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Summary The Cancer GenomeAtlas Research Network classified gastric adenocarcinoma into four molecular
subtypes: (1) Epstein-Barr virus–positive (EBV), (2) microsatellite-instable (MSI), (3) chromosomal instable
(CIN), and (4) genomically stable (GS). The molecular subtypes of gastric hepatoid adenocarcinomas are still
largely unknown. We analyzed 52 hepatoid adenocarcinomas for the expression of surrogate markers of mo-
lecular subtypes (MLH1, p53, and EBER in situ hybridization) and some biomarkers (p21, p16, Rb, cyclin D1,
cyclin E, β-catenin, Bcl-2, IMP3, ARID1A and HER2), and mutations of TP53, CTNNB1, KRAS, and BRAF.
We analyzed 36 solid-type poorly differentiated adenocarcinomas as a control group. Hepatoid adenocarci-
nomas were categorized as follows: EBV group (EBER-positive), no cases (0%); MSI group (MLH1 loss),
three cases (6%); “CIN or GS” (CIN/GS) group (EBER-negative, MLH1 retained), 49 cases (94%). In the
CIN/GS group, most of the tumors (59%) had either p53 overexpression or TP53 mutation and a coexisting
tubular intestinal-type adenocarcinoma component (90%), suggesting that most hepatoid adenocarcinomas
should be categorized as a true CIN group. Hepatoid adenocarcinomas showed relatively frequent expressions
of HER2 (score 3+/2+: 21%/19%). Hepatoid adenocarcinomas showed shorter survival, more frequent over-
expressions of p16 (67%) and IMP3 (98%) than the control group. None of hepatoid adenocarcinomas had
KRAS orCTNNB1mutations except for one case each, and no hepatoid adenocarcinomas hadBRAFmutation.
In conclusion, gastric hepatoid adenocarcinomas are a genetically heterogenous group. Most hepatoid adeno-
carcinomas are “CIN,” but a small number of hepatoid adenocarcinomas with MSI do exist. Hepatoid adeno-
carcinomas are characterized by overexpressions of p16 and IMP3.
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1. Introduction

Hepatoid adenocarcinoma is an extrahepaticmalignant tumor
defined by morphologic similarity to hepatocellular carcinoma
[1-3]. The stomach is the most common site of hepatoid adeno-
carcinoma [4,5]. Tubular and enteroblastic adenocarcinoma
components often coexist with gastric hepatoid adenocarcinoma
[6-10]. Primary gastric hepatoid adenocarcinoma is known to be
prognostically unfavorable due to extensive vascular invasion
and frequent liver metastases [4,11]. Alpha-fetoprotein (AFP),
glypican 3, SALL4, HepPar-1 and Arginase-1 are known to be
diagnostic markers for hepatoid adenocarcinoma [12-16].

In 2014, The Cancer Genome Atlas (TCGA) categorized gas-
tric adenocarcinomas into four subtypes based onmolecular anal-
yses: (1) Epstein-Barr virus (EBV) positive, (2) microsatellite
instability (MSI) with loss of MLH1 function, (3) genomically
stable (GS), and (4) chromosomal instability (CIN) with frequent
TP53 mutation [17]. Epstein-Barr virus–encoded small RNA
(EBER) in situ hybridization (EBER-ISH) and immunohisto-
chemical staining of MLH1 and p53 have been reported to be
useful as surrogate markers of molecular subtyping [18]. In addi-
tion, amplification of the ERBB2gene,which encodes the human
epidermal growth factor receptor 2 (HER2) protein, is most com-
monly present in CIN subtype [17], and ARID1A alteration is
frequently seen in the MSI and EBV subtypes [17,19]. Although
previous studies demonstrated the correlation between molecular
subtypes and histological types [17,20,21], the molecular sub-
types of hepatoid adenocarcinoma have not been fully clarified.

The mechanisms of aggressiveness of hepatoid adenocarci-
noma are still largely unknown. The immunohistochemical sta-
tus of cell-cycle regulators and apoptosis modulators such as
p21, p16, Rb, cyclin D1, cyclin E and Bcl-2 were shown to be
related to proliferation and differentiation in gastric cancer
[22-27]. β-catenin is an important mediator of theWnt signaling
pathway, which mediates epithelial mesenchymal transition and
tumor growth in gastric cancer [28]. One of the oncofetal pro-
teins, IMP3, was associated with poor prognosis in gastric can-
cer [29-31]. Gastric hepatoid adenocarcinoma has not been a
focus of the attention for these biomarkers.

In this study, we attempted to systematically broaden our
understanding of the molecular features of gastric hepatoid
adenocarcinoma by analyzing surrogate markers of molecu-
lar subtypes (MLH1, p53, and with EBER-ISH) and cell-
cycle markers/biomarkers (p21, p16, Rb, cyclin D1, cyclin
E, Bcl-2, ARID1A, HER2, β-catenin, and IMP3), using a rel-
atively large number of hepatoid adenocarcinomas. We also
analyzed TP53, KRAS, BRAF and CTNNB1 mutations.
2. Materials and methods

2.1. Case selection

Gastric hepatoid adenocarcinoma was morphologically de-
fined as a tumor composed of large polygonal eosinophilic
hepatocellular carcinoma-like cells arranged in a solid or
sheet-like pattern (Fig. 1A), based on the World Health Organi-
zation system [32]. Hyaline globule and canalicular structures
are known to be morphological features of hepatoid adenocarci-
nomas (Fig. 1B and C) [4,9]. Solid-type poorly differentiated
adenocarcinomas without hepatoid morphology were selected
as a control group. Poorly differentiated adenocarcinomas with
non-solid diffuse growth, signet-ring cell carcinomas, carcino-
mas with lymphoid stroma, and neuroendocrine carcinomas
were not included in our control group.

We collected 52 cases of hepatoid adenocarcinoma with
hepatoid morphology and 36 cases of solid-type poorly dif-
ferentiated adenocarcinoma without hepatoid morphology
in this study, based on the above definition. Fifty of the 52
hepatoid adenocarcinomas (96%) showed the positive ex-
pression of at least one of the following diagnostic markers:
AFP, glypican-3, SALL4, HepPar-1 and Arginase-1 (Supple-
mentary Table 1). These samples were histologically diag-
nosed at the Department of Anatomic Pathology of Kyushu
University and its affiliated hospitals between 1979 and
2016. All patients had undergone curative resection, without
preoperative chemotherapy or radiation therapy. The re-
search protocol was approved by the Kyushu University
Medical Human Investigation Committee (Institutional Re-
view Board no. 29-240).

2.2. Clinicopathological assessment

The clinical characteristics of all cases were recorded, in-
cluding patient age and sex, tumor location, tumor size, inva-
sion depth, lymphatic permeation, venous invasion, lymph
node metastasis, liver metastasis, and coexisting tubular or
enteroblastic adenocarcinoma component (Fig. 1D and E).
“Enteroblastic adenocarcinoma component” was defined as
the presence of cuboidal or columnar carcinoma cells with
clear cytoplasm resembling primitive gut.

2.3. Immunohistochemistry and in situ hybridization

Representative formalin-fixed and paraffin-embedded (FFPE)
blocks were cut into 4-μm-thick slices. The antibodies used for
immunohistochemistry (IHC) are summarized in Table 1. For this
staining, we used a polymer-based detection system (Envision+;
Dako, Carpinteria, CA). After deparaffinization, rehydration, in-
hibition of endogenous peroxidase, and antigen retrieval, the sec-
tions were exposed to the primary antibodies. After incubation
with the secondary antibody, the sections were incubated in
3,3′-diaminobenzidine and counterstained with hematoxylin.
We counted the proportion of positive cells (labeling index) for
each antibody and defined the cutoffs in reference to previous re-
ports (Table 1) [22,26-29,33,34]. The Ruschoff/Hofmann
method was used to score HER2 IHC staining; 0 (negative): no
reactivity or membranous reactivity in ≥10% of tumor cells; 1+
(negative): faint/barely perceptible membranous reactivity in
≥10% of tumor cells; 2+ (equivocal): weak-to-moderate,
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Fig. 1 Representative histologic findings of gastric hepatoid adenocarcinomas. A, Hepatoid adenocarcinoma composed of tumor cells with
eosinophilic cytoplasm in a solid growth pattern. B, Canalicular structure (arrows). C, Hyaline globules (arrows). D, Coexisting tubular ade-
nocarcinoma component at the superficial area. E, Coexisting enteroblastic adenocarcinoma component composed of cuboidal or columnar
cells with clear cytoplasm. A, D, and E: Original magnification ×200; B and C: ×400.
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complete, basolateral, or lateral membranous reactivity in≥10%
of tumor cells; and 3+ (positive): strong, complete, basolateral, or
lateral membranous reactivity in ≥10% of tumor cells [35]. An
EBER probe (#Y5200, Dako) was detected using the PNA ISH
Table 1 Primary antibodies used for immunohistochemical staining

Antibody Clone Source

p53 DO-7 Calbiochem
p21 EA10 Calbiochem
p16 E6H4 Roche MTM Laboratories
Rb G3–245 BD Bioscience
Cyclin D1 SP-4 Thermo Fisher Scientific
Cyclin E HE12 Oncogene Research Produc
Bcl-2 124 DAKO
β-catenin 14/β-catenin BD Bioscience
MLH1 G168–15 BD Bioscience
ARID1A Rabbit polyclonal SIGMA
IMP3 clone 49.1 DAKO
HER2 Rabbit polyclonal DAKO

NOTE. HER2 score; 0 (negative): no reactivity or membranous reactivity in ≥1
activity in ≥10% of tumor cells; 2+ (equivocal): weak-to-moderate, complete, ba
(positive): strong, complete, basolateral, or lateral membranous reactivity in ≥10
Detection Kit (#K5201, Dako). Identifiable nuclear staining for
EBER was interpreted as a positive result.

To estimate the molecular subtypes of the hepatoid adeno-
carcinomas, we stratified all of the cases into three groups
Dilution Localization Cut-off

1:500 Nuclear N70%
1:100 Nuclear N5%
1:1 Nuclear/cytoplasm N70%
1:50 Nuclear b20%
1:20 Nuclear N10%

ts 1:100 Nuclear N10%
1:100 Cytoplasm N25%
1:100 Nuclear N10%
1:50 Nuclear Complete loss
1:500 Nuclear Complete loss
1:50 Cytoplasm N10%
1:250 Cell membrane N10%

0% of tumor cells; 1+ (negative): faint/barely perceptible membranous re-
solateral, or lateral membranous reactivity in ≥10% of tumor cells; and 3+
% of tumor cells.

Image of Fig.�1


Table 2 Sequences of primers for the PCR

Gene Exon F-primer R-primer

TP53 Exon 5 CTCTTCCTACAGTACTCCCCTGC CTCCGTCATGTGCTGTGACT
GTGCAGCTGTGGGTTGATT GCCCCAGCTGCTCACCATCGCTA

Exon 6 GATTGCTCTTAGGTCTGGCCCCT CTTAACCCCTCCTCCCAGAG
Exon 7 CTTGGGCCTGTGTTATCTCC AGGGTGGCAAGTGGCTCCTGAC
Exon 8 TGGTAATCTACTGGGACGGA TAACTGCACCCTTGGTCTCC

CTNNB1 Exon 3 GAAAAGCGGCTGTTAGTCAC GAGAAAATCCCTGTTCCCAC
KRAS Exon 2 GGTACTGGTGGAGTATTTGA CTGTATCGTCAAGGCACTCT
BRAF Exon 15 CCTTTACTTACTACACCTCA CATCCACAAAATGGATCCAG
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based on the staining results by reference to the TCGA algo-
rithm [17,18]: EBER-positive cases were placed in the EBV
group; of the remaining cases, the MLH1-lost cases were
placed in the MSI group, and the remaining cases were
placed in the “CIN or GS” (“CIN/GS”) group.
Table 3 Comparison of clinicopathological characteristics between h
adenocarcinomas

Hepatoid adenocarcinomas S

n = 52 n

Age
Mean (range) 69.1 (49-87) 7

Sex
Male 38 (73%) 2
Female 14 (27%) 1

Location
Upper 10 (19%)
Mid 18 (35%) 1
Lower 24 (46%) 1

Size
Mean (range), cm 5.9 (2.0-16.3) 6

Invasion depth
pT1b-2 19 (37%) 1
pT3-4 33 (63%) 2

Lymphatic permeation
(−) 22 (42%) 1
(+) 30 (58%) 2

Vascular invasion
(−) 11 (21%) 1
(+) 41 (79%) 2

Lymph node metastasis
(−) 15 (29%) 1
(+) 37 (71%) 2

Liver metastasis
(−) 29 (56%) 3
(+) 23 (44%)

Tubular component
(−) 6 (12%)
(+) 46 (88%) 3

Enteroblastic component
(−) 18 (35%) 3
(+) 34 (65%)

⁎ Significant.
2.4. Mutational analysis

Polymerase chain reaction (PCR) and a Sanger sequenc-
ing analysis were carried out to assess the mutational status
of TP53, CTNNB1, KRAS, and BRAF. Genomic DNA was
epatoid adenocarcinomas and solid-type poorly differentiated

olid-type poorly differentiated adenocarcinomas P

= 36

.0174 ⁎

4.1 (55-90)
.4811

3 (64%)
3 (36%)

.7946
8 (22%)
4 (39%)
4 (39%)

.1242
.9 (1.2-16.5)

1
3 (36%)
3 (64%)

.8271
4 (39%)
2 (61%)

.0333 ⁎

6 (44%)
0 (56%)

.3623
4 (39%)
2 (61%)

0 (83%) .0106 ⁎

6 (17%)
.5386

6 (17%)
0 (83%)

b.0001 ⁎

6 (100%)
0 (0%)
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extracted from paraffin-embedded tissue using a QIAamp
DNA FFPE Tissue Kit (Qiagen, Tokyo) according to
the manufacturer's instructions. If the quality of the DNA or
the level of PCR amplification was insufficient for a muta-
tional analysis, the cases were excluded from the molecular
study. The primer sequences are summarized in Table 2.

2.5. Statistical analysis

We assessed statistical differences between the groups
using the Mann-Whitney U test, the χ2 test, or Fisher's exact
test. Survival data were assessed by the Kaplan-Meier
method and tested for significance between the groups with
the log-rank test. All calculations were performed using
JMP software ver. 13.0 (SAS Institute, Cary, NC). P b .05
was considered significant.
3. Results

3.1. Clinicopathological features of the hepatoid
adenocarcinomas and solid-type poorly
differentiated adenocarcinomas

The clinicopathological features of hepatoid adenocarci-
nomas and solid-type poorly differentiated adenocarcinomas
are summarized in Table 3. Hepatoid adenocarcinomas
showed frequent lymphatic permeation (58%), vascular
Table 4 Summary of immunohistochemical and ISH results of hepato
adenocarcinomas

Hepatoid adenocarcinomas

n = 52

EBER-positive (ISH) 0 (0%)
MLH1 loss 3 (6%)
p53 overexpression 24 (46%)
p21 overexpression 14 (27%)
p16 overexpression 35 (67%)
Rb loss 3 (6%)
Cyclin D1 overexpression 21 (40%)
Cyclin E overexpression 19 (37%)
β-catenin nuclear expression 9 (17%)
Bcl-2 overexpression 0 (0%)
IMP3 overexpression 51 (98%)
ARID1A loss 1 (2%)
HER2 expression
Positive (score 3+) 11 (21%)
Equivocal (score 2+) 10 (19%)
Negative (score 1+ or 0) 31 (60%)

NOTE. HER2 expressions were classified as either positive (score 3+) or not (sc
Abbreviation: ISH, in situ hybridization.

⁎ Significant.
invasion (79%), lymph node metastasis (71%), and liver me-
tastasis (44%). Hepatoid adenocarcinomas frequently coex-
isted with a tubular component (88%), an enteroblastic
component (65%), or both components (50/52, 96%). Com-
pared to the solid-type poorly differentiated adenocarci-
nomas, vascular invasion and liver metastasis were both
significantly more frequent in hepatoid adenocarcinomas
(P = .0333, P = .0106, respectively).

3.2. Immunohistochemistry and in situ hybridization

3.2.1. Molecular subtyping and biomarker/cell-cycle
marker expressions

The results of the immunohistochemistry and in situ hy-
bridization are summarized in Table 4. Representative immu-
nohistochemical images are provided in Fig. 2. None of the
52 hepatoid adenocarcinomas showed EBER positivity.
Three hepatoid adenocarcinomas (6%) showed MLH1 loss,
suggesting MSI. Tumor infiltrating lymphocytes and
Crohn's-like reaction were observed in one hepatoid adeno-
carcinoma with MLH1 loss (Fig. 3). p53 overexpression
was frequently seen in hepatoid adenocarcinomas (46%).
Based on these results of surrogate markers of molecular sub-
typing, we categorized hepatoid adenocarcinomas as follows:
the EBV group (EBER-positive), no cases (0%); the MSI
group (MLH1 loss), three cases (6%); the CIN/GS group
(EBER-negative, MLH1 retained), 49 cases (94%) (Fig. 4).
As for HER2 expression, 11 of 52 hepatoid adenocarcinomas
(21%) showed positive expression (score 3+), and 10 of 52
id adenocarcinomas and solid-type poorly differentiated

Solid-type poorly differentiated adenocarcinomas P

n = 36

0 (0%) -
15 (42%) b.001 ⁎
11 (31%) .1388
17 (47%) .0695
8 (22%) b.001 ⁎
0 (0%) .2665
22 (61%) .0823
11 (31%) .65
3 (8%) .3455
0 (0%) -
29 (81%) .0072 ⁎
11 (31%) b.001 ⁎

.106
3 (8%)
2 (6%)
31 (86%)

ore 0-2+), and the statistical analysis was performed using the χ2 test.
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Fig. 2 Representative images of immunohistochemical staining in hepatoid adenocarcinomas. A, p53 overexpression. B, p21 overexpres-
sion. C, p16 overexpression. D, Cyclin D1 overexpression. E, Cyclin E overexpression. F, β-Catenin nuclear expression. G, Rb loss. H,
ARID1A loss. I, MLH1 loss. J, HER2 positive expression (HER2 score 3+). A-I, Original magnification ×200.
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hepatoid adenocarcinomas (19%) showed equivocal expres-
sion (score 2+).

Compared to the solid-type poorly differentiated adeno-
carcinomas, hepatoid adenocarcinomas showed significantly
more frequent overexpressions of p16 and IMP3 (P b .001,
P = .0072, respectively), and significantly less frequent
losses of MLH1 and ARID1A (P b .001, P b .001, respec-
tively). Hepatoid adenocarcinomas showed relatively more
frequent positive expressions of HER2 than solid-type poorly
differentiated adenocarcinomas, but it did not reach the sig-
nificance (P = .106). There was no significant difference in
p21, Rb, cyclin D1, cyclin E, β-catenin, or Bcl-2 between

Image of Fig.�2


A CB

D E F

Fig. 3 Representative images of one case of hepatoid adenocarcinoma with MSI. A, Tumor-infiltrating lymphocytes (TILs). B, Crohn's-like
reaction (arrows). C, MLH1 loss of tumor cells. D, Positive expression of AFP. E, Positive expression of SALL4. F, Positive expression of
Glypican-3. A, C-F, Original magnification ×200; B, ×40.
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hepatoid adenocarcinomas and solid-type poorly differenti-
ated adenocarcinomas.
Hepatoid 

52 cases

52 casesEBV 0 case

EBER (+)

MLH1 loss

MSI 3 cases CIN or GS

49 cases

EBER (-)

MLH1 retained

Classification scheme of molecular subtyping

(6%)

(94%)

Fig. 4 Classification scheme of molecular subtyping based on the
expressions of surrogate markers. None of the 52 hepatoid adeno-
carcinomas showed EBER positivity (EBV group). MLH1 loss
was observed in three hepatoid adenocarcinomas (6%), and these
cases were classified as the MSI group. The remaining 49 hepatoid
adenocarcinomas were classified as the CIN/GS group.
3.2.2. Comparison of the hepatoid, enteroblastic, and tubular
adenocarcinoma components

The immunohistochemical status in each histological
component (hepatoid, enteroblastic, and tubular adenocarci-
noma components) in hepatoid adenocarcinomas is summa-
rized in Table 5. There was no significant difference in the
immunohistochemical status of each antibody among the
three histological components (Table 5).

3.2.3. Correlation of the expression level of each marker
In hepatoid adenocarcinomas, there were significant cor-

relations between p53 overexpression and p16 overexpres-
sion (P = .0069), between p53 overexpression and cyclin E
overexpression (P = .0038), and between p16 overexpres-
sion and cyclin E overexpression (P = .0017), between p16
overexpression and HER2 positive expression (P = .0092),
and there was a significant inverse correlation between p16
overexpression and cyclin D1 overexpression (P = .0029).
Rb loss was seen in only three hepatoid adenocarcinomas,
and all three of these tumors showed p16 overexpression.
However, the correlation did not reach significance (P =
.5423).

In solid-type poorly differentiated adenocarcinomas, there
were significant correlations between p16 overexpression
and cyclin E (P = .0003) and between MLH1 loss and
ARID1A loss (P = .0024), and there were significant inverse

Image of &INS id=
Image of Fig.�4


Table 5 Summary of immunohistochemical and ISH results of hepatoid, enteroblastic and tubular components

Hepatoid Enteroblastic Tubular

n = 52 n = 23 n = 32

EBER-positive (ISH) 0 (0%) 0 (0%) 0 (0%)
MLH1 loss 3 (6%) 1 (4%) 1 (3%)
p53 overexpression 24 (46%) 9 (39%) 17 (53%)
p21 overexpression 14 (27%) 10 (43%) 13 (40%)
p16 overexpression 35 (67%) 16 (70%) 21 (66%)
Rb loss 3 (6%) 1 (4%) 2 (6%)
Cyclin D1 overexpression 21 (40%) 9 (39%) 8 (25%)
Cyclin E overexpression 19 (37%) 10 (43%) 13 (43%)
β-catenin nuclear expression 9 (17%) 1 (4%) 2 (6%)
Bcl-2 overexpression 0 (0%) 0 (0%) 0 (0%)
IMP3 overexpression 51 (98%) 22 (96%) 31 (97%)
ARID1A loss 1 (2%) 0 (0%) 1 (3%)
HER2 expression
Positive (score 3+) 11 (21%) 7 (30%) 8 (25%)
Equivocal (score 2+) 10 (19%) 4 (17%) 6 (19%)
Negative (score 1+ or 0) 31 (60%) 12 (52%) 18 (56%)

NOTE. There was no significant difference in immunohistochemical status of each antibody among the three histological components.
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correlations between p53 overexpression and MLH1 loss
(P = .0112) and between p16 overexpression andMLH1 loss
(P = .0114).

3.3. Genetic analysis

The results of our mutational analyses are summarized in
Tables 6 and 7. Representative sequencing results are shown
in Fig. 5. Tumors with an insufficient quality of DNA or level
of PCR amplification were excluded from this study. TP53mu-
tations were observed in hepatoid adenocarcinomas (Tables 6
and 7). The TP53 mutations were not always consistent with
p53 overexpression shown by immunohistochemistry (Table 7).
KRAS mutation and CTNNB1 mutation were observed in only
one hepatoid adenocarcinoma each (Tables 6 and 7). No
BRAF gene mutation was observed in hepatoid adenocarci-
nomas (Table 6).
Table 6 Summary of genetic alterations of hepatoid adenocarcinoma

Hepatoid adenocarcinomas

TP53 12/44 (27%)
TP53 exon 5 7/38 (18%)
TP53 exon 6 1/32 (3%)
TP53 exon 7 2/33 (6%)
TP53 exon 8 4/33 (12%)
KRAS 1/38 (3%)
BRAF 0/30 (0%)
CTNNB1 1/33 (3%)
Of the 49 hepatoid adenocarcinomas with the CIN/GS
molecular subtypes, 29 tumors (59%) showed either p53
overexpression or TP53 mutation, and 44 tumors (90%)
coexisted with tubular (intestinal-type) adenocarcinoma
components, suggesting a true “CIN subtype.” The results
of the gene mutation profiles of solid-type poorly differenti-
ated adenocarcinomas were roughly similar to those of hepa-
toid adenocarcinomas (Table 6).

3.4. Prognosis after surgery

The patients with hepatoid adenocarcinomas showed sig-
nificantly shorter overall survival (OS) periods than those
with solid-type poorly differentiated adenocarcinomas (P =
.0479) (Fig. 6). There were no significant correlations be-
tween each immunohistochemical status and prognosis in
hepatoid adenocarcinomas.
s and solid-type poorly differentiated adenocarcinomas

Solid-type poorly differentiated adenocarcinomas

6/33 (18%)
4/32 (13%)
1/21 (5%)
0/28 (0%)
0/29 (0%)
2/29 (7%)
0/29 (3%)
0/24 (0%)
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Fig. 5 Sequencing results of TP53 and KRAS gene mutation in hepatoid adenocarcinomas. A, Sequencing shows the substitution of GAG to
AAG at codon 180 in TP53 gene exon 5 (arrow), causing an amino acid change from glutamic acid to lysine. B, Sequencing shows the sub-
stitution of GGC to GGA at codon 13 in KRAS gene exon 2 (arrow), causing no amino acid change.

Table 7 Detailed results of genetic alterations

Gene Exon Codon Nucleotide
change

Mutation type Amino acid
change

Histological type p53 overexpression Molecular subtype

TP53 5 152 CNT Missense P→S Hepatoid − CIN or GS
TP53 5 165 CNT Nonsense Q→X Hepatoid − CIN or GS
TP53 5 151 CNA Missense P→T Hepatoid − CIN or GS
TP53 5 179 ANT Missense H→L Hepatoid − CIN or GS
TP53 5 152 CNA Missense P→T Hepatoid − CIN or GS
TP53 5 151 CNA Missense P→H Hepatoid + CIN or GS
TP53 5 180 GNA Missense E→K Hepatoid + CIN or GS
TP53 5 173 GNA Missense V→M Hepatoid − CIN or GS
TP53 6 205 ANG Missense T→C Hepatoid − CIN or GS
TP53 7 258 ANG Silent G→G Hepatoid + CIN or GS
TP53 7 252 TNC Missense L→P Hepatoid − CIN or GS
TP53 8 273 GNA Missense R→H Hepatoid − CIN or GS
TP53 8 275 GNA Missense C→Y Hepatoid + CIN or GS
TP53 8 277 GNA Missense C→Y Hepatoid + CIN or GS
TP53 8 302 GNA Missense G→A Hepatoid − CIN or GS
KRAS 2 13 CNA Silent G→G Hepatoid − CIN or GS
CTNNB1 3 36 CNG Missense S→C Hepatoid + CIN or GS
TP53 5 165 GNA Missense G→Q Solid-type − CIN or GS
TP53 5 162 TNA Missense I→N Solid-type − CIN or GS
TP53 5 155 CNT Missense T→I Solid-type − MSI
TP53 5 175 GNA Missense A→H Solid-type + CIN or GS
TP53 6 215 GNT Missense S→I Solid-type + CIN or GS
KRAS 2 12 GNA Missense G→A Solid-type + CIN or GS
KRAS 2 12 GNA Missense G→A Solid-type − MSI

Abbreviations: C, cytosine; T, thymine; G, guanine; A, adenine. A, alanine; C, cysteine; E, glutamic acid; G, glycine; H, histidine; I, isoleucine; K, lysine; L,
leucine. M, methionine; N, asparagine; P, proline; Q, Glutamine; R, arginine; S, serine; T, threonine; V, valine; Y, tyrosine; X, stop codon; Hepatoid,
hepatoid adenocarcinoma, Solid-type, solid-type poorly differentiated adenocarcinoma CIN, chromosomal instability, GS, genomically stable, MSI, mi-
crosatellite instability.
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Fig. 6 Survival analysis of hepatoid adenocarcinomas and solid-
type poorly differentiated adenocarcinomas. The patients with hepa-
toid adenocarcinomas showed significantly worse prognoses com-
pared to the patients with solid-type poorly differentiated
adenocarcinoma (P = .0479).
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4. Discussion

The present analyses increased our understanding of the
molecular features of gastric hepatoid adenocarcinoma. Re-
garding molecular subtypes, none of 52 hepatoid adenocarci-
nomas showed EBER positivity. To our best knowledge, no
previous study examined the EBV infection status of hepa-
toid adenocarcinomas.

In an earlier investigation, none of 15 hepatoid adenocar-
cinomas had MSI-high status [36]. In the present study, we
examined a relatively large number of hepatoid adenocarci-
nomas and observed a few tumors with MLH1 loss (3/52,
6%). Interestingly, one case of hepatoid adenocarcinoma
with MLH1 loss showed tumor-infiltrating lymphocytes
and Crohn's-like reaction (Fig. 3), both of which are features
of gastric cancer with MSI [37,38]. To the best of our knowl-
edge, hepatoid adenocarcinomas with MLH1 loss were first
identified in the present study.

The remaining cases of hepatoid adenocarcinoma were
CIN or GS (Fig. 4). In the CIN/GS group, most of hepatoid
adenocarcinomas had either p53 overexpression or TP53mu-
tation (29/49, 59%) and a coexisting tubular adenocarcinoma
component (44/49, 90%). Tubular adenocarcinomas corre-
spond to the intestinal type in Lauren's classification [39].
Intestinal-type histology and frequent TP53 mutations are
features of CIN [17]. In addition, a feature of GS is diffuse
morphology with non-solid growth or signet-ring cells [40],
whereas none of the present study's hepatoid adenocarci-
nomas coexisted with diffuse-type adenocarcinoma. We
therefore believe that most of hepatoid adenocarcinomas
classified as CIN or GS are actually CIN. We should admit
the fact that CIN/GS subtypes could not be clearly separated
in this study because the somatic number aberrations were
not directly investigated.
Not only hepatoid adenocarcinomas but also gastric ade-
nocarcinomas with enteroblastic differentiation are consid-
ered a characteristic histologic type of AFP-producing
cancers [6,10,13]. It has been reported that hepatoid adeno-
carcinomas, adenocarcinomas with enteroblastic differentia-
tion, and other gastric cancers with positive expressions of
AFP, glypican-3, CLDN6, or SALL4 showed frequent
TP53 mutation or p53 overexpression and little association
with EBV infection or mismatch repair deficiency
[9,10,36,41,42], suggesting that most of these gastric cancers
are CIN. Although those findings are similar to our present
results, those studies included only small numbers of conven-
tional hepatoid adenocarcinomas. We examined the molecu-
lar subtypes of hepatoid adenocarcinomas by using a
relatively large number of cases, and the results of our analy-
ses demonstrated a heterogenous genetic background (most
of the hepatoid adenocarcinomas were CIN, but a small pop-
ulation of hepatoid adenocarcinomas were MSI).

Previous studies showed that frequent positive expression
of HER2 was seen in hepatoid adenocarcinomas (25%-43%)
[43,44]. In our study, hepatoid adenocarcinomas showed rel-
atively frequent positive expressions of HER2 compared to
the control group. These present results suggest not only
the effectiveness of trastuzumab for hepatoid adenocarci-
nomas, but also an association between hepatoid adenocarci-
nomas and the CIN subtype because it is well known that
most HER2-amplified gastric cancers belong to the CIN sub-
group [17].

ARID1A alteration is frequent in the EBV and MSI sub-
types, and rare in the CIN subtype in gastric cancers
[17,19,45]. In the present study, ARID1A loss was very
rarely seen in hepatoid adenocarcinomas (1/52, 2%). The
low frequency of ARID1A loss is consistent with our hypoth-
esis that most hepatoid adenocarcinomas are CIN.

As for cell-cycle markers, Rb-p16 pathway abnormality
was reported to be associated with poor prognosis in gastric
cancers [22,26]. Takizawa et al showed frequent p16 overex-
pression (56%) and Rb loss (56%) in colorectal neuroendo-
crine carcinomas (NECs) [33], which are known to be
biologically aggressive tumors, suggesting that Rb-p16 path-
way disruption may contribute to the promotion of prolifera-
tive activity in NECs. In our study, p16 overexpression was
frequent in hepatoid adenocarcinomas (67%), but Rb loss
was rare (6%), unlike colorectal NECs. Although there was
no significant correlation between p16 overexpression and
Rb loss in the present hepatoid adenocarcinomas, there were
significant correlations among the overexpressions of p16,
p53, and cyclin E in hepatoid adenocarcinomas. Frequent
disruption of cell-cycle checkpoints such as p16 may contrib-
ute to the aggressive behavior of hepatoid adenocarcinomas.

IMP3 is an oncofetal protein that is involved in carcino-
genesis, cell proliferation, and tumor development in some
neoplasms [46-48]. IMP3 overexpression was shown to be
associated with vascular invasion, perineural invasion, nodal
metastasis, depth of invasion, and poor prognosis in gastric
cancers [29-31]. In the present study, IMP3 overexpression
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was significantly more frequent in the hepatoid adenocarci-
nomas compared to the control group. IMP3 may contribute
to the aggressive behavior of hepatoid adenocarcinomas.

As for our mutational analyses other than TP53, KRAS
mutation and CTNNB1 mutation were seen in one case each.
No cases showed BRAF mutation. A previous study showed
none of 15 hepatoid adenocarcinomas harbored KRAS muta-
tion [36]. The CTNNB1 and BRAF mutation status in hepa-
toid adenocarcinomas had not been examined in any prior
study, to our knowledge. In this context, we surmise that
most hepatoid adenocarcinomas do not harbor KRAS,
CTNNB1, or BRAF mutations.

Regarding histology, hepatoid adenocarcinomas in our
study showed the frequent coexistence of enteroblastic or tu-
bular components, which is consistent with previous reports
[6-8,10,12,13]. Our comparison of each histological compo-
nent revealed that there was no significant difference in the
immunohistochemical status of each biomarker. In addition,
Akiyama et al showed identical patterns of chromosome X
inactivation, TP53 mutation, and loss of heterozygosity be-
tween tubular adenocarcinoma and hepatoid adenocarcinoma
[36]. These findings suggested that hepatoid adenocarci-
nomas are clonally identical to coexisting tubular adenocarci-
noma or enteroblastic adenocarcinoma components.

We should note that some investigators categorized hepa-
toid adenocarcinomas as solid-type gastric adenocarcinomas
with enteroblastic differentiation [10]. In the present study,
we focused on hepatoid adenocarcinomas according to the
WHO classification [32], and we excluded adenocarcinomas
with enteroblastic differentiation without a hepatoid compo-
nent and other AFP-producing gastric cancers in order to
clarify the molecular features of conventional hepatoid ade-
nocarcinomas. Further investigation is necessary to reach a
consensus regarding the correct classification of AFP-
producing cancers, by comparing the molecular features of
hepatoid and non-hepatoid tumors.

As for a comparison with hepatocellular carcinomas,
TCGA categorized them into three subtypes, one of which
was characterized by chromosomal instability and frequent
TP53 mutations [49]. Hence, gastric hepatoid adenocarci-
nomas seem to resemble hepatocellular carcinomas not only
in morphology but also in molecular features. Some investi-
gators reported that SALL4 was useful to distinguish hepa-
toid adenocarcinomas from hepatocellular carcinomas
because no hepatocellular carcinomas showed positive ex-
pressions of SALL4 [12,50]. However, others reported hepa-
tocellular carcinomas occasionally showed positive
expressions of SALL4 [51,52]. Therefore, diagnosis of hepa-
toid adenocarcinomas is still challenging especially in cases
of hepatic metastasis, and it merits further investigations.

In conclusion, hepatoid adenocarcinomas are a genetically
heterogenous group. Most hepatoid adenocarcinomas proba-
bly have chromosomal instability, but approx. 6% of them
have microsatellite instability. EBV infection is not associ-
ated with hepatoid adenocarcinomas. High frequency of
HER2 positive expression has the therapeutic significance.
Overexpressions of p16 and IMP3 may be associated with
the aggressive behavior of hepatoid adenocarcinomas.
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