoretical and the simulated CFD cases. The experimental results are also in good agreement 
with theoretical results, especially at frequencies higher than the resonance frequency. The 
theoretical results are slightly underestimated compared to experimental results for 
frequencies lower than the resonance frequency.  

Figure VI-9 shows the absorption coefficient results in the case of an applied bias flow 
Mach number of  𝑀 = 9.71 × 10ିଷ . In this case, the theoretical results are in very good 
agreement with the experimental and numerical results. 

Figure VI-10 shows the absorption coefficient results obtained when a bias flow Mach 
number of 𝑀 = 1.94 × 10ିଶ is applied. The experimental and numerical results are again in 
good agreement with the theoretical results.   

The modified theoretical model accounting for the thickness of the plate agrees very well 
with the CFD results of the straight aperture for all the bias flow cases considered.  

 

 

Figure VI-8 Comparison of the absorption coefficient between experiment, CAA and 
theoretical models results: with bias flow M=4.85× 10ିଷ 
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Figure VI-9 Comparison of the absorption coefficient between experiment, CAA and 
theoretical models results: with bias flow M=9.71× 10ିଷ 

 

 

Figure VI-10 Comparison of the absorption coefficient between experiment, CAA and 
theoretical models results: with bias flow M=1.94× 10ିଶ 
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5.5. Theoretical model results for the slit tapered aperture 
 

In this section, the comparison of the absorption coefficients between results obtained 
experimentally and through CFD with the prediction results from the modified theoretical 
model based on Hughes and Dowling [23] accounting for the thickness and shape of the 
perforated plate.  

5.5.1. Tapered aperture without bias flow 
 

In the case of the tapered aperture, the total impedance of the resonator is given by Eq. 
(VI.55). Since at the moment a model for the resistance of the tapered aperture is not yet 
available, the non-dimensional value of the resistance 𝑟 = 0.145 obtained experimentally at 
the resonance is used. The impedance of the aperture is then obtained by adding the resistance 
part r to the reactance given by Eq. (VI.54) for the tapered aperture. The tapered aperture 
used in this study has a base 𝑏 = 7 mm at the base and 𝑎 =  1 mm at the top. This leads to 
tapering slope 𝑚 = 2. 

Figure VI-11 shows the absorption coefficient results obtained experimentally, 
numerically and theoretically. The results are for the case of an applied sound pressure level 
of 100 dB and without bias flow.  

It can be seen that the experimental and numerical results are in good agreement with 
the theoretical results. 

 

Figure VI-11 Absorption coefficient for tapered slit aperture without bias flow 

5.5.2. Tapered aperture with bias flow 
In this section, the modified theoretical model for tapered aperture with bias flow 

explained in section 5.3 of this chapter is used.  

The comparison is made for the tapered aperture with a 10 L/min, 20 L/min and 40 L/min 
bias flow respectively. 

Figure VI-12 shows the comparison of the absorption coefficient results obtained 
numerically, experimentally and with the theoretical model. In this case a bias flow Mach 
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number of 𝑀 = 4.85 × 10ିଷ is applied. The numerical results and theoretical results are in 
good agreement. For the 100 dB case, the numerical and theoretical results are overestimated. 
When the sound source level is set to 115 dB, good agreement is obtained with the theoretical 
results.  

Figure VI-13 shows the absorption coefficient results in the case of an applied bias flow 
Mach number of 𝑀 = 9.71 × 10ିଷ. In this case, the theoretical results are in good agreement 
with the numerical results. Slight differences between theoretical and experimental results 
are obtained. 

Figure VI-14 shows the absorption coefficient results obtained when a bias flow Mach 
number of 𝑀 = 1.94 × 10ିଶ is applied. Good agreement is obtained between the numerical and 
theoretical results. However, the theoretical results underestimate the absorption coefficient 
for high frequencies.   

The modified theoretical model accounting for the thickness of the plate and the shape of 
the aperture agrees well with the CFD results of the tapered aperture for all the bias flow 
cases considered.  

Generally, the correspondence of the absorption coefficients of theoretical, numerical and 
experimental results is qualitatively good. 

 

Figure VI-12 Absorption coefficient for tapered slit aperture with bias flow M=4.85× 10ିଷ 
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Figure VI-13 Absorption coefficient for tapered slit aperture with bias flow M=9.71× 10ିଷ 

 

 

 

Figure VI-14 Absorption coefficient for tapered slit aperture with bias flow M=1.94× 10ିଶ 
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5.5.3. Effect of tapering slope 𝒎 
 

The general solutions for Eq. (VI.44) written in Eq. (VI.45) is not defined for a zero 
tapering slope m = 0 which is a singularity for the Bessel function of second kind 𝑌௡. Here the 
behavior of the solution when the tapering slope 𝑚 goes toward 𝑚 → 0 is described.   

The expression of the tapered impedance given in Eq. (VI.54) can be rewritten as follows:  

 

 𝑍்௔௣.௔௣௘௥௧௨௥௘ = 𝑖
−𝑌଴(𝐴𝑟௕)𝐽଴(𝐴𝑟௔) + 𝑌଴(𝐴𝑟௔)𝐽଴(𝐴𝑟௕)

−𝑌଴(𝐴𝑟௕)𝐽ଵ(𝐴𝑟௔) + 𝑌ଵ(𝐴𝑟௔)𝐽଴(𝐴𝑟௕)
 (VI.56) 

 

where 𝐴𝑟௕ =
௕௞

௠
 and 𝐴𝑟௔ =

௔௞

௠
. 

When the tapering slope goes toward zero 𝑚 → 0, the arguments 𝐴𝑟௕  and 𝐴𝑟௔  go towards 
infinity. 

 The asymptotic approximations of Bessel functions of first kind 𝐽୬(𝐴𝑟) and second kind 
𝑌୬(𝐴𝑟) for large arguments (𝐴𝑟 → ∞) are written as it follows [44]: 

 

 𝐽୬(𝐴𝑟)~ඨ
2

𝜋𝐴
cos ቆ𝐴 −

(2𝑛 + 1)𝜋

4
ቇ (VI.57) 

 

 𝑌୬(𝐴𝑟)~ඨ
2

𝜋𝐴
sin ቆ𝐴 −

(2𝑛 + 1)𝜋

4
ቇ (VI.58) 

 

By replacing Eqs. (VI.57) and (VI.58) in Eq. (VI.56), the impedance of the tapered aperture 
becomes as given in Eq. (VI.59).  

 

 𝑍்௔௣.௔௣௘௥௧௨௥௘ = 𝑖
− sin ቀ𝐴௕ −

𝜋
4ቁ cos ቀ𝐴௔ −

𝜋
4ቁ + sin ቀ𝐴௔ −

𝜋
4ቁ cos ቀ𝐴௕ −

𝜋
4ቁ

− sin ቀ𝐴௕ −
𝜋
4ቁ cos ቀ𝐴௔ −

3𝜋
4 ቁ + sin ቀ𝐴௔ −

3𝜋
4 ቁ cos ቀ𝐴௕ −

𝜋
4ቁ

 (VI.59) 

 

By using the trigonometric identities Eq. (VI.59) reduces to (Eq. 60). 

 

 𝑍்௔௣.௔௣௘௥௧௨௥௘ = 𝑖
sin(𝐴௕ − 𝐴௔)

sin ቀ𝐴௕ − 𝐴௔ +
𝜋
2

ቁ
 (VI.60) 
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For 𝐴௕ → 𝐴௔, the difference of the arguments goes toward zero (𝐴௕ − 𝐴௔) → 0. Thus Eq. 
(VI.60) can be rewritten as it follows: 

 

 𝑍்௔௣.௔௣௘௥௧௨௥௘ = 𝑖
(𝐴௕ − 𝐴௔)

sin ቀ
𝜋
2ቁ

= 𝑖(𝐴௕ − 𝐴௔) = 𝑖
(𝑏 − 𝑎)𝑘

𝑚
= 𝑖𝑘ℎ (VI.61) 

 

Equation VI.61 has the same expression as the impedance of the straight aperture given 
in Eq. (VI.40).  

Figure VI-15 shows the absorption coefficient results when a bias flow Mach number 𝑀 =

9.71 × 10ିଷ obtained with the theoretical for tapered aperture at different tapering slopes 𝑚. 
The results are compared to the theoretical results for the straight aperture model as well as 
the thin plate model. 

The resonance frequency has tendency to increase when the tapering slope increases. 
Moreover, the absorption coefficient range widens when the tapering slope m increases and 
becomes narrow when it reduces. 

When the tapering slope goes toward zero 𝑚 → 0, the absorption coefficient goes toward 
the results of the absorption coefficient of the straight aperture model. 

When the tapering slope goes toward infinity  𝑚 → ∞ , the absorption coefficient goes 
toward the results of the absorption coefficient of the thin plate model by Hughes and 
Dowling[23]. 

 

 
Figure VI-15 Absorption coefficient at different tapering slope 
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Chapter 7 

 

VII. Conclusion 
 

 

Noise emitted from airplanes is considered as a component of environment pollution, 
which causes annoyance and discomfort for population around airports and even health illness 
for people working close to airplanes, this is why regulations are trying to reduce the level of 
permissible noise of airplanes. 

One of the major sources of noise in commercial airplane is the turbofan engine, and more 
specifically the fan noise consisting of broadband and tone noises. As a remedy to this problem, 
acoustic liners are installed on the inner side of the nacelle of the turbo-fan engines, and they 
consist of a perforated plate backed by hard wall, in addition to a honeycomb support in 
between. 

Two regimes contribute to the noise reduction in acoustic liners, i.e. the developed vortices 
at the perforated plates for high SPL and the viscous dissipation at the walls of the aperture 
for low SPL. , 

In this study, experimental results of the acoustic behavior of two different slit apertures 
(i.e., straight and tapered apertures with and without bias flow) were obtained via an 
impedance tube test rig. 

In the case without bias flow, straight aperture results in a narrow absorption frequency 
range centered around the resonant frequency. Conversely, the tapered aperture tends to 
exhibit a wider absorption frequency range. Additionally, the tapered aperture has a higher 
resonant frequency than the straight aperture. 

Large eddy simulations were conducted in conditions approximately similar to that of 
experiments for validation purposes of the acoustic behavior of the resonators, and also to 
visualize the flow field around the apertures. The absorption coefficients obtained by CAA 
agree well with the experimental results. 

The study also discusses the flow field around the apertures and effect of flow structures 
around the apertures on the absorption performance of the resonators. 

The results indicate that the presence of vortex shedding increases the absorption 
coefficient. Increases in the sound pressure level intensifies the vortex shedding, thereby 
leading to a better absorption performance than that for lower sound pressure levels. 
Additionally, the introduction of a bias flow (which is a method to facilitate the vortex shedding 
even for lower sound pressure levels) improves the absorption performance.   

A study in the case of high sound pressure level sound source excitation is also conducted 
and validated by the experimental results of the slit liner investigated for the case with no bias 
flow earlier by Tam et al. [21], and good agreement is obtained when calculating the absorption 
coefficients using the viscous dissipation method at the sound source pressure level of and 130 
dB and 150 dB.  
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The acoustic performance of the liner is also investigated when a bias flow passing through 
the aperture is introduced. A comparison of the flow behavior at the aperture with a 
conventional liner shows that when the sound pressure level is equal to 130 dB, an increase in 
the absorption is obtained for frequencies above the resonance frequency when bias flow 
passing through the aperture is introduced. On the other hand, the absorption is reduced for 
the resonance frequency. However, when the SPL is equal to 150 dB, the absorption coefficient 
is higher near the resonance frequency, while for higher frequencies the absorption coefficient 
is lower. 

The flow behavior for the conventional acoustic liner is periodic in time with an observable 
pattern for vortices generation, and the flow is also symmetric with respect to the surface 𝑦 =

0, while for the liner with bias flow, the behavior is not symmetric anymore and the flow is 
highly disturbed and random with no observable pattern. 

The theoretical model by Hughes is modified in order to account for perforated plate 
thickness as well as the shape of the aperture. The results obtained are in good agreement 
with the results obtained experimentally and numerically for the tapered aperture case.  
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Appendix A: Compact schemes in upacs-LES 
 

A1.  The Burgers equation 
 

The Burgers equation is frequently used for the basic test of numerical schemes. Although 
the Burgers equation is a scalar equation, it has basic elements such as the non-linear 
convective term, diffusion term, and time-dependent term. The numerical schemes that are 
used in the upacs-LES code are tested here by using the Burgers equation. The purpose is as 
follows: 

 any unphysical disturbances are observed when a wave passes the block boundary? (In 
many numerical codes that are based on the compact scheme, this problem is commonly 
observed.) 

 Does an implicit time integration work fine? (In upacs-LES code, the second order 
backward Euler implicit time integration with MFGS, Matrix-Free Gauss Seidel, method 
works only with small CFL numbers such as 1.1 or 1.2, or the solution will diverge.) 

 Do the compact interpolation, difference, and filtering works with non-uniform grid 
correctly? (In upacs-LES code, only the compact schemes for uniform grid spacing are 
officially supported.) 

The Burgers equation can be written as [1] 

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
= 𝜈

𝜕ଶ𝑢

𝜕𝑥ଶ
 (1) 

When the velocity 𝑢, length 𝑥, and time 𝑡 are scaled by 𝑢ஶ, 𝐿, and 𝐿/𝑢ஶ, respectively, 
and the Reynolds number Re = 𝑢ஶ𝐿/𝜈ஶ is introduced, the Eq. (2) can be non-dimensionalized 
as 

∂𝑢∗

∂𝑡∗
+ 𝑢∗

∂𝑢∗

∂𝑥∗
=

1

Re
𝜈∗

𝜕ଶ𝑢∗

𝜕𝑥∗ଶ (2) 

The superscript ∗  denotes the non-dimensional variable. Let us assume that the 
kinematic viscosity 𝜈 is uniform in space, then 𝜈∗ =  𝜈/𝜈ஶ = 1. We omit the superscript ∗ 
hereafter for the simplicity. Then, the Eq. (2) becomes 

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
=

1

Re

𝜕ଶ𝑢

𝜕𝑥ଶ
 (3) 

By expressing the convective and viscous fluxes as 

𝐸ୡ(𝑢) =
𝑢ଶ

2
 

𝐸୴(𝑢) = −
1

Re

𝜕𝑢

𝜕𝑥
 

(4) 

We obtain the governing equation in the strong conservation form as 

∂𝑢

∂𝑡
+

∂𝐸ୡ

∂𝑥
+

∂𝐸୴

∂𝑥
= 0 (5) 

or in another expression, 
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∂𝑢

∂𝑡
= −𝑅(𝑢), 𝑅(𝑢) =

𝜕

𝜕𝑥
[𝐸ୡ(𝑢) + 𝐸୴(𝑢)] (6) 

Let us discretize Eq. (6) in a finite volume manner. To do so, Eq. (5) is rewritten in a 
control-volume form as 

∂

∂𝑡
න 𝑢d𝑉 + න(𝐸ୡ + 𝐸୴)d𝑆 = 0 (7) 

where 𝑉 and 𝑆 denote the volume and area of the control volume, respectively. We are now 
considering one dimensional problem and in this case 𝑉 and 𝑆 denote the area and length of 
the control volume. The Eq. (7) can be integrated in time, for example, by the first-order Euler 
explicit scheme (implicit time integration is explained in Section 5) as 

𝑢௡ାଵ = 𝑢௡ −
∆𝑡

𝑉
𝑅(𝑢௡) (8) 

where superscript 𝑛 and 𝑛+1 indicate the current and next time level, and ∆𝑡 is the time 
step of the numerical integration. The convective and viscous terms can be discretized in a 
finite volume manner as 

∂𝐸ୡ

∂𝑥
ฬ

௜
= ൤𝐸ୡ௜ା

ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

− 𝐸ୡ௜ି
ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

൨ 

∂𝐸୴

∂𝑥
ฬ

௜
= ൤𝐸୴௜ା

ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

− 𝐸୴௜ି
ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

൨ 

(9) 

 

where 𝑖 is the index for cell-center and 𝑖 ± 1/2 are the indices for cell-interfaces surrounding 
the cell-center 𝑖. When there are no area changes in the 𝑥 direction, Eqs. (8) and (9) reduce 
to a finite difference formulation of 

𝑢௡ାଵ = 𝑢௡ − ∆𝑡
1

∆𝑥
൬൤𝐸ୡ௜ା

ଵ
ଶ

− 𝐸ୡ௜ି
ଵ
ଶ

൨ + ൤𝐸୴௜ା
ଵ
ଶ

− 𝐸୴௜ି
ଵ
ଶ

൨൰ (10) 

where ∆𝑥 = 𝑉/𝑆  is the length between the cell interfaces 𝑖 ± 1/2 . Note that ∆𝑥  can be 
changeable in the 𝑥 direction and is not necessarily uniform. 

The unknown values of 𝐸ୡ௜±ଵ/ଶ
 at the cell-interface can be obtained from the known values of 

𝑢௜  at the cell-center by using the compact interpolation formula. On the other hand, the 
viscous term 𝐸୴௜±ଵ/ଶ

 includes the derivative of 𝑢, which should be evaluated by using the 

compact difference formula. These compact formulas will be explained in detail in the following 
sections. 

The stability of the numerical schemes of this kind of problem can be approximately judged 
by the Courant number 𝐶 and the diffusion number 𝐷, which are defined as 

𝐶 ≡
𝑢∆𝑡

∆𝑥
, 𝐷 ≡

𝜈∆𝑡

(∆𝑥)ଶ
  

with the usual criterion of 𝐶 ≤ 1 and 𝐷 ≤ 1/2 for the explicit schemes, which can be written 
for the time step ∆𝑡 as[1] 

∆𝑡 ≤ min ቆ
∆𝑥

𝑢
,
(∆𝑥)ଶ

2𝜈
ቇ  
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In the non-dimensional formulation with ∆𝑥 = 1, 𝑢 = 1, 𝜈 = 1, the criterion stipulates that the 
non-dimensional time step should be ∆𝑡 ≤ 0.5  for stable calculation of the explicit time 
integration. 

A usual compact scheme cannot handle the discontinuities such as a shock wave. 
Therefore, we take a convection problem that has small non-linearity as our test problem here. 
That is, the initial condition is given by 

𝑢(𝑥) = 1 + 𝜀 sin(𝑘𝑥) (𝜀 = 0.01, 0 ≤ 𝑘𝑥 ≤ 2𝜋) (11) 

This problem produces a shock wave when 𝜀 is large as 0.1, as the initial wave propagates 
downstream. 

 

A2.  Compact interpolation for convective terms 
 

The 6th-order implicit compact interpolation formula is given by 

𝛼୧଺𝑓መ
௜ି

ଵ
ଶ

+ 𝑓መ
௜ା

ଵ
ଶ

+ 𝛼୧଺𝑓መ
௜ା

ଷ
ଶ

= 𝑎୧୧଺൫𝑓௜̅ + 𝑓௜̅ାଵ൯ + 𝑏୧୧଺൫𝑓௜̅ିଵ + 𝑓௜̅ାଶ൯ 

𝛼୧଺ =
1

3
, 𝑎୧୧଺ =

1

2
 
29

18
, 𝑏୧୧଺ =

1

2
 

1

18
 

(12) 

(169)[2] 

(4)[3] 

TABLE I[3] 

 

 

where 𝑓̅ denotes the known values at the cell-center, which is the averaged value in a cell in 
the case of finite-volume formulation, and 𝑓መ denotes the unknown values at the cell-interface. 
The 8th-order explicit interpolation formula is given by 

𝑓መ
௜ା

ଵ
ଶ

= 𝑎୧ୠ଼൫𝑓௜̅ + 𝑓௜̅ାଵ൯ + 𝑏୧ୠ଼൫𝑓௜̅ିଵ + 𝑓௜̅ାଶ൯ + 𝑐୧ୠ଼൫𝑓௜̅ିଶ + 𝑓௜̅ାଷ൯

+ 𝑑୧ୠ଼൫𝑓௜̅ିଷ + 𝑓௜̅ାସ൯ 

𝑎୧ୠ଼ =
1

2
 
533

420
, 𝑏୧ୠ଼ = −

1

2
 
139

420
, 𝑐୧ୠ଼ =

1

2
 

29

420
, 𝑑୧ୠ଼ = −

1

2
 

1

140
 

(13) 

(169)[2] 

TABLE 
II[3] 

 

 

At the left hand side boundary, the 8th order explicit formula is 

𝑓መ
ି

ଵ
ଶ

= 𝑎୧ୠ଼൫𝑓̅ି
ଵ + 𝑓଴̅൯ + 𝑏୧ୠ଼൫𝑓̅ି

ଶ + 𝑓ଵ̅൯ + 𝑐୧ୠ଼൫𝑓̅ି
ଷ + 𝑓ଶ̅൯ + 𝑑୧ୠ଼൫𝑓̅ି

ସ + 𝑓ଷ̅൯ (14) 

𝑖 + 1 𝑖 𝑖 + 2 𝑖 − 1 

𝑖 −
1

2
 𝑖 +

1

2
 𝑖 +

3

2
 

𝑖 +
1

2
 

𝑖 + 1 𝑖 𝑖 + 2 𝑖 − 1 𝑖 + 3 𝑖 + 4 𝑖 − 2 𝑖 − 3 
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At the right hand side boundary, the 8th order explicit formula is 

𝑓መ
ேା

ଵ
ଶ

= 𝑎୧ୠ଼൫𝑓ே̅ + 𝑓ே̅ାଵ൯ + 𝑏୧ୠ଼൫𝑓ே̅ିଵ + 𝑓ே̅ାଶ൯

+ 𝑐୧ୠ଼൫𝑓ே̅ିଶ + 𝑓ே̅ାଷ൯ + 𝑑୧ୠ଼൫𝑓ே̅ିଷ + 𝑓ே̅ାସ൯ 
(15) 

 

 

The resulting linear algebraic equation is expressed by using the cell-center index 𝑖 as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 𝛼

𝛼 1 𝛼

⋱ ⋱ ⋱

𝛼 1 𝛼

𝛼 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓መଵ
ଶ

𝑓መଷ
ଶ

⋮

𝑓መ
ேି

ଷ
ଶ

𝑓መ
ேି

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎൫𝑓଴̅ + 𝑓ଵ̅൯ + 𝑏൫𝑓̅ି
ଵ + 𝑓ଶ̅൯

𝑎൫𝑓ଵ̅ + 𝑓ଶ̅൯ + 𝑏൫𝑓଴̅ + 𝑓ଷ̅൯

⋮

𝑎൫𝑓ே̅ିଶ + 𝑓ே̅ିଵ൯ + 𝑏൫𝑓ே̅ିଷ + 𝑓ே̅൯

𝑎൫𝑓ே̅ିଵ + 𝑓ே̅൯ + 𝑏൫𝑓ே̅ିଶ + 𝑓ே̅ାଵ൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

− 𝛼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓መ
ି

ଵ
ଶ

0

0

𝑓መ
ேା

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(16) 

 

and is expressed by using the cell-interface index 𝐽 as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 𝛼

𝛼 1 𝛼

⋱ ⋱ ⋱

𝛼 1 𝛼

𝛼 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓መ௃ୀଵ

𝑓መ௃ୀଶ

⋮

𝑓መ௃ୀேିଵ

𝑓መ௃ୀே ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎൫𝑓௜̅ୀ଴ + 𝑓ଵ̅൯ + 𝑏൫𝑓̅ି
ଵ + 𝑓ଶ̅൯

𝑎൫𝑓௜̅ୀଵ + 𝑓ଶ̅൯ + 𝑏൫𝑓଴̅ + 𝑓ଷ̅൯

⋮

𝑎൫𝑓௜̅ୀேିଶ + 𝑓ே̅ିଵ൯ + 𝑏൫𝑓ே̅ିଷ + 𝑓ே̅൯

𝑎൫𝑓௜̅ୀேିଵ + 𝑓ே̅൯ + 𝑏൫𝑓ே̅ିଶ + 𝑓ே̅ାଵ൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

− 𝛼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓መ௃ୀ଴

0

0

𝑓መ௃ୀேାଵ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑖 = −
1

2
 

𝐽 = 0 

0 −1 1 −2 2 3 −3 −4 

𝑖 = 𝑁 +
1

2
 

𝐽 = 𝑁 + 1 

𝑁

+ 1 
𝑁 𝑁

+ 2 
𝑁 − 1 𝑁

+ 3 
𝑁

+ 4 
𝑁 − 2 𝑁

− 3 

𝑁

− 1 
𝑖 = 𝑁 1 𝑖

= 0 

𝑁

− 1 
𝐽 = 𝑁 2 𝐽 = 1 
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(17) 

The convective term can be discretized in a finite volume manner as 

∂𝐸ୡ

∂𝑥
ฬ

௜
= ൤𝑓መ

௜ା
ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

− 𝑓መ
௜ି

ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

൨ = ൣ𝑓መ௃𝐴௃ − 𝑓መ௃ିଵ𝐴௃ିଵ൧ 
(18) 

(3)[3] 

where 𝑓መ = 𝐸ୡ in this case.  

The interpolation formula in this section can only be applied to the uniform grid spacing, 
because the coefficients 𝛼 and 𝑎, 𝑏, 𝑐, 𝑑 are determined so that they fulfill the matching 
conditions of the terms in the Tayler expansion of both sides of the Eq. (12), and in the Tayler 
expansion the grid spacing are assumed to be uniform. 

 

A3.  Compact difference for viscous terms 
 

The viscous term can be discretized in a finite volume manner as 

(viscous term)௜ = ൤𝑓′
௜ା

ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

− 𝑓′
௜ି

ଵ
ଶ

𝑆
௜ା

ଵ
ଶ

൨ = ൣ𝑓′௃𝐴௃ − 𝑓′௃ିଵ𝐴௃ିଵ൧ 
(19) 

(130)[2] 

where 𝑓′ is the first derivative of 𝑓 that is evaluated at the cell-interface, which can be 
obtained by using the compact difference formula as, with ℎ being the grid spacing, 

𝛼ୢ଺𝑓′
௜ି

ଵ
ଶ

+ 𝑓′
௜ା

ଵ
ଶ

+ 𝛼ୢ଺𝑓′
௜ା

ଷ
ଶ

= 𝑎ୢ୧଺

൫𝑓௜̅ାଵ − 𝑓௜̅൯

ℎ
+ 𝑏ୢ୧଺

൫𝑓௜̅ାଶ − 𝑓௜̅ିଵ൯

ℎ
 

𝛼ୢ଺ =
9

62
, 𝑎ୢ୧଺ =  

63

62
, 𝑏ୢ୧଺ =  

17

62
 
1

3
 

(20) 

(B.1.1)[4] 

 

 

A 4th-order explicit formula is used for the boundary as 

𝑓′
௜ା

ଵ
ଶ

= 𝑎ୢୠସ

൫𝑓௜̅ାଵ − 𝑓௜̅൯

ℎ
+ 𝑏ୢୠସ

൫𝑓௜̅ାଶ − 𝑓௜̅ିଵ൯

ℎ
 

𝑎ୢୠସ =  
9

8
, 𝑏ୢୠସ =  −

1

8
 
1

3
 

(21) 

(B.1.1)[4] 

and is expressed explicitly at the boundaries as 

𝑓′
ି

ଵ
ଶ

= 𝑎ୢୠସ

൫𝑓଴̅ − 𝑓̅ି
ଵ൯

ℎ
+ 𝑏ୢୠସ

൫𝑓ଵ̅ − 𝑓̅ି
ଶ൯

ℎ
 

𝑓′
ேା

ଵ
ଶ

= 𝑎ୢୠସ

൫𝑓ே̅ାଵ − 𝑓ே̅൯

ℎ
+ 𝑏ୢୠସ

൫𝑓ே̅ାଶ − 𝑓ே̅ିଵ൯

ℎ
 

(22) 

𝑖 + 1 𝑖 𝑖 + 2 𝑖 − 1 

𝑖 −
1

2
 

𝐽 

𝑖 +
1

2
 

𝐽 + 1 

𝑖 +
3

2
 

𝐽 + 2 
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The resulting linear algebraic equation is 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 𝛼

𝛼 1 𝛼

⋱ ⋱ ⋱

𝛼 1 𝛼

𝛼 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓′ଵ
ଶ

𝑓′ଷ
ଶ

⋮

𝑓′
ேି

ଷ
ଶ

𝑓′
ேି

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1

ℎ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎൫𝑓ଵ̅ − 𝑓଴̅൯ + 𝑏൫𝑓ଶ̅ − 𝑓̅ି
ଵ൯

𝑎൫𝑓ଶ̅ − 𝑓ଵ̅൯ + 𝑏൫𝑓ଷ̅ − 𝑓଴̅൯

⋮

𝑎൫𝑓ே̅ିଵ − 𝑓ே̅ିଶ൯ + 𝑏൫𝑓ே̅ − 𝑓ே̅ିଷ൯

𝑎൫𝑓ே̅ − 𝑓ே̅ିଵ൯ + 𝑏൫𝑓ே̅ାଵ − 𝑓ே̅ିଶ൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

− 𝛼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓′
ି

ଵ
ଶ

0

0

𝑓′
ேା

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(23) 

We solve the following equations, instead of solving the Eqs. (22)–(23), 

𝑓ሚ′
ି

ଵ
ଶ

= 𝑎ୢୠସ൫𝑓଴̅ − 𝑓̅ି
ଵ൯ + 𝑏ୢୠସ൫𝑓ଵ̅ − 𝑓̅ି

ଶ൯ 

𝑓ሚ′
ேା

ଵ
ଶ

= 𝑎ୢୠସ൫𝑓ே̅ାଵ − 𝑓ே̅൯ + 𝑏ୢୠସ൫𝑓ே̅ାଶ − 𝑓ே̅ିଵ൯ 
(24) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 𝛼

𝛼 1 𝛼

⋱ ⋱ ⋱

𝛼 1 𝛼

𝛼 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓ሚ′ଵ
ଶ

𝑓ሚ′ଷ
ଶ

⋮

𝑓ሚ′
ேି

ଷ
ଶ

𝑓ሚ′
ேି

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎൫𝑓ଵ̅ − 𝑓଴̅൯ + 𝑏൫𝑓ଶ̅ − 𝑓̅ି
ଵ൯

𝑎൫𝑓ଶ̅ − 𝑓ଵ̅൯ + 𝑏൫𝑓ଷ̅ − 𝑓଴̅൯

⋮

𝑎൫𝑓ே̅ିଵ − 𝑓ே̅ିଶ൯ + 𝑏൫𝑓ே̅ − 𝑓ே̅ିଷ൯

𝑎൫𝑓ே̅ − 𝑓ே̅ିଵ൯ + 𝑏൫𝑓ே̅ାଵ − 𝑓ே̅ିଶ൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

− 𝛼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑓ሚ′
ି

ଵ
ଶ

0

0

𝑓ሚ′
ேା

ଵ
ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(25) 

and apply the coordinate transformation of 

𝑓ᇱ = 𝜉௫𝑓ሚᇱ =
1

ℎ
𝑓ሚᇱ (26) 

Here it is assumed that the directions of the coordinate axis of 𝜉 and 𝑥 are the same. 
Otherwise in general,  

𝜕𝑓

𝜕𝑥
= 𝑓ᇱ = 𝜉௫

𝜕𝑓

𝜕𝜉
+ 𝜂௫

𝜕𝑓

𝜕𝜂
+ 𝜁௫

𝜕𝑓

𝜕𝜁
 

(27) 

(151)[2] 

The compact difference formula in this section can be used for the non-uniform grid spacing, 
by using the transformation formula of Eq. (26) or (27). 
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A4.  Compact filter 
 

The compact filter of the type of 

𝛼୤𝑞ത௜ିଵ
∗ + 𝑞ത௜

∗ + 𝛼୤𝑞ത௜ାଵ
∗ = ෍ 𝑎୤௝

൫𝑞ത௜ି௝ + 𝑞ത௜ା௝൯

2

ே

௝ୀ଴

 

(28) 

(170)[2] 

(15)[5] 

is applied to the conservative variable vector 𝒒 = [𝜌, 𝜌𝒖, 𝐸]୘ in the upacs-LES, where 𝑞ത 
and 𝑞ത∗ are the unfiltered and filtered cell-center variables, respectively. The coefficients 𝛼 
and 𝑎௝ are given by the table below, which is a copy from the upacs-LES manual.[2]



 

  115 
 

 

 

Table A1 Coefficients of the compact Filter 

order 
0fa   1fa  2fa  3fa  4fa  5fa  6fa  7fa  f  

14th 1619 858

2084
f

 

3003 10378

8192
f

 

1001( 1 2 )

4096
f 

 

1001( 1 2 )

8192
f  

 

91( 1 2 )

2048
f   91( 1 2 )

8192
f  

 

7 ( 1 2 )

4096
f   1 2

8192
f

 
0.235 

12th 793 462

1024
f

 

99 314

256
f

 
459( 1 2 )

2048
f 

 

55( 1 2 )

512
f  

 
33( 1 2 )

1024
f   3( 1 2 )

512
f  

 

1 2

2048
f 

 
 0.425 

10th 193 126

256
f

 

105 302

256
f

 
15 30

64
f 

 
45 90

512
f

 
5 10

256
f 

 
1 2

512
f

 
  0.48 

8th 93 70

128
f

 
7 18

16
f

  7 1 2

32
f 

 
1 2

16
f

 
1 2

128
f 

 
   0.495 

6th 11 10

16
f

 
15 34

32
f

  3 1 2

16
f 

 
1 2

32
f

 
    0.4987 

4th 5 6

8
f

 
1 2

2
f

 
1 2

8
f 

 
     0.4997 

2nd 1 2

2
f   1 2

2
f

 
      0.49992 
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These filters acts as a low-pass filter in order to suppress the unphysical cell-to-cell 
numerical oscillation. The order of the filter is gradually shifted from the 14th order to the 
2nd order near the boundary, reducing the required number of data points for the filtering 
from 15 (14th order case) to 3 (2nd order case). Here, the term boundary means the 
numerical boundary in the ghost cells or the overlapping cells, as shown in the figure below, 
which is also a copy from the the upacs-LES manual.[2] 

 

Figure 1 Order of the filter near the block boundary 

 

On the other hand, the following parameters are specified in the setup file of upacs-
LES.txt that has been used in our laboratory. 

 

boundary_points = 6 

filter_new_maximum_order = 10  

 

Therefore in this case the relationship between the boundary points and filter order is given 
by 

 

𝑞ത଴ 𝑞തିଵ 𝑞തିଶ 𝑞തିଷ 𝑞തିହ 𝑞തିସ 𝑞തହ 𝑞തସ 𝑞തଷ 𝑞തଵ 𝑞തଶ 

𝑞തିସ
∗ (2nd) 

𝑞തିଷ
∗ (4th) 

𝑞തିଶ
∗ (6th) 

𝑞തିଵ
∗ (8th) 

𝑞ത଴
∗(10th) 
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for the left-hand side boundary and

 

for the right-hand side boundary. Therefore, the resulting equation to be solved is given by 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 𝛼

𝛼 1 𝛼

⋱ ⋱ ⋱

𝛼 1 𝛼

𝛼 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑞തିସ
∗

𝑞തିଷ
∗

⋮

𝑞തேାଷ
∗

𝑞തேାସ
∗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

෍ 𝑎୤௝
ଶ୬ୢ

൫𝑞തିସି௝ + 𝑞തିସା௝൯

2

ேୀଵ

௝ୀ଴

෍ 𝑎୤௝
ସ୲୦

൫𝑞തିଷି௝ + 𝑞തିଷା௝൯

2

ேୀଶ

௝ୀ଴

⋮

෍ 𝑎୤௝
ସ୲୦

൫𝑞തேାଷି௝ + 𝑞തேାଷା௝൯

2

ேୀଶ

௝ୀ଴

෍ 𝑎୤௝
ଶ୬ୢ

൫𝑞തேାସି௝ + 𝑞തேାସା௝൯

2

ேୀଵ

௝ୀ଴ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

− 𝛼

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑞തିହ

0

0

𝑞തேାହ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(29) 

The filtering formula in this section can be applied exactly to the uniform grid spacing, as in 
the case of interpolation formula, due to the same reason described in Section 1. But compact 
filter is widely used in non-uniform grids in the FDM community. 
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Appendix B: Boundary conditions in the solver upacs-
LES 
 

 

B1.  Notations 
 

The equation and figure numbers in this document are those appeared in the Japanese 
upacs-LES manual [1]. In addition, equations in this document are labeled as (A1), (A2), …, 
and so on. In the later part of section 3 and the whole part of section 5, notations for 
mathematical variables follow the Fortran 90 program in upacs-LES source code, because 
there are no description in the manual. The mass-flow specified boundary conditions in 
section 6 are taken from the separate source [3], and notations in section 6 follow the 
reference [3]. 

 

B2.  Summary of the theory of characteristics 
 

The hyperbolic system of equations such as the Euler equations can be decomposed into 
uncoupled equations by diagonalizing the Jacobian matrix of the system. The resulting 
uncoupled equations describes the propagation of the Riemann variables with the 
propagation speed of the eigenvalues of the Jacobian matrix of the system. The propagation 
paths are called the characteristic lines. If the governing equations are linear then the 
characteristic lines are straight lines. When we focus on the left eigenvectors of the Jacobian 
matrix of the system, we can find the Riemann invariants that is conserved along the 
characteristic lines. However speaking in strictly, there are no such invariants in multi-
dimensional problems. Even in this case we can find the quantities that are conserved across 
the characteristic line by considering the right eigenvectors of the Jacobian matrix of the 
system. Refer to the textbook [2] for more detail. 

 

 

 

 

 

 

 

Figure 4: Definition of left and right states. 

 

The quantities below are conserved across the characteristic lines of 𝑑𝑥/𝑑𝑡 = 𝑈 −

𝑐, 𝑈, 𝑈 + 𝑐. 

𝑡 

𝑈 + 𝑐 𝑈 − 𝑐 𝑈 

𝑄௅ 𝑄ோ 𝑄௅
∗ 𝑄ோ

∗  

𝑥 
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𝑐௅ +
𝛾 + 1

2
𝑈௅ = 𝑐௅

∗ +
𝛾 + 1

2
𝑈௅

∗ 

𝑝௅

(𝜌௅)ఊ
=

𝑝௅
∗

(𝜌௅
∗)ఊ

 

across the characteristic line 𝑈 − 𝑐 

(A1) 

 

𝑈௅
∗ = 𝑈ோ

∗  

𝑝௅
∗ = 𝑝ோ

∗  
across the characteristic line 𝑈 

𝑐ோ
∗ −

𝛾 − 1

2
𝑈ோ

∗ = 𝑐ோ −
𝛾 − 1

2
𝑈ோ 

𝑝ோ
∗

(𝜌ோ
∗ )ఊ

=
𝑝ோ

(𝜌ோ)ఊ
 

across the characteristic line 𝑈 + 𝑐 

 

where 

 

𝑐 = ඨ(𝛾 − 1) ൬𝐻 −
1

2
𝒖 ∙ 𝒖൰ , 

𝑈 = 𝒏 ∙ 𝒖 , 

(A2) 

 

 

are the speed of sound and normal velocity, and 

 

𝒏: inward-pointing unit normal vector on the boundary 

𝛾: specific heat ratio 
(A3) 
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B3.  Subsonic inflow B. C. (entry_subsonic_riemann, entry_subsonic) 
 

The upacs-LES manual says that this B. C. cannot be used with the compact scheme 

 

 

 

 

 

 

Figure 7: Inflow boundary 

 

Across the 𝑈 + 𝑐 characteristic line, 

 

𝑐∗ −
𝛾 − 1

2
𝑈∗ = 𝑐ଵ −

𝛾 − 1

2
𝑈ଵ , 

𝑝∗

𝜌∗
ఊ

=
𝑝ଵ

𝜌ଵ
ఊ

,  

𝐧 × 𝐮∗ = 𝐧 × 𝐮ଵ , 

(A4) 

 

 

where values with subscript * are known from the inner points. Across the 𝑈 characteristic 
line, 

 

𝑈ଵ = 𝑈ଶ , 

𝑝ଵ = 𝑝ଶ . 

(A5) 

 

 

The rest of the boundary conditions are givens as the physical boundary conditions as 

 

𝑐ଶ
ଶ

𝛾 − 1
+

1

2
𝑈ଶ = total enthalpy 𝐻ଶ = given as physical B. C.  , 

𝑝ଶ

𝜌ଶ
ఊ

= entropy 𝑠ଶ =  given as physical B. C.  , 

𝒏 × 𝒖ଶ = velocity paralell to the boundary =  given as physical B. C.  . 

(A6) 

 

 

𝑡 

𝑈 + 𝑐 𝑈 − 𝑐 𝑈 

1 2 

𝒏 
* 
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There are 12 unknowns of 𝑐ଵ, 𝑝ଵ, 𝜌ଵ, 𝒖ଵ, 𝑐ଶ, 𝑝ଶ, 𝜌ଶ, 𝒖ଶ and 12 equations (𝑈௜ can be 
obtained from 𝑈௜ = 𝒏 ∙ 𝒖௜).  

When we do not use the concept of the characteristic variable, the total enthalpy 𝐻ଶ, the 
entropy 𝑠ଶ, the total density ρ୲ଶ, and the unit flow vector 𝒏௨ are given at the inflow 
boundary and boundary conditions for this case are given by 

 

𝑝∗ = calculated from the inner point 

𝑝ଶ = 𝑝∗ 

𝑝୲ଶ = 𝑠ଶ𝜌௧ଶ
ఊ 

if (𝑝ଶ > 𝑝୲ଶ) 𝑝୲ଶ = 𝑝ଶ 

𝑀ଶ
ଶ =

1

𝛾 − 1
൭൬

𝑝୲ଶ

𝑝ଶ
൰

ఊିଵ
ఊ

− 1൱ 

𝜃 = 1 +
𝛾 − 1

2
𝑀ଶ

ଶ 

𝑇௧ଶ = 𝐻ଶ

𝛾 − 1

𝛾
 

𝑇ଶ =
𝑇௧ଶ

𝜃
 

𝑐ଶ
ଶ = 𝛾𝑇ଶ 

𝑝୲ଶ = 𝑝ଶ 𝜃
ఊ

ఊିଵ 

𝜌ଶ௧ = 𝑝௧ଶ/𝑇௧ଶ 

𝜌ଶ = 𝜌ଶ௧𝜃
ି

ଵ
ఊିଵ 

𝑈ଶ = ට𝑀ଶ
ଶ𝑐ଶ

ଶ 

𝒖ଶ = 𝑈ଶ𝒏௨ . 

(A7) 
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B4.  Subsonic outflow B. C. (exit_subsonic) 
 

 

 

 

 

 

Figure 6: Outflow boundary 

 

Because the unit normal vector 𝒏 points inward, the normal velocity component 𝑈 = 𝒏 ∙

𝒖 for the outflow is negative against the 𝒏 direction. The incoming characteristics is 𝑈 + 𝑐 
in this case. Therefore across the 𝑈 + 𝑐 characteristics1 

 

𝑐∗ −
𝛾 − 1

2
𝑈∗ = 𝑐ଵ −

𝛾 − 1

2
𝑈ଵ , 

𝑝∗

𝜌∗
ఊ

=
𝑝ଵ

𝜌ଵ
ఊ

 , 

𝒏 × 𝒖∗ = 𝒏 × 𝒖ଵ , 

(A8) 

 

 

where values with subscript * are known from the inner points, as before. As a physical 
boundary condition, we can specify the outlet static pressure, 𝑝୭୳୲. 

 

𝜌ଵ = ൤𝑝୭୳୲/ ൬
𝑝∗

𝜌∗
ఊ൰൨

ଵ/ఊ

 , 

𝑈ଵ =
2

𝛾 − 1
቎ඨ

𝛾𝑝ଵ

𝜌ଵ
− ൬𝑐∗ −

𝛾 − 1

2
𝑈∗൰቏ , 

𝒖ଵ = 𝑈ଵ𝒏 + (𝒏 × 𝒖∗) × 𝒏 . 

(A9) 

 

 

 

 

                                                
1  If we choose the outward normal as the positive direction, the relation 𝑐∗ + (𝛾 − 1)𝑈∗/2 =

𝑐ଵ + (𝛾 − 1)𝑈ଵ/2 holds across the 𝑈 − 𝑐 characteristics. This relationship is the same with 
Eq. (159), because the sign of the 𝑈 changes according to the definition. 

𝑡 

𝑈 + 𝑐 𝑈 − 𝑐 𝑈 

𝒏 

1 

* 
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B5.  Farfield B. C. (farfield_subsonic) 
 

 

 

 

 

 

 

 

Figure X1: Points used for the extrapolation 

 

The freestream Mach number 𝑀ஶ, the unit flow vector 𝒏௨, the pressure 𝑝ஶ, and the 
temperature 𝑇ஶ are given at the farfield boundary. Then, 

 

𝑐ஶ = ඨ
𝛾𝑝ஶ

𝜌ஶ
 , 

𝒖ஶ = 𝑐ஶ𝑀ஶ𝒏௨ . 

(A10) 

 

The values on the boundary, which are denoted by the subscript 0, are roughly estimated 
by using the first order extrapolation from the inner points shown in Figure X1. 

 

𝜌෤଴ = 𝜌ଵ + 𝑑𝑥ଵ(𝜌ଵ − 𝜌ଶ)/(𝑑𝑥ଵ + 𝑑𝑥ଶ) , 

𝒖෥଴ = 𝒖ଵ + 𝑑𝑥ଵ(𝒖ଵ − 𝒖ଶ)/(𝑑𝑥ଵ + 𝑑𝑥ଶ) , 

𝑝෤଴ = 𝑝ଵ + 𝑑𝑥ଵ(𝑝ଵ − 𝑝ଶ)/(𝑑𝑥ଵ + 𝑑𝑥ଶ) . 

(A11) 

 

The direction of the 𝑈 − 𝑐 characteristic wave is negative against the inward normal 
vector at the boundary. Therefore the Riemann invariant along the 𝑈 − 𝑐 characteristic line 
can be determined from the inner point variables as 

 

𝛹୧୬୬ୣ୰ = ඨ
𝛾𝑝෤଴

𝜌෤଴
−

𝛾 − 1

2
𝒏 ∙ 𝒖෥଴ , (A12) 

 

𝑑𝑥ଵ

1 

2 

𝑑𝑥ଵ

1 
𝑑𝑥ଶ

1 

1 0 
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and the Riemann invariant along the 𝑈 + 𝑐 characteristic wave can be determined from the 
farfield variables as 

 

𝛹ஶ = ඨ
𝛾𝑝ஶ

𝜌ஶ
+

𝛾 − 1

2
𝒏 ∙ 𝒖ஶ . (A13) 

 

Therefore the speed of sound and the normal velocity on the boundary, at which these 
two waves cross, can be obtained from 

 

𝑐଴ =
𝛹ஶ + 𝛹୧୬୬ୣ୰

2
 , 

𝑈଴ =
𝛹ஶ − 𝛹୧୬୬ୣ୰

𝛾 − 1
 . 

(A14) 

 

When the farfield boundary is an inflow boundary, the entropy and the vorticity waves 
are given by the farfield information (because these waves are conserved along the 𝑈 
characteristic line) as 

 

𝑠଴ =
𝑝ஶ

𝜌ஶ
ఊ

 , 

𝑽଴ =  𝒏 × 𝒖ஶ . 

(A15) 

 

On the other hand, when the farfield boundary is an outflow boundary, these waves 
should be calculated from the inner points (because these waves are conserved along the 𝑈 
characteristic line) as 

 

𝑠଴ =
𝑝෤଴

𝜌෤଴
ఊ, 

𝑽଴ =  𝒏 × 𝒖෥଴ . 

(A16) 

 

As a result, the boundary conditions are given by 

 

𝜌଴ = ቆ
𝑐଴

ଶ

𝛾𝑠଴
ቇ

ଵ
ఊିଵ

 , (A17) 
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𝑝଴ =
𝜌଴𝑐଴

ଶ

𝛾
 , 

𝒖଴ = 𝑈଴𝒏 + 𝑽଴ × 𝒏  . 

 

 

 

B6.  Mass-flow specified B. C. 
 

 

 

 

 

 

 

Figure 6: Outflow boundary 

 

Dr. Yamamoto, the leader of the UPACS team, recently developed a mass-flow specified 
B. C. for the non-LES version of the UPACS [3]. When the mass flow per unit area at the 
outflow boundary is specified as 𝑚̇୆େ, the physical boundary condition is expressed as 

 

𝜌୆𝑈୆ = 𝑚̇୆େ , 

𝑈୆ = 𝒏 ∙ 𝒖୆ , 
(A18) 

 

where the subscript B denotes the boundary. As in the section 4 of this document2, 

 

𝑐୆ −
𝛾 − 1

2
𝑈୆ = 𝑐୐ −

𝛾 − 1

2
𝑈୐  , 

𝑝஻

𝜌஻
ఊ

=
𝑝௅

𝜌௅
ఊ

 , 

𝒏 × 𝒖୆ = 𝒏 × 𝒖୐ , 

(A19) 

’ 

 

                                                
2 In the original equation in the reference[3], the positive direction is taken to be outward,  
and 𝑐୆ + (𝛾 − 1)𝑈୆/2 = 𝑐୐ + (𝛾 − 1)𝑈୐/2, where 𝑈୆ and 𝑈୐ are positive. 

𝑡 

𝑈 + 𝑐 𝑈 − 𝑐 𝑈 

𝒏 
L 
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where the subscript L denotes the left state, which is the known state of the inner points. 
Then, we have 6 unknowns of 𝜌୆, 𝒖୆, 𝑝஻, 𝑐୆ and 6 equations, and we can solve these 
equations, for example, for 𝜌୆. In addition, the relaxation method is used in reference [3], in 
order to dump the acoustic reflections as 

 

𝜌୆𝑈୆ =
𝑚̇୆େ + 𝛼(𝜌୐𝑈୐)

1 + 𝛼
 , (A20) 

 

where 𝛼 ≥ 0 is the adjustable parameter. 

 

 

B7.  Farfield B. C. as a mass-flow specified B. C. 
 

Because the farfield boundary conditions specify the Mach number or the velocity at the 
farfield boundary, it is considered to be a kind of mass-flow specified boundary condition. In 
this section, the farfield B. C. in section 5 and the mass-flow specified B. C. in section 6 will 
be compared. Although the farfield boundary conditions include both the inflow and outflow 
conditions, only the outflow conditions are considered here. 

 

The values on the boundary are expressed with the subscript 0 in section 5 and the 
subscript B in section 6. These expressions are unified as the subscript B in this section. 
Also, the values from the inner points are expressed as    ෥଴ in section 5 and expressed with 
the subscript L in section 6. These expressions are unified as the subscript L in this section. 

 

Then, the conditions for the entropy and vorticity, from Eqs. (A16) and (A19), are the 
same between these two boundary conditions. 

 

𝑝஻

𝜌஻
ఊ

=
𝑝௅

𝜌௅
ఊ

 , 

𝒏 × 𝒖୆ = 𝒏 × 𝒖୐ . 

(A16)’ 

(A19)’ 

 

By using Eq. (A14) in the far-field B. C., we obtain 

 

𝑐୆ −
𝛾 − 1

2
𝑈୆ = 𝑐୐ −

𝛾 − 1

2
𝑈୐  , 

𝑐୆ +
𝛾 − 1

2
𝑈୆ = 𝑐ஶ +

𝛾 − 1

2
𝑈ஶ . 

(A14)’ 
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The former equation is the same with Eq. (A19) in the mass-flow specified B. C.. 
Therefore the following relationships are the same between these two boundary conditions 

 

𝑐୆ −
𝛾 − 1

2
𝑈୆ = 𝑐୐ −

𝛾 − 1

2
𝑈୐  , 

𝑝஻

𝜌஻
ఊ

=
𝑝௅

𝜌௅
ఊ

 , 

𝒏 × 𝒖୆ = 𝒏 × 𝒖୐ . 

(A19) 

 

 

 

The equation that is found only in the far-field boundary condition is 

 

𝑐୆ +
𝛾 − 1

2
𝑈୆ = 𝑐ஶ +

𝛾 − 1

2
𝑈ஶ . (A14)’ 

 

The equation that is found only in the mass-flow specified boundary condition is 

 

𝜌୆𝑈୆ = 𝑚̇୆େ . (A18)’ 

 

Although the far-field Mach number, pressure, and temperature are specified as 
boundary conditions in the far-field B. C. in section 5, they are not fixed but are solved, as in 
Eq. (A17), by considering the incoming and outgoing characteristic waves, while preventing 
the artificial reflection from the boundary. As a result, the mass flow through this boundary 
is slightly changing, depending on the waves passing the boundary. 

On the other hand, the mass-flow specified B. C. in section 6 fixes the mass flow at the 
boundary, which produces the artificial reflection from the boundary. Therefore this B. C. 
requires the additional relaxation procedure of Eq. (A20) to reduce the reflection. 
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Appendix C: Two Microphone Method Matlab code  
The matlab code used to calculate the absorption coefficient from the numerical results 
is made of three files the main file named “main_2MM_20140710”, the file calculating 
the cross spectrum named “F_cross_work4ver2.m” and file converting the input data 
from CSV to MAT named “CSV2MAT_octave.m” 
 
main_2MM_20140710.m 
% this program processes only one data file which contains the single tone 
data 
% and produces absorption coefficient data against the whole frequency 
range 
% 
  
% clear all; 
% close all; 
  
currentFolder = pwd; 
outputname1 = strcat(currentFolder,'¥output.txt'); 
fprintf('Output file name = %s¥n', outputname1); 
  
fout1 = fopen(outputname1,'w'); 
fprintf(fout1,'Frequency Alpha¥r¥n'); 
  
s = 1; 
  
for ia=1:s 
  
    MF = load('raw_data_Grid.mat'); % *** EXPLICITLY SPECIFIED FOR THIS TEST 
CASE *** 
     
    time = MF.Time_24000Hz'; 
    delta_t = time(2) - time(1); 
     
    p1 = MF.Ch1'; 
    p2 = MF.Ch2'; 
  
    f_samp = 1 / delta_t; 
    N_res = 40; %resolution 
    overlap = 0; % overlap, percent 
    nave = floor(size(p1,1) / (N_res * (1 - overlap / 100))); % number of 
average 
    fprintf('nave = %d¥n', nave); 
  
    fprintf('number of data points = %d¥n', size(p1,1)); 
    fprintf('sampling frequency = %d¥n', f_samp); 
    fprintf('number of average = %d¥n', nave); 
  
    H = F_cross_work4ver2(N_res, nave, overlap, p1, p2); 
     
    delta_f = f_samp / N_res; 
    fprintf('frequency resolution = %3.1f¥n', delta_f); 
  
    % frequency 
    N_res2 = floor(N_res / 2); 
    for k=1:N_res2 
        f(k,1) = (k-1) * f_samp / N_res; 
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    end 
     
    %microphone positions 
    x1 =0.2177852348993  ; %[m] 
    x2 =0.1483557046980; %[m] 
     
    fprintf('maximum frequency = %d¥n', max(f)); 
    fprintf('number of data = %d¥n', size(f)); 
     
    s = x1 - x2; %distance between two microphones[m] 
     
    i = sqrt(-1); %imaginary unit 
     
    theta = 20; %temperature [degrees Celcius] 
    T = theta + 273.15; %temperature [K] 
    c = 343.2020833; %sped of sound [m/s] 
     
     
    % wave number 
    k = 2 * pi * f / c; 
  
    % transfer function for the incident wave 
    H_I = exp(-i * k * s); 
     
    % transfer function for the reflected wave 
    H_R = exp(i * k * s); 
  
    % transfer function of the sound field of the standing wave 
    H_12 = H; 
     
    % reflection coefficient, r 
    r = ((H_12 - H_I) ./ (H_R - H_12)) .* exp(2 * i * k * x1); 
    test=exp(-2 * i * k * x1); 
    alpha = 1 - abs(r).^2; 
  
    % plotting the absorption coefficient 
hold on; 
    figure(3); 
    plot(f,alpha,'b.'); 
    hold on; 
    xlabel('frequency [Hz]'); 
    ylabel('alpha'); 
    axis([0 2500 -1 1]); 
    grid on; 
    hold on; 
  
    for k = 1 : N_res2 
      fprintf(fout1,'%.4f %.4f¥r¥n',f(k,1), alpha(k)); 
    end 
  
end 
  
  
fclose(fout1); 
 
 
 



 

  130 
 

 
 
F_cross_work4ver2.m 
% N_res : resolution 
% nave : number of average 
% overlap : overlap of the data in percent 
% ttp1 : reference signal 
% ttp2 : measured signal 
  
  
function y = F_cross_work4ver2(N_res, nave, overlap, ttp1, ttp2); 
  
  
% (2-3) allocation of the arrays refave conave pcalc 
transave=zeros(N_res,1); % integrated value 
pcalc=zeros(N_res,1);    % instantaneous cross-spectrum, or, pressure signal 
of the segmented data 
  
ovpointer=floor((1-overlap/100)*N_res); 
  
  
% (2-4) FFT for NCALC CASE 
for jj=1:nave,  % --Averaging of ii_th Time Data  
    kstart=(jj-1)*ovpointer;   
     
    % (2-4-1) Reference Data Analysis 
    for kk=1:N_res,  
        pcalc(kk,1) = ttp1(kstart+kk,1); 
    end 
     
    % FFT of jj_th Segment 
    fftref = fft(pcalc , N_res) / N_res; 
    fftref = fftref / sqrt(2); 
     
    % (2-4-2) Concerning Data Analysis 
    for kk=1:N_res,  
        pcalc(kk,1) = ttp2(kstart+kk,1); 
    end 
     
    % FFT of jj_th Segment 
    fftcon = fft(pcalc , N_res) / N_res;  
    fftcon = fftcon / sqrt(2); 
     
    % (2-4-3) Computation of Cross Spectrum 
%     pcalc = fftcon ./ fftref; 
    cros = fftcon .* conj(fftref); 
    auto = fftref .* conj(fftref); 
    trans = cros ./ auto; 
     
    % (2-4-4) integration of the Cross Spectrum 
    transave = transave + trans;                          
     
end 
  
% (2-4-5) averaging of the Cross Spectrum 
transave = transave / nave;  
  
N_res2 = floor(N_res / 2); 
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y = transave(1:N_res2, 1); 
%======================= 
 
 
CSV2MAT_octave.m 
%======================= 
%=this file converts the input data from CSV to MAT  
 
pwd 
  
input_file = 'raw_data_Grid.csv'; 
output_file =  strrep( input_file, '.csv', '.mat'  ); 
  
fprintf('input CSV file = %s¥n', input_file); 
  
matrix = csvread(input_file); 
  
Time_24000Hz = matrix(:,1)'; 
Ch1 = matrix(:,2)'; 
Ch2 = matrix(:,3)'; 
  
save (output_file, 'Time_24000Hz', 'Ch1', 'Ch2'); 
  
whos ('-file', output_file); 
  
 
 


