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Chapter 1. Introduction 
 

1.1 Background of research 

 

The concept of Artificial Intelligence (AI) was created by Alan Turing in 1950s [1], but the AI 

of that time did not yield research results as much as expected because of problems such as 

limitations in computer performance and limited application area. Hence, the study of the AI 

has gone through several dark ages, but with the advances in computer and the emergence of 

deep learning, the AI has got profitable outcomes and received attention again. Therefore, in 

recent years, movements have been appeared to convert existing human-operated systems into 

unmanned systems in many fields such as industry of vehicles and robots since the performance 

of AI technology has improved. 

It has been found worldwide to follow the aforementioned tendency in the marine navigation 

area. The UK's Automated Ships Ltd and Norway's Kongsberg Maritime have signed a 

Memorandum of Understanding to build the world's first unmanned and fully autonomous ship 

for offshore operations [2]. Kongsberg Maritime has also gone into partnership with YARA to 

build the world’s first autonomous and zero emission ship [3]. Rolls-Royce has joined forces 

with Google to develop intelligent awareness systems which are making vessels safer and are 

essential to making autonomous ships a reality [4]. According to report of Japan Ship 

Technology Research Association, some companies and research institutes in Japan has been 

cooperated each other to develop autonomous ships equipped with AI system that are capable 

of operating safely [5]. 

In particular, the International Maritime Organization (IMO) recognized that the IMO should 

take a proactive and leading role to encourage rapid technological development related to 

autonomous ships or unmanned ships. In 98th Maritime Safety Committee (MSC), the IMO 

introduced the concept of Maritime Autonomous Surface Ships (MASS) and started a 

regulatory scoping exercise (RSE) to determine whether current international regulations need 

to be amended for safe operation of MASS [6]. Furthermore, to facilitate the process of the 

regulatory scoping exercise, the degrees of autonomy for MASS are organised in 99th MSC as 

follows [7][8]: 
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 Ship with automated processes and decision support: Seafarers are on board to operate 

and control shipboard systems and functions. Some operations may be automated. 

 Remotely controlled ship with seafarers on board: The ship is controlled and operated 

from another location, but seafarers are on board. 

 Remotely controlled ship without seafarers on board: The ship is controlled and 

operated from another location. There are no seafarers on board. 

 Fully autonomous ship: The operating system of the ship is able to make decisions and 

determine actions by itself. 

Achieving the MASS can be recognized as coming up with and effective counterplan on 

accidents caused by human errors, which is the reason of most ocean incident, such as careless 

of ship operators. In general, the voyage of the ship is progressed by following a path which is 

considered safe while avoiding other ships or obstacles with the potential to cause a collision. 

Hence, it is necessary to equip with performances of automatic path following and collision 

avoidance in the fully autonomous ship. 

In this study, the automatic path following algorithm using fuzzy inference and the automatic 

collision avoidance algorithm using reinforcement learning algorithm are developed in order 

to come up with the basic research for the fully MASS. The term MASS has recently been 

introduced by IMO, but research on automatic path following and collision avoidance for 

accomplishing autonomous ships has been in progress for decades. Path following is to follow 

given pre-planned route exactly by controlling a rudder. For the automatic path following, an 

autopilot system has been firstly developed by Sppery and Minorsky [9], [10]. The first 

autopilot on the ship was Proportional-Integral-Derivative (PID) type controller. Starting with 

the first autopilot, the PID method has been applied to the path following system by many 

scholars. Kallastom et al. [11] designed an autopilot on velocity scheduling and a self-tuning 

regulator with a Kalman filter for steady state course keeping. Jutong et al. [12] suggested a 

trimaran unmanned surface vehicle (TUSV) control system. The PID controller used in the 

system adjusted engine speed and yaw rate. The full system was tested successfully in manual 

operation and obtained useful data. However, the performance of the PID type autopilot is not 

good in various environmental conditions. The PID controller usually needs to adjust 

parameters corresponding to navigation condition. Additionally, the disadvantage of the PID 

is not suitable for nonlinear and complex systems. As for nonlinear problem, fuzzy logic is 
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used to enhance the PID controller due to its ability to translate the control action into rule base 

[13]. Nassim and Nabili [14] developed an integrated guidance and control system that enable 

robust tracking performance in spite of significant external disturbance using a self-tuning 

fuzzy controller. Cheng et al [15] suggested a fuzzy control design for waypoint tracking 

problem of ship autopilot. After the development of the autopilot, true automatic path following 

has been completed by Line-of-Sight (LOS) guidance system suggested by Fossen et al [16]. 

Through the LOS guidance system, the ship is able to automatically redirect according to the 

initial planned route near the waypoint. The system is configured so that when the ship enters 

a circle of acceptance of the target waypoint, the target waypoint is switched to the next 

waypoint. That time to change the target waypoint is important because it determines when to 

use rudder for modifying a heading angle of the ship. In the LOS guidance system, it 

additionally need to create LOS set points, which are two intersection points between a circle 

with certain radius around a ship and a straight track defined by two waypoints. The set points 

lead to extra mathematical task. As another disadvantage, the rudder is manipulated at same 

timing or point in order to enter a new course line because the radius of the acceptance circle 

is always constant. Thus, Velagic et al. [17] found out the position to execute the rudder through 

carrying out simulations several times. McGookin [18] attempted to adjust the size of the circle 

of acceptance according to the water depth near waypoints in order to find best timing for 

manipulating a rudder. However, their studies seem difficult to apply to all types of ships since 

a particular type of ship was subjected. 

Automatic collision avoidance is to sense risk by the ship herself and to perform the avoidance 

action against objects expected to occur collisions. In order to inform the ship of the possibility 

of collision, collision risk assessment has been studied. The collision risk assessment can be 

classified into two areas: ship domain and collision risk. The ship domain is the minimum 

virtual safety zone around a ship. If any vessel or obstacles enters into the established safety 

zone, the ship should initiate the action to evade collision. The ship domain was introduced as 

ellipse shape by Fujii and Tanaka [19]. Since then, the appearance of ship domain has evolved 

into various shapes, taking into consideration various factors [20][21][22]. Goodwin [23] 

proposed the ship domain with three fan shaped combinations for open sea. The front right area 

of ship is biggest among them because it is a priority to change direction toward starboard side 

in the International Regulations for Preventing Collisions at Sea 1972 (COLREGs). 

Pietrzykowski and Uriasz [24] decided the outline of ship domain based on a survey of 

participants with a lot of voyage experience. In general, the collision risk has been evaluated 
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by fuzzy logic method. Iijima et al [25], and Kijima and Furukawa [26] used Time to Closet 

Point of Approach (TCPA) and Distance at Closet Point of Approach (DCPA). Kao et al. [27] 

defined three fuzzy variables that are ship length, speed and sea condition and the combination 

of the variables has total 27 fuzzy rules. The study on the collision assessment has been later 

utilized to determine when to start collision avoidance action. In deducing the starting point of 

avoidance actions, the ship domain showed good performance in situation to avoid single ship 

but it was difficult to apply in real coastal situation. The collision risk assessment using fuzzy 

theory is effective to estimate the ship of maximum collision risk in a lot of traffic [28]. After 

detecting a potential collision, a ship should take action to avoid a clash. Namely, the ship must 

move toward a new direction or path, not an existing track, while there is a risk of collision. In 

order to make new path, Cummings et al [29] and Blaich et al [30] used A* algorithm that is a 

way to find the shortest path from a given start points to an end point. In order to implement 

the system using A* algorithm, a rectangular grid should be created and it requires the exact 

information on the position and the size of obstacles, the destinations of the controlling ship 

and another ships. However, the related data is generally hard to know precisely. So far, the 

ship has been offered the optimal action to avoid the collision obtained from the outcomes of 

some algorithms. Since the ship cannot determine the action by herself, it is difficult to see as 

fully autonomous ship. If these researches on automatic path following and collision avoidance 

are sufficiently developed, it is expected that an intelligent ship which is fully autonomous ship 

proposed by IMO will be implement in the near future. 

 

1.2 Objectives of research 

 

In order to achieve an intelligent ship that can determine and operate action to be taken by 

herself, automatic path following algorithm and collision avoidance algorithm which are 

import functions for completing the voyage are developed and the objectives of this research 

are as follows.  

First, automatic path following algorithm is proposed to allow a ship to follow a planned 

desired path accurately. The study on path following algorithm has been fulfilled by 

incorporating a rudder control system as an autopilot in the LOS guidance system. However, 

the LOS guidance algorithm has two disadvantages; namely the equal timing to use rudder and 

the necessity of LOS set points. To overcome the problems, the algorithm is composed with 
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two components using fuzzy inference that is suitable for nonlinear problem: one is a waypoint 

guidance system and the other is a rudder control system. In the LOS guidance algorithm, a 

target waypoint is changed when a ship enter a specific circular area with a same constant 

radius. It is expected to generate overshoots, cross track error and heading error, since the 

rudder is always used at same timing so as to penetrate into a new planned straight line. The 

waypoint guidance system in the proposed path following algorithm will be developed to be 

able to find an optimal timing to modify a target waypoint for reducing overshoots when the 

ship change her course. On the other hand, the LOS set points lead to the additional 

computational work. The major reason to designate the LOS set points is to reduce cross track 

error. If the cross track error is taken into account as input parameter in the rudder control 

system, it is not necessary to create the LOS set points. Therefore, the rudder control system 

will consider heading error, cross track error, ship’s speed and yaw rate in order to gain the 

appropriate rudder angle which enables the ship to trace the desired route. 

Second, most of existing researchers have carried out simulations in the virtual situations that 

ships move on a geometrical track consisted of waypoints under arbitrary external disturbances 

such as wind, current and wave. As for actual disturbances, they have irregular characteristics 

and let ships swerve from a desired track. Simulations performed under the assumed virtual 

conditions are anticipated to have limitation to assess the effectiveness of the developed 

algorithm. Hence, numerical simulations are performed to verify the capability in realistic 

environmental situation reproduced by data obtained from official institute. 

Third, automatic collision avoidance algorithm which utilizes reinforcement learning in order 

to make decisions on action to avoid collision is proposed. The training structure of 

reinforcement learning is similar to human learning method through trial and error. Thus, the 

reinforcement learning allows the ship to identify various patterns of surrounding environments 

such as the variation of encounter situations and behaviours to be taken by herself unlike 

previous studies. As for detecting potential collision risks, the degrees of the risks will be 

evaluated by using fuzzy inference because the degrees of the risks should be found in real 

time against the multiple ships. 

Fourth, the reinforcement learning has just begun to be used in the marine filed. In existing 

studies [31][32], one of methods of reinforcement learning was applied problem of ship 

manoeuvring and results were shown. In this study, two kind of learning method such as Deep 

Q-network (DQN) and Deep Deterministic Policy Gradient (DDPG) are introduced and 
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employed. Through the comparison of the outcomes obtained by applying these two methods, 

it will be found which method is more suitable for the collision avoidance problem of ships. 

 

1.3 Outline 

 

This thesis consists of six chapters. 

In Chapter 1 entitled “Introduction”, the background and purposes of this research are 

introduced. 

In Chapter 2 entitled “Mathematical model for ship motion”, the mathematical model of 

manoeuvring motion and external disturbance model are described in order to carry out 

numerical simulations which is necessary to evaluate the performance of developed algorithm. 

In Chapter 3 entitled “Development of automatic path following algorithm”, automatic path 

following algorithm is suggested. Two components of the algorithm developed by using fuzzy 

inference, the waypoint guidance system and the rudder control system, are explained through 

showing fuzzy rules and fuzzy membership functions. A ship equipped with the proposed 

algorithm is simulated in virtual situations and the results are analyzed. 

In Chapter 4 entitled “Application of developed automatic path following algorithm in realistic 

situations”, the path following algorithm developed in Chapter 3 is additionally verified in 

realistic situations. In order to reproduce realistic ship voyage, an actual route planned by ship 

operators has been used and actual environmental data such as wind and current measured 

provided by official institutes are applied as wind and current vectors depending on the present 

ship’s location in real time. 

In Chapter 5 entitled “Development of automatic collision avoidance algorithm”, automatic 

collision avoidance algorithm is developed. The evaluation of collision risk and the theory of 

reinforcement learning which are needed to be established to develop the algorithm are 

described. Collision avoidance problem is defined as MDP (Markov Decision Process) model 

in the reinforcement learning and the action to evade collision is evaluated on the basis of 

COLREGs. Among the deep reinforcement learning methods, DQN and DDPG are applied 

and simulations results using the both methods are compared and examined. 
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In Chapter 6 entitled “Conclusions”, the conclusions of this study are summarized and the 

possible future research is discussed. 
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Chapter 2. Mathematical Model for Ship Motion 
 

2.1. Introduction 

 

The suggested track keeping algorithm and collision avoidance algorithm in this study 

employed numerical simulations in order to verify their effectiveness. For prediction of a ship 

motion in the simulations, many researches dealing with mathematical model have been 

introduced to represent the dynamic characteristics of manoeuvring motion such as MMG 

model, Nomoto model, Abkowitz model, and others [33][34][35][36]. In this research, 

Manoeuvring Mathematical Modelling Group (MMG) model proposed by Japanese research 

group [37] was applied to express hydrodynamic forces acting on a ship. The MMG model 

consists of the individual properties of hull, propeller, rudder, and other external components. 

This chapter demonstrates the mathematical model of hydrodynamic forces and moment for 

each part of the MMG model devised by Kijima et al. [38]. 

 

 

2.2. Equations of manoeuvring motion 

 

Three degrees of freedom motion such as surge, sway, and yaw is universally applicable to 

express ship dynamic motion in the horizontal plan. The ship motion can be described using 

coordinate systems as shown in Fig. 2.1. 𝑜 − 𝑥0𝑦0 is an earth-fixed coordinate system and 

𝐺 − 𝑥𝑦 is a body-fixed coordinate system with the center of gravity of a ship 𝐺 as the origin. 

In the body-fixed coordinate system, the 𝑥 -axis is positive in the direction of the fore 

perpendicular. The 𝑦-axis is positive in the direction of the starboard side and the 𝑧-axis is 

positive downwards. Let the forces in the x and y axes be 𝑋 and 𝑌, and the moment around 

vertical axis which passing through 𝐺 is indicated by 𝑁. 𝑢 and 𝑣 denote the components of 

ship speed 𝑈 in 𝑥 and 𝑦 directions respectively. 𝛼 and 𝜈 mean the incident angles of current 

and wind. 𝑉𝐶 and 𝑉𝑊 are defined as the speeds of current and wind respectively. The positive 

direction of a heading angle 𝜓 which is the angle between 𝑥0 and 𝑥 axes is assumed to be 

clockwise direction. The drift angle 𝛽 is shown in Fig. 2.1 with its positive direction. 
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Fig. 2.1 Coordinate systems 

 

The equations of ship motion in the earth fixed coordinate system 𝑜 − 𝑥0𝑦0 in Fig. 2.1 are 

expressed as follows: 

 

 

𝑚�̈�0 = 𝑋0,

𝑚�̈�0 = 𝑌0,

𝐼𝑍𝑍�̈� = 𝑁.

 (2.1) 

 

where, 

𝑋0, 𝑌0, 𝑁 :  the components of external forces in 𝑥0 and 𝑦0 axes and moment around 

z-axis respectively, 

𝑚 :  mass of ship, 

𝐼𝑧𝑧 :  moment of inertia around z-axis, 

�̈� :  yaw acceleration, 

�̈�0, �̈�0 :  components of acceleration in 𝑥0 and 𝑦0 axes separately. 

 

However, hydrodynamic forces acting on the ship in the body-fixed coordinate system should 

be described because the application of the body-fixed coordinate system is more effective 
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than the earth-fixed coordinate system. There is the following relation between 𝑋, 𝑌 and 𝑋0, 

𝑌0 which are 𝑥0 and 𝑦0 components of the hydrodynamic forces in the earth fixed coordinate 

system.  

 

 
𝑋 = 𝑋0 cos𝜓 + 𝑌0 sin𝜓 ,

𝑌 = 𝑌0 cos𝜓 − 𝑋0 sin𝜓 .
 (2.2) 

   

Substituting Eq. (2.1) for Eq. (2.2), the following equations are obtained: 

 

 
𝑋 = 𝑚(�̈�0 cos𝜓 + �̈�0 sin𝜓),

𝑌 = 𝑚(�̈�0 cos𝜓 − �̈�0 sin𝜓).
 (2.3) 

 

Furthermore, �̇�0, �̇�0 which are 𝑥0 and 𝑦0 components of the ship speed at 𝐺 in the earth-fixed 

coordinate system is expressed by 𝑢 and 𝑣 which are 𝑥 and 𝑦 components of the speed in the 

body-fixed coordinate system. 

 

 
�̇�0 = 𝑢 cos𝜓  − 𝑣 sin𝜓,
�̇�0 = 𝑣 cos𝜓 + 𝑢 sin𝜓 .

 (2.4) 

 

Differentiating Eq. (2.4) by time, 𝑥0 and 𝑦0 components of the acceleration of 𝐺 is given by: 

 

 
�̈�0 = �̇� cos𝜓 − 𝑢�̇� sin𝜓 − �̇� sin𝜓 + 𝑣�̇� cos𝜓,

�̈�0 = �̇� cos𝜓 − 𝑣�̇� sin𝜓 + �̇� sin𝜓 + 𝑢�̇� cos𝜓 .
 (2.5) 

 

Substituting Eq. (2.5) for Eq. (2.3), the following equations of motion are derived as follows: 

 

 

𝑚(�̇� − 𝑣�̇�) = 𝑋,

𝑚(�̇� + 𝑢�̇�) = 𝑌,

𝐼𝑍𝑍�̈� = 𝑁.

 (2.6) 

 

Since the ship moves in viscous fluid, the influence of added mass and added moment of 

inertia should be considered as shown in Eq. (2.7). 
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(𝑚 +𝑚𝑥)�̇� − (𝑚 +𝑚𝑦)𝑣𝑟 = 𝑋,

(𝑚 +𝑚𝑦)�̇� + (𝑚 +𝑚𝑥)𝑢𝑟 = 𝑌,

(𝐼𝑍𝑍 + 𝑖𝑍𝑍)�̇� = 𝑁.

 (2.7) 

 

where, 

𝑚,𝑚𝑥, 𝑚𝑦  :  the mass and x- and y- axis components of added mass of ship, 

𝐼𝑧𝑧 , 𝑖𝑧𝑧 :  the moment and added moment of inertia of a ship, 

𝑢 , 𝑣 :  x- and y- axis speed components , 

𝑟 :  yaw rate. 

 

𝑢 and 𝑣 can be expressed using ship speed 𝑈 and drift angle 𝛽 as the following equation: 

 

 
𝑢 = 𝑈 cos 𝛽 ,

𝑣 = −𝑈 sin 𝛽 .
 (2.8) 

 

Therefore, Eq. (2.7) is rewritten as: 

 

 

(𝑚 +𝑚𝑥)(�̇� cos 𝛽 − 𝑈�̇� sin 𝛽) + (𝑚 +𝑚𝑦)𝑈𝑟 sin 𝛽 = 𝑋,

−(𝑚 +𝑚𝑦)(�̇� sin 𝛽 + 𝑈�̇� cos 𝛽) + (𝑚 +𝑚𝑥)𝑈𝑟 cos 𝛽 = 𝑌,

(𝐼𝑍𝑍 + 𝑖𝑍𝑍)�̇� = 𝑁.

 (2.9) 

 

The non-dimensional equations of motion is derived by non-dimensionalizing Eq. (2.9) as 

follows.  

 

 

(𝑚′ + 𝑚′
𝑥) (

𝐿

𝑈
)(
�̇�

𝑈
cos 𝛽 − �̇� sin 𝛽) + (𝑚′ + 𝑚′

𝑦)𝑟′ sin 𝛽 = 𝑋′,

−(𝑚′ + 𝑚′
𝑦) (

𝐿

𝑈
)(
�̇�

𝑈
sin 𝛽 + �̇� cos𝛽) + (𝑚′ + 𝑚′

𝑥)𝑟′ cos 𝛽 = 𝑌′,

(𝐼′𝑍𝑍 + 𝑖′𝑍𝑍) (
𝐿

𝑈
)
2

(
�̇�

𝐿
𝑟′ +

𝑈

𝐿
𝑟′̇) = 𝑁′.

 (2.10) 

 

Here, superscript “ ' ” signifies non-dimensional parameter and non-dimensionalization of the 

equations was proceeded by Eq. (2.11). 
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            𝑚′, 𝑚𝑥
′ , 𝑚𝑦

′ = 𝑚,𝑚𝑥, 𝑚𝑦/
1

2
𝜌𝐿2𝑑,

          𝐼𝑧𝑧
′ , 𝑖𝑧𝑧

′ = 𝐼𝑧𝑧, 𝑖𝑧𝑧/
1

2
𝜌𝐿4𝑑,

             𝑋′, 𝑌′ = 𝑋, 𝑌/
1

2
𝜌𝐿𝑑𝑈2,

                 𝑁′ = 𝑁/
1

2
𝜌𝐿2𝑑𝑈2 ,

   𝑟′ = 𝑟𝐿/𝑈.
   

 (2.11) 

where, 

𝜌  :  density of fluid, 

𝐿 :  ship length, 

𝑑 :  draft. 

 

2.3. Mathematical model of external forces 

 

The right-hand side terms of Eq. (2.10) with respect to the non-dimensional external forces 

𝑋′ , 𝑌′ and yaw moment 𝑁′ can be expressed as Eq. (2.12) using MMG mathematical model. 

 

 

𝑋′ = 𝑋′𝐻 + 𝑋′𝑃 + 𝑋′𝑅 + 𝑋′𝑊,

𝑌′ = 𝑌′𝐻 +            𝑌′𝑅 + 𝑌′𝑊,

𝑁′ = 𝑁′
𝐻 +           𝑁′𝑅 + 𝑁′𝑊.

 (2.12) 

 

Here, subscript “H”, “P”, “R” and “W” intend hull, propeller, rudder, and wind. The lateral 

force and moment by a propeller were omitted because they have a very small effect. The 

hydrodynamic forces due to external disturbance such as current and wind will be described 

in the next section in detail. 

 

2.3.1 Hydrodynamic forces and moment acting on a hull 

The non-dimensional hydrodynamic forces 𝑋𝐻
′ , 𝑌𝐻

′  and moment 𝑁𝐻
′

 acting on a hull in 

Eq. (2.12) are calculated using mathematical model proposed by Kijima et al. [38]. 𝑋𝛽𝑟 
′  

presents the variation of longitudinal force due to drift angle and yaw rate, and 𝑋𝑢𝑢
′  indicates 

ship’s resistance in forward straight motion. 
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𝑋′𝐻 = 𝑋
′
𝛽𝑟𝑟′ sin 𝛽 + 𝑋

′
𝑢𝑢 cos

2 𝛽 ,

𝑌′𝐻 = 𝑌
′
𝛽𝛽 + 𝑌

′
𝑟𝑟′ + 𝑌

′
𝛽𝛽𝛽|𝛽| + 𝑌

′
𝑟𝑟𝑟′|𝑟′| + (𝑌

′
𝛽𝛽𝑟𝛽 + 𝑌

′
𝛽𝑟𝑟𝑟′)𝛽𝑟′,

𝑁′𝐻 = 𝑁
′
𝛽𝛽 + 𝑁

′
𝑟𝑟
′ + 𝑁′

𝛽𝛽𝛽|𝛽| + 𝑁
′
𝑟𝑟𝑟

′|𝑟′| + (𝑁′
𝛽𝛽𝑟𝛽 + 𝑁

′
𝛽𝑟𝑟𝑟

′)𝛽𝑟′.

 (2.13) 

 

2.3.2 Longitudinal force produced by a propeller 

Since the lateral component of a propeller force and moment generated by a propeller are 

negligible small comparing with its longitudinal component, they are ignored in general. 

Hence, only the longitudinal force 𝑋𝑃 generated by a propeller are taken into account in the 

MMG model. The non-dimensional force 𝑋𝑃
′  is determined by the following equations: 

 

 

𝑋𝑃
′ = (1 − 𝑡𝑃)𝑛

2𝐷4𝑃𝐾𝑇(𝐽𝑃)/
1

2
𝐿𝑑𝑈2,

𝐾𝑇(𝐽𝑃) = 𝐶1 + 𝐶2𝐽𝑃 + 𝐶3𝐽𝑃
2,

𝐽𝑃 = 𝑈 cos 𝛽 (1 − 𝑤𝑃)/𝑛𝐷𝑃.

 (2.14) 

 

Where, n means the number of propeller revolution and 𝐷𝑃 is the diameter of a propeller. 𝑡𝑃 

represents thrust deduction rate. Thrust coefficient 𝐾𝑇(𝐽𝑃) can be calculated with the function 

of advance coefficient 𝐽𝑃. 𝐶1, 𝐶2, and 𝐶3 are constants and 𝑤𝑃 is effective wake fraction. 

 

2.3.3 Hydrodynamic forces and moment produced by a rudder 

When a rudder exists in wake, additional lateral force is induced and rudder resistance is 

decreased due to interaction between a rudder and a hull. Therefore, the non-dimensional 

hydrodynamic forces 𝑋𝑅
′ , 𝑌𝑅

′ , and moment 𝑁𝑅
′  generated by a rudder are represented by 

considering the influence of hydrodynamic interaction as Eq. (2.15). 

 

 

𝑋𝑅
′ = −(1 − 𝑡𝑅)𝐹𝑁

′ sin 𝛿 ,

𝑌𝑅
′ = −(1 + 𝑎𝐻)𝐹𝑁

′ cos 𝛿 ,

𝑁𝑅
′ = −(𝑥𝑅

′ + 𝑎𝐻𝑥𝐻
′ )𝐹𝑁

′ cos 𝛿 .

 (2.15) 

 

Where, 𝛿 is rudder angle and 𝐹𝑁
′  is non-dimensional rudder normal force. 𝑡𝑅 and 𝑎𝐻 indicate 

interaction coefficient. 𝑥𝑅
′  and 𝑥𝐻

′  define the position of a rudder and the acting point of 

additional lateral force induced by steering. 
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𝐹𝑁
′   can be expressed as Eq. (2.16) and Eq. (2.17) describes 𝐶𝑁, 𝑈𝑅

′ 2, 𝛼𝑅 separately.  

 𝐹𝑁
′ = (

𝐴𝑅
𝐿𝑑
)𝐶𝑁𝑈𝑅

′ 2 sin 𝛼𝑅 (2.16) 

   

 

𝐶𝑁 = 6.13𝐾𝑅/(𝐾𝑅 + 2.25)

𝑈𝑅
′ 2 = 𝑣(1 − 𝑤𝑅)

2{1 + 𝐶 ∙ 𝑔(𝑠)}

𝑔(𝑠) = 𝜂𝐾{2 − (2 − 𝐾)𝑠}𝑠/(1 − 𝑠)2

𝜂 = 𝐷𝑃/ℎ𝑅
𝐾 = 0.6(1 − 𝑤𝑃)/(1 − 𝑤𝑅)
𝑠 = 1.0 − (1 − 𝑤𝑃)𝑈 cos 𝛽 /𝑛𝑃

𝑤𝑃 = 𝑤𝑃0 ∙ exp(−4.0𝛽′𝑃
2
)

𝛽′𝑃 = 𝛽 − 𝑥
′
𝑃 ∙ 𝑟′

𝑤𝑅 = 𝑤𝑅0 ∙ 𝑤𝑃0/𝑤𝑃0
𝑤𝑃0 = 0.5𝐶𝐵 − 0.05

𝛼𝑅 = 𝛿 − 𝛾 ∙ 𝛽′𝑅
𝛽′𝑅 = 𝛽 − 2𝑥

′
𝑅 ∙ 𝑟′

𝑥′𝑃 ≅ −0.5

𝑥′𝑅 ≅ −0.5

 (2.17) 

 

where, 

𝐶𝑁 : gradient coefficient of rudder normal force, 

𝑈𝑅 : effective inflow velocity at rudder location, 

𝐴𝑅 : rudder area, 

𝛼𝑅 : effective inflow angle at rudder location, 

𝐶 : coefficient describing a difference between starboard and port steering, 

𝐶𝐵 : block coefficient 

𝐾𝑅 : aspect ratio of a rudder,  

ℎ𝑅 : height of a rudder, 

𝑃 : propeller pitch, 

𝛾 : flow straightening factor, 

1 − 𝑤𝑅 : effective wake fraction at rudder location, 

1 − 𝑤𝑅0 : effective wake fraction at rudder location in straight forward running, 

𝑠 : slip ratio. 
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𝑡𝑅  is resistance increase ratio due to the rudder-on-hull interaction and written as follows 

[39]: 

 

 1 − 𝑡𝑅 = 0.28𝐶𝐵 + 0.55 (2.18) 

 

2.4. Mathematical models for environmental disturbances 

 

During the voyage, the motion of a ship is influenced by the existence of environmental 

disturbances such as wind and current. Therefore, the influence of wind and current as 

environmental disturbances were considered for realistic ship motion. The notations related to 

the forces and moment due to the disturbances are appeared in Fig. 2.1 

 

2.4.1 Wind effects 

Forces and moment caused by wind are expressed using relative wind speed 𝑈𝑊
∗  and wind 

direction 𝜈∗ as below: 

 

 

𝑋𝑊 =
1

2
𝜌𝐴𝐴𝑇𝑈𝑊

∗ 2𝐶𝑋(𝜈
∗),

𝑌𝑊 =
1

2
𝜌𝐴𝐴𝐿𝑈𝑊

∗ 2𝐶𝑌(𝜈
∗),

 𝑁𝑊 =
1

2
𝜌𝐴𝐴𝐿𝐿𝑂𝐴𝑈𝑊

∗ 2𝐶𝑁(𝜈
∗).

 (2.19) 

 

𝑈𝑊
∗  and 𝜈∗ are relative wind velocity and angles respectively. They are expressed as follows: 

 

 

𝑈𝑊
∗ 2 = √𝑢𝑊

∗ 2 + 𝑣𝑊
∗ 2,

𝑢𝑊
∗ = 𝑢 + 𝑈𝑊 cos(𝜓 − 𝜈) ,

𝑣𝑊
∗ = 𝑣 − 𝑈𝑊 cos(𝜓 − 𝜈),

𝜈∗ = tan−1 (
𝑢𝑊
∗

𝑣𝑊
∗ ).         

 (2.20) 

 

Eq. (2.19) is non-dimensionalized as shown in Eq. (2.21),  
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𝑋′𝑊 = 𝑋𝑊/
1

2
𝜌𝐿𝑑𝑈2   =

𝜌𝑎
𝜌
∙
𝐴𝑇
𝐿𝑑

𝑈𝑊
∗ 2

𝑈2
∙ 𝐶𝑋(𝜈

∗),

𝑌′𝑊 = 𝑌𝑊/
1

2
𝜌𝐿𝑑𝑈2    = −

𝜌𝑎
𝜌
∙
𝐴𝐿
𝐿𝑑

𝑈𝑊
∗ 2

𝑈2
∙ 𝐶𝑌(𝜈

∗),

 𝑁′𝑊 = 𝑁𝑊/
1

2
𝜌𝐿2𝑑𝑈2 = −

𝜌𝑎
𝜌
∙
𝐿𝑂𝐴𝐴𝐿
𝐿2𝑑

𝑈𝑊
∗ 2

𝑈2
∙ 𝐶𝑁(𝜈

∗).

 (2.21) 

 

Where, 𝜌𝑎 means the density of the air. 𝐴𝑇 and 𝐴𝐿 represent transverse and lateral projected 

areas respectively. 𝐿𝑂𝐴 is the length over all of the ship. 𝐶𝑋 , 𝐶𝑌  and 𝐶𝑁  are coefficients of 

wind forces and moment, and they are estimated by prediction formulae presented by 

Fujiwara [40]. The formulae were derived based on a wide range of experimental data 

including LNG carrier, PCC and so on. Coefficients used in the estimation formulae for 

calculating wind effects can be defined as Eq. (2.22). 

 

 

𝐶𝑋 = 𝑋0 + 𝑋1 cos 𝜈
∗ + 𝑋3 cos 3𝜈

∗ + 𝑋5 cos 5𝜈
∗ ,

𝐶𝑌 = 𝑌1 sin 𝜈
∗ + 𝑌3 sin 3𝜈

∗ + 𝑋5 sin 5𝜈
∗ ,

 𝐶𝑁 = 𝑁1 sin 𝜈
∗ + 𝑁2 sin 2𝜈

∗ + 𝑁3 sin 3𝜈
∗ .

 (2.22) 

 

Where, coefficients associated with Eq. (2.22) are represented as follows. 

 

 

𝑋0 = 𝑥00 + 𝑥01
𝐵𝐻𝐵𝑅
𝐴𝑇

+ 𝑥02
𝐶

𝐻𝐶
+ 𝑥03

𝐴𝑂𝐷

𝐿𝑂𝐴
2

𝑋1 = 𝑥10 + 𝑥11
𝐴𝐿
𝐿𝑂𝐴𝐵

+ 𝑥12
𝐿𝐻𝐿
𝐴𝐿

+ 𝑥13
𝐿𝑂𝐴𝐻𝐵𝑅
𝐴𝐿

+ 𝑥14
𝐴𝑂𝐷
𝐴𝐿

+ 𝑥11
𝐴𝑇
𝐿𝑂𝐴𝐵

+ 𝑥16 (
𝐴𝑇

𝐿𝑂𝐴
2)

−1

+ 𝑥17 (
𝐻𝐶
𝐿𝑂𝐴

)
−1

                

𝑋3 = 𝑥30 + 𝑥31 (
𝐿𝑂𝐴𝐻𝐵𝑅
𝐴𝐿

)
−1

+ 𝑥32
𝐴𝐿
𝐴𝑇

+ 𝑥33
𝐿𝑂𝐴𝐻𝐶
𝐴𝐿

+ 𝑥34
𝐴𝑂𝐷
𝐴𝐿

+ 𝑥35
𝐴𝑂𝐷

𝐿𝑂𝐴
2 + 𝑥36

𝐶

𝐻𝐶
+ 𝑥37

𝐶𝐵𝑅
𝐿𝑂𝐴

                                       

𝑋5 = 𝑥50 + 𝑥51 (
𝐴𝑂𝐷
𝐴𝐿

)
−1

+ 𝑥52
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑥53
𝐴𝐿
𝐿𝑂𝐴𝐵 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (2.23) 



18 
 

 

𝑌1 = 𝑦10 + 𝑦11
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑦12
𝐶

𝐿𝑂𝐴
+ 𝑦13 (

𝐴𝑂𝐷
𝐴𝐿

)
−1

+ 𝑦14
𝐶

𝐻𝐶

  + 𝑦15 (
𝐵𝐻𝐵𝑅
𝐴𝑇

)
−1

                                                                      

𝑌3 = 𝑦30 + 𝑥31
𝐴𝐿
𝐿𝑂𝐴𝐵

+ 𝑦32
𝐿𝑂𝐴𝐻𝐿
𝐴𝐿

+ 𝑦33
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑦34 (
𝐻𝐵𝑅
𝐵
)
−1

  + 𝑦35
𝐴𝑂𝐷
𝐴𝐿

+ 𝑦36 (
𝐵𝐻𝐵𝑅
𝐴𝑇

)
−1

                                                  

𝑌5 = 𝑦50 + 𝑦51
𝐴𝐿
𝐿𝑂𝐴𝐵

+ 𝑦52 (
𝐻𝐵𝑅
𝐿𝑂𝐴

)
−1

+ 𝑦53
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑦54 (
𝐻𝐵𝑅
𝐵2

)
−1

  + 𝑦55
𝐶

𝐿𝑂𝐴
+ 𝑦36

𝐿𝑂𝐴𝐻𝐶
𝐴𝐿

                                                           
}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (2.24) 

 

𝑁1 = 𝑛10 + 𝑛11
𝐶

𝐿𝑂𝐴
+ 𝑛12

𝐿𝑂𝐴𝐻𝐶
𝐴𝐿

+ 𝑛13 (
𝐴𝐿
𝐴𝑇
)
−1

+ 𝑛14
𝐶

𝐻𝐶
          

   +𝑛16
𝐴𝑇

𝐿𝑂𝐴
2 + 𝑛17 (

𝐴𝑇
𝐵2
)
−1

+ 𝑛15
𝐶𝐵𝑅
𝐿𝑂𝐴

                                   

𝑁2 = 𝑛20 + 𝑛21
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑛22
𝐶

𝐿𝑂𝐴
+ 𝑛23 (

𝐴𝑂𝐷
𝐴𝐿

)
−1

+ 𝑛24
𝐴𝑇
𝐵2

+ 𝑛25 (
𝐻𝐵𝑅
𝐿𝑂𝐴

)
−1

+ 𝑛26 (
𝐵𝐻𝐵𝑅
𝐴𝑇

)
−1

+ 𝑛27
𝐴𝐿
𝐿𝑂𝐴𝐵

                

+ 𝑛28
𝐴𝐿

𝐿𝑂𝐴
2                                                                               

𝑁3 = 𝑛30 + 𝑛31
𝐶𝐵𝑅
𝐿𝑂𝐴

+ 𝑛32 (
𝐵𝐻𝐵𝑅
𝐴𝑇

)
−1

+ 𝑛33
𝐴𝐿
𝐴𝑇 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (2.25) 

 

where, 

𝐿𝑂𝐴 : length over all (m) 

𝐵 : breadth (m) 

𝐴𝑇 : transverse projected area (m2) 

𝐴𝐿 : lateral projected area (m2) 

𝐴𝑠𝑠 : lateral projected area of superstructure (m2) 

𝐴𝑂𝐷 : total area of 𝐴𝑠𝑠 and lateral projected area of LNG tanks and containers 

etc. on the deck (m2) 

𝐶 : distance from midship section to the center of 𝐴𝐿 (m) 

𝐶𝐵𝑅 : distance from midship section to the center of the 𝐴𝑠𝑠 (m) 

𝐻𝐵𝑅 : height to the top of superstructure (bridge) (m) 

𝐻𝐶 : height to the center of lateral projected area (m) 
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The parameters for calculation of wind force are express in Fig. 2.2. Fig. 2.2 indicates the 

frontal shape of the hull when viewed from the bow direction and the shape of the lateral 

projection seen from the starboard direction, respectively. The values of coefficients in 

Eqs. (2.23), (2.24), and (2.25) are shown in Table 2.1. 

 

 

 

Fig. 2.2 Definitions of superstructures of a ship 

 

Table 2.1 Manoeuvring coefficients for whole ship model [40] 

𝑚 = 0 1 2 3 4 5 6 7 8 

𝑥0𝑚 -0.330 0.293 0.0193 0.682      

𝑥1𝑚 -1.353 1.700 2.87 -0.463 -0.570 -6.640 -0.0123 0.0202  

𝑥3𝑚 0.830 -0.413 -0.0827 -0.563 0.804 -5.67 0.0401 -0.132  

𝑥5𝑚 0.0372 -0.0075 -0.103 0.0921      

𝑦1𝑚 0.684 0.717 -3.22 0.0281 0.0661 0.298    

𝑦3𝑚 -0.400 0.282 0.307 0.0519 0.0526 -0.0814 0.0582   

𝑦5𝑚 0.122 -0.166 -0.0054 -0.0481 -0.0136 0.0864 -0.0297   

𝑛5𝑚 0.299 1.71 0.183 -1.09 -0.0442 -0.289 4.24 -0.0646 0.0306 

𝑛2𝑚 0.117 0.123 -0.323 0.0041 -0.166 -0.0109 0.174 0.214 -1.06 

𝑛3𝑚 0.0230 0.0385 -0.0339 0.0023      
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2.4.2 Current effects 

In case that a ship travels under current in numerical simulations, hydrodynamic forces acting 

on the ship in flow should be contained the influence of current because the inflow velocities 

on the hull is altered due to current. To calculate the forces including the current effects, 

relative speed is applied and expressed in Eq. (2.26). Where, 𝑢∗and 𝑣∗ are donated as the 𝑥- 

and 𝑦-components of relative speed 𝑈∗ as shown in Fig. (2.1). 

 

 
𝑢∗ = 𝑢 + 𝑉𝑐 cos(𝜓 − 𝛼) ,

𝑣∗ = 𝑣 − 𝑉𝑐 sin(𝜓 − 𝛼) .
 (2.26) 

 

Therefore, Eq. (2.9) is replaced as: 

 

 

(𝑚 +𝑚𝑥)�̇� − (𝑚 +𝑚𝑦)𝑣𝑟 − (𝑚𝑥 −𝑚𝑦)𝑉𝐶𝑟 sin(𝜓 − 𝛼) = 𝑋,

(𝑚 +𝑚𝑦)�̇� + (𝑚 +𝑚𝑥)𝑣𝑟 − (𝑚𝑦 −𝑚𝑥)𝑉𝐶𝑟 cos(𝜓 − 𝛼) = 𝑌,

(𝐼𝑍𝑍 + 𝑖𝑍𝑍)�̇� = 𝑁.

 (2.27) 

 

The non-dimensionalized equations of Eq. (2.27) are demonstrated as Eq. (2.28). 

 

 

(𝑚′ + 𝑚′
𝑥) (

𝐿

𝑈
)(
�̇�

𝑈
cos 𝛽 − �̇� sin 𝛽) + (𝑚′ + 𝑚′

𝑦)𝑟′ sin 𝛽

−(𝑚′
𝑥 −𝑚

′
𝑦) (

𝑉𝐶
𝑈
) 𝑟′ sin(𝜓 − 𝛼) = 𝑋′,

−(𝑚′ +𝑚′
𝑦) (

𝐿

𝑈
)(
�̇�

𝑈
sin 𝛽 + �̇� cos 𝛽) + (𝑚′ + 𝑚′

𝑥)𝑟′ cos 𝛽

−(𝑚′
𝑦 −𝑚

′
𝑥) (

𝑉𝐶
𝑈
)𝑟′ cos(𝜓 − 𝛼) = 𝑌′,

(𝐼′𝑍𝑍 + 𝑖′𝑍𝑍) (
𝐿

𝑈
)
2

(
�̇�

𝐿
𝑟′ +

𝑈

𝐿
𝑟′̇) = 𝑁′.

 (2.28) 

 

 

 

 

 



21 
 

2.5. Subjective ship 

 

A Tanker named KVLCC2 was adopted as a subject ship for numerical simulations to verify 

the effectiveness of the systems suggested in this thesis. The numerical simulations carried 

out in two situations under virtual and realistic environments. A 1:128 scale model ship was 

applied in virtual situation and an actual-sized ship was used in realistic situation, 

respectively. The principal particulars of the model ship and the real ship are shown in 

Table 2.2. 

 

Table 2.2  Principal particulars of the subjective ship (KVLCC2) 

 Real ship Model ship 

Ship type Tanker Tanker 

Length between perpendicular 320.00 [m] 2.5000 [m] 

Breadth 58.000 [m] 0.4531 [m] 

Depth 30.000 [m] 0.2344 [m] 

Draft 20.800 [m] 0.1625 [m] 

Block coefficient 0.8098  0.8098  

Diameter of propeller 9.8600 [m] 0.0770 [m] 

Rudder area 273.30 [m2] 0.0167 [m2] 

 

The subject ship was influenced by environmental disturbances such as wind and current in 

the numerical simulations in order to depict ship motion during a voyage. For computation of 

wind effects, the dimensions of superstructures of the subject ship were assumed based on the 

conventional design of takers. Table 2.3 signifies the used superstructures dimensions of the 

subject ship. 
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Table 2.3  Superstructures dimensions of the subject ship (KVLCC2) 

 Real ship Model ship 

𝐴𝑇 1234.064 [m2] 0.0753 [m2] 

𝐴𝐿 2526.587 [m2] 0.1542 [m2] 

𝐴𝑂𝐷 698.0166 [m2] 0.0426 [m2] 

𝐶 6.0285 [m] 0.0471 [m] 

𝐶𝐵𝑅 -105.3735 [m] -0.8232 [m] 

𝐻𝐵𝑅 33.2308 [m] 0.2596 [m] 

𝐻𝐶 3.8892 [m] 0.0304 [m] 

 

Through the captive model test of KVLCC2, the required hydrodynamic derivatives for the 

simulations were obtained and the values are presented in Table 2.4. 

 

Table 2.4  Hydrodynamic derivative values of the subject ship (KVLCC2) 

Item Value Item Value 

𝑋′𝑢𝑢 -0.0250000 𝑋′𝛽𝑟 0.0897830 

𝑌′𝛽 0.2387000 𝑁′
𝛽 0.1377000 

𝑌′𝑟 0.0892543 𝑁′
𝑟 -0.0478000 

𝑌′𝛽𝛽 0.5928000 𝑁′
𝛽𝛽 -0.0533000 

𝑌′𝑟𝑟 0.0661000 𝑁′
𝑟𝑟 0.0214000 

𝑌′𝛽𝛽𝑟 0.2844000 𝑁′
𝛽𝛽𝑟 -0.0228000 

𝑌′𝛽𝑟𝑟 0.5367000 𝑁′
𝛽𝑟𝑟 -0.2660000 
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2.6. Conclusions 

 

In this chapter, the mathematical model of ship motion was introduced. The main conclusions 

of this chapter are drawn as follows: 

 Two kinds of coordinate systems are used to demonstrate the ship motion. The 

relationship between the earth-fixed coordinate system and the body-fixed coordinate 

system was introduced from the equations of manoeuvring motion. 

 

  KVLCC2 was adopted as a subject ship and mathematical model based on the MMG 

model was selected in order to predict ship dynamic motion in numerical simulations. The 

forces and moment acting on a hull, the forces generated by a propeller and the forces and 

moments due to a rudder as parts of the MMG model were described respectively. 

 

 Since the effects of wind and current were applied to numerical simulations, the relevant 

mathematical models were explained. 

For verification of automatic track keeping algorithm presented in Chapter 3, the MMG 

model including wind effects and current effects was applied. On the other hand, simulations 

of automatic collision avoidance based on the developed algorithm in Chapter 5 were carried 

out without disturbances to focus on inspecting only the effectiveness of the algorithm. 
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Chapter 3. Development of Automatic Path Following Algorithm 
 

3.1 Introduction 

 

Research on autonomous navigation has received considerable attention because it has 

potential to prevent marine accidents due to human error which is caused when ships are 

manually operated. Before ships depart a port, ship operators always make a route plan with 

waypoints positions in consideration of weather condition data, geometric factors at sea and 

so on. Ships should follow a desired track comprised of several waypoints set in the route 

plan in order to ensure safe navigation. Automatic path following which is one of the 

functions of autonomous navigation enables ships to trace the planned path accurately. The 

path following problem is basically how to make ships follow a set of given waypoints by 

controlling a rudder [41][42][43]. To solve the problem, a guidance system which leads a 

ship to prescribed waypoints is required as well as a control system that steers a ship 

according to orders from the guidance system. Some of guidance laws commonly used in 

marine community have been directly influenced by outcomes in missile community, such as 

the Line-of-Sight (LOS) guidance, the Pure Pursuit (PP) guidance, or the Constant Bearing 

(CB) guidance [44][45]. 

Among these guidance laws, a most widely used method is the LOS guidance algorithm 

including a waypoint switching system [16][46][47]. The LOS guidance algorithm creates 

arbitrary points called as LOS set points to be approached by a ship, which are two 

intersection points of a circle with certain radius around the ship and a straight line which 

connects two waypoints. In addition, a circle with the radius of one ship’s length is 

established surrounding a waypoint, and the target waypoint toward where the ship goes is 

changed when the ship enters into the circle area. The size of the circle determines timing 

when a rudder is manipulated to change a maintained heading angle to enter new desired path. 

If a ship always uses a rudder at the same timing applying constant enclosed radius like in the 

LOS guidance algorithm, it is most likely to cause overshoots such as cross track error and 

heading error. Therefore, studies to derive optimal timing to use a rudder have been 

continued as adjusting the radius of the circle depending on the property of a ship, water 

depth, and so on so as to decrease the errors [17][18][48]. 



26 
 

Rudder control system has progressed in various directions starting with the materialization 

of an autopilot for automatic steering [9][10][49]. The first generation autopilots 

implemented on ships were produced based on Proportional-Integral-Derivative (PID) 

controllers, PID-type autopilots are still very popular and represent a majority of autopilots in 

use. The PID controllers are effective for linear problem, but not suitable for nonlinear and 

complex system [50]. Motion of a ship is nonlinear problem and the problem becomes more 

complex when the ship is affected by external disturbances such as wind, current, and wave. 

Ship operators can perform a task of path following successfully under the external 

disturbances using their knowledge and experiences. Fuzzy logic applying the action of 

human experts has been known to be effective for the nonlinear and complex system. Hence, 

it used to enhance the rudder control system by combining the existing control theory 

[51][52][53][54]. 

In this chapter, path following algorithm consists of two components with fuzzy inference 

system based on fuzzy logic: one is a waypoint guidance system and the other is a rudder 

control system is presented. The waypoint guidance system is motivated by the LOS 

guidance algorithm and the system also uses a circle centered on a waypoint. However, the 

specific circular area is formed for each waypoint, and the radius of the circle is decided by 

the fuzzy inference system using course change angles. In other words, different optimal 

timing or a point to use a rudder is derived respectively according to course change angles in 

the waypoint guidance system. The timing is regarded as the setting of a point which 

minimizes overshoots when a ship enters a new desired straight line. In case of the rudder 

control system, three elements of cross track error, heading error, and yaw rate are considered. 

As taking the cross track error into account, it is not necessary to arrange a circle around a 

ship and it is able to omit troublesome computation for the setting of the LOS set points 

additionally. 

However, the path following algorithm does not consider ship speed that is one of important 

factor which affects ship motion. Directly after using a rudder near a waypoint, the yaw rate 

of a ship at high speed increases faster than that at low speed. Therefore, rudder control 

system described above was ameliorated in consideration of the relationship between the 

current ship speed and the yaw rate. The former algorithm is named “the basic path following 

algorithm” and the speed consideration algorithm is called “the improved path following 

algorithm”. In order to prove the effectiveness of the proposed algorithm, numerical 
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simulations will be carried out in virtual environment having arbitrary external disturbances 

that are wind and current. 

 

3.2 Fuzzy inference 

 

In order to develop automatic path following algorithm, Fuzzy inference that is similar to 

human decision making process is utilized. Fuzzy inference is the process of mapping the 

output from given input with fuzzy rules using fuzzy logic that introduced by Zadeh [55]. 

Fuzzy logic can quantify the ambiguity such as linguistic variables of human. Fuzzy 

inference has two types, mamdani-type [56] and sugeno-type [57], that vary somewhat in the 

way to determine outputs. The path following algorithm of this study adopts mamdani-type 

fuzzy inference which is the most commonly utilized in fuzzy control filed. The process of 

mamdani-fuzzy inference involes all the pieces that are described in membership functions, 

logical operations and If-Then rules. The mamdani-type fuzzy inferece is performed in four 

steps: 

 Fuzzifer of input variables 

 Fuzzy rules definition 

 Fuzzy inference 

 Defuzzifier 

The basic structure of the fuzzy inference is presented in a diagram shown in Fig. 3.1: 

 

 

 

Fig. 3.1 Diagram of mamdani-type fuzzy inferece 
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As the first step, fuzzifier converts a crisp input to a linguistic variable using membership 

functions with the value between 0 and 1. Namely, fuzzification is to take inputs and 

determine the degree to let them belong to the each of appropriate fuzzy set via membership 

functions. Fuzzy rules are defined by expert’s knowledge and indicate relationship between 

antecedent and consequent parts employing IF-THEN form. Using the fuzzy rules and inputs, 

fuzzy output is inferred by implication method and aggregation. Each linguistic rule can be 

computed through the implication. The input for the implication process is a single number 

given by the antecedent part, and the output is a fuzzy set. Aggregation is the process by 

which the fuzzy sets that represent the outputs of each rule are combined into a single fuzzy 

set. The input of the aggregation process is an output returned by the implication process for 

each rule. Lastly, the input for the defuzzification process is a fuzzy set and the output is a 

crisp value. In this research, all systems employing the fuzzy inference are applied as the 

implication with minimum method, the aggregation with maximum method and the 

defuzzification with centroid method. 

 

3.3 Basic path following algorithm 

 

3.3.1 Overview 

A ship is required to travel on a pre-planned route consisting of several straight lines 

specified by two waypoints as shown in Fig. 3.2. In the figure, “from-waypoint” is the last 

passed waypoint and “to-waypoint” defines the target waypoint where the ship is approaching. 

Finally, “next-waypoint” indicates the waypoint following the “to-waypoint” [58]. Through 

path following algorithm proposed in this research, the ship goes to her destination without 

swerving from the given track. The algorithm is designed with waypoints guidance system 

and rudder control system. Fig. 3.3 displays the algorithm in diagram form. First of all, 

waypoints position data are fed to a track generator in order to configure a desired track. 

Using calculated course change angles 𝜃 , the waypoint switching system determines 

automatically a target waypoint. Parameters for the rudder control system are computed by 

contrasting the target waypoint positon with the current ship’s position. Suitable rudder angle 

𝛿 is derived from a heading error 𝜓e, a non-dimensional cross track error 𝑑e
′ (= 𝑑e/𝐿) and a 

non-dimensional yaw rate 𝑟′(= 𝑟𝐿/𝑈). 
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Fig. 3.2 Principle of waypoints guidance system 

 

 

 

Fig. 3.3 Block diagram of path following algorithm 

 

3.3.2 Waypoints guidance system 

Waypoints guidance system is comprised of a track generator which makes a desired tack and 

waypoints switching system that guides a ship from one waypoint to the next one. The ship 

advances by repeating forward straight motion and turning motion along the desired route at 

sea. When a ship modifies her direction using a rudder in the proximity of a waypoint, there 

is a possibility that large overshoots occur such as heading error 𝜓e and cross track error 𝑑e. 

The waypoints switching system helps to find out optimal timings to manipulate a rudder to 

decrease the overshoots. The waypoint switching system was developed based on inspiration 



30 
 

from the LOS guidance algorithm. Once a ship comes within the circle of acceptance area, 

“next-waypoint” is automatically changed to “to-waypoint” that the ship should head toward 

as shown in Fig. 3.2. The LOS guidance algorithm needs a certain circle with constant radius 

around a waypoint. It is able to regard the length of the radius as an important factor to 

determine timing or a position at where a rudder is used. Namely, a rudder is executed at the 

same stage in the LOS guidance algorithm. However, the proposed waypoints guidance 

system deduces the suitable radius of a circle according to course change angles 𝜃 so as that a 

ship veers precisely towards new straight line without overshoots. In order to acquire the 

suitable non-dimensional radius value 𝑅′ in the waypoints switching system which the fuzzy 

inference system was applied to, the following process was implemented as shown in Fig. 3.3. 

Subsequent to inputting the locations of waypoints determined by ship operators in advance 

into a track generator, the course change angles of each waypoint are released as outputs. The 

obtained angles are entered into the waypoints switching system and each angle is utilized as 

an element to ordain an optimal timing to use a rudder. The course change angle 𝜃  is 

considered as the antecedent part and the non-dimensional radius of the circle of acceptance 

area 𝑅′ is the consequent part of the membership functions of fuzzy inference respectively. 

Fuzzy rules and membership functions for the waypoints switching system are indicated in 

Table 3.1 and Fig. 3.4. 

In Table 3.1, linguistic labels are defined as; NB: Negative Big, NS: Negative Small, ZO: 

Near Zero, PS: Positive Small, and PB: Positive Big. 𝜃 is subdivided into five classes that are 

NB, NS, ZO, PS and PB. The non-dimensional radius R' is classified into three classes such 

as ZO, PS and PB. In a typical ocean voyage, it is not common to set a course change angle 

more than 45˚ except for the case that a ship should change her direction greatly due to 

geographical conditions of ports. Hence, 𝜃 is established less than 45˚ in general situation. 

The minimum requirement for 𝜃 is set as 10˚ and maximum absolute value is limited not to 

exceed 90˚, namely 𝜃 is assigned within a range from -90˚ to 90˚. When a path which is 

specified by “to-waypoint” and “next-waypoint” locates on the clockwise direction of a 

previous track which consists of “from-waypoint” and “to-waypoint”, the sign of 𝜃 is defined 

as positive. 

The turning ability of ships is taken into consideration at settling the R' value because ships 

should trace a circular path in order to modify their courses. In accordance with the criteria 

for initial turning ability legislated by the IMO for ship’s manoeuvrability [59], ships should 
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not have travelled more than 2.5 ship lengths by the time heading angle has changed by 10˚ 

from the original heading with the application of 10˚ rudder angle. The distance is able to be 

deemed as the maximum distance which is neccesary to execute turning motion since a ship 

can not turn immediately after rudder execution. Therefore, 2.5 was utilized as the value of R' 

to set up the consequent part of fuzzy inference, and 𝑅′ has always positive sign because it 

presents the magnitude of radius. Consequently, a ship can closely follow preplanned track 

since the value of 𝑅′decreases as the value of 𝜃 decreases. In other words, the large 𝜃, the 

slower steering is performed for turning. It is also expected that less overshoots will occur 

because the rudder angle is adjusted immediately after effective rudder force is generated by 

the rudder control system described in the next section. 

 

Table 3.1  Rules for the waypoint swithcing system of fuzzy inference 

 𝜃  

NB:PB ZO NS:PS 
   

PB ZO PS 

 

 

 

                                    (a) antecedent part                                                 (b) consequent part 

 

Fig. 3.4 Membership functions for the waypoints switching system of fuzzy inference 
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3.3.3 Rudder control system 

The path following problem is decomposed into two subtasks. The first one is to follow a 

desired heading and the second is to bring a ship onto a desired path and keep track. The two 

assignments can be resolved by means of the minimization of both heading error 𝜓e  and 

cross track error 𝑑e  through rudder control system. The heading error 𝜓e  is a difference 

between the desired heading angle 𝜓d and the current heading angle 𝜓. The cross track error 

𝑑e is defined as the distance from the ship’s present position to the closest point on a straight 

line drawn by connecting two waypoints which represents the leg of current route as shown 

in Fig. 3.5. (𝑥𝑡, 𝑦𝑡) means the current position of a ship and an arrow which goes out from the 

point indicates the heading direction of own ship. (𝑥1, 𝑦1) and (𝑥2, 𝑦2) show the positions of 

“from-waypoint” and “to-waypoint” respectively. The red line denotes the cross track error 

𝑑e and is calculated as Eq. (3.1). 

 

 𝑑e = √(𝑥2 − 𝑥𝑡)2 + (𝑦2 − 𝑦𝑡)2 ∙ sin 𝜓to (3.1) 

 

Where, 𝜓to is a bearing angle formed by difference between 𝜓leg and 𝜓d. 𝜓leg
 represents a 

bearing angle of a leg composed with (𝑥1, 𝑦1) and (𝑥2, 𝑦2). They are described by Eq. (3.2). 

 

 

{
  
 

  
 𝜓leg = tan

−1
𝑥2 − 𝑥1
𝑦2 − 𝑦1

,

 

𝜓d = tan−1
𝑥2 − 𝑥𝑡
𝑦2 − 𝑦𝑡

,

 

 𝜓to =  𝜓leg −  𝜓d.

 (3.2) 

 

To decrease the errors 𝜓e and 𝑑e, the rudder control system exploited not only the both errors 

but also the yaw rate of a ship as input data. However, consideration of the three parameters 

in the antecedent part puts some strain on the fuzzy control system and is likely to cause a 

delay in response. Hence, the rudder control system was divided into two phases. The first 

phase is calculator of desired yaw rate and the second phase is rudder angle controller as 

shown in Fig. 3.1. The desired yaw rate 𝑟d
′  is yielded from 𝜓e  and 𝑑e

′ (= 𝑑e/𝐿) at the 

calculator of desired yaw rate. 
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Table 3.2 and Fig. 3.7 show rules and membership functions of the first phase. In case that a 

target waypoint is changed by the waypoint switching system while a ship travels on the 

existing track correctly, the value of 𝜓e  becomes similar to the value of 𝜃 . Thus, the 

antecedent part 𝜓e  was settled by reflecting the value of 𝜃  of Fig. 3.4. 𝜓e  and 𝑑e
′  are 

subdivided into five classes: NB, NS, ZO, PS and PB. The clock-wise direction of 𝜓e means 

as positive sign. If a ship locates at the right-hand side of the desired path, 𝑑e
′  is defined as 

positive. As a consequent part, 𝑟d
′  required for the second phase is in the range between -0.3 

and 0.3. The membership function values for 𝑟d
′  brought from the results of spiral test at 

rudder angle of 10˚ regarded as practically used rudder angle [38]. Through the rudder angle 

controller, a proper rudder angle 𝛿 is reasoned according to Δ𝑟′(= 𝑟′d − 𝑟′). 

Table 3.3 and Fig. 3.6 present the rules and the membership functions of the rudder control 

system. Δ𝑟′ is subdivided into three classes with the following linguistic labels; N: Negative, 

ZO, and P: Positive. The membership function of 𝛿 is set at 10˚ as a normal rudder angle and 

the maximum rudder angle will not exceed 35˚ because the purpose of this research is to 

realize a realistic ship operation using an angle of less than 10˚. 

 

 

 

Fig. 3.5 Parameters used in the rudder control system 
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Table 3.2  Rules of fuzzy inference for the rudder angle controller 

   𝜓e   

NB NS ZO PS PB 

𝑑e
′  

NB PB PB PM PS NS 

NS PB PS ZO NS NM 

ZO PB PS ZO NS NB 

PS PM PS ZO NM NB 

PB PS NS NM NB NB 

 

 

Table 3.3  Rules of fuzzy inference for the waypoint swithcing system 

 Δ𝑟′  

N ZO P 
   

P ZO P 

 

 

 

          (a) antecedent part                                         (b) consequent part 

Fig. 3.6 Membership functions of fuzzy inference for the rudder angle controller 
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     (a) antecedent parts 

 

 

     (b) consequent part 

 

Fig. 3.7 Membership functions of fuzzy inference for the calculator of desired yaw rate 
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3.4 Numerical simulations in virtual situation 

 

3.4.1 Simulation conditions 

A 1:128 scale model of the KVLCC2 was adopted as a subject ship for numerical simulations 

to verify the effectiveness of the aforementioned path following algorithm. The principle 

particulars of the ship are shown in Table 2.2 in Chapter 2. The numerical simulations were 

carried out on five cases with different conditions as shown in Table 3.4. The subject ship 

was influenced by environmental disturbances such as wind and current in the numerical 

simulations in order to depict realistic ship motion during a voyage. 

Four cases which have different combinations of wind and current were made. In these cases, 

a course change angle was set as 45˚. Wind velocity was selected as 0.36 m/s (Beaufort scale 

3) and 1.68 m/s (Beaufort scale 6) with wind direction 𝜈  = -35˚. The velocities correspond to 

8.0 knots and 36.9 knots respectively in full scale condition and the later wind speed is 

stipulated as an adverse condition by the IMO [60]. Current of 0.09 m/s in speed coming 

from α  = 0˚ was assumed. It corresponds to 2.0 knots in full scale condition. The 

combinations of the four cases are shown in Table 3.4 as the Cases 3.1 to 3.4. 

Additionally, ‘S-shape’ course was formed referring to a previous study [40] and a simulation 

carried out so as to figure out the ship’s operation at various course change angles under wind 

(𝑉𝑊 = 0.36 m/s, 𝜈 = -35˚) and current (𝑉𝐶 = 0.09 m/s, α = 0˚). This case is shown as the Case 

3.5 in Table 3.4. It was assumed that a ship traced existing course line precisely using a check 

helm responding to external disturbances at the beginning of the simulations. Ship’s initial 

velocity for all of the simulations is 0.45 m/s scaled from 10.0 knots which is the normal 

operation speed of full scale tanker. 

Table 3.4  Definitions of conditions for simulations 

Case Wind (𝜈 = -35˚) Current (𝛼 = 0˚) 

3.1 0.36 m/s - 

3.2 0.36 m/s 0.09 m/s 

3.3 1.68 m/s - 

3.4 1.68 m/s 0.09 m/s 

3.5 0.36 m/s 0.09 m/s 
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3.4.2 Simulation results 

Under the assumed virtual environmental situation, the simulations were carried out 

according to the cases presented in Table 3.4. Fig. 3.8 shows the result for the Case 3.1 with 

wind from 𝜈  = -35˚. Figures (a) and (b) show ship trajectory and the time history of rudder 

angle obtained by the proposed algorithm. After manipulating rudder to change course, 

rudder has reached to its neutral position. Then, opposite rudder was used to enter into the 

new course line. It means modifying rudder angle from starboard side to port side in a short 

moment was prevented and it helps safe operation. In Fig. 3.8(d), drift angle 𝛽  and non-

dimensional yaw rate 𝑟′changed according to the rudder motion. The relationship between 

heading error 𝜓e  and cross track error 𝑑e
′  can be observed in Fig. 3.8(e). When the ship 

comes within the circle of acceptance, the absolute value of 𝜓e increases and the cross track 

error 𝑑e
′  also begins to increase simultaneously. The increment of 𝑑e

′  value is caused by the 

modification of “to-waypoint” position according to Eq. 3.7. Therefore, it should be noted 

that actual overshoot values of 𝑑e
′  and 𝜓e  appear around the time at which overshoot of 

heading angle 𝜓  is observed. Even though the course changing angle 45 ̊ formed by the 

waypoints can be recognized as large angle to change course, used rudder angle was less than 

10 ̊. The actual overshoot values were observed as |𝜓e| = 5.38 ̊ and |𝑑e
′ | = 0.33, however, they 

converged to zero immediately by opposite rudder. 

Fig. 3.9 shows the result of the Case 3.2 with wind from 𝜈 = -35˚ and current from 𝛼 = 0˚. 

The rudder angle used for changing course was less than 10˚ as same as that observed in the 

Case 3.1. But, the opposite rudder angle to keep new course line increased due to the 

influence of current as shown in Fig. 3.9(b). As seen from comparison with the result of the 

Case 3.1, it took more time to reach the last waypoint. The values of both errors increased to 

|𝜓e| = 9.34 ̊ and |𝑑e
′ | = 0.68 respectively according to Fig. 3.9(e). 

Simulation of the Case 3.3 was performed with the assumption that a ship was operated under 

the adverse sea condition with wind of 1.68 m/s. The magnitude of the errors appears as 

|𝜓e| = 3.76 ̊ and |𝑑e
′ | = 0.25 in Fig. 3.10(e). Since strong wind blows from the port side, yaw 

moment that forces the ship to turn to starboard side increased comparing with that in the 

Case 3.1, hence the value of 𝜓e decreased. Even though the wind velocity has grown faster, 

path following shows a good result as shown in Fig. 3.10(a). 

Fig. 3.11 shows the simulation corresponds to the Case 3.4 with wind of 1.68 m/s blowing 

from 𝜈  = -35˚ and current of 0.09 m/s from 𝛼  = 0˚. Because of the large magnitude of 
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disturbances, a slightly big check helm angle was applied as an initial rudder angle. With this 

point of view, the opposite rudder angle is about -15˚ but substantive variation has been less 

than 10˚. Fig. 3.11(e) indicates that the values of both errors are |𝜓e| = 6.04˚ and |𝑑e
′ | = 0.33. 

Comparing with the results of the Case 3.3, the influence of current has resulted in a greater 

variation of 𝜓e than 𝑑e
′ . 

Waypoints in the Case 3.5 were set up as ‘S-shape’ with various course change angles in the 

range from -74˚ to 55˚. The course change angles were excessively established to estimate the 

proposed algorithm. The simulation was performed under the influences of wind of 0.36 m/s 

from 𝛼  = 0˚ and current of 0.09 m/s from 𝛼  = 0˚. Fig. 3.12 illustrates the results of the 

simulation for the Case 3.5. When the course change angle is more than 60˚, the overshoots 

of 𝜓e and 𝑑e
′  increased comparing with those of the other course change angles. As for rudder 

angles used to change course near the waypoints, none of them exceeds 10˚. 

As shown in Table 3.4, simulations of the Cases 3.1 and 3.2 were carried out with wind of 

0.36 m/s and with/without current. The Cases 3.3 and 3.4 were conducted with wind of 

1.68 m/s and with/without current. The results between the two pairs of cases with the same 

wind speed were compared to come up with the effect of current. The effects of current can 

be analyzed through the rate of the increase of the values of both errors 𝜓e and 𝑑e
′ . In case of 

𝜓e, the error increased in similar proportion due to the effect of current regardless of wind 

speed. On the other hand, the rate of increase in the value of 𝑑e
′  becomes higher as wind 

speed becomes slower. Consequently, current has a great effect on lateral force acting on the 

ship rather than yaw moment when wind velocity is slow. Furthermore, all of simulation 

results showed the ship could closely follow desired track using realistic rudder angle 

because rudder was executed at proper timing or point depending on course change angle. 
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Fig. 3.8 Simulation results of the Case 3.1 
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Fig. 3.8 Simulation results of the Case 3.1 
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Fig. 3.9 Simulation results of the Case 3.2 
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Fig. 3.9 Simulation results of the Case 3.2 
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Fig. 3.10 Simulation results of the Case 3.3 
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Fig. 3.10 Simulation results of the Case 3.3 
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Fig. 3.11 Simulation results of the Case 3.4 
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Fig. 3.11 Simulation results of the Case 3.4 
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Fig. 3.12 Simulation results of the Case 3.5 
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Fig. 3.12 Simulation results of the Case 3.5 
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3.5 Improved path following algorithm  

 

The improved path following algorithm is composed of two components such as a waypoints 

guidance system and a rudder control system. The waypoint guidance system described in the 

previous sections was applied as an existing method. However, a rudder control system was 

newly developed by adding ship speed parameters. The previously proposed rudder control 

system demanded three input parameters of heading error, cross track error, and yaw rate in 

order to bring out a rudder angle. The speed of a ship is also one of important factors to 

determine optimal rudder angle in that yaw rate varies depending on the magnitude of ship’s 

velocity. Thus, unlike the previous system, current speed of vessel is taken into account 

additionally and the processing of the necessary elements is illustrated in Fig. 3.13. Four 

elements of cross track error, heading error, yaw rate and ship speed are considered as input 

data in the improved rudder control system. It is somewhat burden to consider four 

parameters in the antecedent part due to the possibility to cause the delay of response. To 

overcome the anxiety, the fuzzy inference of the rudder control system is dived into two 

phases. 

Firstly, the calculator of desired yaw rate as the first step will be demonstrated in detail. The 

proper 𝑟d
′
 is inferred using 7×7 different combinations of two inputs 𝜓e and 𝑑e

′ . Related fuzzy 

rules and membership functions are shown in Table 3.5 and Fig. 3.14. 

 

 

 

Fig. 3.13 Block diagram of improved path following algorithm 
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The range of 𝜓e is offered from -90˚ to 90˚ in common with course change angle 𝜃, because 

when a ship travels on an existing track with pinpoint accuracy as 𝜓e  = 0˚, 𝜓e  would be 

similar angle to 𝜃 . 𝑑e
′  is established referring the study shown in the previous section, 

however, the study did not take disturbance forces into account, so the range of 𝑑e
′  is 

expanded further. 𝜓e and 𝑑e
′  are subdivided into seven classes; NB, NM, NS, ZO, PS, PM, 

and PB. Here, N and P is abbreviation for “Negative” and “Positive” signifying the sign of 

them. As for heading error 𝜓e, clockwise movement is described as positive. If a ship locates 

at the right-hand side of the target track, cross track error 𝑑e
′  has positive sign. S, M, and B 

represent abbreviation of quantity such as “Small”, “Medium”, and “Big” respectively. The 

rudder angle is assumed to be able to manipulate up to 30˚ in case of requiring urgent veering. 

𝑟d
′
 as consequent part is formed between -0.6 and 0.6 applying 𝑟′ = 0.6 based on the result of 

spiral test carried out by Kijima et al. at 𝛿 = 30˚ [25]. 𝑟d
′ is also classified into seven classes; 

NB, NM, NS, ZO, PS, PM, and PB. 

 

Table 3.5 Rules of fuzzy inference for the calculator of the calculator of desired yaw rate 

    𝜓e    

NB NM NS ZO PS PM PB 

𝑑e
′  

NB PB PB PB PM PS PS NS 

NM PB PB PB PS PS NS NS 

NS PB PM PS ZO NS NS NM 

ZO PB PM PS ZO NS NM NB 

PS PM PS PS ZO NM NM NB 

PM PM PS NS NS NB NB NB 

PB PS NS NS NM NB NB NB 
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     (a) antecedent parts 

 

 

     (b) consequent part 

 

Fig. 3.14 Membership functions of fuzzy inference for the calculator of desired yaw rate 
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As the second step in the rudder angle controller, the author employed relationship between 

Δ𝑟′ and 𝑈 in order to obtain 𝛿 which makes Δ𝑟′ reach to zero. The rudder angle controller 

determines how smoothly and swiftly make a ship enter the new desired track. 21 (= 7 × 3) 

fuzzy rules and membership functions that have introduced Δ𝑟′  and 𝑈  as input data are 

presented in Table 3.6 and Fig. 3.15. Δ𝑟′  is specified with seven classes by the same 

membership function of 𝑟′, and 𝑈 is subdivided into three classes; LO, NO, and HI. The 

linguistic labels abbreviated “Low speed”, “Normal speed”, and “High speed” respectively. 

In general, a ship sails the ocean at 70% ~ 80% of design speed 𝑈d for an energy efficiency 

operation. Thus, the shape of membership function of normal speed is appointed to triangle 

having 70% of 𝑈d  as an apex, and the maximum speed is limited to 100% of 𝑈d . 𝛿  is 

arranged between -35˚ and 35˚. It is known that if the ship travels at high speed, yaw rate 

increases. If the velocity of ship is fast, 𝜓 reveals substantial variations even though using 

small 𝛿. The rudder angle controller is designed to use less 𝛿 as 𝑈 increases, thereby avoiding 

a large rolling motion is expected. 

 

 

Table 3.6  Rules of fuzzy inference for the the rudder angle controller 

    Δ𝑟′    

NB NM NS ZO PS PM PB 

𝑈 

LO NB NB NB ZO PB PB PB 

NO NB NM NS ZO PS PM PM 

HI NM NS NS ZO PS PS PM 
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     (a) antecedent parts 

 

 

     (b) consequent part 

Fig. 3.15 Membership functions of fuzzy inference for the rudder angle controller 
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3.6 Numerical simulations of the improved path following algorithm 

 

3.6.1 Simulation conditions 

A 1:128 scale model of the KVLCC2 was adopted as a subject ship for numerical simulations 

to verify the effectiveness of the improved path following algorithm. The principle particulars 

of the ship are shown in Table 2.2 of Chapter 2. The numerical simulations were carried out 

on four cases with different conditions as shown in Table 3.7. The subject ship was 

influenced by environmental disturbance such as wind and current in the numerical 

simulations in order to depict ship motion during a voyage. Three cases in which each ship 

speed was different were set using the same conditions of external disturbances and desired 

tracks so as to compare the variation of control performance depending on ship speed. Low, 

normal and high speeds were selected as 0.32 m/s, 0.50 m/s, and 0.68 m/s which belong to 

the specified range shown in Fig. 3.15. They coincide with 7 knots, 11 knots, and 15 knots in 

full scale condition. Current velocity was supposed to be 𝑉𝐶 = 0.05 m/s coincides with 1 knot 

and it came from the direction of 𝛼  = 0˚. Wind speed 𝑉𝑊  was assigned to 0.36 m/s 

corresponding to 8 knots (Beaufort scale 3) and it blew from the direction of 𝜈 = 20˚. The 

desired track created by three waypoints owns course change angle 𝜃 = 30˚ and a veering 

action took place once near the mid-waypoint of the given waypoints. In the fourth case, a 

ship was required to follow a S-shape course formed by fourteen waypoints designated from 

a previous study [2] in order to validate the availability of the present algorithm at various 

course change angle 𝜃 under external disturbances coming from arbitrary directions. At that 

time, normal speed was applied to substantiate a general operation of the ship. In the all cases, 

it was assumed that a ship departed from the first waypoint position and stopped moving 

when the ship arrived at the final waypoint. 

 

Table 3.7  Definitions of conditions for simulations 

Case 𝑈 𝑉𝑊 𝜈 𝑉𝐶 𝛼 

3.6 0.32 m/s 0.36 m/s 20 ˚  0.05 m/s 0 ˚ 

3.7 0.50 m/s 0.36 m/s 20 ˚ 0.05 m/s 0 ˚ 

3.8 0.68 m/s 0.36 m/s 20 ˚ 0.05 m/s 0 ˚ 

3.9 0.50 m/s 0.36 m/s -25 ˚ 0.05 m/s 0 ˚ 
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3.6.2 Simulation results 

The initial states of a ship in the Cases 3.6, 3.7, and 3.8 are set as 𝛿 = 0˚, 𝜓 = 0˚, 𝑟′ = 0˚, and 

𝛽 = 0˚. Fig. 3.16 shows the results of the Case 3.6 with low speed 𝑈 = 0.32 m/s. Figures (a) 

and (b) present ship trajectory and the time history of rudder angle gained by the proposed 

algorithm. The shape of the ship on its trajectory is surfaced every 25 seconds and waypoints 

are indicated as diamond patterns. In order to figure out motions of the ship in the vicinity of 

a waypoint at where veering action is conducted, enlarged figure around the waypoint is 

presented. It is observed from Fig. 3.16(b) that rudder angle 𝛿 to veer the heading angle has 

been reached to 14.68˚ as the maximum angle, and the rudder was manipulated toward the 

opposite direction to inhibit the ship from deviating from the new path due to the influence of 

the inertial motion. It is also observed that heading angle 𝜓 became 30˚ which is equal to 

target course change angle 𝜃 = 30˚ after manipulating a rudder as shown in Fig. 3.16(c). The 

relationship between heading error 𝜓e and cross track error 𝑑e
′  is demonstrated in Fig. 3.16(e). 

When the ship enters into the circle of acceptance area, the absolute values of 𝜓e and 𝑑𝑒
′  

begin to increase unconditionally due to the modification of “to-waypoint” position. 

Therefore, it should be noted that actual overshoot values of 𝜓e and 𝑑e
′  appear around 450 

seconds when the overshoot of 𝜓 is observed. In this case, the values of |𝜓e| and |𝑑e
′ | were 

negligibly small and the ship could follow the assigned desired track precisely. 

In Fig. 3.17, the ship traveled at normal speed 𝑈 = 0.50 m/s as defined in the Case 3.7. In 

comparison with the results of the Case 3.6, the maximum angle decreased to 𝛿  = 9.23˚ 

despite having the same course change angle 𝜃 = 30˚. However, steerage used in port side 

caused the overshoot of heading angle 𝜓, then additional steerage to starboard side to restrain 

the overshoot is found after about 300 seconds as shown in Fig. 3.17(b). The actual maximum 

errors appeared in Fig. 3.17(e) are |𝜓e | = 2.47˚ and |𝑑e
′ | = 0.28. Even if we compare the 

enlarged figure on Fig. 3.17(a), it can be confirmed that the positions of the vessel 

represented by the red dots are further away from the planned path than those in the previous 

case. 

Fig. 3.18 shows the operation of a ship in the Case 3.8 with the fastest speed 𝑈 = 0.68 m/s 

that is similar with the design speed 15.5 knots. Since the ship speed 𝑈 in this case is the 

fastest among the three cases, the smallest rudder angle 𝛿 = 8.80˚ was realized as shown in 

Fig. 3.18(b). The enlarged figure in Fig. 3.18(a) describes that the ship deviated from the 

desired track immediately after using a rudder to change her course. At that time, the values 
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of actual maximum errors are |𝜓e| = 3.21˚ and |𝑑e
′ | = 0.40 as shown in Fig. 3.18(d). Namely, it 

was proven that the ship operated at high speed uses the less rudder angle to modify the 

passing track. Furthermore, based on the aforementioned results of the three cases, it is 

confirmed that rudder was executed differently according to ship velocity. 

Finally, simulation based on the fourth case was carried out on S-shape desired track 

consisting of diverse course change angle 𝜃 in the range from -47˚ to 47˚. A ship can be 

affected by wind and current coming from various directions as sailing on the track. Fig. 3.19 

shows the simulated responses of the ship in the Case 3.9. The initial states of parameters are 

𝑈  = 0.50 m/s, 𝛿  = 0˚, 𝜓  = 180˚, 𝑟  = 0˚, and 𝛽  = 0˚. The maximum |𝛿 | used to change her 

course is 11.21˚ as represented in Fig. 3.19(b). It seems that large errors are observed in 

Fig. 3.19(e), but the value of 𝑑𝑒
′
 calculated by Eq. (3.1) is temporarily increased due to the 

transition of the target waypoint position. Thus, the actual maximum errors are |𝜓e| = 4.30˚ 

and |𝑑𝑒
′ | = 0.37 which are appeared at the same time when the overshoot of 𝜓 occurs. All of 

simulation results of the four cases demonstrate that the ship equipped with the proposed 

algorithm can trace the intended track very closely. |𝑑e
′ | as an actual cross track error does not 

exceed one ship length since the rudder was manipulated at optimal timing obtained from the 

waypoint switching system depending on course change angle 𝜃. 
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Fig. 3.16 Simulation results of the Case 3.6 
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Fig. 3.16 Simulation results of the Case 3.6 

  



59 
 

 

Fig. 3.17 Simulation results of the Case 3.7 
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Fig. 3.17 Simulation results of the Case 3.7 
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Fig. 3.18 Simulation results of the Case 3.8 
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Fig. 3.18 Simulation results of the Case 3.8 
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Fig. 3.19 Simulation results of the Case 3.9 
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Fig. 3.19 Simulation results of the Case 3.9 
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3.7 Conclusions  

 

In this chapter, automatic path following algorithm applying fuzzy inference is proposed. 

Conclusions drawn from this work can be summarized as follows: 

 The path following algorithm consists of two components, waypoints guidance system 

and rudder control system, were developed. In the waypoints guidance system, a desired 

track which a ship should follow was built by feeding waypoints positon data. Optimal 

timing to use rudder was derived from the waypoint switching system according to a 

course change angle owned by a target waypoint. 

 Two kinds of path following algorithm were developed. The algorithm is distinguished 

depending on the performance of rudder control system which provides suitable rudder 

angle to change ship’s course. They were named as the basic path following algorithm 

and the improved path following algorithm respectively. 

 The basic path following algorithm has rudder control system taking account of three 

parameters: heading error, a cross track error, and a yaw rate. On the other hand, rudder 

control system implemented in the improved path following algorithm employed four 

parameters by adding ship speed to the existing three parameters. 

 Numerical simulations were carried out assuming external disturbance such as wind and 

current in virtual situation to verify the effectiveness of the developed algorithm. The 

simulation results show that a ship equipped with the proposed systems can arrive at her 

destination with little overshoots of a heading error and a cross track error. 

The performance of the proposed algorithm was proved in the situation assuming external 

disturbances. Further investigation will be needed for adverse condition as well as in various 

environmental conditions considering shallow water effect, the influence of wave, and so on. 
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Chapter 4. Application of Developed Automatic Path Following 

Algorithm in Realistic Situations 
 

4.1 Introduction 

 

Most of the simulations of path following systems presented in the past researches were 

carried out in virtual situations that ships moved on a geometrical track consisted of 

waypoints under arbitrary external disturbances such as wind, current, and wave. The 

arbitrary external disturbances have been often assumed to have constant direction and speed 

over the entire simulated area. As far as the actual disturbances concerned, they have 

irregular characteristics and let ships swerve from a desired course. Simulations conducted 

under the assumed environmental conditions are expected to have limitation to assess the 

effectiveness of the developed algorithm of path following. Hence, using the automatic path 

following algorithms suggested in Chapter 3, numerical simulations will be performed to 

verify the capability in realistic environmental situation in this chapter. From the above-

mentioned point of view, route plans that were actually used in operations to create desired 

tracks are utilized as the scenarios of the simulations in this study. Irregular environmental 

disturbances reproduced by using actual data of wind and current at sea are applied 

depending on ship’s position in real time. 

 

4.2 Realistic environmental condition 

 

Environment data related to wind and current on the specific date (7th August, 2017) were 

acquired from National Oceanic Earth and Atmospheric Administration (NOAA) [61] and 

Japan Meteorological Agency (JMA). Raw data of wind were measured every three hours by 

NOAA and current data were estimated every 15 minutes by JMA. To create more detailed 

conditions of the external disturbances, the obtained data were interpolated based on time, 

latitude, and longitude respectively using MATLAB. As a result, more detailed and closely 

spaced data of current velocity 𝑉𝐶, wind speed 𝑉𝑊, current direction 𝛼, and wind direction 𝜐 

were generated. It makes it possible to simulate the motion of a model ship affected by the 

disturbances considering time and her position. Fig. 4.1 and Fig. 4.2 demonstrate the views of 
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distribution of wind and current every 30 minutes from 21:00 to 23:30 on 7th August, 2017, 

respectively. The blue arrow bars indicate speed vectors of wind and current.  

 

   

   

    

 

Fig. 4.1 Distribution of curernt speed and direction 
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Fig. 4.2 Distribution of wind speed and direction 
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4.3 Numerical simulations with basic path following algorithm  

 

4.3.1 Simulation conditions 

The subject ship was selected as KVLCC2, which is the same with the ship used in the 

previous chapter. However, the simulations were carried out with actual-sized ship instead of 

scaled model ship so as to verify the performance in realistic environment. The principle 

particulars of the full-scaled ship are shown in Table 2.2 in Chapter 2.  

Ships are generally affected by external disturbance such as wind and current during voyage. 

In order to reproduce the realistic navigation situation, a route plan made by operators and 

actual disturbance data in the Ise Bay, Nagoya, Japan were applied to set simulation scenarios. 

The position data of the waypoints are named as P1, P2, P3, and P4 as presented in Table 4.1 

and the desired track consisted of these four waypoints is shown in Fig. 4.1 and Fig. 4.2. 

However, port domain is not included in the scenarios because following the track at the 

inside of ports should be the function of auto berthing systems which is not considered in this 

research. The simulation scenarios cover situations that a ship enters to or departs from the 

port at two kinds of speed: normal speed 10 knots and high speed 15 knots. In other words, 

totally four scenarios are able to be summed up as shown in Table 4.2. Departure situation 

means that the ship heads to the P4 from the P1 and the ship moves to the opposite direction 

at arrival situation, namely from the P4 to the P1. 

 

Table 4.1  Waypoint position data for simulations 

Waypoints Latitude Longitude 

P1 34.93˚ 136.76˚ 

P2 34.80˚ 136.76˚ 

P3 34.97˚ 136.84˚ 

P4 34.59˚ 136.97˚ 
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Table 4.2  Definition of scenarios for simulations 

Scenario Situation Speed 

4.1 Departure 10 knots 

4.2 Arrival 10 knots 

4.3 Departure 15 knots 

4.4 Arrival 15 knots 

 

The ship applied to the simulations is assumed to start her navigation at 21 o’clock on 7th 

August, 2017. Table 4.3 shows the initial conditions of external disturbance that the ship 

receives at that moment. The external disturbances in the departure situation (the Scenarios 

4.1 and 4.3) have smaller effect comparing with those in the arrival situation (the Scenarios 

4.3 and 4.4) at the beginning of the simulations. 

 

Table 4.3  Definition of initial environmental condition for simulations 

Scenario 
Wind Current 

𝑉𝑊 𝜈 𝑉𝐶 𝛼 

4.1 1.58 m/s 0.71 ˚ 0.11 m/s -169.0 ˚ 

4.2 9.03 m/s 4.07 ˚ 0.44 m/s 178.4 ˚ 

4.3 1.58 m/s 0.71 ˚ 0.11 m/s -169.0 ˚ 

4.4 9.03 m/s 4.07 ˚ 0.44 m/s 178.4 ˚ 

 

 

4.3.2 Simulation results 

Simulations for the four scenarios were carried out under the realistic environmental 

conditions as described above and they were updated in real time. The black line connected 

with four diamond-shaped waypoints is defined as the desired track. A ship starts navigation 

at the first waypoint and stops at the moment when she reaches the last waypoint. During the 

voyage, the target waypoint is switched twice near the waypoints P2 and P3 and course 

change angles around the waypoints are 𝜃 = 26.46˚ and 𝜃 = 26.97˚ respectively.  
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Fig. 4.3 shows the simulation results for the Scenario 4.1 that a ship departs from the port at 

10 knots. Figs. 4.3(a)-(b) present ship’s trajectory and the time history of rudder angle 

obtained by the proposed path following algorithm. The shape of ship on the trajectory 

appears every 5 minutes. A rudder was manipulated in order to change course before the ship 

reaches the waypoints P2 and P3. Thereafter, the rudder was used in the opposite direction to 

prevent the ship from passing through new track due to the influence of inertial motion. All 

of used rudder angle are less than 10°. Information regarding to wind and current as external 

disturbances is observed in Figs. 4.3(d)-(e). 𝑉𝑊 and 𝜈 gradually increased with progress of 

the time. 𝑉𝐶 changes between 0.05 m/s and 0.31 m/s. After the ship changed her course near 

the waypoint P3, we can know that the lateral force caused by wind coming from about 

𝜈  = 5° makes cross track error 𝑑𝑒
′  continuously increase as presented in Fig. 4.3(g). The 

relationship between heading error 𝜓𝑒 and cross track error 𝑑𝑒
′  is also shown in Fig. 4.3(g). 

During the voyage, observed maximum values of actual overshoot were |𝜓e | = 5.13° and 

| 𝑑e
′ | = 0.23. 

Simulation results for the Scenario 4.2 were illustrated in Fig. 4.4 when a ship enters into the 

port at 10 knots. Even though the ship traveled the same distance at the same speed with the 

previous simulation, she reached the final waypoint faster than that due to the influence of 

external disturbances. That is because 𝑉𝑊 gradually decreased and the ship is in fair current 

condition as shown in Fig. 4.4(d)-(e). According to Fig. 4.4(b), used rudder angles are less 

than 10°. The maximum values |𝜓e | = 6.38° and | 𝑑e
′ | = 0.36 appear immediately after the 

veering near the waypoint P3 as shown in Fig. 4.4(g). 

Fig. 4.5 describes simulation results for the Scenario 4.3 performed when a ship departs from 

the port with 15 knots which is faster than that of the Scenario 4.1. When the ship uses rudder 

to change her course, yaw rate becomes higher as her speed becomes faster. As shown in 

Fig. 4.5(b), larger rudder was executed in opposite direction so as to restrain the yaw rate 

which is increased in comparison with the Scenario 4.1. The magnitude of errors appear as 

|𝜓e| = 6.78° and |𝑑e
′ | = 0.37 in Fig. 4.5(g). 

Fig. 4.6 shows the simulation results for the Scenario 4.4 carried out when a ship enters into 

the port at the speed of 15 knots. The ship in this simulation arrived at her destination earliest 

among the four simulation cases. However, the rudder angle in Fig. 4.6(b) oscillates more as 

seen from comparison with the results of other simulations. It means that it takes more time 

to attain the 𝜓d directly after rudder was manipulated for changing course. Nevertheless, used 
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rudder angles did not exceed 10°. As the maximum errors, |𝜓e| = 8.27° and |𝑑e
′ | = 0.61 are 

obtained from Fig. 4.6(g). 

All of simulation results of the four scenarios show that a ship can closely follow the planed 

route using realistic rudder angle. Actual cross track error does not exceed one ship length 

because rudder was used at appropriate timing depending on course change angle. When a 

ship turns in the vicinity of a waypoint to approach the new course, rudder is used to change 

her heading toward desired heading angle and yaw rate increased. Then, the rudder is 

executed in opposite direction so as to keep the heading by making yaw rate zero. Given that 

velocity of a ship influences on the magnitude of yaw rate, larger opposite rudder angle is 

generated in order to control a yaw rate if ships move with high speed. 
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Fig. 4.3 Simulation results for the Scenario 4.1 
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Fig. 4.3 Simulation results for the Scenario 4.1 
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Fig. 4.4 Simulation results for the Scenario 4.2 
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Fig. 4.4 Simulation results for the Scenario 4.2 
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Fig. 4.5 Simulation results for the Scenario 4.3 
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Fig. 4.5 Simulation results for the Scenario 4.3 
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Fig. 4.6 Simulation results for the Scenario 4.4 

 



81 
 

 

Fig. 4.6 Simulation results for the Scenario 4.4 
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4.4 Numerical simulations of the improved path following algorithm 

 

4.4.1 Simulation conditions 

The subject ship for simulations is same as the ship of previous section, full scaled KVLCC2, 

and the principle particulars of the ship is indicated in Table 2.2 in Chapter 2. The numerical 

simulations were carried out to verify the improved path following algorithm introduced in 

Chapter 3 under the realistic situation. The improved path following algorithm takes the ship 

speed into account additionally, unlike the basic path following algorithm validated in the 

previous section. Therefore, scenarios with different speeds were established as shown in 

Table 4.4. The speeds are distinguished as low speed 7 knots, normal speed 10 knots, and 

high speed 15 knots. To compare the two algorithms, the Scenario 4.4 of Table 4.2, one of the 

scenarios implemented in the previous section, was selected. In order to confirm the 

difference of performance according to the speed, normal speed and high speed were set to 

the same value with the speed condition of the Scenario 4.4. As shown in Table 4.3, The ship 

in the Scenario 4.4 is most influenced by external forces such as wind and current at the 

beginning of her navigation. To be short, the ship moved to the waypoint P1 from the 

waypoint P4 as the arrival situation and is affected by disturbance forces 𝑉𝑊  = 9.03 m/s, 

𝜈 = 4.07˚, 𝑉𝐶 = 0.44 m/s, 𝛼 = 178.4˚ at the beginning of the simulations. The waypoints P1 

and P4 are illusterated in Fig. 4.1. 

 

Table 4.4  Definition of scenarios for simulations 

Scenario Speed 

4.5 7 knots 

4.6 10 knots 

4.7 15 knots 
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4.4.2 Simulation results 

Simulations were carried out under the realistic environmental conditions as described above 

and they were updated in real time. A ship starts navigation at the first waypoint P4 and stops 

at the moment when she reaches the last waypoint P1. During the ship is travelling, course 

angles are modified twice around the waypoints P2 and P3. Namely, the ship employed 

rudder angle twice for entering into the desired course lines consisting of the waypoints P3 

and P4 and the waypoints P1 and P2. 

The simulation results of the Scenario 4.5 in which the ship departs from the port at low 

speed 7 knots are demonstrated in Fig. 4.7. The shapes of the ship are drawn every 5 minutes 

on the trajectory as shown in Fig. 4.7(a). Fig. 4.7(b) and Fig. 4.7(c) present the time histories 

of rudder angle and heading angle respectively. It can be observed in Fig. 4.7(b) that rudder 

angle is adjusted to change the direction of the ship before she reaches the positions of the 

waypoints P3 and P2. The largest rudder angle manipulated until reaching the final waypoint 

is 11.7˚. The ship started her navigation with the initial heading angle 𝜓 = -53.32˚ and the 

heading angle is shifted to -26.42˚ and 0.04˚ as much as course change angle around the 

waypoints P2 and P3 which are 𝜃 = 26.46˚ and 𝜃 = 26.97˚. Fig. 4.7(d) and Fig. 4.7(e) show 

external environmental conditions of current and wind varied according to the time and the 

ship’s position. The black lines present current angles 𝛼 and wind angle 𝜐 and the blue lines 

express current velocity 𝑉𝐶 and wind speed 𝑉𝑊. 𝑉𝐶 changed in the range between 0.05 m/s 

and 0.45 m/s. On the other hand, 𝑉𝑊  and 𝜈 gradually increased as time goes by. The 

overshoots 𝜓𝑒 and 𝑑𝑒
′  are presented in Fig. 4.7(g). The obtained maximum actual values in 

Fig. 4.7(g) revealed as |𝜓e| = 1.87˚ and |𝑑e
′ | = 0.20. 

Fig. 4.8 shows simulation results for the Scenario 4.6 with the normal speed 10 knots. The 

ship traveled on the same route with the previous scenario. In order to compare the difference 

between the path following algorithm considering speed and not considering, we took note of 

results shown in Fig. 4.8 and Fig. 4.4. In the rudder motion shown in Fig. 4.8(b) and 

Fig. 4.4(b), the most notable point is motion of the rudder that used in an attempt to suppress 

inertial motion. Despite the ship sailed on the same track at the same speed, the rudder of the 

ship equipped with the algorithm that does not consider the speed shows more oscillation. 

The maximum overshoots were observed as |𝜓e| = 2.78˚ and |𝑑e
′ | = 0.29 immediately after 

changing orientation around the waypoint P3 according to Fig. 4.8(g). 
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Simulations displayed in Fig. 4.9 were carried out at high speed 15 knots which is faster than 

that in aforementioned simulations. In Fig. 4.9(b), the rudder motion appeared to oscillate 

more than those in Fig. 4.7(b) and Fig. 4.8(b) which were simulated with slower speed. 

However, it is restrained than that in Fig. 4.6(b) which shows the result of the basic path 

following algorithm in which the speed effect is not considered. The magnitude of errors 

observed in the Scenario 4.7 are |𝜓e| = 6.78˚ and |𝑑e
′ | = 0.37 as indicated in Fig. 4.9(g). 

In conclusion, the ship equipped with the improved path following algorithm including the 

speed effect could follow the pre-planned track with small deviation in the all simulations. In 

case that the ship executed a rudder to change her direction, the value of yaw rate became 

higher as her speed became faster. However, through the rudder motion in the simulations 

performed in this section, the improved path following algorithm showed stable rudder action 

despite operation at high speed.  
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Fig. 4.7 Simulation results for the Scenario 4.5 
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Fig. 4.7 Simulation results for the Scenario 4.5 



87 
 

 

 

Fig. 4.8 Simulation results for the Scenario 4.6 
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Fig. 4.8 Simulation results for the Scenario 4.6 
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Fig. 4.9 Simulation results for the Scenario 4.7 
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Fig. 4.9 Simulation results for the Scenario 4.7 
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4.5 Conclusions 

 

The proposed basic and improved path following algorithm composed of both waypoints 

switching system and rudder control system were verified in this chapter through numerical 

simulations in realistic operation environment. The main conclusions of this chapter can be 

summarized as follows: 

 Realistic external disturbances such as wind and current were reproduced using velocity 

vectors in real time based on actual measured data from the official organization. In 

addition, the pre-planned track was designed with the position data of waypoints actually 

used by ship’s operators. 

 

 Numerical simulations were carried out to verify the effectiveness of the proposed 

algorithm, the basic path following algorithm and the improved path following algorithm, 

under realistic environmental conditions. 

 

 In the simulations, information of wind and current obtained from real sea was applied 

depending on ship’s location and time. As a result, the ship equipped with the proposed 

algorithms can travel on desired track using realistic rudder angle. However, it has been 

found that including the speed effect in path following algorithm makes the rudder action 

taken to keep track more stable. 

 

  



92 
 

 

 



93 
 

Chapter 5. Development of Automatic Collision Avoidance 

Algorithm 
 

5.1 Introduction 

 

Ships usually encounter other ships while following their pre-planned path to arrive at their 

destinations during voyage. Introducing the path following algorithm suggested in Chapter 3 

alone is insufficient to complete a fully autonomous ship because the ship cannot avoid 

automatically colliding with other ships. Therefore, collision avoidance algorithm has further 

been studied in this chapter in order to achieve the development of fully autonomous ships. 

Additionally, accomplishment of the automatic collision avoidance algorithm is expected to 

contribute the safety at sea by reducing marine accidents. 

Marine accidents cause property losses, environmental pollution due oil spill, and even 

casualties. Table 5.1 summarizes the types of marine accidents that occurred in Japan during 

last 5years, which were investigated by Japan Transport Safety Board [62]. Collisions 

between ships or between a ship and obstacles accounts for about 30.3% of all marine 

accidents at highest rate and takes place more than 200 every year. Hence, researches on 

automatic collision avoidance which is the key element of automatic navigation have been 

conducted in an effort to improve the safety of ship navigation. 

When a ship encounters other ships at sea, she should decide when she starts to take an action 

to avoid collision and what kind of manoeuvring motion to be taken. Studies on inferring the 

timing to start collision avoidance action can be classified into two methods. One is the 

application of ship safety domain and the other is the evaluation of collision risk index using 

the Closest Point of Approach (CPA). 

The ship domain means the minimum virtual safety zone around a ship that enables ship 

operators to take an action to avoid potential collision. Namely, if obstacles or other ships 

invade the present ship domain, collision avoidance action is performed immediately. 

Beginning with the first concept of the ship domain which is an ellipse centered on ship’s 

position based on geometrical model created by Fujii and Tanaka [19], the ship domain has 

been briskly researched since 1970s. The configuration of the domain has been evolved into a 

variety of outlines such as a combination of three sectors, a semi-ellipse and a circle, taking 
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into account the International Regulations for Preventing Collision at Sea (COLREGs), ship 

speed, traffic pattern, and so on [20][24][63][64][65][66]. 

On the other hand, the evaluation of collision risk was achieved though assembling Distance 

to the Closet Point Approach (DCPA) and Time to the Closest Point Approach (TCPA), 

which came from conception developed by Iwasaki and Hara [25]. When the degree of the 

risk of a ship reaches a threshold value which deemed unsafe, she should take an action to 

avoid collision. Fuzzy logic on the basis of the knowledge and experience of ship operators 

has been typically utilized by inputting DCPA and TCPA as antecedent part in order to obtain 

collision risk index as consequent part [26][67]. 

 

Table 5.1 Statistical data of marine accidents in Japan (2014~2018) [62] 

Year 2014 2015 2016 2017 2018 

Collision 265 244 217 200 240 

Contact 116 102 94 96 88 

Grounding 213 202 163 181 169 

Sinking 7 5 5 13 21 

Flooding 11 12 19 22 26 

Capsizing 61 56 46 55 51 

Fire 35 38 26 27 24 

Explosion 1 3 3 3 2 

Vessel 

missing 
0 0 0 0 0 

Facility 

damage 
37 20 21 23 24 

Fatality/ 

Injury 
150 122 144 143 179 

Others 3 1 0 0 0 

Total 899 805 738 763 821 
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The advantage of the ship domain is tolerance for flexible consideration of various 

influencing factors. However, requiring many training samples which should be given by 

experienced navigators to make proper shapes is the disadvantage of the ship domain [68]. 

Whereas, collision risk index is evaluated according to fuzzy rules that already reflect 

expertise for inferring the starting point to take an action. Therefore, the collision avoidance 

algorithm to be developed in this chapter applies the collision risk indicator for inferring the 

starting point to take an action. 

Furthermore, reinforcement learning which is a branch of machine learning is employed in a 

bid to settle a course of action to evade crash. In order to implement the collision avoidance 

algorithm, current circumstances around a ship should be modelled. However, it is generally 

difficult to model every complex situation caused by the combination of various variables 

such as the speed and heading of other ships and traffic volume which changes every moment 

during ship operation. The reinforcement learning is a method that an agent can learn process 

to achieve own goal by repeating trial and error similar to a human being. Thus, if the reward 

for the achievement and failure of the objective of collision avoidance problem is set properly, 

the ship can judge the situation by herself like a human and take an action to avoid crash 

when the collision risk was recognized. 

The reinforcement learning is receiving a lot of attention because it is expected to solve 

problems similar to human thinking. In case of playing Atari games, controlling 3D 

locomotion, human level performance has already been achieved by Deep Reinforcement 

Learning (DRL) [69][70][71]. Google DeepMind has shown for the first time that a computer 

can solve problems as much as human level thorough working out the Atari game using Deep 

Q-network (DQN) [69] which is one of the algorithm of DRL. DQN can be apply to 

problems with high-dimensional observation space and low-dimensional action space defined 

as discrete space. However, most of tasks in real world such as physical control have high-

dimensional action space defined as continuous space. Therefore, Deep Deterministic Policy 

Gradient (DDPG) [70] has been introduced as another algorithm of DRL to resolve problems 

with high-dimensional observation space and action space. Since the reinforcement learning 

has just begun to be utilized in the marine filed, DQN has been usually applied to solve 

problems of collision avoidance problem [32]. In this research, to find which method of DQN 

and DDPG is more appropriate on collision avoidance problem, decision making problem of 

collision avoidance to prevent collisions will be resolved by using DQN and DDPG. 
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Actions can be taken by a ship is assumed to change her course angle from -30˚ to 30˚ around 

current course angle using the rudder controller described in Chapter 3. Since DQN can 

handle only discontinuous action space, the action spaces has divided for applying continuous 

and high dimensional domains such as ship control. Therefore, the course angles of the 

actions range were discretized at 10˚ intervals. To complement of the disadvantages of DQN, 

DDPG was developed for resolving problems on continuous and high dimensional action 

space. DDPG can intactly exercise the continuous action space for course angle. Numerical 

simulations will be carried out to verify the collision avoidance algorithm proposed in this 

Chapter. Through the simulations, it will be turned out that which method of DQN and 

DDPG is more suitable for collision avoidance problem. 

 

5.2 Reinforcement learning 

 

5.2.1 Basic concept of reinforcement learning 

Machine learning algorithms, an area of artificial intelligence that allows computers to learn 

by their experience, are divided into three classes: supervised learning, unsupervised learning, 

and reinforcement learning. Supervised learning trains a model on known input and output 

data that mean fully labelled examples so that it can predict future outputs. In real world, 

however, it is difficult to know exact output values required for supervised learning and 

dynamic states information changes over time. For the reason, it is not suitable for application 

in predicting ship motion. Unsupervised learning finds hidden pattern or intrinsic structures 

in input data. The data given to unsupervised learning are not labelled. It represent that the 

input variables are only given with no corresponding output variables. 

Reinforcement learning has slightly different attributes from supervised learning and 

unsupervised learning because it does not use any data set. In reinforcement learning, a 

learner or decision-maker called “agent” tries behaviour without prior knowledge in 

“environment” that means physical world in which the agent operates. The agent learns 

through acquiring “reward” as an evaluation value of the action taken. This process has the 

same structure as trial and error learning, which is the basic learning method of human being 

and animals through experience. Fig. 5.1 indicates relationship between the agent and the 

environment. At each time step 𝑡, the agent receives a reward 𝑟𝑡 for current state 𝑠𝑡 and take 

an action 𝑎𝑡 according to the trained model. One time step later, the environment changes 𝑠𝑡 
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to the next state 𝑠𝑡+1 in response to the action 𝑎𝑡, and then the agent receives a new reward 

𝑟𝑡+1. As aforementioned, a problem of reinforcement learning can be solved by repeating 

sequential process in order to achieve maximum sum of rewards. 

The agent implements a mapping called agent’s policy, which is a kind of function that 

outputs an action when a state comes in as input. The policy is nominated 𝜋, where 𝜋(𝑠, 𝑎) is 

the probability that 𝑎𝑡 = 𝑎 if 𝑠𝑡 = 𝑠. Objective of reinforcement learning is finding optimal 

policy 𝜋∗ and maximizing the total amount of reward which the agent receives over the long 

run. 

 

 

 

Fig. 5.1 Interaction between agent and environment in reinforcement learning 

 

5.2.2 Markov decision process 

Various algorithms such as Q-learning and SARSA has been developed to solve the 

reinforcement learning problem, which is defined based on the MDP. However, the classic 

reinforcement learning algorithms are difficult to apply to real world with high dimensional 

space. To resolve the problem, Deep Reinforcement Learning (DRL) was devised by 

applying Deep Neural Networks (DNN) that provides a general framework for approximating 

non-linear functions from training examples. This thesis employed Deep Q-network (DQN) 

for discrete action space and Deep Deterministic Policy Gradient (DDPG) for continuous 

action space. 

Markov decision process (MDP) devised by Bellman and Howard [72] at least in the 1950s 

provides a mathematical framework for modelling decision-making. MDP is applied to 
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formulate a reinforcement learning problem that needs to determine actions sequentially. 

MDP can be represented as 4-tuple (𝑆, 𝐴, 𝑃, 𝑅) and the each element is defined as follows: 

 𝑆  : a finite set of states 

 𝐴  : a finite set of actions 

 𝑃  : a state transition probability 

 𝑅  : a reward function 

State transition probability means the possibility of the next state s’ to be reached when a 

specific action 𝑎 is performed in a specific state 𝑠. It is expressed as Eq. (5.1). 

 𝑃𝑠𝑠′
𝑎 =  𝑃{𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (5.1) 

If any current state and action, 𝑠 and 𝑎, are given together with next state 𝑠′, the expected 

reward is demonstrated as shown in Eq. (5.2). 

 𝑅𝑠𝑠′
𝑎 =  𝐸{𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′ } (5.2) 

 

The goal of reinforcement learning is to choose a policy that maximizes the expected sum of 

future reward value. The discount factor nominated as 𝛾 reduces the value of reward as time 

goes by and it has a value between 0 and 1. The cumulative reward is called as the return 𝐺𝑡, 

which is given as, 

 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 +⋯ =∑𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

 (5.3) 

 

Where, 𝑘 denotes the end of an episode and 𝑡 is the time index. 

The agent utilizes value function so as to decide what kind of policy is how good. A way of 

measuring the “goodness” in a particular state is to use value function and it can be classified 

as state-value function and action-value function. State-value function denoted as 𝑉𝜋(𝑠) is 

defined as the sum of rewards expected to be received when the agent follows the 

corresponding policy 𝜋 from current state 𝑠. Action-value function indicated as 𝑄𝜋(𝑠, 𝑎) is 

the expected sum of rewards starting from current state 𝑠, if the agent takes an action 𝑎 and 

then follows a policy 𝜋. State-value function and action-value function are expressed as the 

following equations: 
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 𝑉𝜋(𝑠) = 𝐸𝜋{𝐺𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋 {∑𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠} (5.4) 

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋 {∑𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (5.5) 

 

Solving a reinforcement learning task means detecting an optimal policy 𝜋∗ that achieves a 

lot of reward over the long run. The Bellman equations formulate the problem of maximizing 

the expected sum of reward in terms of a recursive relationship. Namely, it represents the 

relationship between the value function of a particular state and the value function of the 

following state. A policy 𝜋 is deemed to be better than or equal to that of other policy 𝜋′ if 

the expected return following 𝜋 is greater than that following 𝜋′ for all states, which implies 

𝑉𝜋(𝑠)  ≥  𝑉𝜋
′
(𝑠). Thus, optimal value functions 𝑉∗(𝑠) is defined as, 

 𝑉∗(𝑠) = max𝜋𝑉
𝜋(𝑠) (5.6) 

 

Similarly, the optimal action-value function 𝑄∗(𝑠, 𝑎) expressed as follows: 

 

 𝑄∗(𝑠, 𝑎) = max𝜋𝑄
𝜋(𝑠, 𝑎) (5.7) 

 

This function gives the expected return for taking an action 𝑎  in state 𝑠  and thereafter 

following an optimal policy. Thus, we can write 𝑄∗ in terms of 𝑉∗ as follows: 

 

  𝑄∗(𝑠, 𝑎) = 𝐸{𝑟𝑡+1 + 𝛾𝑉
∗(𝑠𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (5.8) 

 

Bellman optimality equations for value functions formulas, 𝑉∗ and 𝑄∗, are demonstrated as 

follows: 

 𝑉∗(𝑠) = max𝑎∑𝑃𝑠𝑠′
𝑎

𝑠′

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉∗(𝑠′)] (5.9) 
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 𝑄∗(𝑠, 𝑎) = max𝑎∑𝑃𝑠𝑠′
𝑎

𝑠′

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑄∗(𝑠′, 𝑎′)] (5.10) 

If we know the state transition function 𝑃𝑠𝑠′
𝑎 , 𝑉∗  and 𝑄∗  are found through the Bellman 

optimality equations and 𝜋∗ can be figured out. It means solving the reinforcement learning 

problem. 

 

5.2.3 Deep Q-network  

A basic knowledge of Q-learning is necessary to understand DQN. Q-learning introduced by 

Watkins [73] finds the optimal policy 𝜋∗ by learning the action-value function and has been 

widely used as off-policy temporal difference algorithm. An action is selected with respect to 

ɛ-greedy policy, which initially allows the agent to do a lot of exploration by choosing action 

randomly and learned action comes to be chosen as the episodes are repeated. Action-value 

function also called Q-function is updated at each time step according to the following 

equation. Where, 𝑎 is learning rate and has a value from 0 to 1. 

 

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼[𝑟𝑡+1 + 𝛾 ∙ max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (5.11) 

 

DQN was developed to supplement Q-learning limited to task with small state spaces. Mnih 

et al. [69] introduced two new methods in Q-learning: experience replay memory and target 

network. The experience replay means storing the agent’s experience and then randomly 

extracting a part of the stored experience data to train the network. In general, the sampled 

trajectories from the environment are temporally correlated and if these trajectories are used 

to train the network it would lead to over fitting in the network and the network would not be 

able to learn effectively [74]. Therefore, the experience replay is used in order to break the 

temporal correlation of data points while training. The agent’s experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is 

saved in replay buffer every time step and a fixed number of samples are randomly extracted 

from replay buffer to train the network. In DQN, loss function Loss for updating the neural 

network with weight 𝜃  uses Mean Squared Error (MSE). The network is trained by 

minimized loss function 𝐿𝑜𝑠𝑠 and its equation is given as: 
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𝐿𝑜𝑠𝑠 = 𝐸 [(𝑦 − 𝑄(𝑠, 𝑎, 𝜃))

2
] ,

𝑦 = 𝐸 [(𝑟𝑡+1 − 𝛾max𝑎′𝑄(𝑠, 𝑎
′, 𝜃))

2
] .

 (5.12) 

 

As shown in Eq. (5.12), target network y computed via the Bellman equations is non-

stationary because 𝑦 uses same Q-function with prediction network 𝑄(𝑠, 𝑎, 𝜃) if the networks 

was updated. To overcome the problem, the weight of target network is fixed, and the target 

network is only periodically updated by Q-network. The two key aspects, experience replay 

memory and target network, make the network to stable and better. The completed algorithm 

is given below. 

 

Table 5.2 Algorithm of Deep Q-Network (DQN) [69] 

Algorithm 1 Deep Q-learning with experience replay 

Initialize replay memory 𝐷 to capacity 𝑁 

Initialized action-value function 𝑄 with random weights 𝜃 

Initialize target action-value function �̂� with weights 𝜃− = 𝜃 

for episode = 1, M do 

    Initialize sequence 𝑠1 = {𝑥1} and preprocessed sequenced 𝜙1 = 𝜙(𝑠1)  

        for 𝑡 = 1, T do 

            With probability 휀 select a random action 𝑎𝑡 

            Otherwise select 𝑎𝑡 = max𝑎𝑄(𝜙(𝑠𝑡), 𝑎; 𝜃) 

            Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡 and image 𝑥𝑡+1 

            Set 𝑠𝑡+1 = 𝑠𝑡, 𝑎𝑡+1 = 𝑎𝑡, 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)  

            Store transitions (𝜙𝑡, 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in 𝐷 

            Sample random minibatch of transitions (𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) in 𝐷 

            Set 𝑦𝑗 = {
                      𝑟𝑗              if episode teminates at step 𝑗 + 1

𝑟𝑗 + 𝛾max𝑎′𝑄(𝜙𝑗+1, 𝑎
′; 𝜃−)                        otherwise

 

            Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗 , 𝑎𝑗; 𝜃))
2 with respect to the  

            network parameters 𝜃 

            Every C steps reset �̂� = 𝑄 

        end for 

    end for 
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5.2.4 Deep deterministic policy gradient  

DQN achieved to solve task with high dimensional observation spaces, however, it cannot 

handle continuous and high dimensional action spaces. In other words, DQN suits only 

discrete and low dimensional action spaces. Many problem of interest, especially physical 

control tasks, has continuous action space. If the action space is discretized too finely, the 

action space becomes too large and it is also hard to converge. Lillicrap et al. [70] presented 

Deep Deterministic Policy Gradient (DDPG) that accomplished well on continuous action 

space. DDPG is actor-critic approach based on Deterministic Policy Gradient (DPG) [75].  

The actor-critic composes two structures, actor neural network that adjusts the stochastic 

policy and critic neural network that estimates the value function, Q-function. Namely, the 

action to be taken is selected by the actor network and the critic network judges how good 

each action is through approximating the Q-function. Actor and critic networks work together 

and are individually trained for the purpose. When the stochastic policy is applied to the 

continuous action space, the action with the highest probability is needed to be searched. 

However, since the process consumes too much time to be practical with large domain, a 

deterministic policy should be used for continuous action space. Therefore, the actor-critic 

algorithm applying a deterministic policy function using policy gradient called DPG has been 

developed by Silver et al [76]. 

DDPG modifies DPG inspired by insights from the DQN, replay memory and target network, 

which allow it to use neural network function approximators to learn in large state and action 

spaces. Target networks are two separate networks which cope with the actor and critic 

networks. They are employed to calculate the target y in the temporal difference error 

according to Eq. (5.11). The difference between DQN and DDPG on the target network is 

update method. The target network is updated periodically copying weights from DQN, 

whereas, DDPG used “soft” target updates, rather than directly copying the weights. The 

weights of target networks in DDPG are updated slowly by accumulating the learned 

networks. A major challenge of learning in continuous action spaces is exploration. DDPG 

constructed an exploration policy as adding noise sampled from a noise process N which is 

Ornstein-Uhlenbeck process [77]. The completed DDPG algorithm is described below. 
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Table 5.3 Algorithm of Deep Deterministic Policy Gradient (DDPG) [70] 

Algorithm 2 DDPG algorithm 

Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠, |𝜃𝜇) with weights 𝜃𝑄 and 𝜃𝜇  

Initialized target network 𝑄′ and 𝜇′ with weights 𝜃𝑄
′
← 𝜃𝑄 , 𝜃𝜇

′
← 𝜃𝜇 

Initialize replay buffer 𝑅  

for episode = 1, M do 

    Initialize a random process 𝒩 for action exploration 

    Receive initial observation state 𝑠1 

        for 𝑡 = 1, T do 

            Select action 𝑎𝑡 =   𝜇(𝑠𝑡, |𝜃
𝜇) +𝒩𝑡 according to the current policy  

            and exploration noise 

            Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

            Store transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅 

            Sample a random minibatch of 𝒩 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝑅 

            Set 𝑦𝑖 = 𝑟𝑖 + γQ
′(𝑠𝑡+1, 𝜇(𝑠𝑖+1|𝜃

𝜇)|𝜃𝑄
′
) 

            Update critic by minimizing the loss: 𝐿 =  
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝜇))2𝑖   

            Update the actor policy using the sampled policy gradient:  

∇𝜃𝜇𝐽 ≈  
1

𝑁
∑∇𝑎
𝑖

𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠𝑖 

            Update the target networks:  

𝜃𝑄
′
=← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
=← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′  

 

        end for 

    end for 
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5.3 Collision avoidance algorithm 

 

5.3.1 Overview 

Collision avoidance algorithm suggested in this study consists of three parts: collector and 

analyser, decision maker, and rudder controller as shown in Fig. 5.2. In collector and analyser, 

the own ship that is controlled directly obtains information of all other ships approaching 

around own ship which is called the target ships such as position data, speed, heading and 

ship’s type from Automatic Identification System (AIS) receiver and radar. Using the 

collected data of the target ships, DCPA and TCPA are calculated and the value of collision 

risk (CR) can be gained. In addition, if a situation that own ship is expected to crash with the 

target ships or obstacles is detected by the computed collision risk, the role of the give-away 

ship or the stand-on ship is ordained and the target ship’s dynamic data is communicated to 

the decision maker. 

Through the decision maker developed based on DRL, the action to be taken by own ship is 

judged. Namely, the own ship can decide whether she keeps the existing route or switch her 

heading direction toward starboard / port side and when she starts and ends the selected 

action. In general, collision avoidance behaviour is achieved through altering ship’s heading 

to starboard side according to COLREGs in most cases, but it is recommended to choose 

useful veering direction in the case of overtaking. Therefore, the action given by the decision 

maker is composed of path following, avoidance toward starboard side, and avoidance toward 

port side. The threshold value of collision risk determining the start and end timing of 

avoidance was set as CR = 40 through computer simulations performed many times in 

advance. If the value of CR was greater than 40 such as CR = 50 or 60, the collision 

avoidance action was conducted too late, so that the ship collided with other ships in all 

episodes and the training was not completed. On the other hand, when the value of CR was 

less than 40 such as CR = 20 or 30, the ship could take avoidance measures in early stage but 

it lets the ship swerve too much far from the desired track. Due to the above, the threshold 

value for CR was set as 40. 

When the obtained collision risk value is less than preset threshold value, CR ≤ 40, the own 

ship continues to follow the original course, pre-planned track, utilizing the automatic path 

following algorithm described in Chapter 3. However, in case that the degree of collision risk 

is greater than the threshold value, CR > 40, the own ship is able to change her course as well 
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as maintain current track by adjusting her heading angle. Function to veer the heading angle 

is implemented by using the rudder controller explained in detail in Fig. 3.2 

 

 

 

Fig. 5.2 Block diagram of collision avoidance algorithm 

 

5.3.2 International regulation for preventing collisions 

In order to reduce collision accidents at sea, International Maritime Organization (IMO) 

established International Regulations for Preventing Collisions at sea (COLREGs) in 1972 

[78]. COLREGs is composed of five parts, and the collision avoidance algorithm suggested 

in this research is developed by utilizing Part B of COLREGs which gives the rules related to 

steering and sailing. According to Part B, encounter situations are classified into three types: 

head on, crossing, and overtaking. In each situation, role of ships is assigned to either the 

give-way ship which takes an action to avoid collision or the stand-on ship which maintains 

her course and speed. The main rules of COLREGs applied to this study are described as 

follows. 

 

Rule 8 

Action to avoid a collision 

(a) Any action taken to avoid collision shall be taken in accordance with the Rules of this 

Part and shall, if the circumstances of the case admit, be positive, made in ample time and 

with due regard to the observance of good seamanship. 
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(b) Any alteration of course and/or speed to avoid collision shall, if the circumstances of the 

case admit, be large enough to be readily apparent to another vessel observing visually or 

by radar; a succession of small alterations of course and/or speed should be avoided. 

(c) lf there is sufficient sea room, alteration of course alone may be the most effective action 

to avoid a close-quarters situation provided that it is made in good time, is substantial and 

does not result in another close-quarters situation. 

(d) Action taken to avoid collision with another vessel shall be such as to result in passing at 

a safe distance. The effectiveness of the action shall be carefully checked until the other 

vessel is finally past and clear. 

(e) If necessary to avoid collision or allow more time to assess the situation, a vessel shall 

slacken her speed or take all way off by stopping or reversing her means of propulsion. 

(f)  

(i) A vessel which, by any of these rules, is required not to impede the passage or safe 

passage of another vessel shall, when required by the circumstances of the case, take 

early action to allow sufficient sea room for the safe passage of the other vessel. 

(ii) A vessel required not to impede the passage or safe passage of another vessel is not 

relieved of this obligation if approaching the other vessel so as to involve risk of 

collision and shall, when taking action, have full regard to the action which may be 

required by the rules of this part. 

(iii) A vessel, the passage of which is not to be impeded remains fully obliged to comply 

with the rules of this part when the two vessels are approaching one another so as to 

involve risk of collision.  

 

Rule 13 

Overtaking 

(a) Notwithstanding anything contained in the Rules of Part B, Sections I and II, any vessel 

overtaking any other shall keep out of the way of the vessel being overtaken. 

(b) A vessel shall be deemed to be overtaking when coming up with another vessel from a 

direction more than 22.5 degrees abaft her beam, that is, in such a position with reference 
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to the vessel she is overtaking, that at night she would be able to see only the sternlight of 

that vessel but neither of her sidelights. 

(c) When a vessel is in any doubt as to whether she is overtaking another, she shall assume 

that this is the case and act accordingly. 

(d) Any subsequent alteration of the bearing between the two vessels shall not make the 

overtaking vessel a crossing vessel within the meaning of these Rules or relieve her of the 

duty of keeping clear of the overtaken vessel until she is finally past and clear. 

 

Rule 14 

Head-on situation 

(a) When two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so 

as to involve risk of collision each shall alter her course to starboard so that each shall 

pass on the port side of the other. 

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead or nearly 

ahead and by night she could see the masthead lights of the other in a line or nearly in a 

line and/or both sidelights and by day she observes the corresponding aspect of the other 

vessel. 

(c) When a vessel is in any doubt as to whether such a situation exists she shall assume that it 

does exist and act accordingly. 

 

Rule 15 

Crossing situation 

When two power-driven vessels are crossing so as to involve risk of collision, the vessel 

which has the other on her own starboard side shall keep out of the way and shall, if the 

circumstances of the case admit, avoid crossing ahead of the other vessel. 
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Rule 16 

Action by give-way vessel 

Every vessel which is directed to keep out of the way of another vessel shall, so far as 

possible, take early and substantial action to keep well clear. 

 

Rule 17 

Action by stand-on vessel 

(a)  

(i) Where one of two vessels is to keep out of the way the other shall keep her course and 

speed. 

(ii) The latter vessel may however take action to avoid collision by her manoeuvre alone, 

as soon as it becomes apparent to her that the vessel required to keep out of the way is 

not taking appropriate action in compliance with these Rules. 

(b) When, from any cause, the vessel required to keep her course and speed finds herself so 

close that collision cannot be avoided by the action of the give-way vessel alone, she shall 

take such action as will best aid to avoid collision. 

(c) A power-driven vessel which takes action in a crossing situation in accordance with sub-

paragraph (a)(ii) of this Rule to avoid collision with another power-driven vessel shall, if 

the circumstances of the case admit, not alter course to port for a vessel on her own port 

side. 

(d) This Rule does not relieve the give-way vessel of her obligation to keep out of the way. 

 

In summary of the above rules, once the role of the two ships was determined, the give-away 

ship should veer to starboard side preferentially. Encounter situations can be identified 

according to relative angle as shown Fig. 5.3.  
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Fig. 5.3 Encounter situation accoring to COLREGs 

 

5.3.3 Calculation of collision risk 

When building a collision avoidance algorithm, it is important to infer the time to start an 

action for collision avoidance. In this study, we used the collision risk based on fuzzy 

inference to determine the start and terminate positions of an action to be taken to avoid crash. 

If the collision risk is bigger than a certain value, the give-away ship should perform collision 

avoidance action. Conversely, when the collision risk is less than the present value, the taken 

action must be stopped and then the ship should return to her original course. Collision risk is 

calculated by inspiring from fuzzy inference presented by Kjima and Furukawa [26]. As 

parameters for the fuzzy inference, DCPA and TCPA are employed and the elements are 

shown in Fig. 5.4. The equations regarding DCPA and TCPA are expressed in Eq. (5.13). 
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𝑉𝑥𝑟 = 𝑉1 cos 𝜃1 − 𝑉0 cos 𝜃0
𝑉𝑦𝑟 = 𝑉1 sin 𝜃1 − 𝑉0 sin 𝜃0

𝑅 = √(𝑦1 − 𝑦0)2 + (𝑥1 − 𝑥0)2

𝜃01 = tan−1
𝑦1 − 𝑦0
𝑥1 − 𝑥0

𝜃𝑟 = tan
−1
𝑉𝑦𝑟

𝑉𝑥𝑟
𝑉𝑟 = 𝑉0 cos(𝜃0 − 𝜃𝑟) − 𝑉1 cos(𝜃1 − 𝜃𝑟)

𝐷𝐶𝑃𝐴 = 𝑅 sin(𝜃01 − 𝜃𝑟)

𝑇𝐶𝑃𝐴 =
𝑅 sin(𝜃01 − 𝜃𝑟)

𝑉𝑟
′

}
 
 
 
 
 
 

 
 
 
 
 
 

 

 

(5.13) 

 

Where, 𝑉0 is own ship’s velocity and 𝑉1 is target ship’s speed. R indicates the distance from 

the own ship to the target ship and 𝜃01 is bearing angle of R. 𝜃0 and 𝜃1 are angles between 𝑥0 

-axis and the course of own ship and target ship, respectively. 𝑉𝑥𝑟 and 𝑉𝑦𝑟 are components of 

relative speed 𝑉𝑟 between two ships in 𝑥0- and 𝑦0-axes and 𝜃𝑟  is bearing angle of the two 

components. 

 

 

 

Fig. 5.4 Determination of DCPA and TCPA in an approach situation 
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For fuzzy inference of collision risk, DCPA and TCPA are non-dimensionalized using ship’s 

length 𝐿 and speed 𝑈 as shown in Eq. (5.14). 

 

 

 

𝐷𝐶𝑃𝐴′ =
𝐷𝐶𝑃𝐴

𝐿
,

𝑇𝐶𝑃𝐴′ =
𝑇𝐶𝑃𝐴

𝐿/𝑈
.
 

 

(5.14) 

 

 

The non-dimensional DCPA denoted by DCPA' is considered as the antecedent part and the 

non-dimensioanl TCPA specifed as TCPA' is the consequent part of the membership function 

of fuzzy inference respectively. Fuzzy rules and membership functions for the collision risk 

inference are indicated in Table 5.4 and Fig. 5.5. DCPA' is described by three classes: Near 

Zero (ZO), Positive Small (PS), and Positive Big (PB). TCPA' has four classes: Negative (N), 

ZO, PS, and PB. Collision risk degree denoted by CR, is also constituted of four classes: Safe 

(SA), Slightly Dangerous (SD), Dangerous (DA), and Considerably Dangerous (CD). In the 

collsion avoidance algorithm, the threshold value of CR is detremend by 40. If CR > 40, the 

give-way ship takes collision avoidance action and, on the contrary to this, CR ≤ 40, the own 

ship stops the taking action and then returns to the previous track. 

 

 

Table 5.4 Rules for the collision risk of fuzzy inference 

 TCPA′ 

N ZO PS PB 

DCPA′ 

ZO SA CD DA SA 

PS SA DA SD SA 

PB SA SA SA SA 
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     (a) antencedent part 

 

 

     (b) consequent part 

 

Fig. 5.5 Membership functions for the collision risk fuzzy inference 

 

5.3.4 Definition of markov decision process for collision avoidance 

In the decision maker as shown in Fig. 5.2, reinforcement learning was utilized to decide 

action to be taken in order to evade collision. The reinforcement learning is one of ways to 

solve problems that need to determine behaviour sequentially. In order for a computer to 

solve any sequential problems, the problems should be mathematically defined through MDP. 

MDP is composed of state, action, reward, and policy. In the collision avoidance problem, the 

own ship as an agent moves along a desired course, original course, and if collision risk is 

detected in approaching situation with other ships, the own ship takes an action to avoid crash. 
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Depending on the assigned reward, policy is determined to conform with the taken action at 

each state. This section will describe state, action, and reward of the collision avoidance 

problem to make MDP model. 

 

State 

So as to make an accurate judgment at the decision maker depicted in Fig. 5.2, the own ship 

as the agent needs to fully understand the present situation. Thus, the state set 𝑆 is established 

by position and dynamic data of two ships, own ship and target ship, to investigate the 

information of the current encounter situation. Eq. (5.15) expresses a set S of the collision 

avoidance problem. 

 𝑆 =  {𝑥𝑜 , 𝑦𝑜 , 𝜓𝑜 , 𝑈𝑜 , 𝑟𝑜 , 𝛿𝑜 , 𝑥𝑡 , 𝑦𝑡, 𝜓𝑡 , 𝑈𝑡, 𝑟𝑡, 𝐶𝑅} (5.15) 

 

Where, subscript ‘o’ and ‘t’ mean own ship and target ship, respectively. The data relating to 

the target ship is obtained from AIS and radar and present CR value is handed over from the 

collision risk calculator indicated in Fig. 5.2. x and y represent position of the ship. 𝜓 is 

heading angle and 𝑈 is ship’s speed. 𝑟 and 𝛿 signify the yaw rate and the rudder angle of own 

ship. The dynamic data of two ships, the own ship and the target ship, in the state set 𝑆 can be 

represented as shown in Fig. 5.6. 

 

 

Fig. 5.6 State space of collision avoidance problem 
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Action 

The own ship as the agent is able to have three kinds of action in the decision maker of the 

collision avoidance algorithm as shown in Fig. 5.2. If a collision possibility between a target 

ship approaching and own ship following an existing track defined by waypoints is 

recognized , the own ship assumed as a give-away ship needs to select an action to change 

her heading angle toward starboard side or port side. In the collision avoidance problem, the 

action indicates course angle to be changed from the current heading direction and the 

designated action space is allocated from -30˚ to 30˚. On the basis of the current heading 

angle of the own ship, the heading angle can be veered 30˚ each toward both starboard and 

port directions. As mentioned previously, numerical simulations using two methods of DRL 

that are DQN and DDPG are performed in this research. Since the behaviour that an agent 

can implement in DQN must be set up in discrete space, the action is split into seven at 10˚ 

intervals. On the other hand, DDPG can treat any action value within continuous action space 

between -30˚ and 30˚. The action spaces of DQN and DDPG are illustrated in Fig. 5.7. 

 

 

 

 

 

                             (a) DQN                                                          (b) DDPG 

 

Fig. 5.7 Action space of collision avoidance problem 
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Reward 

Whenever an agent performs an action, the agent receives a reward value from the 

environment as shown in Fig. 5.1. The reward informs the agent whether the current action 

was good or bad. The reward function is important because the goal of reinforcement 

learning is to maximize the cumulative reward values. Thus, the reward function 𝑅 in the 

collision avoidance problem is defined as follows: 

 

 𝑅 =  {
exp(−𝑑e

′)     , 𝑑e ≥ 0

exp(𝑑e
′) − 1 ,         𝑑e < 0

  −100              ,     collision 

 (5.16) 

 

Where, 𝑑e
′
 is non-dimensional cross track error calcualted by Eq. (3.1). When 𝑑e

′
 has 

positive value (𝑑e > 0), it can be considered that the ship has moved to starboard side. On the 

other hand, if 𝑑e
′
 has negative value (𝑑e < 0), the ship has been expected to alter direction to 

port side. In case of 𝑑e = 0 , it means that the ship follows the target track. COLREGs 

recommends a ship to move toward stardboard side primarily to avoid conflicts. Thus, when a 

ship moves toward the starboard direction accoridng to the international rules, reward is 

positve value. If the ship head for the port side, the agent ,the own ship, acquires negative 

value which can be regarded as penalty. 

Exponential function is used to apply the reward value differently depending on the distance 

from the desired track. Accuratly following the desired track, it makes possible to minimize 

energy loss during operation and reach a destination in a short time because of the best route 

planned by skilled opertors considering water depth, geomatric condition, weather condition, 

and so on. Therefore, when the ship travells on the desired track, the reward becomes the 

maxmum value. On the other hand, when the own ship veers to starboard side, as the ship 

moves farr away from the target track due to altering starboard, she obtains less amount of 

the positive reward. In case that the own ship changes heading angle to port side in order to 

avoid the potential collision, the ship receives negative value as far as the distance from the 

target path. 

Lastly, if the own ship collides with other ship, it receives -100. The reward value has the 

largest negative value in order for the ship to deem that the behavior which caused the 
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collision was the worst. Collision is established as when the distance between two ships, the 

own ship and the target ship, is less than four times of the ship’s length to prevent passing 

each other too close. 

 

5.4 Numerical simulations 

 

5.3.1 Simulation conditions 

For the collision avoidance simulations, it is necessary to introduce two ships as an own ship 

and a target ship. The KVLCC2 tanker scaled by 1/128 was selected as the both ships. The 

principle particulars of the subject ship are represented in Table 2.2 in Chapter 2. The 

numerical simulations were carried out on head-on situation in order to verify the 

effectiveness the developed collision avoidance algorithm. In spite of head-on situation, the 

roles of ships are assigned as the stand-on ship and the give-away ship respectively. The 

initial position and heading angle of the target ship is changed randomly whenever episode 

starts within the range of the head-on situation as shown in Fig. 5.3. The target ship treated as 

a give-way ship was assumed to travel her existing track without any action such as rudder 

manipulation. The own ship departs from fixed position in every episode. The initial 

conditions of two ships on each episode are defined as shown in Table 5.5. The model ship’s 

speed 0.4547 m/s corresponds to 10 knots of full scale ship. 

 

Table 5.5 Definition of initial conditions  

 Own ship Target ship 

Position 
𝑥0/𝐿 = 0 

𝑦0/𝐿 = 0 

𝑥0/𝐿  =   40.0 

-3.5 ≤ 𝑦0/𝐿 ≤ 3.5 

Heading angle 0 ˚ 175˚ ≤  𝜓  ≤185˚ 

Speed 0.4547 m/s 0.4547 m/s 
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5.3.2 Simulation results using DQN and DDPG 

DQN and DDPG are implemented using Python and TensorFlow library [79] is employed to 

build deep neural networks. The learning rate in DQN is 0.0005 and the number of hidden 

layers is two. The network in DQN has 16 units for each hidden layer. In DDPG, the learning 

rate for the actor network and the critic network are 0.0001 and 0.001 respectively. The both 

networks are also consisted of two hidden layers. The actor network and the critic network 

have 400 units for the first hidden layer and 300 units for the second hidden layer 

respectively. The discount factor for two methods, DQN and DDPG, is set to 0.99. 

Using the abovementioned hyperparameters, the collision avoidance problem of head-on 

situaion according to starting state as shown in Table 5.5 was learned and the training results 

of DQN and DDPG are presented in Fig. 5.8 and Fig. 5.9. The figures show the total 

accumulated reward per episode. In Fig. 5.8, the collision avoidance problem seems to have 

been resolved after about 900 episodes through DQN. On the other hand, since DDQP began 

to converge as soon as learning was started as shown in Fig. 5.9, it can be seen that training is 

completed faster than DQN.  

 

Fig. 5.8 Training results of DQN 

 

Fig. 5.9 Training results of DDPG 



118 
 

Applying the trained model of DQN and DDPG, the own ship will move according to optimal 

policy while coping with the target ship. Numerical simulations are carried out using the 

trained model in several cases of head-on situation set up depending on the location of a 

target ship. In order to investigate whether difference in manoeuvring performance as well as 

learning speed exist between the two methods, simulations are conducted for same encounter 

situation. Established target ship information in each encounter case is shown in Table 5.6. 

The relative angles selected within the range shown in Fig. 5.3 are 0˚, -5˚ and 5˚. It is 

assumed that the target ship approaches own ship from the front with the greatest relative 

angle on the starboard side or port side. 

The simulation results for DQN are observed from Fig. 5.10 to Fig. 5.12. Fig.5. 10 shows the 

results of Case 1 when the target ship comes from relative angle 0˚. In Fig. 5.10, the blue line 

means the own ship’s data and the red line indicates the target ship’s data. The shapes of a 

ship in Fig. 5.10(a) depicts the positions of ships every 30 seconds and the black dotted line 

signifies a desired track that is the original route. The positions of the two ships were nearest 

at 110.0 seconds and the distance at that time was 4.08𝐿. The own ship competed collision 

avoidance without invading the distance of 4.0𝐿 which was set to be considered as collision. 

Fig. 5.10(b) and Fig. 5.10(c) demonstrate time histories of rudder angle and heading angle. 

The rudder angle started to change after degree of collision risk, CR, exceed the threshold 

value CR = 40. Namely, an action to be taken was decided after 36.0 seconds when CR 

exceeded 40 as shown in Fig. 5.10(f). During the voyage, the own ship used the maximum 

absolute rudder angle as |𝛿| = 12.2˚. Fig. 5.10(d) and Fig. 5.10(e) show time histories of 

DCPA’ and TCPA’ used for obtaining CR. The CR in Fig. 5.10(f) increase at the beginning of 

the simulation, but the value decrease rapidly as soon as TCPA’ goes to zero. If TCPA’ is 

equal to zero or negative value, it means the own ship have passed the target ship. 

 

Table 5.6  Definition of initial conditions for a target ship 

 Heading angle (˚) Position (𝑥0/𝐿, 𝑦0/𝐿) 

Case 1 180 (40.0, 0.0) 

Case 2 175 (40.0, -3.5) 

Case 3 -175 (40.0, 3.5) 
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Fig. 5.11 presents the results of simulation in case that the target ship approaches own ship 

from port side of the own ship. As shown in Fig. 5.11(a), the two ships approached closest at 

108.0 seconds as distance of 4.16𝐿. The rudder angle used in this simulation is between 

𝛿 = -12.8˚ and 𝛿 = 11.8˚ as shown in Fig. 5.11(b). In order to obtain the maximum reward, 

the own ship traveled close to the original course in the early stages. The heading angle seen 

in Fig. 5.11(c) changed up to 39.6˚ to evade a crash and reached 0˚ after 250.0 seconds. In 

figures (d), (e), and (f), TCPA’ is zero at 110.6 seconds and after then CR decreased even 

through DCPA’ increased. 

In Fig. 5.12, the target ship moves toward the own ship with relative angle 5˚ as Case 3. As 

shown in Fig. 5.12(a), the own ship performed the evasive motion with bigger turning radius 

comparing with other cases since the target ship comes from starboard side where the own 

ship should take action preferentially according to COLREGs. Therefore, the nearest distance 

from the own ship to the target ship is the longest among three cases as 4.57L. However, the 

maximum magnitude of used rudder angle in Fig. 5.12(b) is the smallest as |𝛿| = 9.6˚. The 

CR has 61.5 as the maximum value when DCPA’ and TCPA’ are 0.02 and 4.09, respectively. 

Based on the simulation results of three cases, it can be said that the decision maker of the 

collision avoidance algorithm developed by DQN showed good performance to accomplish 

avoidance without causing collision. 

 



120 
 

  

 

Fig. 5.10 Simulation results using DQN of the Case 1 
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Fig. 5.10 Simulation results using DQN of the Case 1 
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Fig. 5.11 Simulation results using DQN of the Case 2 
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Fig. 5.11 Simulation results using DQN of the Case 2 
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Fig. 5.12 Simulation results using DQN of the Case 3  
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Fig. 5.12 Simulation results using DQN of the Case 3 
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Simulation results for the collision avoidance algorithm using DDPG are shown in Fig. 5.13 

to Fig. 5.15. Fig. 5.13 is the results of Case 1 when the target ship having the heading angle 

of 180˚ approached the own ship. While the own ship travels, the target ship marked in blue 

in Fig. 5.13(a) neared the own ship as much as distance of 4.06 𝐿 . Fig. 5.13(b) and 

Fig. 5.13(c) represent time histories of rudder angle and heading angle, respectively. The 

rudder is started to execute after 36.0 seconds, when CR exceeded 40. The heading angle 

toward the starboard side was modified to port side in order to return the original route after 

the collision action was stopped by getting CR which is less than the threshold value 40. 

Fig. 5.13(f) signifies time history of CR derived from DCPA’ and TCPA’ shown in 

Fig. 5.13(d) and Fig. 5.13(e). TCPA’ became zero at 114.0 seconds and the maximum value 

of CR was 61.4. 

The results of Case 2 in which the target ship comes from the port side of own ship were 

demonstrated in Fig. 5.14. As shown in Fig. 5.14(a), the target ship was located closest as 

distance of 4.06𝐿 at 118.8 seconds. As displayed in Fig. 5.14(b), The maximum rudder angle 

used in this case is |𝛿| = 13.1˚ and the rudder angle reached zero after about 150 seconds. The 

heading angle returned to the desired heading angle 𝜓 = 0˚ as shown in Fig. 5.14(c), because 

the risk of collision disappeared as CR ≤ 40. The time history of CR for Case 2 is observed in 

Fig. 5.14(g). 

Fig. 5.15(a) depicted trajectory of the Case 3, the own ship moves forward and the target ship 

approaches the own ship from starboard side with relative angle 5˚. Despite the fact that the 

target ship comes from starboard side, the own ship avoided the target ship by taking 

starboard avoidance according to international regulations. At this time, the two ships 

encountered each other at a nearest distance of 4.1𝐿 . Maximum rudder angle used in 

Fig. 5.15(b) is between 𝛿 = -12.5˚ and 𝛿 = 11.8˚. Given that the heading angle reached to zero 

in Fig. 5.15(c), it can be known that the own ship finished the collision avoidance action and 

returned to the original course which is shown with the black dotted line in Fig. 5.15(a). The 

effectiveness of the decision maker devised by using DDPG in collision avoidance problem 

was also verified . 

As seen from comparison between the results of DQN and DDPG, the closest distance 

between the two ships for DQN and DDPG had similar value which is approximately 4.0𝐿. If 

the value set to be deemed as a collision is changed, it seems that the own ship can travel 

closer or farther than in this algorithm. The maximum rudder angles in both method were also 
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similar, but the distance from the original path, a cross track error, showed significant 

difference. 

 

 

Fig. 5.13 Simulation results using DDPG of the Case 1 
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Fig. 5.13 Simulation results using DDPG of the Case 1 
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Fig. 5.14 Simulation results using DDPG of the Case 2 
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Fig. 5.14 Simulation results using DDPG of the Case 2  
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Fig. 5.15 Simulation results using DDPG of the Case 3  
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Fig. 5.15 DDPG Simulation results using DDPG of the Case 3 
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Therefore, the trajectories obtained for the same cases are expressed in one figure to facilitate 

comparison. The trajectories of three simulation cases using DQN and DDPG are displayed 

in Fig. 5.16 to Fig. 5.18. The blue lines are trajectories obtained by using DQN and the red 

lines are trajectories obtained through DDPG. The black lines indicate trajectories of the 

target ship and the black dotted lines show the original tracks of the own ship. Trajectories 

using DQN and DDPG in Case 1 are represented in Fig. 5.16. Focusing on the longest 

distance between 𝑥0-axis and ship position in y0-axis, is 7.00𝐿 in case of DQN and DDPG has 

4.10𝐿. In Fig. 5.17 for Case 2 and Fig. 5.18 for Case 3, the maximum distances for DQN are 

5.82𝐿  and 9.67𝐿 , respectively. On the other hand, they are 2.97𝐿  and 5.58𝐿  for DDPG, 

individually. When CR, degree of collision risk, exceeds 40, the ship starts to take collision 

avoidance action. Therefore, the trajectories of DQN and DDPG show similar feature at the 

beginning of the voyage. However, since DQN, unlike DDPG, cannot select an action in a 

continuous action space, the own ship equipped with the algorithm developed by using DQN 

seems to be not able to take detailed action. It made the own ship to navigate further away 

from the current route in order to evade a target ship. Hence, it can be known that DDPG is 

more suitable for collision avoidance problem than DQN. 

 

 

Fig. 5.16 Comparison of trajectories for Case 1 
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Fig. 5.17 Comparison of trajectories for Case 2 

 

Fig. 5.18 Comparison of trajectories for Case 3 

 

Finally, so as to further verify the proposed automatic collision avoidance algorithm in this 

chapter, several cases in which the target ship approaches the own ship from various 

positions with various heading angles were simulated. The simulations were also carried out 

through the trained model of DQN and DDPG, and the trajectories are shown in Fig. 5.19 and 

Fig. 5.20.  



135 
 

 

 

 

 

Fig. 5.19 The simulation results using DQN for random states of the target ship 
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Fig. 5.20 The simulation results using DDPG for random states of the target ship 
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Through the figures indicating trajectories in Fig. 5.19 and Fig. 5.20, it is proven that the ship 

equiped with the automatic collision avoidacne algorithm is able to cope with a variety of 

encounter situations, and the algorithm based on DDPG can gives smooth evasive action to 

avoid collision. 

5.5 Conclusions 

 

In this chapter, in order to achieve a fully autonomous ship, an automatic collision avoidance 

algorithm along with the path following algorithm is designed utilizing reinforcement 

learning. Conclusions in this chapter can be drawn as follows: 

 The automatic collision avoidance algorithm consits of three functions: collector and 

analyser, decision maker, and rudder controller was designed. In the collector and 

analyser, a controlled ship acquires data of approaching ships around her from AIS and 

radar. Using the obtained information, degree of collision risk is calculated in the 

controller and analyser. 

 Through the decision maker designed by using two kinds of algorithm for deep 

reinforcement learning which are DQN and DDPG, the controlled ship can decide her 

collision avoidance action to be taken in order to evade crash with other ships or obstacles. 

The action space for collision avoidance problem is defined by course angles which 

changes within the range from -30˚ to 30˚. While DQN has a discrete action space, DDPG 

can have a continuous action space. The rudder controller introduced in Chapter 3 was 

applied to this algorithm. 

 A collision avoidance problem was learned by DQN and DDPG. It was shown that 

training of DDPG finished earlier than that of DQN. Numerical simulations were carried 

out with the models trained by DQN and DDPG. The both methods could make the ship 

to safely avoid the approaching ships. However, the ship equipped with algorithm using 

DDPG can be operated closer to the original track comparing with the results of DQN. 

Therefore, it was confirmed that DDPG is better suited to solve the collision avoidance 

problem. 

The suggested algorithm was performed in only head-on situation. Thus, verification is 

required in a variety encounter situations such as crossing and overtaking. In addition, 
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numerical simulations should be carried out in various environmental conditions including 

effects of wind, current and wave.  
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Chapter 6. Conclusions 
 

In this thesis, the automatic path following algorithm and the automatic collision avoidance 

algorithm were developed in order to contribute to an accomplishment of the autonomous 

ship as an intelligent ship, and the algorithm has been verified through numerical simulations. 

In Chapter 1, the background and purpose of this paper were introduced. 

In Chapter 2, the mathematical model of ship motion was introduced. The main conclusions 

of this chapter are drawn as follows: 

 Two kinds of coordinate systems are used to demonstrate the ship motion. The 

relationship between the earth-fixed coordinate system and the body-fixed coordinate 

system was introduced from the equations of manoeuvring motion. 

 

 KVLCC2 was adopted as a subject ship and mathematical model based on the MMG 

model was selected in order to predict ship dynamic motion in numerical simulations. The 

forces and moment acting on a hull, the forces generated by a propeller and the forces and 

moments due to a rudder as parts of the MMG model were described respectively. 

 

 Since the effects of wind and current were applied to numerical simulations, the relevant 

mathematical models were explained. 

In Chapter 3, automatic path following algorithm applying fuzzy inference was proposed. 

Conclusions drawn from this work can be summarized as follows: 

 The path following algorithm consists of two components, waypoints guidance system 

and rudder control system, were developed. In the waypoints guidance system, a desired 

track which a ship should follow was built by feeding waypoints positon data. Optimal 

timing to use rudder was derived from the waypoint switching system according to a 

course change angle owned by a target waypoint. 

 Two kinds of path following algorithm were developed. The algorithm is distinguished 

depending on the performance of rudder control system which provides suitable rudder 

angle to change ship’s course. They were named as the basic path following algorim and 

the improved path following algorithm respectively. 
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 The basic path following algorithm has rudder control system taking account of three 

parmeters: heading error, a cross track error, and a yaw rate. On the other hand, rudder 

control system implemented in the improved path following algorithm employed four 

parmeters by adding ship speed to the existing three parameters. 

 Numerical simulations were carried out assuming external disturbance such as wind and 

current in virtual siuation to verify the effectiveness of the developed algorithm. The 

simulation results showed that a ship equipped with the proposed systems could arrive at 

her destination with little overshoots of a heading error and a cross track error. 

In Chapter 4, the proposed basic and improved path following algorithm composed of both 

waypoints switching system and rudder control system were verified through numerical 

simulations in realistic operation environment. The main conclusions of this chapter can be 

summarized as follows: 

 Realistic external disturbances such as wind and current were reproduced using velocity 

vectors in real time based on actual measured data obtained from the official organization. 

In addition, the pre-planned track was designed with the position data of waypoints 

actually used by ship’s operators. 

 

 Numerical simulations were carried out to verify the effectiveness of the proposed 

algorithm, the basic path following algorithm and the improved path following algorithm, 

under realistic environmental conditions. 

 

 In the simulations, information of wind and current obtained from real sea was applied 

depending on ship’s location and time. As a result, the ship equipped with the proposed 

algorithms can travel on desired track using realistic rudder angle. However, it has been 

found that including the speed effect in path following algorithm makes the rudder action 

taken to keep track more stable. 

 

In Chapter 5, in order to achieve a fully autonomous ship, an automatic collision avoidance 

algorithm along with the track keeping algorithm is designed utilizing reinforcement learning. 

Conclusions in this chapter can be drawn as follows: 

 The automatic collision avoidance algorithm consisting of three functions: collector and 

analyser, decision maker, and rudder controller was designed. In the collector and 
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analyser, a controlled ship acquires data of approaching ships around her from AIS and 

radar. Using the obtained information, degree of collision risk is calculated in the 

controller and analyser. 

 Through the decision maker designed by using two kinds of algorithm for deep 

reinforcement learning which are DQN and DDPG, the controlled ship can decide her 

collision avoidance action to be taken in order to evade crash with other ships or obstacles. 

The action space for collision avoidance problem is defined by course angles which 

changes within the range from -30˚ to 30˚. While DQN has a discrete action space, DDPG 

can have a continuous action space. The rudder controller introduced in Chapter 3 was 

applied to this algorithm. 

 A collision avoidance problem was learned by DQN and DDPG. It was shown that 

training of DDPG finished earlier than that of DQN. Numerical simulations were carried 

out with the models trained by DQN and DDPG. The both methods could make the ship 

to safely avoid the approaching ships. However, the ship equipped with algorithm using 

DDPG can be operated closer to the original track comparing with the results of DQN. 

Therefore, it was confirmed that DDPG is better suited to solve the collision avoidance 

problem. 

Although algorithm related on automatic path following and collision avoidance has been 

proposed in this research, some topics that need to be covered by future works still remain in 

order to achieve a fully autonomous ship. As for the path following algorithm, numerical 

simulations were conducted in realistic environmental situation, but it is necessary to verify 

in various environmental conditions considering shallow water effect, the influence of wave, 

and so on. The collision avoidance algorithm was performed in only head-on situation. Thus, 

verification is required in a variety encounter situations such as crossing and overtaking. The 

performance of two algorithm has been investigated through numerical simulation. However, 

experiment using model ship should be carried out for applying the developed algorithm to a 

real ship. In addition, if algorithm that is automatically able to determine waypoints is 

developed and then it combines with the algorithm devised in this study, it is expected that 

one step closer to completing a fully intelligent ship. 
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