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Abstract

For an incompressible fluid, an interface of discontinuity in tangential
velocity of a fluid in parallel motion is necessarily unstable, regardless to the
strength of velocity difference. This is called the Kelvin-Helmholtz instability
(KHI). The discontinuity in the tangential velocity signifies concentration of
the vorticity at the interface. The vorticity spontaneously evolves into a
distribution of enhancing the instability. Then Landau 1944 showed that
the effect of compressibility on the stability weakens KHI. The growth rate
of instability decreases with increasing of Mach number. If the ratio between
velocity difference and the sound velocity satisfies equal or larger than value√

8, the KHI is suppressed. There is an analogy between a compressible
gas flow and a shallow water flow of an in compressible fluid. Bezdenkov
and Pogutse (1983) studied the latter problem of stability of discontinuous
surface in tangential velocity of shallow water of uniform depth, and obtained
the same critical value

√
8 of the Froude number for suppressing the KHI.

In this thesis, we investigate the stability of a discontinuity interface
in tangential velocity of a shallow-water flow. We focus on the effect of
gravity waves on the KHI. We first consider the case of different depth in
the regions separated by the interface. The propagation speed of the gravity
wave depends on the depth. The difference in velocity of gravity waves on
the two sides of interface has great influence of the stability. The critical
value of the Froude number above which the KHI is completely suppressed
takes the minimum value

√
8 for the equal depth. The critical. The critical

value becomes larger as the depth ratio is larger or smaller from unity.
Second, we address the effect on the bottom friction. Without bottom

drag, the interface of tangential-velocity discontinuity in the shallow-water
flow is stable if the Froude number is greater than the critical value

√
8.

However, the bottom friction plays significant roles in the linear stability of
a two-dimensional shallow- water flow. Thereafter, we provide an example
of the dissipation induced instabilities that are ubiquitous in nature. The
instability persists in the regime of strong dissipation. We have obtained an
unusual result that the instability mode is excited even for a large amount
of dissipation; the discontinuity interface is linearly unstable over the entire
range of drag coefficient as opposed to other models. In a closely related
problem of a shear flow, only the effect of a small drag force was addressed.

For the preceding two problems, investigation is made of stability of an
interface, of infinitesimal thickness, of discontinuity of tangential velocity.
As the third problem, we address the stability of a shear layer, of finite
thickness, sandwiched by infinite layers of uniform flows with different ve-
locities. The simple shear, with the flow velocity a linear function of the
normal coordinate, is assumed in the middle layer, for which eigenfunctions
are written out in terms of the Whittaker functions and their derivatives.
The similar is true for the dispersion relation for wavy deformations of two
interfaces. We have confirmed that the appropriate limits of these functions
are reduced to various known cases. The linear-shear layer of finite thickness
totally alters the stability characteristics of the zero-thickness model. We
show that the shear layer of finite thickness is linearly unstable for the entire
range of the Froude number.
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ũ the perturbation of velocity in x direction 14
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1. Instability of an interface of tangential
- velocity discontinuity

1.1 Overview

Problems of stability of an interface between two fluids in a relative motion have
received a wide interest of researchers of various fields. This type of instability
is well known as the Kelvin-Helmholtz instability (KHI) which was first studied
by Hermann von Helmholtz in 1868 and by William Thomson (Lord Kelvin) in
1871. The physical mechanism of KHI has been described by Batchelor (1967) [3]
in term of the vorticity dynamics. The fluids are in a relative motion parallel to
their interface, and the interface is necessarily unstable, regardless of the strength
of different velocity. The discontinuity in the (tangential) velocity induces vorticity
at the interface as a result, the shape of interface changes with time t and wiggly
structure grows as shown in Figure 1.1

Figure 1.1: Creation of vorticity at the interface in the tangential velocity discon-
tinuity

The instability of incompressible fluids was described by Lamb (1945) [23] which
may be found earlier references. In the absence of gravity, surface tension and vis-
cosity, the interface is unstable to all perturbations. The growth rate of instability
is linear in wavenumber, with the coefficient proportional to velocity discontinuity.

The effect of compressibility on KHI was addressed by Landau (1944) [24] and
the result of the incompressible case is drastically modified. He showed that the
growth rate of instability decreases with the increasing of velocity difference. If
the ratio of velocity difference to the sound velocity is equal or larger than

√
8, the

interface of velocity discontinuity becomes stable. He also mentioned the analogy
between the theory of a compressible gas and a shallow water of an incompressible
fluid (see [25]).

1



1.1. Overview

Gill (1965) [16] studied the stability to a small disturbance of jets or wakes in
a compressible fluid. A setting of a two-phase flow consists of a jet of compressible
fluid shooting through another background of compressible fluid. Both cases of
slag geometry and cylindrical jets model, he showed that the flow is unstable for
entire values of Mach number.

Chang and Russell (1965) [10] have given the stability of the interface between
an incompressible fluid and a flowing compressible fluid, including the effect of
gravity, surface tension and viscosity. The effect of finite depth was supposed
on the liquid layer in the inviscid case. They showed that the supersonic flow is
always unstable while the subsonic flow is stable if the product between the gravity
acceleration and the surface tension is greater than a certain value. When the liquid
has a finite depth, these conclusions are unaltered. However, the supersonic flow
is turned to be stable for a high viscous liquid when the gravity directs toward
the denser liquid, and the subsonic flows still keep being stabilized under the same
condition of inviscid case. All the conclusions of stability given by Chang and
Russell are applied only to waves propagating along the flow direction.

Funada and Joseph (2001) [15] studied the stability of superposed uniform
streams in a rectangular ducts using viscous potential flow. The effects of shear
stress are neglected but the effects of normal stress are fully included. They showed
that the effect of surface tension is disregarded for long waves while it is important
for short waves. Amplification of short waves can be suppressed by increasing of
surface tension. The comparison of theory and experiment for air-water flow was
made to show that the effect of the normal stress is more important than the shear
stress.

Landau and Lifshitz (1944) [25] also mentioned the analogy of theory of com-
pressible gas flow (2D) with that of a shallow water of an incompressible fluid.
Bezdenkov and Pogutse (1983) [6] was the first study of discontinuous surface in
tangential velocity in an incompressible flow of shallow water since a shallow water
flow in 2 dimensions has an analogy with a compressible gas flow. The geometry
of stability problem is shown as Figure 1.2, the horizontal length scale is assumed
much greater than the vertical length scale. The analogy of stability theory of
compressible fluids with that of shallow water is limited to two dimensions because
the hydrostatic balance is employed in the vertical direction and that we have to
consider perturbations, with wavelength λ≫H, where H is the depth of the fluid
layer, depending only on the coordinates of the horizontal plane of the liquid layer
(not on the depth coordinate z). The critical value of the Froude number M = U/c
for the interface stability was shown to be the same as in the case of a compressible
fluids given by Landau [24]. The critical velocity is

√
8c, in which c =

√
gH, with

g being the gravity acceleration, is the propagation speed of the gravity wave.
The stress in the horizontal plane stems from the bottom drag. For flood-

wave equations of a shallow water, a uniform flow (or a uniform mean flow for
a turbulent stream) can be linearly unstable. Further non-linear evolution of the
disturbances typically leads to the formation of what are called roll waves; they
have a finite amplitude and travel downstream. A criterion of linear instability of
a one-dimensional flow was first obtained by Jeffreys (1925) [18] from the Saint
Venant shallow-water equations. Later on several modifications and generaliza-
tions of the criterion and its proof were presented. Berlamont and Vanderstappen

2



1.1. Overview

Figure 1.2: Shallow-water model for our stability problem. Perspective view of a
shallow water flow of depth H. The basic state is a unidirectional flow, in the x−
direction, having velocity discontinuity along the x− axis, with uniform velocity U
for y > 0 and no flow for y < 0. The surface of discontinuity in tangential velocity
is horizontally perturbed to y = ζ(x, t) with an infinitesimal amplitude.

[5] and Rosso et al. [33] analyzed the one-dimensional stability problem by means
of the higher order long-wave approximation, i.e., the Boussinesq shallow-water
equations. However, the internal lateral friction was disregarded in the analyses.
On the contrary, Needham and Merkin (1984) [29] took into account the internal
frictions but used the Saint Venant shallow-water equations. The problem of stabil-
ity in shallow water has been revisited by Chen and Jirka (1997) [11] in connection
with different geophysical applications.

A similar approach, based on the long-wave approximation, is often used in
the dynamics of thin films. In contrast to flows of shallow water, film flows are
typically laminar so that the fluid viscosity and the surface tension always play
important roles. Criteria of linear instability for a laminar viscous flow on inclined
plane, subjected to the gravity force, were derived from two- and three-dimensional
Navier-Stokes equation by Benjamin (1957) [4] and Yih (1963) [45]. A review of
more recent studies of three-dimensional instabilities in films has been presented
by Liu et al [20]. Yakubenko and Shugai (1999) [44] analyzed the wave scattering
problem and linear shear instability for the cases of small slope and the presence of
bottom friction, and weak spanwise variation of the basic flow. The wave propaga-
tion was studied by means of the linearized Saint Venant shallow-water equations,
endowed with the term for the bottom drag. However, the velocity profile of the
basic flow and the bottom topography remain related uniquely by the bottom

3



1.2. Instability of a discontinuity interface in an incompressible fluid

friction.
Miles (1957) [28] and Ribner (1957) [32] were the first who studied the over-

reflexion problem related to the transmission and reflexion of a sound waves at
a vortex sheet separating by two regions of constant horizontal velocity U1 and
U2. This problem was extended by Fejer (1963) [14] to include the hydromagnetic
effect. Further, McKenzie (1972) [26] included the effects due to buoyancy. Jones
(1968) [19] and Breeding (1971) [8] investigated numerically the over-reflection
problem in an internal gravity waves meeting a vortex sheet which is separated by
two uniform streams of an incompressible fluid. The same problem was considered
analytically by Eltayeb and McKenzie (1975) [13]. Moreover, they wrote out the
eigenfunctions in terms of the Whittaker function for the dispersion relation of
wave perturbation in the shear layer which is sandwiched between two infinite
layers in an incompressible fluid. Their results showed that wave amplification
occurs if the Richardson number is less than the critical value 0.1129 approximately.
Acheson (1976) [1] studied the over-reflection of hydromagnetic internal gravity
waves propagating in an incompressible fluid and magneto-acoustic waves in a
compressible fluid towards a vortex-current sheet. He also revealed quite clearly
the energetic aspects of the over-reflexion mechanism, the reflected wave extracts
energy from the mean motion and the sense in which the transmitted wave may be
viewed as a carrier of so-called “negative energy” by analogy with certain concepts
employed in plasma physics.

Vallis (2005) [38] considered the stability of the interface of non-zero thickness
shear layer in an incompressible fluid. He showed that, for the single shear layer
sandwiched by uniform flows, disturbances of long wavelength are amplified but
those of short wavelength are no longer so.

In this thesis, we focus on the effect of gravity wave on an interface between
two fluid regions which are moving parallel with different velocities in a shallow
water flow. We first consider the effect of different depth in the regions separated
by the interface as shown in chapter 2. In chapter 3, we address the effect on the
bottom friction. We provide an example of the dissipation induced instabilities
that are ubiquitous in nature. As the third problem, we investigate the stability
of a shear layer, of finite thickness, sandwiched by infinite layers of uniform flows
with different velocities

However, before studying the effect of gravity wave on the interface of tangential
velocity discontinuity, we would like to revisit the instability of interface in an
incompressible fluid, being well-known as the Kelvin-Helmholtz instability and the
stability in a compressible fluid as given by Landau [25]. The last section of this
chapter, we would like to introduce the shallow water equations which are derived
from the Navier-Stokes equations.

1.2 Instability of a discontinuity interface in an

incompressible fluid

An interface of the discontinuity in tangential velocity of an incompressible and
inviscid fluid is subject to the instability, being well known as Kelvin-Helmholtz in-

4



1.2. Instability of a discontinuity interface in an incompressible fluid

stability; the interface is necessarily unstable, regardless of the strength of velocity
difference.

Consider the surface of discontinuity, in the z− direction, in tangential velocity
and superpose a slight perturbation on it, in which pressure and fluid velocity are
periodic functions, proportional to ei(qx−ωt). Suppose that the fluid on the side
z ≥ 0 is moving with uniform velocity U , and that the fluid is at rest on the other
side. The small perturbations in velocity for z > 0 denote to be (u1,w1) and the
other side by (u2,w2). We assume that the density ρ is the same on the both sides
of interface. For infinite depth, the flow geometry is shown in Figure 1.3. The

Figure 1.3: Top view of flow geometry for the linear instability problem of
tangential-velocity discontinuity in the x− direction, with uniform velocity U for
z > 0 and no flow for z < 0.

momentum equations for a small perturbation are

∂u

∂t
+U0

∂u

∂x
= −gradp

ρ
, (1.1)

where, U0 = U for z ≥ 0, U0 = 0 for z < 0 and u = (u,w) is the velocity field.
The mass conservation equation for small perturbation is

∂ρ

∂t
+∇ ⋅ (ρu) = 0. (1.2)

We consider the linear perturbation of interface. Let ζ = ζ(x, t) be the displacement
in the z− direction of points on the surface of discontinuity due to the perturbation.
The derivative ∂ζ/∂t is the rate of change of the surface coordinate ζ for a given
value of x. Since the fluid velocity component normal to surface of discontinuity

5



1.2. Instability of a discontinuity interface in an incompressible fluid

is equal to the rate of displacement of the surface itself, we gain the kinematical
boundary condition

∂ζ

∂t
+U0

∂ζ

∂x
= w, (1.3)

or,
∂ζ

∂t
+U0

∂ζ

∂x
= ∂φ
∂z
, (1.4)

where, φ is the velocity potential. The momentum equations are integrated for
the pressure disturbance in the form

p = −ρ(∂φ
∂t

+U ∂φ
∂x

) (1.5)

We impose the pressure to be equal on the surface of discontinuity and obtain the
continuity condition

p1 = p2. (1.6)

Since the fluids are incompressible, the mass conservation equation (1.2) becomes

∂u

∂x
+ ∂w
∂z

= 0. (1.7)

We take divergence of both sides of momentum equations (1.1), the the left hand
side gives zero by virtue of equation (1.7), so that pressure p must satisfy Laplace’s
equation:

∆p = 0. (1.8)

We seek solution p in the form p = f(z)ei(qx−ωt). Substitution into equation (1.8)
yields equation for the function f(z) as

d2f

dz2
− q2f = 0. (1.9)

A general solution of this equation is given by f = constant × e±qz. Then in order
to satisfy the condition of finiteness at infinity, we must take

p1 = f1ei(qx−ωt)e−qz (z > 0),
p2 = f2ei(qx−ωt)eqz (z < 0).

(1.10)

The velocity potential is posed as

φ1 = A1e
i(qx−ωt)e−qz ,

φ2 = A2e
i(qx−ωt)eqz .

(1.11)

Substituting the expression of φ1 into the equation (1.5), we find

p1 = −[i(qU − ω)]φ1. (1.12)

On the other side of discontinuity surface, the quantities are given by a similar
formula, where now U = 0 and φ2 proportional to eqz. Thus, the condition of equal
pressure (1.6) at the tangential discontinuity reduces to

− [i(qU − ω)]A1 = [iω]A2, (1.13)
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1.3. Instability of a discontinuity interface in a compressible fluid

The displacement ζ can be obtained from equation (1.4), since the displacement ζ
is assumed to be small, the value of w, of course, must be taken on the surface of
discontinuity, i.e. at z = 0. This finally yields w1z=0 = ∂φ1/∂z = i(qU − ω)ζ. This
gives,

− qA1 = i(qU − ω)ζ0, (1.14)

in which, ζ0 is the amplitude of the displacement ζ. We obtain,

⎛
⎜
⎝

i(qU − ω) q 0
−iω 0 −q
0 i(qU − ω) iω

⎞
⎟
⎠

⎛
⎜
⎝

ζ0
A1

A2

⎞
⎟
⎠
= 0. (1.15)

For a nontrivial solution (ζ0,A1,A2) ≠ 0 to exist, the determinant of the matrix in
(1.15) must vanish, supplying the dispersion relation

(qU − ω)2 = −ω2. (1.16)

Therefore, the dispersion relation between frequency ω and wave number q is solved
for ω as

ω = qU
2

(1 ± i). (1.17)

We see that there is always one root ω having a positive imaginary part, for which
the amplitude of the perturbation grows with time and we conclude that there is
an instability. Thus, the tangential discontinuity interface is unstable, even with
respect to infinite small perturbations. We note also that the frequency given by
(1.17) has both real part and the imaginary part. It follows, in the case of Kelvin-
Helmholtz instability, that perturbations propagate and at the same time grow in
amplitude with the frequency

Re[ω] = qU
2
, (1.18)

and growth rate

Im[ω] = qU
2
. (1.19)

The growth rate is proportional to x− component wave number q in the direction
of flow so that the short waves grow the fastest. The growth rate of instability of
tangential discontinuity surface depends on the different velocity U linearly. The
instability is observed in the real world. For instance, the billow clouds, an array
of spirals pattern, is manifestation of KHI (see Drazin (2002) [12]). The clouds are
acting as tracers of fluid flow, indicating a shear in the atmosphere.

1.3 Instability of a discontinuity interface in a

compressible fluid

Landau (1944) [25] showed that the Kelvin-Helmholtz Instability is suppressed by
the effect of compressibility. In an incompressible fluid, the interface of tangential
velocity discontinuity is necessarily unstable, regardless of the strength of velocity
difference as shown in section 1.2. This section shows that the interface is stabilized
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1.3. Instability of a discontinuity interface in a compressible fluid

if the velocity difference U is large enough compared with the sound velocity c of
a compressible fluid flow as given by Landau.

In compressible fluids, the main complicating factor is that we have to deal with
sound waves for perturbed flow. The stability of the interface in a compressible
fluid is drastically different from the incompressible case. The dispersion relation of
wave frequency and other characteristics of a wave takes the form of a polynomial.
The interface is stabilized if all roots of dispersion equation are real.

The equations of motion are in the form of (1.1) and (1.2). The momentum
equations are integrated for the pressure disturbance in the form

p = −ρ(∂φ
∂t

+U0
∂φ

∂x
). (1.20)

The velocity potential is posed as

φ1 = ei(qx−ωt)[A1e
−K1z],

φ2 = ei(qx−ωt)[A2e
K2z],

(1.21)

where A1 and A2 are constants. The displacement ζ is ruled by equation (1.4).
Therefore, the kinematical boundary condition reduces to w1 = ∂φ1/∂z = i(qU−ω)ζ
on z ≈ 0. This gives,

−K1A1 = i(qU − ω)ζ0, (1.22)

in which, ζ0 is the amplitude of the displacement ζ.
Substituting the expression of φ1 into equation (1.5), we find the pressure per-

turbation as follow

p1 = −[i(qU − ω)]φ1 = −
(qU − ω)2

K1

ζ0. (1.23)

On the other side of discontinuity interface, the quantities are given by a similar
formula, but now U = 0 and φ2 proportional to eK2z. The condition of equal
pressure (1.6) on the interface reduces to

− (qU − ω)2
K1

= ω2

K2

, (1.24)

In addition, we take divergence of both sides of momentum equations (1.1), and
by using the equation of mass conservation (1.2), so that pressure p satisfies the
following equation larger than Laplace’s equation, i.e.,

( ∂
∂t

+U0
∂

∂x
)
2

p = c2 ( ∂
2

∂x2
+ ∂2

∂z2
)p, (1.25)

in which, c =
√
p/ρ is the speed of sound wave. From equation (1.25), we can

easily obtain relation between y− component of wave number K1 (or K2) and
other quantities as

[−i(ω − qU)2] = c2(−q2 +K1
2),

(−iω)2 = c2(−q2 +K2
2),

(1.26)
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1.3. Instability of a discontinuity interface in a compressible fluid

or,

K1
2 =q2 − (ω − qU)2

c2
,

K2
2 = q2 − ω

2

c2
.

(1.27)

In the case c → +∞, relations (1.27) reduce to K1
2 = q2,K2

2 = q2 or K1 = K2 = q
which coincide with the ones in a flowing incompressible fluid as shown in section
1.2.

By taking square on both sides of equation (1.24) and then using relations in
(1.27), we are led to the dispersion equation of ω, q, c and basic flow U as follows

[(ω − qU)2 − ω2] [ω2(ω − qU)2 − q2c2 (ω2 + (ω − qU)2)] = 0. (1.28)

This equation is decoupled into

[(ω − qU)2 − ω2] = 0, (1.29)

and
[ω2(ω − qU)2 − q2c2 (ω2 + (ω − qU)2)] = 0. (1.30)

Solving equation (1.29) gives solution wave frequency ω as

ω0 =
qU

2
. (1.31)

If we take the limit c → +∞, equation (1.30) returns to ω2 + (ω − qU)2 = 0, being
the same with (1.16) as shown in section 1.2 for the case of incompressible fluid.

Solving equation (1.30) gives four other solutions as follows

ω±,± =
q

2
(U ±

√
U2 + 4c2 ± 4c(U2 + c2)1/2)) . (1.32)

The interface of velocity discontinuity is stabilized if all roots ω are real. This
implies the term under square root in equation (1.32) to be non-negative, i.e.,

U2 + 4c2 − 4c(U2 + c2)1/2 ≥ 0⇔ U ≥
√

8c. (1.33)

The growth rate is proportional to x− component wave number q in the direction
of flow in the same way as in the incompressible fluid flow. But now, the growth
rate depends on the ratio between different velocity U and the sound velocity c.
The growth rate of instability is depicted in figure 1.4 as a function of the Mach
number which is defined by ratio of velocity difference U to sound velocity c.

Figure 1.4 shows the growth rate of instability increases from 0 at M = 0 (there
is no discontinuity velocity) to the maximum value Im[ω] = 1 at M =

√
3 ≈ 1.72051.

Then, it decreases to zero at M =
√

8 as (1.33) shows. Moreover, all roots (1.32)
are overlapped with the root (1.31) at M =

√
8. The growth rate vanishes for

M ≥
√

8, i. e., the interface of tangential velocity discontinuity is stabilized.
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1.4. Derivation of Shallow-Water Equation
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Figure 1.4: The growth rate Im[ω]/q varies with the March number M = U/c in
the case of compressible fluids.

1.4 Derivation of Shallow-Water Equation

The shallow-water equations describe motion of a fluid in a thin layer of constant
density in hydrostatic balance, bounded from below by the bottom topography and
from above by a free surface. The shallow- water equations have applications to a
wide range of phenomena other than water waves, e.g. avalanches and atmosphere
flow. In this section, we derive the shallow water equations (SWE) by taking depth-
average of theNavier-Stokes equation. The shallow-water equations are valid for
problems in which the horizontal length scale is much greater than the vertical
length scale so that the vertical dynamics can be neglected.

Here, we assume the fluid is inviscid, irrotational and incompressible. Using a
control volume consisting of a vertical column of fluid, we derive the mass continuity
equation. If ρ is the constant density of the fluid and h is the thickness of the fluid
layer, ρh is the mass per unit area of fluid. The vertically integrated horizontal mass
flux of fluid is ρhv where v = (u, v) is the horizontal velocity and ∇ = (∂/∂x, ∂/∂y)
is the horizontal gradient operator. Thus, the mass per unit time leaving a column
of fluid of unit area ∇ ⋅ (ρhv) is equal to minus the time tendency of the mass in
this column −∂(ρh)/∂t. Putting these facts together yields

∂ρh

∂t
+∇ ⋅ (ρhv) = 0. (1.34)

The density is cancelled since it is nonzero constant. Equation (1.34) can be
rewritten in advective form

Dh

Dt
+ h∇ ⋅ v = 0, (1.35)

in which
D

Dt
= ∂

∂t
+ v ⋅ ∇. (1.36)
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1.4. Derivation of Shallow-Water Equation

We apply the Newton second law for a control volume in integral form to obtain
the advective form, in the horizontal plane, for the averaged variables, as

Dv

Dt
= −1

ρ
∇p. (1.37)

here the vertical component of the Coriolis force is ignored. Using the hydrostatic
approximation, the pressure as a function of height is

p = −ρg(d + h − z), (1.38)

in which, d(x, y) is the terrain elevation and we assume zero pressure at the upper
fluid surface. Therefore, we have ∇p = −ρg∇(d + h), and the momentum equation
yields,

Dv

Dt
+ ρg∇(d + h − z) = 0. (1.39)

We assume that d is constant, set of equations (1.35) and (1.39) is the shallow
water equations.

The depth h is represented as a constant average depth H0 and a depth per-
turbation h̃ as

h =H0 + h̃. (1.40)

Then from the Navier-Stokes equation, we obtain the linearized shallow water
equations in component wise as

∂h̃

∂t
+H0 (

∂u

∂x
+ ∂v
∂y

) = 0,

∂u

∂t
+ g∂h̃

∂x
= 0,

∂v

∂t
+ g∂h̃

∂y
= 0.

(1.41)

Posing a plane wave, in space and time, of the form ei(qx+ky−ωt), (1.41) becomes

⎛
⎜
⎝

−iω iqH0 ikH0

iqg −iω 0
ikg 0 −iω

⎞
⎟
⎠

⎛
⎜
⎝

h̃
u
v

⎞
⎟
⎠
= 0. (1.42)

We define the characteristic speed as

c =
√
gH0. (1.43)

We define the characteristic speed as

c =
√
gH0. (1.44)

For a non-trivial solution of (1.42), the determinant of the coefficient matrix equals
zero, yielding the following equation

[ω2 − (q2 + k2)c2]ω = 0, (1.45)
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1.4. Derivation of Shallow-Water Equation

whose roots are
ω = ±c

√
q2 + k2, and ω = 0. (1.46)

The shallow water system is two-dimensional, so that propagation of waves is
purely horizontal with the wave phase speed ω/

√
q2 + k2 = c. The last solution,

ω = 0, is associated with steady balanced motion in the y-direction with no surface
elevation h̃ = 0. We do not consider this mode. The shallow water system is
two-dimensional, so that propagation of waves is purely horizontal with the wave
phase speed ω/

√
q2 + k2 = c. The last solution, ω = 0, is associated with steady

balanced motion in the y-direction with no surface elevation h̃ = 0. We do not
consider this mode.

Landau and Lifshitz (1944) [25] mentioned that there is an analogy between
gravity waves in shallow-water flow of an incompressible fluid and sound waves in a
compressible gas flow. There is a difference, however, because in the shallow-water
case we have to consider perturbations depending only on the coordinates in the
plane of the liquid layer (parallel and perpendicular to the velocity v), not on the
depth coordinate z; the shallow-water approximation corresponds to perturbations
with wavelength λ≫ h.

Exploiting this analogy, Bezdenkov and Pogutse [6] were the first who studied
the stability of discontinuous surface in tangential velocity of an incompressible flow
of shallow water. They obtained the critical value

√
8 of the Froude number for the

interface stability by exploiting the analogy with the case of a compressible fluid.
In the next chapters, we consider the effect of gravity waves on Kelvin-Helmholtz
Instability of a shallow water flow. Three problems are investigated, namely, (i)
different velocity of the gravity waves on the two sides of interface; (ii) the effect of
frictional bottom; (iii) the effect of a simple shear layer sandwiched between two
infinite layers, of finite thickness, moving parallel with different velocities. The
well-known results of previous authors are recovered before going into the our final
results and some new results are found.
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2. Effect of depth difference on stability of
an interface of tangential-velocity
discontinuity of a shallow water

Landau and Lifshitz (1944) [25] mentioned that there is an analogy between grav-
ity waves in shallow-water flow of an incompressible fluid and sound waves in a
compressible gas flow. Exploiting this analogy, Bezdenkov and Pogutse (1984) [6]
examined the instability of a tangential velocity discontinuity under conditions of
shallow water as well where the phase speed of wave depends on the depth of water
H. The perturbation along the z− axis, is negligibly small compared to the scales
λ of perturbations along the x− and y− axis . It was shown theoretically that the
interface of a tangential-velocity discontinuity in a shallow water flow is stabilized
if the condition of velocity difference U ≥

√
8gH is satisfied, where g is the accel-

eration of gravity. In a shallow water flow, the characteristic velocity of gravity
waves c =

√
gH, plays the role of the velocity of sound in a compressible fluid.

The purpose of this chapter is to address the effect of depth difference between
two fluid regions, also known as the difference of gravity-wave velocity, on the
linear stability of the interface of a tangential velocity discontinuity in a shallow
water flow. Dispersion relation between wave frequency and other characteristics
of wave is described in the form of a sextic polynomial, six roots for the complex
wave-frequency are gained as functions of Froude number M1 = U/c1 and depth
ratio r = H1/H2. The resulting dispersion relation is calculated numerically. The
critical value of Froude number to make interface stability obtains as a function of
depth ratio r. We find that the minimum of the critical Froude number

√
8 occurs

at r = 1, that is, in the case of same depth. This coincides with the critical Froude
number obtained by Bezdenkov and Pogutse [6].

Formulation of the problem is given and dispersion relation is derived in section
2.1. For clarity, the case of same depth [6] is revisited in section 2.2. Thereafter, we
go into the effect of depth difference with asymptotic evaluations of depth ratio and
by analyzing the dispersion relation numerically in section 2.3. The last section
(section 2.4) gives a brief summary and discussions of this chapter.
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2.1. Derivation of Dispersion equation

2.1 Derivation of Dispersion equation

Figure 2.1: Flow geometry from the tope view of the linear instability problem
of an interface of tangential-velocity discontinuity in a shallow water flow, in case
of depth difference. The basic state is a unidirectional flow, in the x− direction,
having uniform velocity discontinuity U along x− axis for y > 0 and no flow for
y < 0. The fluid has gravity wave velocity c1 in region y > 0 corresponding to the
depth H1 and be c2 in region y < 0 corresponding to the depth H2.

We consider the disturbances, of infinitesimal amplitude, (ũ, ṽ) in the velocity
field and h̃ in the height of the free surface (proportional to ei(qx−ωt)e

−K1y for region
(y ≥ 0), and ei(qx−ωt)e

K2y for region (y < 0), are superimposed as

u(x, y, t) = U0 + ũ(x, y, t), v(x, y, t) = ṽ(x, y, t),
h(x, y, t) =H + h̃(x, y, t), (2.1)

where,

U0 =
⎧⎪⎪⎨⎪⎪⎩

0 y < 0

U y ≥ 0
, and H =

⎧⎪⎪⎨⎪⎪⎩

H2 y < 0

H1 y ≥ 0
. (2.2)

The equations of motion and continuity equation in a shallow water flow have the
following form

Dh

Dt
+ h(ux + vy) = 0,

Du

Dt
+ ghx = 0,

Dv

Dt
+ ghy = 0.

(2.3)
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2.1. Derivation of Dispersion equation

The linearized form for the small perturbation reads

Dh̃

Dt
+H(ũx + ṽy) = 0,

Dũ

Dt
+ gh̃x = 0,

Dṽ

Dt
+ gh̃y = 0.

(2.4)

Taking derivative of the last two equations (2.4) on x and y respectively, we have

D

Dt
(∂ũ
∂x

+ ∂ṽ
∂y

) + g ( ∂
2

∂x2
+ ∂2

∂y2
) h̃ = 0 (2.5)

Substituting the first equation of (2.4) into equation (2.5), we obtain

D2h̃

Dt2
− gH ( ∂

2

∂x2
+ ∂2

∂y2
) h̃ = 0. (2.6)

We seek solution of depth perturbation in the form h̃ = constant × e±Ky, with
K = K1 or K2 being wave number in y− direction in the fluid regions y ≥ 0 and
y < 0 respectively. The signs of K1 and K2 is chosen corresponding to the inverse
of the decay length in y direction.

In the region 1 (y > 0), equation (2.6) gives

(−i(ω − qU))2 − gH1(K2
1 − q2) = 0, (2.7)

or,

K2
1 = q2 −

(ω − qU)2
c21

, with c1 =
√
gH1. (2.8)

Similarly in the region 2 (y < 0), we get

K2
2 = q2 −

ω2

c22
, with c2 =

√
gH2. (2.9)

Here, c1 and c2 are known as velocity of gravity waves in regions y ≥ 0 and y < 0
respectively.

We consider the linear perturbation of the interface, let ζ = ζ(x, t) be the
displacement in the y− direction of points on the surface of discontinuity due to
the perturbation. Since the normal component of the fluid velocity to surface of
discontinuity is equal to the rate of displacement of the surface itself, we have
necessarily the kinematical condition as

∂ζ

∂t
+U0

∂ζ

∂x
= ṽ on y = ζ. (2.10)

Since the displacement ζ is assumed to be small, the value of ṽ, of course, must
be taken on the surface of discontinuity, i.e. at y = 0. The kinematical condition
(2.10) yields

ṽy=0 =
∂ζ

∂t
+U0

∂ζ

∂x
(2.11)
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2.1. Derivation of Dispersion equation

The horizontal displacement ζ of the interface is connected with the vertical one h̃
via ⎧⎪⎪⎨⎪⎪⎩

gK1h̃1 = i(ω − qU)2ṽ = (ω − qU)2ζ,
gK2h̃2 = −iω2ṽ = −ω2ζ,

on y = ζ (2.12)

The pressure should be continuous across the discontinuity surface. In the hydro-
static approximation, the pressure perturbation p̃ is equal ρgh̃, and this dynamical
boundary condition is reduced to that of the continuity of the wave height across
the interface:

h̃1 = h̃2 at y ≈ 0. (2.13)

This condition reduces to
K1

K2

= −(ω − qU)2
ω2

. (2.14)

We arrive at the desired dispersion relation between the complex frequency ω and
other characteristics of wave as follows

q2 − (ω − qU)2/c21
q2 − ω2/c22

= (ω − qU)4
ω4

, (2.15)

or

[q2 − (ω − qU)2
c21

]ω4 − [q2 − ω
2

c22
](ω − qU)4 = 0. (2.16)

For dimensionless variables

ω̂ = ω

qU
, M2

1 =
U2

c21
, M2

2 =
U2

c22
. (2.17)

Dispersion equation of dimensionless of wave-frequency variable ω̂ yields,

[1 −M2
1 (ω̂ − 1)2]ω̂4 − (1 −M2

2 ω̂
2) (ω̂ − 1)4 = 0. (2.18)

We set

Ω = ω̂ − 1/2, r = M
2
2

M2
1

= H1

H2

, (2.19)

then equation (2.18) turns to

(1 −M2
1 (Ω − 1/2)2) (Ω + 1/2)4 − (1 − rM12(Ω + 1/2)2) (Ω − 1/2)4 = 0. (2.20)

We write this equation in the standard form of polynomial

f(Ω) = (r − 1)Ω6 − (r + 1)Ω5 − (r − 1)
4

Ω4 + ((r + 1)
2

+ 4

M2
1

)Ω3 − (r − 1)
16

Ω2

+( 1

M2
1

− r + 1

16
)Ω + (r − 1)

64
= 0.

(2.21)

The dispersion relation between dimensionless wave-frequency Ω and other char-
acteristics of wave (2.21) is a sextic polynomial equation of Ω which has six roots
Ωk(k = ¯1,6). Since M1, r are real numbers, then all coefficients of polynomial are
real number, too. Therefore, if this equation has a complex root then the conjugate
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2.2. Case of same depth

complex of that root is root of equation. In other words, the interface is stabilized
if and only if, this equation has all six real roots. In the case r > 1, we see poly-
nomial f(Ω) has four times of change of sign and f(−Ω) has two times of change
of sign. Therefore, using Descartes′s Rule Sign, equation (2.21) has either four,
two or zero positive real roots and either two or zero negative real roots. Similarly,
in the case r < 1, f(Ω) changes sign two times and f(−Ω) changes sign four times,
f(Ω) = 0, has either two or zero positive real roots and either four or two or zero
negative real root. We are going to find complex roots of equation f(Ω) = 0 which
are conjugate complex number of each other. If at least one of the complex roots
has positive imaginary part, then interface is destabilized and hereafter we denote
Ωmax as the root with maximum positive imaginary part, that induces an unstable
mode with maximum growth rate.

To be convenient in either recovering a well-known result or analyzing asymp-
totically later, we rewrite equation (2.21) in the following form

(Ω + 1/2)4 − (Ω − 1/2)4 −M2
1 (Ω − 1/2)2(Ω + 1/2)2 [(Ω + 1/2)2 − (Ω − 1/2)2]

=M2
1 (1 − r)(Ω − 1/2)4(Ω + 1/2)2.

(2.22)

2.2 Case of same depth

Before looking into the effect of depth difference, we review the case of the same
depth H1 =H2 =H or r = 1 as considered by Bezdenkov and Pogutse. In this case,
the sextic equation of dispersion relation (2.22) switches to a quintic equation as
follows

(Ω + 1/2)4 − (Ω − 1/2)4 −M2
1 (Ω − 1/2)2(Ω + 1/2)2 [(Ω + 1/2)2 − (Ω − 1/2)2] = 0

⇐⇒ Ω [(Ω + 1/2)2 + (Ω − 1/2)2 −M2
1 (Ω2 − 1/4)2] = 0

devides by M2
1 ⇐⇒ Ω [Ω4 − (1

2
+ 2

M2
1

)Ω2 + (M2
1 − 8)

16M2
1

] = 0.

(2.23)

We obtain solutions of this equation as follows

Ω0
0 =0,

Ω0
±,± = ± [1

4
+ 1

M2
1

± (M2
1 + 1)1/2
M2

1

]
1/2

.
(2.24)

The interface is stabilized if

1

4
+ 1

M2
1

− (M2
1 + 1)1/2
M2

1

≥ 0

or M2
1 ≥ 8. The solid line in Figure 2.2 presents the variation of the growth rate of

instability with Froude number M1. The instability decreases with an increasing
Froude number, the interface is stabilized corresponding to the imaginary part of
wave frequency Im[Ω0

−,−] = 0 at M1 ≥
√

8. This condition of stability coincides
with the result of Bezdenkov [6] in shallow water and result of Landau [25] for
compressible fluids in two dimensions.

17



2.3. Effect of depth difference

2 4 6 8
M1

0.1

0.2

0.3

0.4

0.5

Ω0
--

Im[Ω0
--]

Re[Ω0
--]

Figure 2.2: Real part (dashed) and Imaginary part (solid) of Ω0
−,− in equation

(2.24) with given r = 1 as considered by Bezdenkov and Pogutse (1984). The solid
line describes the growth rate of unstable mode with the Froude number M1. The
growth rate decreases with an increasing Froude number, and vanishes at M1 =

√
8,

i.e., the interface stability.

2.3 Effect of depth difference

In this section, we show how the critical value of Froude number
√

8 in case of
same depth considered by Bezdenkov and Pogutse [6] is modified asymptotically
and numerically.

In case M1 →∞ or r → 0, (i.e. H1 → 0), dispersion equation (2.21) yields,

f(Ω) =Ω6 +Ω5 − 1

4
Ω4 − 1

2
Ω3 − 1

16
Ω2 + 1

16
Ω + 1

64
= 0

⇐⇒ 1

64
(2Ω − 1)2(2Ω + 1)4 = 0.

(2.25)

We see that all roots of this equation are real, i.e., Ω = ±1
2 . This satisfies the

stability condition of interface. However, in the view of fluid mechanics, H1 (or
H2) has a physical meaning as the depth of water in the region y > 0 (or y < 0)
respectively. If r → 0 (i.e. H1 → 0), the model is one side flow. It is similar for
the case r → ∞ meant to H2 → 0. Therefore, we will not consider these cases any
longer.

Next, we consider he effect of depth difference between two fluid regions and
then compare with the critical value M1c =

√
8 as given by Bezdenkov and Pogutse

[6]. For the purpose of fundamental knowledge, we assume (r−1) ≪ 1 , so that we
may approximate the dispersion equation (2.21) as the following equation:

(r + 1)Ω5 − ((r + 1)
2

+ 4

M2
1

)Ω3 − ( 1

M2
1

− r + 1

16
)Ω ≈ 0. (2.26)
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2.3. Effect of depth difference

This equation has five roots Ω̃ as follow.

Ω̃0 =0,

Ω̃2
±
=1

4
+ 2

M2
1 (1 + r)

±
√

4 + 2M2
1 (1 + r)

M2
1 (1 + r)

.
(2.27)

The interface is stabilized if only if all roots Ω̃ of (2.26) are real. This condition
reduces Ω̃2

±
≥ 0 or M2

1 (r + 1) ≥ 16.
Figure 2.3 shows the contours of Ω̃2

±
plot for the different Froude number M1

and depth ratio r. The region with positive-value contours corresponds to Ω̃2
±
> 0

which reduce to Ω̃2
±,±0 real. In this region, the interface is stabilized, in the other

the interface is destabilized. This condition reduces to the critical value Mc ≥
√

8
if depth ratio r = 1 or H1 =H2 as same as shown in equation (2.24).
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Figure 2.3: The variation Ω̃2
±

contour in equation (2.27) plots for different Froude
number M1 = U/c1 and depth ratio r of H1 to H2 in case (r − 1) ≪ 1.

To gain insight in the effect of depth difference, we express the root of (2.24) in
a power series in a small factor (r − 1) to first order as Ω = Ω0 + (r − 1)Ω̂, in which
Ω0 is given by equation (2.24) and the correction term

Ω̂ = M2
1 (2Ω0 − 1)4(2Ω0 + 1)2

4 [M2
1 (80Ω4

0 − 24Ω2
0 + 1) − 96Ω2

0 − 8] (2.28)

We see that Ω̂ is always real for Ω0 real. Figure 2.4 shows the variation of imaginary
part of Ω̂ with Froude number 0 < M1 <

√
8 corresponding to the case Ω0 is pure
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2.3. Effect of depth difference

imaginary. The growth rate of instability Im[Ω] is the sum of Im[Ω0]+(r−1)Im[Ω̂].

0.5 1.0 1.5 2.0 2.5 3.0
M1

-0.6

-0.4

-0.2

0.2

0.4

0.6

Im[ ]

Im[ --]

Im[ +-]

Figure 2.4: The leading order of growth rate Im[Ω̂] in equation (2.28) is a function
of Froude number 0 <M1 <

√
8 for the case (r − 1) ≪ 1. Solid line corresponds to

an unstable mode, dashed line is for a stable mode.

In the general case, and r ≠ 1, the six roots of dispersion equation (2.21) depend
on two variables r and M1. We can reduce dispersion equation (2.21) to the
equation of M2

1 = g(Ω, r) as follows

M2
1 = g(Ω, r) = −

64Ω(4Ω2 + 1)
(1 − 4Ω2)2 [4(r − 1)Ω2 − 4(r + 1)Ω + (r − 1)] . (2.29)

Easily, we can see the denominator of g(Ω, r) goes to zero at Ω = ±1/2 and Ω =
(√r ± 1)2/2(r − 1). In case r > 1, the denominator of function g has a negative

sign if Ω ∈ [ (
√
r−1)2

2(r−1) ,
(
√
r+1)2

2(r−1) ] or has a positive sign if Ω ∉ [ (
√
r−1)2

2(r−1) ,
(
√
r+1)2

2(r−1) ]. In case

0 < r < 1, the denominator of function g has a positive sign if Ω ∈ [ (
√
r+1)2

2(r−1) ,
(
√
r−1)2

2(r−1) ]
or has a negative sign if Ω ∉ [ (

√
r+1)2

2(r−1) ,
(
√
r−1)2

2(r−1) ]. Therefore, for a given r, there are

six branches of g(Ω, r) → +∞. In other words, if M2
1 is large enough, the equation

M2
1 = g(Ω, r) will have six real roots M2

1k(Ω, r), k = ¯1,6. Then we can reduce all six
real roots Ωk of dispersion equation (2.21) from the roots M1k of equation (2.29).

For numerical results, we separate into two cases 0 < r < 1 and r > 1, corre-
sponding to H1 <H2 and H1 >H2. The critical value M1c for all six roots of (2.21)
real (i.e. the interface stability) is a function of depth ratio r. In case 0 < r < 1,
the critical value of Froude number M1c for the interface stability is a decreasing
function of depth ratio r. But the critical value is an increasing function of the
depth ratio r in the case r > 1. Both these cases, the critical Froude number M1c

is still greater than
√

8. Figures 2.5 describes graphs of the critical value M1c of
Froude number as a function of depth ratio r. Figure 2.5 shows the minimum of
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2.3. Effect of depth difference

critical value is
√

8 at r = 1 corresponding to the case of same depth as considered
by Bedenzkov [6].

Figure 2.5: Graph of the critical value M1c of Froude number is a function of
depth ratio r. The minimum of the critical Froude number occurs at r = 1 with the
critical value M1c =

√
8 as same as the case considered by Bezdenkov and Pogutse.

Figures 2.6 and (2.7) display contours of the maximum growth rate of instability
for different Froude number M1 and depth ratio r of H1 to H2, also known as
the ratio of gravity-wave velocity c1 to c2. Figure 2.8 describes the variation of
maximum growth rate corresponds to Im[Ωmax] (which has maximum imaginary
part) on Froude number M1 > 0 with four given values of depth ratio r = 1,2,3,4.
Figure 2.9 presents the variation of maximum growth rate on Froude numberM1 > 0
with four given values of depth ratio r = 0.1,0.2,0.3,0.4. So that the instability
perturbations both propagate and grow in amplitude with the frequency Re[Ωmax]
and growth rate Im[Ωmax]. When M1 is large enough, imaginary part Im[Ωmax]
decreases to zero corresponding to a stable mode, i.e., the interface of tangential-
velocity discontinuity is stabilized.

Numerically, we find that the critical value M1c which makes interface stability
is greater than

√
8 if r ≠ 1. In case r > 1 the critical value of Froude number M1c

increases if r decreases while M1c increases if r increases in the case 0 < r < 1. This
can be seen in Figures 2.5, 2.6 and 2.7.
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0.05

0.1

0.15

0.2

0.25

5 10 15 20

0.1

0.2

0.3

0.4

0.5

Froude number M1=
U

c1

D
e
p
th
ra
ti
o
r
=
H
1

H
2

Figure 2.6: Maximum growth rate contour plot for different Froude numbers M1

and depth ratio 0 < r < 1.
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Figure 2.7: Maximum growth rate contour plot for different Froude numbers M1

and depth ratio r > 1.
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Figure 2.8: The maximum growth rate of instability varies with Froude number M1

for four given values of depth ratio r = 2,3,4,5. The critical value of Froude number
M1 which Im[Ωmax] starts being zero (the growth rate vanishes), is increasing with
the increment on r.
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Figure 2.9: The maximum growth rate of instability varies with Froude number
M1 for four given values of depth ratio r = 0.1,0.2,0.3,0.4. The critical value of
Froude number M1 which Im[Ωmax] starts being zero (the growth rate vanishes),
is increasing with the decrement on r.
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2.4. Discussion

2.4 Discussion

We have considered the linear stability problem of an interface of tangential-
velocity discontinuity in shallow water, including the effect of depth difference
on the both sides of interface. We obtained the dispersion relation between the
wave frequency ω and the other characteristics of wave as a sextic polynomial. In
case r = 1 for a same depth as considered by Bezdenkov and Pogutse [6], the disper-
sion equation is altered to the quintic polynomial equation. The critical value of
Froude number is

√
8 for the interface stability. In the general cases and r ≠ 1, the

critical value M1c varies with the depth ratio r as shown by Figure 2.5. The critical
value M1c was an increasing function with r > 1 and was a decreasing function for
0 < r < 1. For the both of cases r, the critical value M1c is always greater than√

8. Our results show that interface is stablized if the Froude number M1 = U/c1
satisfies equal or greater than the critical value M1c.
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3. Effect of bottom drag on on stability of
an interface of tangential-velocity
discontinuity of a shallow water

The linear stability of a surface of tangential-velocity discontinuity in a shallow
water along a frictionless horizontal plane had an exact analytic solution for small
disturbances by Bezdenkov and Pogutse [6]. They showed that the interface is
stable if the Froude number is large enough compared with the gravity wave.
The critical value

√
8 of Froude number for interface stable is coincided with the

one obtained by Landau (1944) [24] for a compressible fluid. This analogy was
mentioned by Landau and Lifshitz (1944) [25]. However, the bottom friction and
the internal lateral friction both play significant roles in the linear stability of a two-
dimensional shallow- water flow. The analysis is based on the Boussinesq shallow-
water equations, this category of instability is usually considered for a small amount
of dissipation. The instability persists in the regime of strong dissipation. In this
chapter, we show how this solution of Bezdenkov and Pogutse can be adapted for a
more realistic flow of shallow water, for which the bottom friction is not negligible.
Because of the shallowness of fluid layer, the shallow water flow is liable to be acted
by the bottom drag. The frictional force may well be considered as a stabilizing
factor, but there are cases where the drag force causes the instability, being known
as the dissipation induced instability[21, 30]. Even a small friction is suffice to
cause the instability.

The dispersion relation is obtained by enforcing the boundary conditions at the
discontinuity surface, from which the stability characteristics is deduced. Six roots
for the complex frequency ω, of the dispersion equation, are gained as functions
of the discontinuity velocity U , the traveling speed c of the gravity wave and the
drag coefficient γ. The resulting dispersion relation is calculated numerically. An
asymptotic evaluation of the roots are made for both small and large values of the
drag coefficient γ.

For clarity, we will revisit the result given by Bedenzkov and Pogutse [6] to
obtain The critical value of Froude number M = U/c =

√
8 in the case of no

frictional bottom in Sec. 3.2. Thereafter in Sec. 3.3, we go into the influence
of the bottom drag. The last section (Sec. 3.4) is devoted to a summary and
conclusions.
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3.1. Formulation of problem and dispersion relation

Figure 3.1: Flow geometry from the tope view of the linear instability problem
of tangential-velocity discontinuity in a shallow water flow, including the effect of
the frictional bottom. The basic state is a unidirectional flow, in the x− direction,
having uniform velocity U along x− axis for y > 0 and no flow for y < 0. The model
is assumed to have the same depth H on the both sides of the interface.

3.1 Formulation of problem and dispersion

relation

We begin with the shallow-water equations with drag force taken into account in
the momentum equations. For the basic state, we take the interface along the x
axis, with the water flowing, with a uniform velocity U , in the x direction for y > 0,
while at rest on the other side (y < 0) as shown in Figure 3.1.

Consider long waves, with infinitesimal wave amplitude a, on a shallow water,
with the horizontal length scale significantly longer than the water depth H. The
governing equations for the shallow-water stream are derived by taking averages of
the three-dimensional motion, over the depth, of the flow in a thin layer with a free
surface elevation given by z = h(x, y, t) in Cartesian coordinate system (x, y, z):

Dh

Dt
+ h(ux + vy) = 0,

Du

Dt
+ ghx = −γu

√
u2 + v2 + S(x, y),

Dv

Dt
+ ghy = −γv

√
u2 + v2,

(3.1)

where a subscript stands for derivative with respect to the indicated variable and

26



3.1. Formulation of problem and dispersion relation

D/Dt denotes the Lagrange derivative

D

Dt
= ∂

∂t
+ u ∂

∂x
+ v ∂

∂y
,

and the salt term S(x, y) (see Whitham, 1974) [42] is assumed to be constant as
follow:

S(x, y) =
⎧⎪⎪⎨⎪⎪⎩

γU (y > 0),
0 (y < 0).

The momentum equations have been augmented by the drag in the form of Chézy
formula [44, 2] −γuf(∣u∣), with the empirical estimate of the coefficient γ, which
takes account the turbulent boundary layer. We take f(∣u∣) = ∣u∣ as been used
in hydraulic practice over a century. We consider, as an unperturbed state, a
tangential velocity discontinuity lying along the x-axis, namely, a uniform velocity
U in the half plane (y > 0) and no flow in the rest (y < 0). We assume that, in the
unperturbed state, the fluid layers on the both sides have the same depth H.

Disturbances, of infinitesimal amplitude, (ũ, ṽ) in the velocity field and h̃ in
the height of the free surface, are superimposed as

u(x, y, t) = U0 + ũ(x, y, t), v(x, y, t) = ṽ(x, y, t),
h(x, y, t) =H + h̃(x, y, t), (3.2)

The linearized form of the shallow-water equations (3.1) for the disturbance reads

D0h̃ +H(ũx + ṽy) = 0,

D0ũ + gh̃x = −2γU0ũ,

D0ṽ + gh̃y = −γU0ṽ,

(3.3)

where

D0 =
∂

∂t
+U0

∂

∂x
,

and U0 = U for y > 0 and U0 = 0 for y < 0. It is observed that no drag perturbation
exerts in the region (y < 0), because of U0 = 0.

We seek the solution in form ei(qx−ωt)eKy with real constant q the wavenumber
in the streamwise direction and constant K corresponding to the inverse of the
decay length in the y direction and ω the frequency, taking complex values. In
case a solution with its imaginary part Im[ω] > 0 is admitted, the basic state is
linearly unstable. With this form, (3.3) yields

⎛
⎜
⎝

−iΩ −iHq HK
iqg −iΩ + 2γU 0
gK 0 −iΩ + γU

⎞
⎟
⎠

⎛
⎜
⎝

h̃
ũ
ṽ

⎞
⎟
⎠
= 0, (3.4)

where Ω = ω − qU . In order for a nontrivial solution (h̃, ũ, ṽ) ≠ 0 to exist, the
determinant of the matrix in (3.4) must vanish, supplying the dispersion relation

(Ω + iγU)(Ω2 + 2iγUΩ − c2q2) + c2K2(Ω + 2iγU) = 0. (3.5)
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3.1. Formulation of problem and dispersion relation

Writing the relevant root of (3.5) as K = −K1 for y > 0 and K =K2 for y < 0, with
K1 > 0 and K2 > 0, their squared ratio is found to be

K1
2

K2
2 =

(ω − qU + iγU)[(ω − qU)2 − c2q2 + 2iγU(ω − qU)]
(ω − qU + 2iγU)(ω2 − q2c2) . (3.6)

The boundary conditions to be imposed at the interface are the following. First,
the velocity component of the fluid normal to the discontinuity surface is equal on
the both sides of the surface and is equal to the velocity of the surface movement
in that direction. This kinematical condition is represented as

∂ζ

∂t
+U ∂ζ

∂x
= ṽ on y = ζ, (3.7)

where y = ζ(x, t) = aei(qx−ωt), of infinitesimal amplitude a, is the position of the
velocity-discontinuity surface in the horizontal plane. For the normal mode, (3.7)
leads to ṽ = −iΩζ̃. Combining with the last of (3.3), the horizontal displacement ζ̃
of the interface is connected with the vertical one h̃ via

gKh̃ = (Ω2 + iγUΩ)ζ on y = ζ. (3.8)

Second, the pressure should be continuous across the discontinuity surface. In
the hydrostatic approximation, the pressure perturbation is p̃ = ρgh̃, and this
dynamical boundary condition is reduced to that of the continuity of the wave
height across the interface:

h̃y=ζ1 = h̃y=ζ2 , (3.9)

where ˜ζ1,2 designates the right- and the left-limit to the interface, respectively.
Imposing this condition on (3.8), we obtain

K1

K2

= −(ω − qU)2 + iγU(ω − qU)
ω2

. (3.10)

By combining (3.10) with (3.6), we arrive at the desired dispersion relation between
the wavenumber q and the complex frequency ω.

(ω − qU + iγU){ω4[(ω − qU)2 − c2q2 + 2iUγ(ω − qU)]

− (ω − qU)2(ω2 − q2c2)(ω − qU + γUi)(ω − qU + 2γUi)} = 0. (3.11)

We can easily see that ω1 = qU − iγU is a root of (3.11). This root does not
contribute to the instability of the interface of tangential velocity discontinuity,
since its imaginary part is negative, and is no longer considered. The remaining
polynomial is 5th order, as the ω6 terms are cancelled in the second factor. In order
to determine the stability criterion, we have to examine the non-trivial five roots
of (3.11). If the imaginary parts of the roots are all non-positive, the discontinuity
surface is linearly stable, otherwise the instability is invited.
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3.2. Case of no friction

3.2 Case of no friction

Before looking into the effect of the bottom drag, we review the case of its absence.
In case γ = 0, (3.11) becomes, if the first factor is left out,

(ω − qU
2

) [ω2(ω − qU)2 + q3c2U(2ω − qU)] = 0, (3.12)

manifesting a fifth-order polynomial equation. Its roots ω0 are written out explic-
itly as

ω0
2 =

qU

2
, (3.13)

ω0
±±

= q
2
{U ±

√
U2 + 4c2 ± 4c

√
U2 + c2} , (3.14)

where the double signs in the suffix correspond to the signs, in the same order,
on the right-hand side. The interface of the tangential discontinuity is stable if
U2 + 4c2 ± 4c

√
U2 + c2 ≥ 0, or U ≥

√
8c. We have thus recovered the known results

of Bezdenkov and Poguste [6, 25]. For U <
√

8c, the imaginary part Im[ω] has
both positive and negative signs. The mode with Im[ω] > 0 amplifies exponen-
tially in time t. The instability for U >

√
8c shares common property with the

phenomenon of over-reflection.[28, 32, 1]. Notably, the growth rate is proportional
to the wavenumber q, which is characteristic of the Kelvin-Helmholtz instability.
The shorter the wavelength is, the faster the corresponding wave grows.

3.3 Influence of bottom drag

We are now in a position to call the bottom drag into play. To gain insight into
this frictional effect, we express the root of (3.11) in a power series in a small
parameter γ to first order as ω = ω0 + γω∗. The first term ω0 corresponds to the
solution (3.13) and (3.14) of the dispersion relation with γ = 0. The second term
ω∗ is the correction originating from the small bottom drag. The correction to the
first root (3.13) is obtained easily by the leading-order of Taylor approximation for
small γ as

ω∗2 = −i
U(U2 − 12c2)
4(U2 − 8c2) . (3.15)

Hereafter we introduce the Froude number M = U/c, the counterpart of the Mach
number for the shallow-water flow. With γ,U and c all positive, the condition
Im[ω∗2 ] > 0 is

√
8 <M <

√
12 as shown in Fig. 1. The corrections to the remaining

four roots (3.14) are manipulated as

ω∗
±−

= i
4

√
c2 +U2

⎧⎪⎪⎨⎪⎪⎩
∓(c2 + 4U2)c − (c2 + 2U2)

√
c2 +U2

√
4c2 +U2 − 4c

√
c2 +U2

+U (9c2 + 8U2)c − (9c2 + 2U2)
√
c2 +U2

4c2 +U2 − 4c
√
c2 +U2

⎫⎪⎪⎬⎪⎪⎭
,

(3.16)
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3.3. Influence of bottom drag

Figure 3.2: The leading-order growth rate Im[ω]/γ of the displacement of the
tangential discontinuity interface for small drag coefficient γ.

ω∗
±+

= i
4

√
c2 +U2

⎧⎪⎪⎨⎪⎪⎩
∓(c2 + 4U2)c + (c2 + 2U2)

√
c2 +U2

√
4c2 +U2 + 4c

√
c2 +U2

−U (9c2 + 8U2)c + (9c2 + 2U2)
√
c2 +U2

4c2 +U2 + 4c
√
c2 +U2

⎫⎪⎪⎬⎪⎪⎭
.

(3.17)

In Fig. 3.2, we draw Im[ω∗2 ] with solid line and Im[ω∗
±+

] with different dashed
lines as functions of q. At M =

√
8, ω∗

±−
diverges as is read off from (3.16), and for

M <
√

8, ω∗
±−

becomes real, resulting in Im[ω∗
±−

] = 0. For all values of M >
√

8,

Im[ω∗
+−

] < 0. For M >
√

9/2 + 3
√

2 ≈ 2.9568, Im[ω∗
−−

] > 0 but, for
√

8 ≤ M ≤√
9/2 + 3

√
2, Im[ω∗

−−
] ≤ 0. Over the entire range of Fr, Im[ω∗

++
] < 0, whereas

Im[ω∗
−+

] > 0 for M <
√

9/2 − 3
√

2 ≈ 0.50731 and Im[ω∗
−+

] ≤ 0 for M ≥
√

9/2 − 3
√

2.
Notice that the correction terms ω∗2 and ω∗

±±
of O(γ) are all independent of

the streamwise wavenumber q, while the leading-order terms (3.13) and (3.14) are
linear in q. In the instability regime M <

√
8, the growth rate is dominated by

the leading-order term Im[ω0] with large values of q. Therefore we do not any
longer consider the frictional effect in this regime, and concentrate on the stability
regime M ≥

√
8. We focus our attention only on the growing modes, ones with ω∗2

and ω∗
−−

, in the region of M >
√

8. The Taylor-series solutions suggest that, when
M exceeds

√
8 ≈ 2.8284, the drag force makes unstable the interface of velocity

discontinuity, with the ω2 mode growing. At M =
√

9/2 + 3
√

2 ≈ 2.9568, the mode
with ω−− is excited and, as M further increases, it takes over the ω2 mode. For
M >

√
12 ≈ 3.4641, the ω−− mode is solely amplifiable, though the growth rate

Im[ω−−] is small.
The first-order correction terms ω∗2 and ω∗

−−
diverge at M =

√
8. To carefully

treat this seemingly singular behavior, we choose M = 2.83, and solve numerically
the dispersion relation (3.11), with the first factor removed. The real frequency
Re[ω] and the growth rate Im[ω] are displayed as functions of γ in Figs. 3.3 and
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3.3. Influence of bottom drag

Figure 3.3: The real part Re[ω] of numerical solution of the dispersion equation
(3.11) is a function of γ for M = 2.83 and 0 ≤ γ ≤ 1.

Figure 3.4: The imaginary part Im[ω] of numerical solution of the dispersion
equation (3.11) is a function of γ for M = 2.83 and 0 ≤ γ ≤ 1.

3.4 respectively, with solid line for ω2 and different dashed lines for ω±±.
We detect the abrupt alteration of the curves of Im[ω2] and Im[ω−−] at the

value of γ where their real parts, Re[ω2] and Re[ω−−], approach closest to each
other. For values of M close to

√
8, this transition looks abrupt. For M = 3, a

value less close to
√

8, the alteration of the growth rate occurs moderately and
is convincingly recognized as shown by Fig. 3.5, in which the both real and the
imaginary parts of ω2 and ω−− are simultaneously drawn. Figure 3.4 illustrates
that only the mode with ω2 prevails as far as γ is small, but that, as γ is increased,
it is abruptly superseded by the mode with ω−− at γ ≈ 0.0815. The latter is the
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3.4. Discusion

Figure 3.5: Numerical solutions of dispersion equation (3.11) for wave frequency ω.
Imaginary parts and Real parts of ω2, ω−− displayed simultaneously, for M = 3.0.

sole instability mode in its range of larger values. For M = 2.83, the instability
of the interface of discontinuity in tangential velocity, with its origin lying in the
effect of the bottom drag, takes place for all values of M greater than

√
8, though

growth rate decreases with γ for its large values. The growth rate itself remains
rather small, and the divergence of ω∗2 and ω∗

±−
at M =

√
8, as seen in (3.15) and

(3.16), implies simply that these are not expressible in the form of power series in
γ around γ = 0 for M =

√
8. We have repeated numerical calculation of the growth

rate of instability Im[ω] for various values of M over a wide range of γ. There is
always at least one of the roots ω with the positive imaginary part which induces to
the amplification of wave. Therefore, the interface is always destabilized. In other
words, the instability occurs for the entire range of the drag coefficient γ(> 0). The
asymptotics of the five roots of (3.11), at large values of γ, are manipulated with
ease as

ω2 =qU − 2iγU, (3.18)

ω±+ =qU − iq2U
U2 ±

√
(U2 − c2)2 + c4

2γ(U2 − c2) , (3.19)

ω±− = ± {qc − iq2c3

2γU(U ∓ c) [1 − 2iq(U ∓ c)
γU

]} , (3.20)

In the above, Im[ω−−] > 0 signifies that the dissipation induced instability is never
suppressed for large values of the drag coefficient. We are thus led to a conclusion
that, in the presence of the drag of the Chézy type, there is no range of M for
stabilization.

3.4 Discusion

We have investigated the effect of bottom friction on the linear stability of interface
in a tangential-velocity discontinuity in a shallow water. The stability condition
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3.4. Discusion

M ≥
√

8 for the case of no bottom drag [6] is recovered. The bottom friction
drastically changes this result, and the interface is destabilized over entire range
of the Froude number M = U/c, irrespective of the drag strength.

Our result provides an example of the dissipation-induced instabilities that are
ubiquitous in nature. This category of instability is usually considered for a small
amount of dissipation. The instability persists in the regime of strong dissipation.
We have obtained an unusual result that the instability mode is excited even for
a large amount of dissipation; the discontinuity interface is linearly unstable over
the entire range of drag coefficient as opposed to other models. In a closely related
problem of a shear flow [44], only the effect of a small drag force was addressed.

The instability of tangential discontinuity interface has bearing with the over-
reflection [1, 37, 44]. The frictional effect on the latter is worth pursuing. All
these questions, particularly the Hamiltonian mechanical viewpoint, invite a future
study.
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4. Stability of a layer of simple shear flow
bounded by layers of uniform flows in

shallow water

Early treatments of KHI usually assumed the profile of shear velocity to be zero
of thickness (i.e. the vortex sheet approximation) as considered by Landau (1944)
[24] and other authors. However, in reality, such ”discontinuities” in velocity have
a finite thickness L, the effects of which becomes significant if the instability wave
length λ < L. Michalke (1964) [27] considered the effects of a hyperbolic tangent
profile of shear velocity on Kelvin Helmholtz Instability in an incompressible fluid.
He found that a velocity transition stabilizes flow for all wavelengths shorter than
the width of the shear layer. Blumen et al. (1975) [7] examined the hyperbolic
tangent profile in a compressible fluid. They showed that instability occurs at
all Mach numbers. The linear profile was treated by Chandrasekhar (1961) [9],
Vallis (2005) [38] and others for an incompressible fluid. These authors found
results which are similar to those found in the hyperbolic tangent case considered
by Michalke.

The linear shear flow of bounded or unbounded extent in shallow water of con-
stant depth was investigated numerically by Satomura (1981) [34] and by Takehiro
and Hayashi (1992) [37]. The latter authors also considered reflection by the flow
and showed that over-reflection occurred. Both of these investigations were based
upon numerical solution of the governing ordinary differential equation.

Here, we consider the effect of a linear-shear layer of finite thickness on the
stability characteristics of the zero-thickness mode in a shallow water flow. The
simple shear, with the flow velocity as a linear function of the normal coordinate, is
assumed in the middle layer as shown in Figure 4.1. In the simple shear (region I),
the combination of linearized equations of motion and continuity equation takes
the form of Whittaker equation. The dispersion relation of wave frequency and
other characteristics of wave is found to involve the Whittaker functions and their
first derivatives. We confirm that the appropriate limits of these functions are
reduced to various known cases.

In previous chapters, we showed that the interface of tangential velocity dis-
continuity with a zero thickness layer is stabilized for large Froude number. In
the case L → 0, by taking an approximation of Whittaker functions, this result is
recovered in subsection 4.2.1. The shear layer of finite thickness totally alters the
stability characteristics of the zero-thickness model. The simple shear flow in an
incompressible fluid given by Vallis [38] is well known stable for the short wave-
length approximation but unstable for the long wave-length approximation. This
result is confirmed in subsection 4.2.2 by taking limit of Whittaker functions for
gravity-wave velocity c→∞. In section 4.3, we analysis the instability of the sim-
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ple shear flow in a shallow water numerically. Thereafter, we show that the simple
layer flow of finite thickness is linearly unstable for the entire range of the Froude
number. The last section (section 4.4) gives a brief summary and discussions of
this chapter.

Figure 4.1: Geometry and coordinate system for a simple shear layer in a shallow
water flow. Region 1 (y > L) is considered that fluid is moving with uniform
velocity U in the x− direction. Region I (0 < y < L) contains the linear velocity
U = U/Ly, and region 2 has no flow.
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4.1. Derivation of Dispersion equation

4.1 Derivation of Dispersion equation

We begin this section by deriving the stability equations for infinitesimal pertur-
bation in a shallow water flow. The flow geometry is assumed to have the depth
H. Let U = U(y) be the base flow, i.e., the flow lies along the x− axis that varies
in the y− direction. The fluid can be divided into three regions (see Figure 4.1).
Let us consider the disturbances, of infinitesimal amplitude, (ũ, ṽ) in the velocity
field and h̃ in the height of the free surface as follow

u(x, y, t) = U(y) + ũ(x, y, t), v(x, y, t) = ṽ(x, y, t),
h(x, y, t) =H + h̃(x, y, t), (4.1)

where,

U(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = constant y ≥ L region 1,
U
Ly 0 < y < L region I,

0 y < 0 region 2.

(4.2)

We consider all perturbation quantities to vary as ei(qx−ωt), for a given y, where
q is the real wave number in the x− direction and ω is the wave frequency. The
linearized equations of motion and continuity equation for wave perturbation yield

Dh̃

Dt
+H(ũx + ṽy) = 0,

Dũ

Dt
+ ṽ ∂U

∂y
+ gh̃x = 0,

Dṽ

Dt
+ gh̃y = 0,

(4.3)

in which
D

Dt
= ∂

∂t
+U(y) ∂

∂x
. (4.4)

The first equation of (4.3) is the mass conservation equation, the two last equations
are the momentum equations.

Taking derivative of the two last equations (4.3) on x and y, respectively

, yields
D

Dt
(∂ũ
∂x

+ ∂ṽ
∂y

) + 2
∂ṽ

∂x

∂U

∂y
+ g ( ∂

2

∂x2
+ ∂2

∂y2
) h̃ = 0 (4.5)

Substituting the first equation of (4.3) into equation (4.5), we have

D2h̃

Dt2
− 2H

∂ṽ

∂x

∂U

∂y
− gH ( ∂

2

∂x2
+ ∂2

∂y2
) h̃ = 0 (4.6)

Taking derivative of the last equation of (4.3) on x to reduce

∂ṽ

∂x
= qg

ω − qU
∂h

∂y
, (4.7)

and then substituting into equation (4.6), we obtain

D2h̃

Dt2
− 2

qgH

ω − qU
∂h̃

∂y

∂U

∂y
− gH ( ∂

2

∂x2
+ ∂2

∂y2
) h̃ = 0. (4.8)
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4.1. Derivation of Dispersion equation

Simplify this equation gives

D2h̃

Dt2
− 2

qc2

ω − qU(y)
∂h̃

∂y

∂U

∂y
− c2 ( ∂

2

∂x2
+ ∂2

∂y2
) h̃ = 0,

⇐⇒ ∂2h̃

∂y2
+ 2

q

ω − qU(y)
∂h̃

∂y

∂U

∂y
+
⎡⎢⎢⎢⎢⎢⎢⎣

[ω − qU(y)]
2

c2
− q2

⎤⎥⎥⎥⎥⎥⎥⎦
h̃ = 0,

(4.9)

where c =
√
gH is the velocity of gravity wave.

In the region 1 (y > L), the basic flow U(y) = U is a constant then equation
(4.9) takes the simple form

∂2h̃1
∂y2

+
⎡⎢⎢⎢⎢⎢⎢⎣

[ω − qU(y)]
2

c2
− q2

⎤⎥⎥⎥⎥⎥⎥⎦
h̃1 = 0, (4.10)

which has solution in the following form

h̃1 = A1e
i(qx−ωt)e−K1y, (4.11)

in which A1 is an arbitrary constant. We obtain easily relation between wave
number K1 in y− direction and other characteristics of wave as follows

K2
1 = q2 −

(ω − qU)2
c2

. (4.12)

Similarly in the region 2 (y < 0), we have U(y) = 0 equation (4.9) gives solution

h̃2 = A2e
i(qx−ωt)eK2y, (4.13)

in which A2 is an arbitrary constant. Then we obtain

K2
2 = q2 −

ω2

c2
. (4.14)

In the region I, U(y) = Uy/L and we transform variables to dimensionless variables

M = U
c
, q̂ = qL, ω̂ = ω

qc
, ŷ = M

L
y − ω̂, (4.15)

then equation 4.6 transforms to

∂2h̃I
∂ŷ2

− 2

ŷ

∂h̃I
∂ŷ

+ [ q̂
2

M2
(ŷ2 − 1)] h̃I = 0. (4.16)

We set Y = αŷ2 and h̃(ŷ) = ŷW (ŷ), the above equation yields

∂2W

∂Y 2
+ [− 1

2Y 2
+ q̂2

M2
( 1

4α2
− 1

4αY
)]W = 0. (4.17)

If we assume that

4τ = q̂

M
, α = i4τ, m =

√
3

2
, κ = iτ, (4.18)
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4.1. Derivation of Dispersion equation

then equation (4.16) is reduced in the form of Whittaker equation,

∂2W

∂Y 2
+ [−1

4
+ κ

Y
+ 1/4 −m2

Y 2
]W = 0. (4.19)

In other words, in the region I (0 < y < L), equation (4.9) is reducible to the form
of Whittaker equation of two parameters κ,m and an argument Y (see Whittaker
and Watson, 1950 [43]); the basic solutions to (4.19) are given by

Mκ,±m(Y ) = Y 1/2±me−Y /2 [1 +
1
2 ±m − κ

1!(1 ± 2m)Y +
(1
2 ±m − κ)(3

2 ±m − κ)
2!(1 ± 2m)(2 ± 2m) Y 2 + ...] .

(4.20)
General solution of equation (4.19) is written in the form [43]:

W (Y ) = B1Mκ,m(Y ) +B2Mκ,−m(Y ), (4.21)

where B1,B2 are arbitrary constants and Y = 4iτ ŷ2 = 4iτ(ML y − ω̂)
2

. Therefore,

equation (4.16) has solution h̃I as follows

h̃I(y) = (M
L
y − ω̂) [B1Mκ,m[α(M

L
y − ω̂)

2

] +B2Mκ,−m[α(M
L
y − ω̂)

2

]] . (4.22)

We rewrite equations (4.12), (4.14) using dimensionless variables as follows

K2
1 =

q̂2

L2
[1 − (ω̂ −M)2] ,

K2
2 =

q̂2

L2
[1 − ω̂2] .

(4.23)

The normal components of the velocities at the interfaces should be continuous.
Since the displacement in the y− direction is assumed to be small, thus we have

ṽ1 =ṽI at y ≈ L,
ṽ2 =ṽI at y ≈ 0.

(4.24)

Using equation (4.7), the above continuity condition of normal velocities reduces
to

1

ω̂ −M
∂h̃1
∂y

= 1

ω̂ −M/Ly
∂h̃I
∂y

at y = L,

1

ω̂

∂h̃2
∂y

= 1

ω̂ −M/Ly
∂h̃I
∂y

at y = 0.

(4.25)

The pressure should be continuous across the interface. In the hydrostatic ap-
proximation, the pressure perturbation p̃ is equal −ρgh̃. This dynamical boundary
condition is reduced to that of the continuity of the wave height across the inter-
faces, i.e.,

h̃1 =hI at y ≈ L,
h̃2 =h̃I at y ≈ 0.

(4.26)
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4.2. Asymptotic approximations of Whittaker functions

Substituting the expressions (4.11), (4.13), (4.17) into the boundary conditions
(4.25) and (4.26), we obtain the dispersion relation between dimensionless wave
frequency ω̂ and other characteristics of wave as follows

[(M
L
+K1(M − ω̂))Mκ,m (α(M − ω̂)2) + (M − ω̂)M ′

κ,m (α(M − ω̂)2)]×

[(M
L
+K2ω̂)Mκ,−m (αω̂2) − ω̂M ′

κ,−m (αω̂2)]−

[(M
L
+K1(M − ω̂))Mκ,−m (α(M − ω̂)2) + (M − ω̂)M ′

κ,−m (α(M − ω̂)2)]×

[(M
L
+K2ω̂)Mκ,m (αω̂2) − ω̂M ′

κ,m (αω̂2)] = 0,

(4.27)

in which, M ′

κ,±m denote the first derivative of Whittaker functionMκ,±m respectively
on y. We recall equation (4.18) here,

4τ = q̂

M
, α = i4τ, m =

√
3

2
, κ = iτ, (4.28)

In case, there exits at least one solution ω̂ of (4.27) with its imaginary part Im[ω̂] >
0, the basis state is linearly unstable. In other words, the simple shear flow is stable
if only if all solutions of (4.27) have non-positive imaginary part, otherwise the
instability is induced. We note that the signs of K1,K2 defined in equation (4.23)
should be chosen corresponding to the inverse of the decay length in y direction.

We can see from equation (4.27) that for a given Froude number M , only the
changes in q̂ has to be considered. Now q̂ = qL with q being wave number in x−
direction and L being the thickness of simple shear.

4.2 Asymptotic approximations of Whittaker

functions

In this section, the limiting cases of the solutions of equation (4.19) are considered,
which correspond to well-known problems. The asymptotics of Whittaker functions
Mκ,±m(Y ) are examined depending on two parameters κ = iτ,m the one where an
argument Y = 4τ(M/Ly − ω̂)2 = 4τ ŷ2. The first case to be discussed is that
where τ → 0, which corresponds to the instability problem without a shear layer
as considered by Bedenzkov and Pogutse [6]. Then the limiting case for c → ∞ is
for the stability problem of a shear layer in an incompressible fluid as considered
by Vallis [38].

The series expressions of Whittaker M− functions without expanding in series
the exponential part and using the fact that Miτ,±m(4iτ ŷ2) are real functions for
real τ,m and ŷ obtained by both Kuechemann [22] and Graham [40]. One thus
after some algebra obtains the following forms

Miτ,±m(4iτ ŷ2) = ŷ1/2±2m [Cos(2τ ŷ2)
∞

∑
n=0

an(4τ ŷ2)n + Sin(2τ ŷ2)
∞

∑
n=0

bn(4τ ŷ2)n] ,

(4.29)
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4.2. Asymptotic approximations of Whittaker functions

where the coefficients an and bn are given by

[an
bn

] = [ τ −(2n−1
2 ±m)

(2n−1
2 ±m) τ

] [an−1
bn−1

] , (4.30)

with m =
√

3/2 and a0 = 1, b0 = 0.
The uniform asymptotic expansions for Mκ,m(Y ) (as well as their derivatives)

have been derived by Skovgaard (1966) [35] and Olver (1974) [17]. It should be
stressed that one is interested in asymptotic expansions as τ →∞ holding uniformly
in ŷ when ŷ ranges over unbounded region as well as asymptotic expansions holding
for unbounded τ as ŷ →∞ or 0, i.e., expansions describing the asymptotic behavior
of Miτ,±m(4iτ ŷ2) as function of both τ and ŷ. The case ŷ → 0 or ∞ correspond to
incompressible flow or high Froude number limits respectively; the case τ → 0 or
∞ correspond to the long or short wavelength limits.

4.2.1 Case of the zero thickness layer in a shallow water
flow

The case of zero thickness layer is of particular interest since Landau (1944) [24]
has shown that one obtains stability of the fluid interface for sufficiently high
supersonic tangential velocities. He also remarked that there is an analogy between
gravity waves in shallow-water flow of an incompressible fluid and sound waves in
a gas two dimensional disturbances. Thereafter, Bezdenkov and Pogutse (1984) [6]
considered this kind of stability in a shallow water.

Here, we recover the problem considered by Bezdenkov and Pogutse by ap-
proximating Whittaker M-functions for the limit τ → 0 (or q̂/M → 0) with ŷ =
(M/Ly − ω̂) finite. The Whittaker functions Miτ,±m(4τ ŷ2), κ = iτ is limited to the
lowest order in τ .

Miτ,m ≈ 1 − (4τ)2 (1

2
ŷ2 + 1

4
ŷ4) +O(τ 4),

Miτ,−m ≈ ŷ3 + 1

2
(4τ)2 (1

5
ŷ5 − 1

14
ŷ7) +O(τ 4).

(4.31)

Using these asymptotic expansions, the dispersion equation (4.27) for the leading
order of τ takes in the form

−(M − ω̂)2
√

1 − (M − ω̂)2 + ω̂2
√

1 − ω̂2 = 0

⇐⇒ (M − ω̂)4(1 − (M − ω̂)2) − ω̂4(1 − ω̂2) = 0
(4.32)

This equation gives five solutions as follows

ω̂0
0 =

M

2
,

ω̂0
±,± =

M

2
± 1

2

√
4 +M2 − 4

√
M2 + 1.

(4.33)

These solutions coincide with the case considered by Bezdenkov and Pogutse [6] and

recovered in the chapter 2. If 4+M2−4
√
M2 + 1 < 0 reduces two complex conjugate
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4.2. Asymptotic approximations of Whittaker functions

roots of ω̂0 so that one with positive imaginary part represents an unstable mode
and the other one is a stable mode. Thus, the interface is stable if and only if all
roots ω̂0 are real, in other word if only if Froude number M ≥

√
8.

For asymptotic approximation, we assume that ω̂ = ω̂0 + τ ω̃, and ω̃ ≪ 1, we can
obtain ω̃ from the dispersion equation (4.27) as follows:

ω̃±,± =M3(8 +M2))×

[(ω̂0 − M
2

)2 − 1) (6ω̂0(ω̂0 − M
2

)2 − (ω̂0 − M
2

)(M2 + 14Mω̂0 − 8))
√

1 − (ω̂0 − M
2

)2−

(ω̂0 + M
2

)2 − 1) (2(−2 +M2)ω̂0 −M(2 +M2) + (ω̂0 − M
2

)2(6ω̂0 + 5M))
√

1 − (ω̂0 + M
2

)2]−1.
(4.34)
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Figure 4.2: The leading-order imaginary parts Im[ω̃] of wave frequency in equation
(4.34) varies with Froude number M . Since the conjugate property of roots in
(4.34), Im[ω̃+,−] = Im[ω̃−,−] and Im[ω̃+,+] = Im[ω̃−,+]. The solid line describes the
growth rate of unstable mode, the dashed line and the dotted line show for stable
modes.

We see that the solutions ω̂±,− in equation (4.33) have a same imaginary part and
ω̂±,+ also have a same imaginary part. Therefore, two pairs of graphs of Im[ω̃+,−],
Im[ω̃−,−] and Im[ω̃+,+], Im[ω̃−,+] are coincided to each other respectively as shown
in Figure 4.2. Here, we choose Froude number M ≥

√
8 when all solutions ω̂0 in

equation (4.33) are real, therefore the imaginary part of ω̂ is proportional to the
imaginary part of only ω̃.

By including a thin simple shear (τ ≪ 1 or qL≪ 1), the dispersion equation of
dimensionless wave-frequency ω̂ always has the complex root with positive imagi-
nary part as depicted in Figure 4.2. In other words, the simple shear flow of finite
thickness is linearly unstable for the entire range of the Froude number M . This is
contrary to the case of vortex-sheet discontinuity, which is stable for Froude num-
ber M ≥

√
8, one may not regard the zero thickness vortex sheet as an adequate
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4.2. Asymptotic approximations of Whittaker functions

model of a thin simple shear for all relative Frounde numbers of the uniform flows
bounding the simple shear layer.

4.2.2 Case of the non-zero thickness layer in an
incompressible fluid

The linear profile was considered by Chandrasekhar (1961) [9], Vallis (2005) [38]
and others for an incompressible fluid. They showed that the simple shear layer
is stable for the short wave-length approximation but unstable for the long wave-
length approximation. To consider this case, letting c→∞ results in (M/Ly−ω̂) →
0 and τ → ∞, and 4τ(M/Ly − ω̂) remains finite. The asymptotic expansion of
Whittaker function is uniform as (M/Ly − ω̂)/τ → 0. The expression of Whittaker
functions obtain after some straightforward algebra as follows

Mκ,m ≈ 4τ(M
L
y − ω̂) [Sinh(4τ(M

L
y − ω̂)) −Cosh(4τ(M

L
y − ω̂))] ,

Mκ,−m ≈ 4τ(M
L
y − ω̂) [Cosh(4τ(M

L
y − ω̂)) − Sinh(4τ(M

L
y − ω̂))] .

(4.35)

Indeed it may be easily verified that the two independent solutions of the stability
equation for inviscid incompressible fluctuations in a simple shear flow, i.e., of the
equation (4.16) are exactly those given by asymptotic forms in equation (4.35).

Substituting these expression into equation (4.17), then in the dispersion equa-
tion (4.27), we obtain

ω̂2 = M
2

4q̂2
[(1 − 2q̂)2 − e−4q̂] . (4.36)

These solutions coincide with the one given by Vallis [38]. The flow is stable if
(1 − 2q̂)2 − e−4q̂ ≥ 0. The variation of instability growth rate is depicted in Figure
4.3. The growth rate increases with dimensionless wave number q̂ = qL to reach
a maximum value, then by increasing q̂, the growth rate decreases to zero at
q̂ ≈ 0.63293 by solving (1 − 2q̂)2 = e−4q̂. As the wave number goes to zero, the
wavelength associated with the disturbances is much larger than the length scale
associated with the mean velocity profile. The interface is stabilized for large
wave number or a short wavelength approximation, but destabilized for a long
wavelength approximation.

The limit of small wave numbers is thus equivalent to the limit of a zero thick-
ness of region I, namely, in the limit τ → 0 and ŷ → 0 the uniform asymptotic of
Whittaker functions Miτ,±m(4τ ŷ2), κ = iτ obtain (see [17]),

Miτ,m ≈1 − 1

2
(4τ ŷ)2 +O(ŷ4),

Miτ,−m ≈1

3
(4τ ŷ)3 + 1

30
(4τ ŷ)5 +O(ŷ7).

(4.37)

Substituting these limiting expressions into the dispersion equation (4.27), we keep
using the lowest order terms the limit ŷ → 0 and τ → 0. After some straightforward
algebra, we obtain

(M − ω̂)2 = −ω̂2, (4.38)

42



4.3. Numerical results of stability of the shear layer in a shallow-water flow
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Figure 4.3: Imaginary part of dimensionless wave frequency Im[ω̂] proportional
to dimensionless wave number q̂ = qL, and the factor M2/4q̂2 is taken equal 1.
The flow is unstable for q̂ < 0.63293, with the maximum instability occurring at
q̂ ≈ 0.39.

which gives two solutions ω̂ = M
2 (1± i) or ω = qU

2 (1± i) as well-known result charac-
terizing the Kelvin-Helmholtz Instability of the incompressible vortex sheet. The
interface is unstable even for small different velocity, the growth rate of instability
varies linearly with the Froude number M . The growth rate of instability is pro-
portional to the wave number q in x− direction. Therefore, the amplification of
waves in the case of the short wavelength (i.e. large q) is stronger than in case of
the long wavelength (i.e. small q).

4.3 Numerical results of stability of the shear

layer in a shallow-water flow

Numerical analysis of the stability characteristics with the hyperbolic-tangent ve-
locity profile U = 0.5(1 + tanhy) in an inviscid homogeneous fluid has been con-
sidered by Michalke (1964) [27]. The stability equation was solved by using a
Runge-Kutta procedure. This approach was adapted by Blumen(1975) [7] to show
that the hyperbolic-tangent shear layer in an compressible fluid is unstable to two
dimensional disturbances at each value of the Mach number. This is contrary
to the earlier results found for discontinuity of a vortex sheet. They provided a
warning against the thoughtless use of vortex sheets, although they have the great
advantage of mathematical simplicity.

Because of the analogy between the hydrodynamics of shallow water and poly-
tropic gas dynamics with two dimensional disturbances mentioned by Landau and
Lifshitz (1944) [25], we considered the simple shear layer of a shallow water as
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4.3. Numerical results of stability of the shear layer in a shallow-water flow

shown in section 4.1. It has exact solution related to Whittaker functions. The
asymptotic formula for small thickness showed that the simple shear layer is un-
stable for entire value of Froude number (see subsection 4.2.1). We confirm this
result by solving equation (4.27) by using the Mathematica software. The growth
of instability mode can be described by considering ω̂ to be complex with q real.
Then an imaginary part of ω̂ positive implies a growing mode. It was remarked
in section 4.1 that only changes in q and L have to be considered with a given
Froude number M . Therefore, we will consider the variation of instability growth
rate with a given Froude number M and a given dimensionless wave number q̂ = qL
respectively.

After taking derivative of Whittaker M-functions with some algebra, equation
(4.27) takes the following form

⎡⎢⎢⎢⎢⎣
− [2M + iq̂(2ω̂2 − 1)]M iq̂

4M
,−
√

3
2

(iq̂ω̂
2

M
) + [2(

√
3 − 1)M − iq̂]M

1+ iq̂
4M

,−
√

3
2

(iq̂ω̂
2

M
)
⎤⎥⎥⎥⎥⎦
×
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(4.39)

It is more convenient to describe our results graphically by presenting Figures
4.4, 4.5 and explaining them briefly. The solid lines corresponds to the unstable
model caused by the instability growing with time. For a given Froude number
M = 3, Figure 4.4 shows graphs of two imaginary parts Im[ω̂] of the frequency
wave as a function of the product between wave number q and the thickness layer
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L of simple shear. Figure 4.4 shows that the solution of dispersion equation (4.27)
appears with at least a pair of complex roots with the same magnitude of imaginary
part but opposite signs. In an incompressible fluid, Vallis [38] showed that the
simple shear layer is stable for large wave number or short wave limitation. Here,
numerically, we show that the simple shear layer in a shallow water flow is unstable
for all wave number with a given Froude number.

With a given factor q̂ = qL = 1, we find one complex root of the dispersion
equation (4.27) with positive imaginary part. This root corresponds to the insta-
bility model, the growth rate of instability increases with Froude number M as
shown in Figure 4.5. This result is contrary to the model of zero thickness where
the interface is stable for large Froude number as considered by Bedenzkov and
Pogutse [6].

0.5 1 1.5 2 2.5 3
q

1.0

0.5

0.5

1.0

Im[ω ]

Figure 4.4: Imaginary part Im[ω̂] varies with the factor q̂ = qL for given Froude
number M = 3. Solid line describes the growth rate of unstable mode with dimen-
sionless wave numbers q̂. Dashed line is for a stable mode.

4.4 Discusion

We have discussed the effect of a simple shear layer on the growth of Kelvin
Helmholtz instability in a shallow water flow. The simple shear layer is sandwiched
between two infinite layers moving parallel with different velocities. The disper-
sion relation is found to involve the Whittaker functions and their first derivatives.
The appropriate asymptotic of Whittaker functions are used corresponding to the
various physical conditions to reduce to well known results. Asymptotics of c→∞
corresponds to the case of an incompressible fluid. The simple shear flow is stable
for large wave number or a short wave-length approximation, but unstable for a
long wave-length approximation as given by Vallis (2005) [38].

For a vortex sheet approximation (with no simple shear layer), the asymptotics
of Whittaker functions for τ → 0 or L → 0 recovered the instability problem con-
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Figure 4.5: Imaginary part Im[ω̂] varies with Froude number M ≥ 1 for given
q̂ = qL = 1. Solid line describes the growth rate of unstable mode with Froude
numbers M . Dashed line is for a stable mode.

sidered by Bedenzkov and Pogutse [6]. The interface is stable if Froude number
M ≥

√
8. However, by including the thin simple shear, the asymptotic approxi-

mation of Whittaker functions for τ ≪ 1 or qL ≪ 1, the dispersion equation of
dimensionless wave-frequency ω̂ always has the complex root with positive imag-
inary part as depicted in Figure 4.2. In other word, the shear layer flow of finite
thickness is linearly unstable for the entire range of the Froude number M . This
result was confirmed again numerically. Our results are similar in many respects
to those presented by Blumen (1975) et al. [7] for a hyperbolic tangent profile in a
compressible fluid. Thus it is contrary to the zero thickness vortex sheet, which is
stable for Froude number M ≥

√
8, one may not regard the zero thickness vortex

sheet as an adequate model of a thin simple shear for all relative Froude numbers
of the uniform flows bounding the simple shear layer.
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5. Conclusion

We have studied the effect of gravity waves on the linear stability of the interface
between fluid regions moving parallel with different velocities in the shallow-water
flow. Both cases of zero thickness layer (no shear layer at the middle two fluid
regions) and non-zero thickness layer (shear layer) were considered. Three problems
were investigated in this research, namely, (i) the different gravity waves on the
two sides of interface act on the stability; (ii) the effect of frictional bottom on
the stability of interface; (iii) the effect of shear layer sandwiched between two
infinite layers moving parallel with different velocities on the stability. In section
1.2, we have revisited the linear stability of the interface of a tangential-velocity
discontinuity for an incompressible fluid, known as the Kelvin-Helmholtz Instability
(KHI) problem. The interface is necessarily unstable, regardless of strength of
different velocity. Landau [24] showed that the effect of compressible fluid can
suppress KHI and that the interface is stabilized if the velocity difference is equal
or greater than

√
8 times sound velocity. This results was recovered in section 1.3.

The stability problem of the interface of a tangential-velocity in a shallow water
considered by Bezdenkov and Pogutse [6] was revisited in sections 2.2, 3.2, 4.2 to
compare with our results in each problem. The stability of a simple layer for an
incompressible fluid was examined by Chandrasekhar (1961) [9], Vallis (2005) [38].
They showed that the simple shear layer flow is stable for the short wave-length
approximation but unstable for the long wave-length approximation. Their result
was visited in subsection 4.2.2.

We first have considered the effect of depth difference on the stability of the
interface of a tangential-velocity discontinuity in a shallow water flow. The disper-
sion relation between wave-frequency and other characteristics of wave is described
in the form of a sextic polynomial. Our results show that interface is stabilized if
the Froude number M1 = U/c1 is equal or greater than the critical value M1c. The
critical value M1c is a function of the depth ratio r = H1/H2, also known as ratio
of gravity wave velocity c1 to c2. The minimum of the critical Froude number

√
8

occurs at r = 1, that is, in the same depth case. This coincides with the critical
Froude number obtained by Bezdenkov and Pogutse [6]. The sextic polynomial
equation of dispersion relation is altered to a quintic polynomial equation in case
r = 1 and the interface is stabilized if and only if M1 ≥

√
8. In general cases r ≠ 1,

we find that the critical value M1c is an increasing function with r > 1 and a de-
creasing function for 0 < r < 1. Both in the case 0 < r < 1 and the case of r > 1, the
critical value M1c is always greater than

√
8 as shown in Figure 2.5.

The second problem was made by considering the effect of bottom drag on
the interfacial stability of a tangential-velocity discontinuity in a shallow water
flow. Without frictional bottom in case of same water-depth [6], the interface is
stabilized if the Froude number is equal or greater than the critical value

√
8. The

bottom friction drastically changes this result, and the interface is destabilized
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over entire range of the Froude number, irrespective of the drag strength. The
bottom friction and the internal lateral friction both play significant roles in the
linear stability of a two-dimensional shallow-water flow. The analysis is based
on the Boussinesq shallow-water equations, this category of instability is usually
considered for a small amount of dissipation. We have obtained an unusual result
that the instability mode is excited even for a large amount of dissipation; the
discontinuity interface is linearly unstable over the entire range of drag coefficient
as opposed to other models. Our result provides an example of the dissipation-
induced instabilities that are ubiquitous in nature. In a closely related problem of
a shear flow [44], only the effect of a small drag force was addressed.

For the last problem, our analysis was made for the linear stability of the shear
flow in which the shear layer is sandwiched between two infinite layers moving
parallel with different velocities. The velocity profile of shear layer is a linear
function of the normal coordinate. The dispersion relation is found to involve the
Whittaker functions and their first derivatives. The appropriate limits of these
functions correspond to the various physical conditions of problem. For some
approximation of Whittaker functions, we recovered well-known results in section
4.2. For a vortex sheet approximation (with no simple shear layer) [6], the interface
is stable if Froude number M ≥

√
8. In the incompressible fluid [9, 38], the simple

shear flow is stable for large wave number or a short wave-length approximation,
but unstable for a long wave-length approximation. Numerically, we find that the
simple shear flow changes the stability property of the interface in zero thickness
model and leads to the flow being unstable for entire value of Froude number. It
is contrary to earlier results found for the discontinuity of a vortex sheet and the
simple shear layer in an incompressible fluid. However, this result agrees with the
case of hyperbolic tangent profile in a compressible fluid which instability occurs
at all Mach numbers considered by Blumen et al. (1975) [7].
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6. Internship’s Report
Numerical simulation of an interface

between two fluids flowing inside
branched pipes

6.1 Problem

A condensate recovery system for an ink jet printer includes an ink reservoir and
a condenser. The condenser is in fluid communication with the ink reservoir and
is adapted to receive exhaust from the ink reservoir and condense solvent from the
exhaust. The condenser includes a fluid inlet for receiving the exhaust from the
fluid reservoir, a condensing volume in fluid communication with the inlet, a vent in
fluid communication with the condensing volume for venting air from the condenser
and a fluid outlet for removing condensed solvent from the condenser and returning
the condensed solvent to the ink reservoir. A valve is in fluid communication with
the condenser fluid outlet and the fluid reservoir. The valve is operable to open and
close to control flow of condensed fluid from the condenser to the fluid reservoir.
The motion of fluids in the condenser are two phase flows with exchanging heat
between environments through the cooling technology. Therefore, the knowledge
of interaction of the interface between two phases helps to design condensers more
easily and to improve the cooling system of printers.

In this work, we will simulate the interaction of an interface between two fluids
(gas - liquid) flowing inside a T-branched pipe. In case of two-dimension flow is
simulated for two phase flow in the plane XZ without the exchange of heat between
fluids and environment. The finite element method (FEM) is used to solve a partial
differential equation numerically. The software FreeFem++ is used to simulate the
phase change of flow. The code is written by the programming language C++. In
case of three-dimension flow, we use the commercial software Ansys Fluent version
18.2. The Eulerian multiphase model is used to simulate flow. The heat exchange
between fluids and environment of the cooling system of printer is included. The
FLUENT solution is based on the following: A single pressure is shared by all
phases; Momentum and continuity equations are solved for each phase.
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6.2. Numerical simulation

6.2 Numerical simulation

6.2.1 Two dimensions simulation by using FreeFem++
Software

Phase field method - Allen Cahn Equation and Laminar flow (parabolic profile)
are used to analyze the two phase flow. The profile across a flat interface in an
equilibrium state is written as follows [36]

φ(ε) = 1

2
[1 + tanh( ε

2
√
κφ

)], (6.1)

in which ε denotes the signed distance in the direction normal to the interface from
the central position, κφ is the thickness of interface.

Phase field models are usually constructed in order to reproduce a given interface-
dynamics. For instance, in solidification problems the front dynamics is given by
a diffusion equation for either concentration or temperature in the bulk and some
boundary conditions at the interface (a local equilibrium condition and a conserva-
tion law), which constitutes the sharp interface model. A number of formulations
of the phase field model are based on a free energy function depending on an
order parameter (the phase field) and a diffusive field (variational formulations).
Equations of the model are then obtained by using general relations of statistical
physics. Such a function is constructed from physical considerations, but contains
a parameter or combination of parameters related to the interface width. Param-
eters of the model are then chosen by studying the limit of the model with this
width going to zero, in such a way that one can identify this limit with the in-
tended sharp interface model. The finite element method (FEM) is used to solve
a partial differential equation numerically. The software FreeFem++ is used to
simulate the phase change of flow. FreeFem++ includes a fast interpolation algo-
rithm and a language for the manipulation of data on multiple meshes, in which,
the programming was written by C++ language.

The condenser model is given by Table 6.1 and the shape of pipe is shown in
Figure 6.1. The initial conditions (at inlet) is given by Table 6.2

Table 6.1: The condenser model of T pipe in 2D

Model Length of horizontal branch High of vertical branch Diameter
L H D

2D 100m 100m 60mm

Table 6.2: The initial conditions at inlet.

Averaged velocity Phase field Mobility number Thickness of interphase
uin φ M κφ

0.5 m/s 0.3 0.0001 0.00001
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6.2. Numerical simulation

Figure 6.1: Numerical simulation two phase flow in a T-pipe by FreeFem++ at
time t = 3.24 and time step dt = 0.01.

6.2.2 Three dimensions simulation by using Ansys Fluent
Software

The Eulerian multiphase model is used to simulate two phase flow in three di-
mension by using software Ansys Fluent. This model allows for the modeling of
multiple separate, yet interacting phases. The phases can be liquids, gases, or
solids in nearly any combination. An Eulerian treatment is used for each phase, in
contrast to the Eulerian-Lagrangian treatment that is used for the discrete phase
model. With the Eulerian multiphase model, the number of secondary phases is
limited only by memory requirements and convergence behavior. Any number of
secondary phases can be modeled, provided that sufficient memory is available.
Volume fraction αq represents the space occupied between gas phase and liquid
phase, and the laws of conservation of mass and momentum are satisfied by each
phase individually. The derivation of the conservation equations can be done by
ensemble averaging the local instantaneous balance for each of the phases or by
using the mixture theory approach.

The volume of phase q, Vq, is defined by

Vq = ∫
V
αqdV , (6.2)

where αq = ∑nq=1αq = 1.
The internal energy balance for phase q is written in terms of the phase enthalpy

Hq = ∫ cp,qdTq, (6.3)
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6.2. Numerical simulation

where cp,q is the specific heat at constant pressure of phase q.
The rate of energy transfer between phases is assumed to be a function of the

temperature difference
Qp,q = hpq(Tp − Tq), (6.4)

where where hpq(= hqp) is the heat transfer coefficient between the pth phase and the
qth phase, Tp, Tq are the temperature of the pth phase and the qth phase, respectively.

The heat transfer coefficient is related to the pth phase Nusselt number, Nup,
by

hpq =
6κqαq(1 − αq)Nup

d2p
(6.5)

Here κq is the thermal conductivity of the qth phase, D = (dp +dq)/2 is the average
diameter of pipe. The Nusselt number Nup is typically determined from one of the
many correlations reported in the literature as follows

Nup = 2.0 + 0.6Re
1/2
p Pr1/3, (6.6)

where Rep is the relative Reynolds number based on the diameter of the pth phase
and the relative velocity ∣up − uq ∣, and Pr is the Prandtl number of the qth phase.

For Eulerian multiphase calculations, Ansys Fluent uses the phase coupled
SIMPLE (PC-SIMPLE) algorithm [39] for the pressure-velocity coupling. PC-
SIMPLE is an extension of the SIMPLE algorithm [31] to multiphase flows. The
velocities are solved coupled by phases, but in a segregated fashion. The block
algebraic multigrid scheme used by the density-based solver described in [41] is
used to solve a vector equation formed by the velocity components of all phases
simultaneously. Then, a pressure correction equation is built based on total volume
continuity rather than mass continuity. Pressure and velocities are then corrected
so as to satisfy the continuity constraint.

The condenser model is given by Table 6.3 and the shape of pipe is shown in
Figure 6.2.

Table 6.3: The condenser model of T pipe in 3D

Model Length of horizontal branch High of vertical branch Diameter
L H D

3D 100m 100m 6mm

The initial conditions are given by Table 6.4 at inlet and Table 6.5

Table 6.4: The initial conditions at inlet.

Turbulent intensity Turbulent viscosity Mass flow
0.5% 10 0.01 kg/s
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Table 6.5: The initial conditions at outlet.

Turbulent intensity Turbulent viscosity Pressure
0.5% 10 Profile Multiplier 1

Figure 6.2: 3D Geometry of numerical simulation two phase flow in a branched
pipe by Ansys FLuent

6.3 Conclusion

We have simulated two phase flow inside the T-pipe in two dimensions and three
dimensions. In case of 2D simulation, the fluids was Nitrogen (gas) and water
(liquid). There is no exchange of heat between fluids and environment. In case of
3D simulation, we used the fluids which are using in condenser system of printers
Ricoh Technology Center, Ricoh company. In this case, we considered the heat
exchange between fluids and environment. The interaction of interface between
two fluids depends on the density ratio and the velocity profile of flow. The velocity
and pressure of fluids at outlet depends on the shape of interface. The pressure
at the bottom outlet is smaller than at the top outlet caused by the effect of the
gravity force. The results show the surface tension becomes important related
the viscosity of materials and the diameter of pipes. The effect of the surface
tension is stronger to a smaller diameter but weaker to a larger diameter. The
volume fraction between two phases is calculated through calculating the shape of
interface and the transport of heat flux.

The results is restricted as some examples of two phases flow in the T-pipe.
The model has not been compared with real models to choose the initial condi-
tions suitable. Because of the security of company, we do not provide the detail
information of fluids anymore.
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Figure 6.3: Numerical simulation of the velocity of phase 1 (nitrogen) in a T-pipe
by Ansys FLuent

Figure 6.4: Numerical simulation of the pressure in a T-pipe by Ansys FLuent
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