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1 Introduction

Let M be a compact connected n-dimensional Riemannian manifold. Bochner’s celebrated
theorem asserts that if M has nonpositive Ricci curvature, then the dimension of the space
of Killing vector fields, i.e. that of the isometry group Isom(M), of M is smaller than or
equal to n. Moreover, if it is equal to n, then M is isometric to a flat torus. The purpose
of this paper is to give a perturbative result of this theorem. For a Riemannian manifold
M, we denote by gy the Riemannian metric, by Ricy, the Ricci tensor, and by diam (M)
the diameter of M.

First we give the following proposition.

PROPOSITION 1.1. For constants k, D > 0, there exists a constant € = e(n,k, D) >0

such that if a compact connected n-dimensional Riemannian manifold M satisfies
—kgn < Ricy < egu,
diam(M) < D,
then we have
dim Isom(M) <n

The proof of this proposition can be obtained by an easy modification of the proof
due to Gallot [7] for the following theorem, which is a positive counterpart of Proposition
1.1.

THEOREM 1.2 (Gromov [10], Gallot [7]). For a constant D > 0, there exists a constant

e =&e(n,D) > 0 such that if a compact connected orientable n-dimensional Riemannian
manifold M satisfies

RiCM Z —&4m,

diam(M) < D,
then the first Betti number by(M) of M satisfies

Our main concern is the case when dimIsom(M) = n. A positive counterpart is
already obtained by Colding [6], Cheeger-Colding [4].

THEOREM 1.3. For a constant D > 0, there exists a constant ¢ = £(n, D) > 0 such

that if a compact connected n-dimensional Riemannian manifold M satisfies

RiCM Z —€9wm,
diam(M) < D,
bl(M) =n,

1



then M 1is diffeomorphic to an n-torus T".

Note that their proof does not give an explicit estimate of the constant ¢ = e(n, D)
since it utilizes some compactness arguments. Our main result in this note is the follow-

ings.

THEOREM 1.4. For constants k, D > 0, there exists a constant € = e(n, k, D) > 0 such

that if a compact connected n-dimensional Riemannian manifold M satisfies

—k}gM S RiCM S Eqm,
diam(M) < D,
dim Isom(M) = n,

then M 1is isometric to a flat n-torus T™.

The proof of this theorem is different from that of Theorem 1.3. Moreover, since
we do not use any kind of compactness or convergence arguments, we can estimate ¢ =

g(n, k, D) explicitly.

This paper ia organized as follows. In section 2, we prepare basic notions and ter-
minologies of Riemannian geometry and Lie group theory. In section 3, we recall basic
properties of isometry groups and Killing vector fields. In section 4, we recall the Rieman-
nian curvature tensor of Lie group with left invariant metric. To prove Theorem 1.4, we
consider the curvature of isometry group, which is a Lie group, with left ivariant metric.
In section 5, we introduce the notion of the isoperimetric constant and recall Gallot’s
estimate of isoperimetric constant. In section 6, we recall Gallot’s two results. One is a
Sobolev inequality, and the other is an estimate of L>-norm by L2-norm, which is used
the isoperimetric constant. In section 7, we give a proof of Proposition 1.1, which is used
Gallot’s results in section 5 and section 6. In section 8, we give a proof of Theorem 1.4. To
prove this, we shall show that a given Riemannian manifold is homogeneous and almost
flat, and apply the structure theorem of compact Lie group to the identity component of
the isometry group.
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2 Preliminaries

In this section, we prepare basic notion and terminologiy with respect to Riemannian
geometry, and Lie group theory. We refer to [15] and [3]. Throughout this paper, we

assume that manifold is Hausdorfl and second countable.

2.1 Vector bundle and linear connection

DEFINITION 2.1 (Vector bundle). Let M and E be smooth manifolds, let 7 : £ — M
be a smooth map, and let k£ be a nonnegative integer. If the following two conditions are
satisfied, then the triple (F, M, ) is said to be a vector bundle of rank k over M.

(i) For every p € M, E, := 7 *(p) has the structure of a k-dimensional real vector space.
(ii) For every p € M, there exists a coordinate neighborhood U of p and a diffeomorphism
¢ :m Y (U) — U x RF such that the following hold:

(a) The equality pr; o ¢ = 7|7 ~1(U) holds, where pr; is the canonical projection from
UxRFtoU.

(b) For all ¢ € U, the map pryo @|r~1(q) : 7 1(q) — R is a linear isomorphism, where
pr, is the canonical projection from U x R¥ to R¥.

For a vector bundle (E, M, ), the manifold £ is called a total space, the manifold M
is called a base space, the map 7 is called a projection, and the vector space E, = 7 !(p)
is called a fiber at p € M. A pair (U, ) in Definition 2.1 is called a local trivialization. If
(U, §), (V, 1) is local trivializations, then the map Y o@~1: (UNV)xRF — (UNV) x R*
is diffeomorphic by the definition of the local trivialization. We also say just vctor bundle

E for short, omitting M and 7.

DEFINITION 2.2 (Bundle map and bundle isomorphism). Let (E, M, 7) and (F, N, p)
is vector bundles, let ® : E — F, f : M — N be smooth maps. The map ® is called a
bundle map from (E, M,7) to (F, N, p) covering f provided the follwing properties hold.

(i) po® = fom,

(ii) for every p € M the image ®(E,) is a vetor subspace of Fy ),

(iii) for every p € M the map ®|E, : E, — Fy(,) is a linear map.

In Particular, if M = N, f = idy;, and the bundle map & is bijective, then & is
called a bundle isomorhism and the vector bundle (E, M, ) is called to be isomorphic to
(F, N, p).

For a vector space V' we denote by V* the space of dual space of V', defined by
V*:={f:V — R]|linear map}.



DEFINITION 2.3 (Dual bundle). Let £ = (E, M, ) be a vector bundle and take the
dual space (E,)* of each fibre E,. Put

B = |_| (Ep)"

peEM

and define the map 7* : E* — M as

for any v3 € (Ej)*. Then, we can natulally define the structure of a vector bundle with
respect to the triple (E*, M, 7*) which is called a dual bundle of E.

DEFINITION 2.4 (Tangent bundle and cotangent bundle). Let M be an n-dimensional
manifold, let TM be the disjoint union of the family of tanget spaces {T,M },en, and
define the map my : TM — M as mp(vy,) := p for v, € T,M. Then, we can natulally
define the structure of a vector bundle with respect to the triple (7'M, M, my ). The
vector bundle T'M is called a tangent bundle and the dual bundle T*M := (T'M)* of TM

is called a cotangent bundle.

DEFINITION 2.5 (Tensor and tensor space). Let V' be an n-dimensionl real vector
space and V* be a dual space of V. Then, for nonnegative integers r, s, the (r, s)-tensor
space TT (V') is defined by

T S
A A

TTV):={t:V*x - x V' xV x---x V= R|f is a multilinear map}
(In the case (r,s) = (0,0), we identify 7% (V) = R).

A element of the (r, s)-tensor space T7 (V) is called a (r, s)-tensor on V/
Let {v;}; be a basis of V and let {v'}; be the dual basis of {v;};. We define v, ® -+ ®
v, QUL Q- @v eTHV) (ik=1,...,n(k=1,...;r),1=1,...,n(l=1,...,s)) as

s

T
Vi, @ @, @U@ @ v (ul, Lk wr, . wy) = HUZ(U%) ijl(vl).
k=1 I=1

Then, {v;, ® -+ @ v;, ® VIR ® vjs}il ,,,,, ir.j1...js Decomes a basis of the vector space
Tr7(V), and dim 77 (V) = n"**.

DEFINITION 2.6 (Tensor bundle). Let (E, M, ) be a vector bundle of rank k. Put

TI(B) = || TV(By),

peEM



and define the map «7 : T7(E) — M as

r

Ty (tp> =P

for any ¢, € T7(E,). Then, we can natulally define the structure of a vector bundle of
rank k"t* with respect to the triple (T7(E), M, n%). This vector bundle T7(E) is called a
(r, s)-tensor bundle of E. In particular, if the vector bundle E is the tangent bandle 7'M,
then T7(M) := TT(TM) is called a (r, s)-tensor bundle over M. Note that T3 (E) = E**
and TO(E) = E*.

REMARK 2.7. A (1,0)-tensor bundle T} (E) = E** is identified with the tangent bundle
E by the natural bundle isomorphism 7" : E' — E**, defined by (T'(uy))(vy) := vy (u,) for
uy, € B, and vy € EJ.

DEFINITION 2.8 (Section of vector bundle). Let E = (E, M, ) be a vector bundle. A
smooth map & : M — E is called a section of E if m o0& = idy;. We denote by I'(E) the

space of all sections, which has a structure of a C*°(M )-module.

REMARK 2.9. TY(E) is identified with C=(M). T'(Ty(E)) = T'(E**) is also identified
with I'(F) (see Remark 2.7). If E = T'M, then I'(T'M) is the space X' (M) of all vector
fields and I'(T*M) is the space Q(M) of all differential 1-forms on M. In particular,
(1,0)-tensor fields on M are identified with vector fields on M.

DEFINITION 2.10 (Tensor field). Let E = (E, M, n) be a vector bundle. Then, a
section of T7(E) is called a (r, s)-tensor field.

Let T € T/(E), w; € I'(E*) (i = 1,...,r), and X; € I'(E) (j = 1,...,s). The
C*>-function T'(wy, ..., wr, X1,...,Xs) € C°(M) on M is defined by

T(wi, ..o wr X1, .oo, Xo)(p) = Tp(wi(p)s - - -y wr(p), X1(p), - .., Xs(p)).

Then, themap T : (wq,...,wr, X1,...,Xs) = T(w1,...,w, X1,...,X,) becomes a C*(M)-

A A
N 7z N

multilinear map from I'(E*) x --- x ['(E*) x ['(E) x --- x T'(F) to C*°(M). Conversely,

A A

let T : T(E*) x -+ x T(E*) x T(E) x -+ x D(E) = C®(M) be a C*-multilinear map.
For each p € M we define the (r, s)-tensor T}, € T} (E,) as for a; € Ey (i = 1,...7) and
forv,e B, (j=1,...,s)

Tolag, ..., 001, ..., 0s) =T (wy, ... wp, X1,y ..o, Xs) (D)

where w; € I'(E*) (1 = 1,...7r) with w;(p) = o and X; € I'(E) (j = 1,...,s) with

Xi(p) = v;, which is well-difined. These give a correspondence between a (r, s)-tensor

A\ A\

~

field and a C*°(M)-multiliniear map from f(E*) X e X F(E*;x?(E) X - x I'(F) to
C>®(M).



EXAMPLE 2.11. The identification between a (1,0)-tensor fields on M and a vector
fields on M in Remark 2.9 is also given as follows: Let X € X(M). Then, the corre-
sponding element Tx € T'(Tj(M)), which is is given by Tx(w) = w(X) for w € Q(M).
Conversely, let T € T'(Ty (M)). Then, the corresponding element X7 € X (M) is given by
Xp(f) = T(df) for f € C=(M).

EXAMPLE 2.12. By Example 2.11, a C*°(M )-multilinaer map

7 S
A\ A\

T:Q(M) x - x QM) X X(M) x -+ x X(M) = X(M)

is regarded as a C'*°-multilnilear map
r+1 s

T:Q(M) x - x QM) x X(M) x -+ x X(M) = C=(M).

Thus, we can regard T as (r + 1, s)-tensor field on M.

DEFINITION 2.13 (Linear connection and covariant derivative). Let (E,M,w) be a
vector bundle. Then, a real bilinear map V : X(M) x I'(E) — I'(E), (X,&) — Vx¢ is

called a linear connection on E provided V satisfies that

Vix€ = [Vx¢E,
Vx(f&) = X(F)E+ [V x¢.
for any f € C®(M), X € X(M), and £ € I'(E). A section Vx¢ € I'(E) is also called a

covariant derivative of & with resoect to X.

DEFINITION 2.14 (Positive definite and symmetric (0,2)-tensor field). Let E be a
vector bundle and ¢ be a (0, 2)-tensor field on E.

(i) The (0, 2)-tensor field g is called to be positive definite provided for any X € I'(E)
the inequality ¢g(X, X) > 0 holds, and equality holds if and only if X = 0.

(ii) The (0, 2)-tensor field g is called to be symmetric provided for any X,Y € I'(E)
the inequality ¢(X,Y) = ¢(Y, X) holds.

DEFINITION 2.15 (Bundle metric and Riemannian vector bundle). Let E be a vector
bundle. Then, a positive definite symmetric (0,2)-tensor field is called a bundle metric

on E and the pair (F, g) is called a Riemannian vector bundle.

2.2 Riemannian geometry

DEFINITION 2.16 (Riemannian metric and Riemannian manifold). Let M be a smooth
manifold. Then, a positive definite symmetric (0,2)-tensor field g on M is called a
Riemannian metric on M and the pair (M, g) is called a Riemannian Manifold. Note

that for each p € M the (0, 2)-tensor g, become an inner product on 7, M.

6



For simplicity, for tangent vectors u,v € T,M and vector fields X,Y € X (M), we

denote the inner product by (u,v) = g,(u,v) and (X,Y) = g(X,Y’), and denote the norm
by |u| = g,(u, w)"? and | X| = g(X, X)/2.

EXAMPLE 2.17. Let (V, (-, -)) be a finite dimensional real inner product space, u € V.
We define the linear isomorphism ¢, : V- — T,V as ¢, (v) := ¢,(0) € T,,V for any v € V,
where ¢, is the curve on V' defined by ¢,(t) := u + tv for any ¢t € R. Then, the canonical

Riemannian metric gy on V is defined by

(v )ultu(v); tu(w)) = (v, w)
for any u,v,w € V.

The canonical Riemannian metirc on the Euclidean space R™ is defined as in Example
2.17. For any Riemannian manifold M and p € M we shall also consider the Riemannian
metric on 7,M defined as in Example 2.17 (consider (ga), as the inner product on
V =T,M) and identify ¢,(v) € T,,(T,M) with v € T, M.

DEFINITION 2.18 (Induced metric). Let (M, g) be a Riemannian manifold and let N
be a manifold and let ¢ : N — M be a immersion map. Then, the map ¢ induces

Riemannian metric h on N as follows: for u,v € T,N

hp(u;v) = gp) (dip(u), d(v)).
The metric h is called a induced metric (pullback metric) of g by ¢, and denoted by ¢*g.

DEFINITION 2.19 (Riemannian submanifold). Let N be a submanifold of a Riemannian
manifold (M, g). Then, for the inclusion map ¢ : N, the Riemannian manifold (N, ¢*g) is

called a Riemannian submanifold of (M, g).

DEFINITION 2.20 (Local isometry and isometry). Let (M, g) and (N, h) be Riemannian
manifolds and let ¢ : M — N is a smooth map. If the map ¢ satisfies p*h = g, then ¢ is
called a local isometry. Moreover, if the map ¢ is diffeomorphism, then ¢ is called a an

1sometry.

PROPOSITION 2.21. Let M, N be Riemannian manifolds and f : M — N be a smooth
map. Then, the following are equivalent.
(i) f is an isometry.

(i) f is a bijective local isometry.

DEFINITION 2.22 (Riemannian covering). Let M, N be Riemannian manifolds and
m: M — N be a covering map. If 7 is a local isometry, then 7 is called a Riemannian
covering. In particular, if M is simply connected, then 7 is called a universal Riemannian

covering.



PROPOSITION 2.23. Let M be a Riemannian manifold and N be a smooth manifold.
Let m: M — N be a covering map. If for all deck transformations of m are isometries,

then there exists a unique Riemannian metric on N such that m is a Riemannian covering.

DEFINITION 2.24 (Length of curves). Let M be a Riemannian manifold and let ¢ :
la,b] — M be a smooth curve on M. Then, the length L(c) of the curve ¢, is defined by

b
L(c) = / e(t)| dt
where ¢(t) € T, M is the velocity vector of c at t € [a,b].

DEFINITION 2.25 (Riemannian distance function). Let M be a connected Riemannian
manifold. Then, the Riemannian distance function d : M x M is defined by

d(p,q) :=inf{L(c) | ¢ is a smooth curve from p to ¢}.

PROPOSITION 2.26. The Riemannian distance function is a distance. Moreover, the
topology induced by the Riemannian distance function coincides with the topology as a

manifold.

DEFINITION 2.27 (Levi-Civita connection). Let M be a Riemannian manifold. Then,
the Lewvi-Civita connection V is a connection on the tangent bundle T'M satisfying that
for vector fields X, Y, Z € X(M),

VXY - VYX = [X7 Y]a
XY, Z)=(VxY,Z)+(Y,VxZ),
where [X, Y] is the Lie bracket of vector fields X and Y.

PROPOSITION 2.28. The Levi-Civita connection exists and is unique, and for smooth
vector fields X,Y, Z the folloing equality holds:

(VxY, Z) = %{X(Y, Z)+Y(Z,X) — Z(X,Y)
(X, Y], Z) = (Y, 2], X) + ([Z, X]. ) }.

REMARK 2.29. If vector fields X, X" € X' (M) satisfy that X}, = X/ for some p € M,
then we have (VxY), = (Vx/Y), for any Y € X(M). Thus, for v € T,M and Y € X(M)
we can define the vector V,,Y € T,M

VUY = (V)(Y)p

for some X € X (M) with X, = v, which is well-defined. Moreover, if Z € X(M) satisfies
that Y = Z on some smooth curve ¢ : (—¢,e) — M with ¢(0) = p and ¢(0) = v, then we
have V,X =V,Y.



Let M, N be Riemannian manifolds and ¢ be a diffeomorphism from M to N. For a
vector field X € X (M), we define the vector field dp(X) as

dp(X)p == d@(Xgofl(pﬁ
for any p € M.

PROPOSITION 2.30. Let M, N be Riemannian manifolds and ¥,V be Levi-Civita con-
nectons on M and N, respectively. Suppose that a smooth map ¢ : M — N 1is isometric.
Then, the follwing holds: for any vector fields X,Y € X (M),

dp(VxY) = Vaxydp(Y).

DEFINITION 2.31 (Gradient, Hessian, divergence, and Laplacian). Let M be a Rie-
mannian manifold.
(1) For f € C*°(M), the gradient vector field of f, denoted by V f, is the smooth vector
field on M defined by
Xf:=(Vf, X), X e X(M).

(2) For f € C*°(M), the Hessian of f, denoted by Hess(f), is the symmetric (0, 2)-tensor
field on M defined by
Hess(f)(X,Y) :=(VxV/[,Y), X, Y € X(M).

(3) For X € X(M), the divergence of X, denoted by div(X), is the smooth function on
M defined by
div X (p) := trace(T,M — T,M,u+— V,X).

(4) For f € C*(M), the Laplacian of f, denoted by Af, is the smooth function on M
defined by
Af = —traceHess(f) = —div(Vf).

Levi-Civita connection is extended on the (7, s)-tensor bundle 77 (M) as follows: for
any 7' € T7 (M) and X € X(M), we define VxT as
o (rs) = (0,0) (T € C=(M))

VxT = X(T),

e (r,s)=(0,1)
VxT(Y):=X(T(Y)) —T(VxY)

for any X € X (M),



o (r,5) #(0,0),(0,1)
VXT(wl,. .. ,wr,Xl,. .. ,XS) = X(T(wl, .. ,wr,Xl, .. >Xs))

=) T(wi,...,Vxwi,. .. ,wp, X1, X,)
=1

=Y T(wr,...w, X, VXX, X,
j=1

forany X; €e X(M) (i =1,...,r)and w; € QM) (j=1,...,s).

For a vector field X on M and a (0, 1)-tensor field 7" on M which corresponds to X in
the sense of the identification as in Remark 2.9, Vy X also corresponds to VyT for every
Y € X(M) by Example 2.11.

DEFINITION 2.32 (VT and VX (T € I'(T7(M)), X € X(M))). Let T be a (r, s)-tensor
field on a Riemannian manifold M. Then, the (r,s + 1)-tensor VX is defined by

VT(wl,...,wT,X,Xl,...,XS) = VXT(wl,...,wr,Xl,...,Xs)

forany X, X; e X(M) (i=1,...,r)and w; € QM) (j =1,...,s). Similarly, for a vector
field X, we define the C*°(M)-linear map VX : X (M) — X (M) as

VX(Y):=VyX
for Y € X(M).

DEFINITION 2.33 (Parallel tensor field and parallel vector field). We say that the
tensor field 7" on a Riemannian manifold is parallel provided VI' = 0. Similarly, we say

that the vector field X on a Riemannian manifold is parallel provided VX = 0.

For a smooth manifolds M, N and a smooth map ¢ : N — M, we denote by X (¢, M)
the space of smooth functions from N to T'M such that for any p € N the image of p is
an element of Ty, M. X (p, M) become a C*(N )-module.

DEFINITION 2.34 (Vector field along curve). Let M be a smooth manifold and ¢ :
(a,b) — M be a smooth cureve on M. Then, an element of X (¢, M) is called a vector

field along the curve c.

DEFINITION 2.35 (Covariant derivative of Y € X' (¢, M)). Let ¢ : N — M be a smooth
map from a smooth manifold N to an n-dimensional Riemannian manifold N and V be a
Levi-Civita connection on M. Then, we define the covariant derivative VxY € X (p, M)
of Y € X(p, M) with respect to X € X(N) as for any p € N
0 0
1)) = 3 (X0 ) + Vs ) (€ T ).

i=1

n

10



where (z!,...,2") is a coordinate neighbourhood of ¢(p) € M and Y (i = 1,...,n) is the
smooth function on the coordinate neighbourhood such that Y'(¢) = > | Y*(q)9/0z"(¢(q)).
This definition is well-defined. Moreover, since for any f € C*(N), X € X(N), and
Y € X(¢, M) the equalities

VixY = fVxY,

Vx(fY)=X(/)Y + [VxY
hold, the real bilinear map V : X(N) x X (¢, M) — X(p, M), (X,Y) — VxY regard as

a linear connection. In the same way as Remark 2.29, for v € T,N and Y € X(p, M) we
can define the vector V,Y € Ty, M.

For a vector field X (¢) along a curve ¢(t) on a Riemannian manifold, we sometimes

denote by VX the covariant derivative V 4 X for simplicity.
t

DEFINITION 2.36 (Parallel vector field along curve). Let ¢ : (a,b) — M be a curve on

a Riemannian manifold M and X be a vector field along ¢. Then, X is called parallel if
VX(t) =0 for any ¢ € (a,b).

PROPOSITION 2.37. Let ¢ : (a,b) — M be a smooth curve on a Riemannian manifold
M. Then, the following hold.

(i) For any tg € (a,b) and u € T.(t)M, there exists a unique parallel vector field X
along ¢ such that X (ty) = u.
(ii) For any parallel vector fields X, Y along ¢, the following holds: for any s,t € (a,b),
(X(s), Y (s)) = (X(1),Y(2)).
In particular, | X (t)| is a constant function.

Now we define the curvatures.

DEFINITION 2.38 (Riemannian curvature tensor). Let M be a Riemannian manifold.
Then, the Riemannian curvature tensor of M, denoted by R, is (1,3)-tensor field on M
defined by

R(X,Y)Z = VXVyZ—vaXz—V[X,y}Z, X,Y,ZE X(M)

PROPOSITION 2.39. The Riemannian curvature tensor R on a Riemannian manifold

M satisfies the following inequalities: for any X,Y,Z, W € X (M),
R(X,Y)Z = —R(Y, X)Z.

RX,Y)Z+R(Y,Z)X + R(Z,X)Y =0,

(R(X,Y)Z,W)=(R(Z,W)X,Y),

(VAR)(Y. Z)W + (Vy R)(Z, X)W + (V2R)(X,Y)W = 0.

11



PROPOSITION 2.40. Let M, N be Riemannian manifolds and R, R be Riemannian

curvature tensor on M, N. Suppose that a smooth map ¢ : M — N s locally isometric.
Then, the following holds: for any uw,v,w € T,M (p € M),

dip(R(u, v)w) = R(dp(u), dp(v))dip(w).
DEFINITION 2.41 (Sectional curvature). Let M be a Riemannian manifold. Let o be
a two-dimensional subspace of T,M and {u,v} be a basis of 0. We define the sectional

curvature K, of o as

(R(u,v)v,u)
K, = ,
ul?|v]?* = (u,v)?

which dose not depend on the choice of the basis {u,v} of 0. We sometimes denote by
K (u,v) instead of K,.

If there exists a constant ¢ € R such that for any p € M and two-dimensional subspace
o of T,M the sectional curvature K, is equal to ¢, then we say that M has constant
curvature ¢. A Riemannian manifold with constant curvature 0 is asid to be flat. The

Euclidean space with canonical Riemannian metric has constant curvature 0.

DEFINITION 2.42 (Flat torus). Let I" be a descrete subgroup of R™ such that I' is
isomorphic to Z™. By Proposition 2.23, there exists a unique metric gr» on T" := R™/T’
such that the projection map 7 : R"™ — T" is a universal Riemannian covering. The

Riemannian manifold (T™, g1~ ) is flat and called a flat torus.

DEFINITION 2.43 (Ricci curvature tensor). Let M be a Riemannian manifold. We
define the Ricci curvature tensor, which is a symmetric (0, 2)-tensor field, as follows: for
any u,v € T,M (p € M),

Ric(u,v) := trace(w — R(w,u)v).

DEFINITION 2.44 (Normal bundle and normal vector field). Let M be a Riemannian
manifold and N be a submanifold of M. Put

TN* = | | T,N*,

peEM

where T,N* is the orthogonal complement of T,N C T,M. Then, TN+ becomes a
submanifold of TM. Moreover, for the smooth map 7y := my TN+ : TNt — N, the
triple (I'N+, 3, N) become a vector bundle. This vector bundle is called a normal bundle,

and a section of TN+ is called a normal vector field on N.
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DEFINITION 2.45 (Shape operator). Let M be a Riemannian manifold and N be a
submanifold of M. Let V be the Levi-Civita connecton on M. For £ € T,N* (p € N),
we define the shape operator A¢ : T,N — T,N as

Ag(u) = (Vo X)',

where X is a normal vector field on N such that X, = £ and (V,X)7 is the horizontal
component of V, X with respect to 7,,/N. This definition is not depend on the choice of

X, and A¢ become a symmetric linear operator.

DEFINITION 2.46 (Mean curvature). Let H be a hypersurface of an n-dimensional
Riemannian manifold M and v be a unit normal vector to H. Then, the mean curvature

n of H with respect to v is defined as

n

1 1
n = : trace A, = Z<Ay(ei), ei)

n— n—1
=1

~

where {e;}7-]! is an orthonormal basis of T, N.
Next, we define geodesics, exponetinal maps, and Jacobi fields.

DEFINITION 2.47 (Geodesic). Let v be a smooth curve on a Riemannian manifold.
We say that ~ is a geodesic provided ~y satisfies

REMARK 2.48. Geodesics on a Riemannian manifold exist and are unique in the fol-
lowing sense:

(i) For any tp € R and u € TM, there exist an open interbal (a,b) and a geodesic
v : (a,b) — M such that ¢y € (a,b), y(to) = mam(u), and ¥(ty) = w.

(ii) For geodesics v : (a,b) — M and 0 : (¢,d) — M, if v(ty) = d(so) (to € (a,b),
so € (¢,d) ) and dvy/dt(ty) = dd/ds, then the equality

A(t) = 6(t — to + s0)

holds for any ¢ € (a,b) N (ty + ¢ — so,to + d — sg). Moreover, v is extend on the open

interval (a’,0'), where o’ := min{a, to + ¢ — so} and 0’ := max{b,ty +d — so}).

For u € TM, we denote by =, the geodesic on a Riemannian manifold M with ~,(0) =
7y (u) and 4(0) = u. For a € R and u € TM, if 7,,(t) is defiend, then the inequality

Yau (t) = %L(at)

holds. In particular, v,(t) = yu(1).
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PROPOSITION 2.49. Let M be a Riemannian manifold and ug € TM. Then, there
exist € > 0 and a neighbourhood U C T'M of uy such that for any uw € U the geodesic 7,
is defined on the open interval (—e,e) and the map U x (—¢e,e) — M, (u,t) — Y,(t) is

smooth.

DEFINITION 2.50 (Exponential map). Let M be aRiemannian manifold and p € M.
Put
U := {u € T,M | the geodesic v, (t) is defined at t = 1},

which is an open set in T}, M. Then, the ezponential map exp,, : U — M at pis defined as
exp, u = Yy (1),
which is smooth.

PROPOSITION 2.51. The exponetial map exp,, is a diffeomorphism from a neighbour-
hood of the origin of T,M to a neighbourhood of p.

DEFINITION 2.52 (Normal coordinate system). Let M be a Riemannian manifold, p €
M, and {e;}!, be an orthonormal basis of 7,M. By Proposition 2.51, a differomorphism
f from a neibourhood U of 0 € R™ to a neibourhood U of p is defined as

fla', . x") =expy(aler + ...+ 2"e,).

Then, (U, := f~!) become a coordinate system on M. The coordinate system (U, ¢) is

called a normal coordinate system at p.

PROPOSITION 2.53. Let M be a Riemannian manifold and p € M. For the normal
coordinate sysytem (U, (z*,...,2")) at p, we put &; := 90/dx* (i = 1,...,n). Then, the
following hold:

(i)

(0, 0;) (p) = i

(ii) For any X € X(M),

Vx0;(p) = 0.

DEFINITION 2.54 (Injective radius). Let M be a Riemannian manifold. Then, the
injectivity radius at p € M is defined as

ip(M) = sup{r > 0 | exp, |B(0p,7) is a diffeomorphism},
where o, is the origin of the tangent space T, M. The injectivity radius of M is defined as
i(M) :=inf{i,(M) | p € M}.
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PROPOSITION 2.55. For a compact Riemannian manifold, the injectivity radius i(M)

18 positive.
DEFINITION 2.56 (Normal exponetial map). Let M be a Riemannian manifold and N
be a submanifold of M. Put
V := {u € TN* | the geodesic 7,(t) is defined at ¢t = 1},

which is an open set in TN+. Then, the normal exponential map expy : V — M of N is
defined as

expy u = Y, (1),

which is smooth.

DEFINITION 2.57 (Jacobi field). The vector field Y along a geodesic v on a Riemannian
manifold is called a Jacobi field provided the equality

VVY(t) = R(Y(t),7(1)7(t)
holds.

PROPOSITION 2.58. Let 7y : (a,b) — M be a geodesic on a Riemannian manifold and
to € (a,b). Then, for any u,v € T.uy)M, there exists a unique Jacobi field along v with
Y(to) = u, VY(to) = .

EXAMPLE 2.59. Let M be a Riemannian manifold and w,v € T, M. Then, the Jacobi
field Y along =, with Y (0) = 0, VY (0) = v can be written as
Y(t) = tdexp,(tu)v.

ExXAMPLE 2.60. Let M be a complete Riemanian manifold with constant curvature &
and 7y : (—00,00) — M be a normal geodesic on M. Let Y be a normal Jacobi field along
v and take the parallel vector fields Ei, Fy along v with E1(0) = Y(0), E»(0) = VY (0)
respectively. Put

(sin(\/Et)/\/% (k > 0)
sp(t) = Q¢ (k=0),
| sinh(+/[K[t)/ /K[ (k < 0)
(cos(VRL) (k> 0)
a(t) =11 (k=0).
\cosh( |k[t) (k<0)

Then, Y'(¢) can be written as
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PROPOSITION 2.61 (Gauss’s Lemma). Let M be a Riemmanian manifold, p € M, and
u,v € T,M. Then, for any u,v € T,M the following inequality holds.

(dexp,(u)v, dexp,(u)u) = (u,v).

DEFINITION 2.62 (Conjugate point). Let M be a Riemannian manifold and 7 : [a, b] —
M be a geodesic. Put p := ~y(a), q := v(b). We say that q is conjugate to p along ~ provided
there exists a nonzero Jacobi field Y along « satisfying that Y (a) = 0,Y(b) = 0.

DEFINITION 2.63 (N-Jacobi field). Let N be a submanifold of a Riemannian manifold
M and u € T,N* (p € N). Then, a Jacobi field Y along ~, is called a N-Jacobi field
provided Y satisfies

Y (0) € T, N, VY (0) — A,Y(0) € T,N*,
where A, is the shape operator of N with respect to u.

EXAMPLE 2.64. Let H be a hypersurface in a Riemannian manifold M, v be a normal
vector field on NV, and w € T, N. Define the function ¥ : N x R as

U(p,t) = ty,.

Then, the H-Jacobi field Y along v,, (p € N) with Y(0) = u, VY (0) = A, can be written
as
Y (t) = d(expo¥)(p,t)(u,0),

where (u,0) € T,N @ T;R = T, (N x R).
Next we recall the Riemannian measure.

DEFINITION 2.65 (Inner product on exterior power). Let V' be an n-dimennsional real
inner product space and {e;}!; be an orthonormal basis on V. We denote by A"(V') the
rth exterior power of V*. Then, the inner product on A"(V) is defined as

< Z Qiy,.in€iy N o N €y E bji ... jrejl/\"'Aej">:: Z iy Vi i

g <o <ldp J1<<jr

which does not depend on the choice of the orthonormal basis {e;} ;.

REMARK 2.66. Let V' be an n-dimennsional real inner product space and {e;}?_, be

an orthonormal basis on V. Then, for vy,...,v, € V, the follwing equalities hold:
U1 A A, = det((vg, e5))i €1 A A e,
o1 A Avn| = [det((ui €5))i5] = 4/ det({vi, v))i 50
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DEFINITION 2.67 (Determinant of linear map between inner product spaces). Let V, W
be n-dimensional inner product spaces and {ey, ..., e, },{f1,..., fn} be orthonormal bases
of V and W, respectively. Let T': V — W be a linear map. We define the determinant
of T as

det T := det((T'(e;), fi)w)ij-

By the definition, the following holds.

[det 7| = \fdet(T(e.), T(e,)w )iy = [T(ex) A=~ A T(ex)
For A C M, we denote by x4 the indicator function of A.

DEFINITION 2.68 (Riemannian measure). Let M be an n-dimensional Riemannian
manifold M and B be the Borel algebra on M (or the o-algebra generated by the family
of inverse images of Lebesgue measurable sets by coordinate systems on M). Take an atlas
{(Us, 0 = (z},...,2")) }aca and a partition of unity {p,}aca subordinate to {Uy, }aeca-
Define the function J, : U, — R as

Jnp) = | detdgg (pa(p))] = \/det ({50 a%@)»U -

Then, the Riemannian measure vy : B — [0, +00] is defined as

Z/ anBJ 090;1(55(117"'7IZ) dxi...dxa
a Ua

a€cA

which does not depend on the choice of the atlas {(U,, 0o = (zL,...,2"))}aca and the

)

partition of unity {ps}aca. Then, a triple (M, B, v);) become a measure space. vy (B) is
called a volume of B, denoted by vol(B).

PROPOSITION 2.69. Let M, N be Riemannian manifolds with dim M = dim N and
@ : N — M be a diffeomorphism. Then, for any integrable function f on M, the following
equality holds:

/fde:/fogo|detd<p|va.
M N

In particular, for an isometry ¢ : N — M,

/Mfde:/Nfogpva.

For a Riemannian manifold M and p € M, we define the diffeomorphism 6, : (0, 00) x
SpM — T,M \ {op},
O,(t,u) == tu

17



where S,M = {u € T,M | |u| = 1} C T, M the unit sphere in 7, M and o, is the origin of
T,M. For any r > 0 define the map ©,,, : S,M — T,M \ {0,} as O,,(u) := O,(r,u). We
shall estimate the (n — 1)-dimesional volume vol,,_1(0B(p,)) applying Proposition 2.69
for the diffeomorphism exp,0©,, : S,M — 9B(p,r) (r > 0 is sufficiently small).

ProPOSITION 2.70. We put
0,(t,u) == | det d(exp, 0 ©,)(t, u)|

0, (u) :=|det d(expp 00, )(u)]

For (t,u) € (0,+00) X S,M and an orthonormal basis {e1,...,e,} of T,M with e, = u,
we take the Jacobi fields Y; (i = 1,...,n — 1) along the normal geodesic ~, with Y;(0) =
0,VY;(0) = e;. Then, the following equalities hold.

0,(t,u) = """ \/det(d exp, (u)e;, dexp,(u)ej)i<ij<n—1
— \/det<Yi(t), Y;(t))i<ij<n—1,
Op.r(u) = Op(r, u).

EXAMPLE 2.71. Let 7o be a positive constant such that exp,, |B(0,,70) is a diffeomor-

phism. Then, by Proposition 2.70 we have, for 0 < r < rg,

vol(B(p,r)) :/SM/OT 0,(t, u) dtdvg, ()

vol, 1(0B(p, 7)) = / 6, (1) dus, as (1)

SpM
COROLLARY 2.72. Let M be a n-dimensional Riemannian manifold andp € M. Then,

the following hold:
1(B
lirg VO (B(p,¢))

e—0 gn

i vol,,_1(0B(p,€))

= vol(Bg(1)),
\li—>0 gn—l = VOln_1<aBSL 1 ),

(1)
Vol 1(9B(p.2) _ volu 1 (9B(1))
)n 1

n— Y

i -
=0 vol(B(p,e) ' vol(By(1) 5
where B{(1) is a unit ball in n-dimensional Euclidean space R™.

If M has a constant curvature k, then a Jacobi field Y along the normal geodesic 7,
(u € S,M) with Y(0) = 0 can be written as

Y(t) = sk(t)E(),

where E is the parallel vector field along 7, with £(0) = VY'(0). In this case, the following

corollary holds.

18



COROLLARY 2.73. Let M be a n-dimensional Riemannian manifold with constant

curvature k. Then, we have
Op(t,u) = 537 (1),
Opr(u) = 5371 (r),
and for a constant ro such that exp, |B(op,10) is a diffeomorphism, the following hold: for

any 0 < r < rg, .
vol(B(p,r)) = volnl(ﬁBg(l))/o spH(t) dt,
vol,_1(0B(p,r)) = vol,,_1(By (1))sy ' (r).

In particular,

_ vol,—1(0B (1))

n

vol(Bg(1))

PROPOSITION 2.74 (Coarea formula). Let M be a Riemannian manifold and f be a
proper smooth function on M. By Sard’s theorem, the set of critical values is a null set
in R, and for almost everywhere reqular point t € R, f~(t) is a compact hypersurface in

M. Then, for any integrable function u, the following equality holds.

+oo
/ u|V fldvpy = / {/ udvf1(t)] dt,
m oo L)

where vy-1(y 1s the Riemannian measure of the Riemannian submanifold f7Ht) of M.

THEOREM 2.75 (Divergence theorem). Let M be a Riemannian manifold. Then, for
any C-vector field X on M with compact support, the following equality holds.

/ div Xdvy; = 0.
M
Next, we define the completeness and recall some comparison theorems.

DEFINITION 2.76 (Geodesically complete). A Riemannian manifold M is called to be
geodesically complete at p € M provided for any u € T,M the geodesic v, is defined on
R. M is called to be geodesically complete provided for any p € M, M is geodesically

complete at p.

THEOREM 2.77 (Hopf-Rinow theorem). Let M be a connected Riemannian manifold.
Then, the following are equivalent.

(i) M is a complete metric space for the Riemannian distance d of M.

(ii) There ezists p € M shuch that M is geodesically complete at p.

(1ii) M is geodesically complete.

() There exists p € M such that for any r > 0, B(p,r) := {g € M | d(p,q) < r} is
compact.

(v) For any p € M and r >0, B(p,r) is compact.
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We simply say that a connected Riemannian manifold M is complete provided M
satisfies the condition in Theorem 2.77. We see that compact connected Riemannian

manifolds are complete.

PROPOSITION 2.78. Let M, N be connected Riemannian manifolds and f : M — N

be a local isometry. If M is complete, then f is a Riemannian covering.

THEOREM 2.79 (Rauch comparison theorem). Let M be a complete Riemannian man-
ifold and Ky be a sectional curvature of M. Let ~ : [0,00) — M be a normal geodesic
and Y be a normal Jacobi field along v with Y (0) = 0.

(i) Assume Ky < A and put to :=sup{t > 0| 0 < Vt' < t,sA(t') > 0}. Then, for
0<t<ty,

Y (£)] = [VY (0)[sa(t).
(ii) Assune Ky > 6 and let to be the minimum positive value of t such that y(t) is

conjugate to vy(0) along v (if for all t > 0 the point ~(t) is not conjugate to v(0) along -,
then put ty := +00). Then, for 0 <t < t,

Y (£)] < [VY(0)]s5(t).

COROLLARY 2.80. Let M be a complete Riemannian manifold satisfying 6 < Ky < A.

(i) Let p € M and u € T,M be a non-zero tangent vector such that 0 < |u| < 7/vA
(when A > 0, we interpret /A = +0c). Then, for all non-zero tangent vector v € T,M
with u L v the following inequalities hold.

sallul) _ ldexpy(u)o] _ ss(u)
Wl =l Tl

(ii) Assume M is compact. Then, for ¢ > 0 there exists a positive constant r =
r(M,gum,e) < i(M) such that for any p € M and domain Q@ C B(r,p) with smooth
boudary the following inequlities hold.

(1 —¢)vol(2) < vol(2) < (1 +¢)vol(£2),

(1 — &) vol(8Q) < vol(8Q) < (1 + &) vol(9£).

where Q = exp, ' (Q), vol(Q2) is the Euclidean volume on T,M induced by the its innner
product g,, and vol(0K) is the (n — 1)-dimensional volume as the Riemanian submanifold

00 C T,M.

PROPOSITION 2.81 (Bishop’s inequality). Let M be a complete n-dimensiona Rieman-
nian manifold with Ricyy > k (k € R). Then, for any p € M and r > 0 the following
inequality holds.

vol(B(p,r)) < vol(Bg(r)),
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where B} (r) is the ball of radius v on the n-dimensional simply connected space form with

constant curvature k.

THEOREM 2.82 (Heintze-Karcher). Let M be a complete Riemannian manifold with
Ricys > kgpr for some k € R and H be a hypersurface in M. Let v be a unit normal
vetor field on H and n be the mean curvature function of H with respect to v. Then, the

following inequality holds.
[ det dP|(p,t) < (cr(t) +n(p)sk(t)" ™, 0 <t <to(H, 1),
where to(H, vp,) == sup{t > 0| for any t' € (0,t), rankd¥(p,t') = n}.
Finally, we recall the Gromov’s almost flat theorem [9].

PROPOSITION 2.83 (Gromov’s almost flat theorem). Let M be a compact connected
n-dimensional Riemannian manifold. Then, there exists an explicit postitive constant € =
e(n) such that if | Ky diam(M)?| < e, then the universal covering of M is diffeomorphic
to R™.

2.3 Lie group, Lie algebra, and homogeneous space

DEFINITION 2.84 (Lie Group). Let G be a group with structure of a C'*°-manifold.
Then, G is called a Lie group provided the map G x G — G defined by (a,b) — ab™! is

smooth.
PROPOSITION 2.85. The product of two Lie groups is also a Lie group.

DEFINITION 2.86 (Lie subgroup). Let H be a subgroup of a Lie group G. Then, H is
called a Lie subgroup provided H is a Lie group and the inclusion map ¢ : H < G is a

smooth immersion.

PROPOSITION 2.87. Let G be a subgroup and N be a normal Lie subgroup of G. Then,
the quatient G/N 1is also a Lie group.

DEFINITION 2.88 (Lie group homomorphism and Lie group isomorphism). Let G and
H be Lie groups. Then, a smooth homomorhism F' : G — H is called a Lie group
homomorphism. Moreover, if F': G — H is bijective and F~! : H — G is a Lie group
homomorphism, then F'is called a Lie group isomorphism and we say that G is isomorphic
to H.

For a group G, we denote by L, (resp. R,) the left (resp. right) translation of a € G
defined by L, : G — G,z — ax (resp. R, : G — G,x — xza). Note that if G is a
Lie group, then for any a € G the left translation L, and the right translation R, are

diffeomorphisms on M
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DEFINITION 2.89 (Left invariant vector field and Right invariant vector field). Let X
be a smooth vector field on a Lie group G. Then, X is called a left (resp. right) invariant
vector field on GG provided for any a € G the equality

dL,(X) =X (resp. dR,(X) = X)
holds.

DEFINITION 2.90 (Lie algebra). Let g be a real vector field with binary operation |-, |
on g. The binary operation [+, -] is called a Lie bracket on g provided the following hold:
(i) For any a,b € R and z,y,z € g,

[ax + by, z] =alz, 2] + bly, 2],

[z, ay + bz] =alz,y] + b[z, z].

(ii) For any z,y € g,
[x>y] = _[yv ZU]

(iii) For any x,y, 2z € g,
[z, 9], 2] + [ly, 2], 2] + [[2, 2], y] = 0.
If [-,] is a Lie bracket, then we say that g is a Lie algebra.

For instance, the space X' (M) of vector fields on a smooth manifold M with Lie bracket
-, ], defined by [X,Y](f) := X(Y(f)) = Y(X(f)) (f € C*(M)), is a Lie algebra.

DEFINITION 2.91 (Adjoint endmorphism). Let g be a Lie algebra. For any a € g, we
define the adjoint endmorphism ad, : g — g as

ad,(z) := [a, x].

DEFINITION 2.92 (Lie algebra of Lie group). Let G be a Lie group. Since for any
left, invariant vector fields X and Y on G the Lie bracket [X,Y] is also a left invariant
vector field, the space Lie(G) of left invariant vector fields on G become a Lie subalgebra
of X(G). We say that Lie(G) is the Lie algebra of G.

For a Lie group G, we see that the dimension of G as a manifold is equal to the

dimension of Lie(G) as a vector field.

DEFINITION 2.93 (Universal covering group). Let G be a connected Lie group and
take a universal cover 7 : G — G. Then, there exists a structure of Lie group on G such
that = become a group homomorphism and a smooth map. We say that G is a universal

covering group. The universal covering group G is unique up to group isomorphism.
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THEOREM 2.94 (Structure theorem of compact Lie group [3]). Let G be a compact
connected Lie group. Then, there exist a nonnegative integer k (< n), a simply connected
compact Lie group Gy, and a finite central subgroup Z of T" x Gy such that G is ismorphic
to (T" x Gy)/Z.

REMARK 2.95. Note that the simply connected Lie group R™ x Gy is a universal
covering group of G = (T" x Gy)/Z.

Next, we define homogeneous spaces.

DEFINITION 2.96 (Lie transformation group). Let G be a Lie group and M be a
smooth manifold. If G acts on M (on the left) and the group action (g,p) — g - p is

smooth, then G is called a Lie transformation group acting on M.

DEFINITION 2.97 (Homogeneous space). Let G be a Lie transformation group acting

a smooth manifold M. If G acts transitively, then M is called a homogeneous space.

DEFINITION 2.98 (Isotoropy group). Let G be a Lie transformation group acting a
smooth manifold M and p € M. Then, the closed Lie subgroup H of GG defined as

H:={geG|g-p=np}

is called an isotoropy group.

PROPOSITION 2.99. Let G be a Lie transformation group acting a smooth manifold
M, p € M. Assume that M is a homogeneous space. Then, for the isotoropy group
H:={9€G|g-p=p}, G/H becomes a smooth manifold. Moreover, the map G/H —
M, gH — g -p is a diffeomorphism.
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3 Isometry group and Killing vector fields

3.1 Definition and some properties

DEFINITION 3.1. Let M be a Riemannian manifold and Isom (M) be the set of isome-
tries on M. Then, considering the composition of isometries as the group law, Isom(M)

become a group. The group Isom(M) is called an isometry group.

PROPOSITION 3.2. For a Riemannian manifold M, there exists a unique way to make
Isom(M) a Lie group as follws:

(i) The action Isom(M) x M — M, (¢, p) — ¢(p) is smooth.

(ii) A one-parameter group o : R — Isom(M) is smooth as a map if the map R x M —
M, (t,p) — a(t)(p) is smooth.

DEFINITION 3.3 (Riemannian homogeneous space). Let M be a Riemannian mani-
fold. Then, if the isometry group Isom(M) acts on M transitively, then M is called a

Riemannian homogeneous space

DEerFINITION 3.4 (Killing vector field). A smooth vector field X on a Riemannian
manifold on M is called a Killing vector field provided

‘CXgM = Oa
where Lx gy be the Lie derivative of gy, with respect to X.

By the definition of Lie derivative, X is a Killing vector field on a Riemannian manifold
M if and only if for any vector fields Y, Z € X' (M) the following eaualiy holds:

(VyX,Z) + (VzX,Y) =0.

PROPOSITION 3.5. Let X be a Killing vector field on a Riemannian maniofid M.
Then, the following hold.

(i) For any isometry ¢ € Isom(M), the vector field dp(X) is also a Killing vector
filed.

(i) For any (local) flow (¢i): of X the map @, is (locally) isometric if and only if X
is a Killing vector field. In particular, if X is a complete vector field, then ¢, € Isom(M)
for the flow (@) of X.

(i) For any geodesic v on M, X(t) := X, is a Jacobi field along .

(iv) For any integral cunrve ¢ of X, ¢ have a constant speed.

(v) If the manifold M is complete, then X is a complete vector field.
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PROPOSITION 3.6 (Bochner formula [14]). Let X be a Killing vector field on a n-

dimensional Riemannian maniofld M. Then, the following equality holds:
1
5A|X|2 = —|VX|* + Ric(X, X),

where [VX|(p) := (31, Ve, X |? )1/2 ({ei}?, is an orthonormal basis of T,M ).

PROOF. By the definition of Killing vector fields, for any vector field Y € X' (M) we

have
<V|X|2,Y> = Y(|X|2) =2(Vy X, X) =—-2(VxX,Y),

and thus
VIX|? = -2VxX.
From this equality, we have

1
§A|X|2 = divVxX.

Let (U, (z',...,2")) be a normal coordinate system at p € M and put 9; := 9/0z"

(t=1,...,n). By the definition of divergene and curvature tensor, we have

n

1 2
SALX] :;W@,.VXX, ;)
—Z (05, X) X, 0:) + (VxV3,X,0,) + (Vo x1X, 0]
= Ric(X, X) + Z [(VxV5,X,0:) + (Vo x X, 0:)] -
i=1
Since (Vg, X, 0;) = 0, we have
(VxV,X,0:) + (Vi x) X, 0;) = (VxVa, X, 0;) — (Va, X, [0;, X])
= (Vx Vo, X, 0) + (Vo X, Vi) — [Vo, X[’
= X(Vy,X,0;) — V5, X|?
= _‘V3¢X|2'
Thus, we get the conclusion. Il

ProposITION 3.7 (Kato’s inequality [1]). Let X be a Killing vector field on a Rie-

mannian maniofid M. Then, the inequality
VIX]| < [VX]|
holds on {p € M | | X,| > 0}.
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PROOF. Let p € M such that |X,| > 0 and {e;}?_; be an orthonormal basis of T,M.
Then,

n

VX0 = S ep? = 3 e(x ) = 3 Ve Xl ZW XP = [VXP.

; ; ; | X,|?
i=1 =1 =1

]

3.2 Correspondence between Killing vector fields and left in-
variant vector fields
LEMMA 3.8. Let X be a left invariant vctor field on a Lie group G. Then, for the flow
(Pe): of X, the follwing inequlity holds:
¢t = Ry,
where g := ¢i(e) € G (e is the identity element of G).
PROOF. Let h € G and define the curve ¢ on G as ¢(t) :== Ry, (h). Then, we have

d d d d d  _ ~ ~ ~
ac(t) = aRgt(h) = o= aLh(Qt) dt( @i(e)) = dLn(Xgye) = Xip(gr) = Xe)

and thus c(t) is a integral curve of X with ¢(0) = h. By the uniqueness of integral curve
and the definition of the flow ¢ of vector field X, we get @;(h) = Ry,(h), which is the
conclusion. O

LEMMA 3.9. Let M be a Riemannian manifold and X be a left invariant vector field
on the isometry group Isom(M). For the flow (@y); of X, we put o, = (id), where id
is the identity map on M which is the identity element of Isom(M). Then, (¢;); become

a one-parameter transformation group on M and induce a Killing vector field X on M.

PROOF. By Proposition 3.2 (i), the map R x M — M, (t,p) — ¢(p) is smooth. By
Lemma 3.8, we have

Ps O Pr = cht(‘ﬁé’) = ¢t<908) = @t((ﬁsod)) = ¢s+t(id) = Ps+t-

Thus, (¢;); is a one-parameter transformation group on M. Moreover, by Proposition 3.5
(ii), X is a complete Killing vector field. [

LEMMA 3.10. Let M be a Riemannian manifold and X be a complete Killing vector
field on the isometry group Isom(M). For the flow (p:): of X, we put @y := R.,,. Then,

(p¢)¢ become a one-parameter transformation group on G and induce a left invariant vector

field X on G.
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PRroOOF. By Proposition 3.2 (ii) and the definition of Lie group, the map RxIsom(M) —
Isom(M), (t,p) — &(10) = 1 o ¢y is smooth. By the definition of @, for any ¢ we have

Ps O @t(l/)) = §55(¢ © ‘Pt) =1 opiop, =105t = Psys(V),

and thus we get ¢ 0 @ = Ps14(1). Hence, (¢;); is a one-parameter transformation group

on Isom(M). Moreover, we have

- . d R _
(dLy (X)) = dLy(Xy-106) = | Lu(@e(¥ Yo )
t=0
d d d ~
- L -1 X _ X _ ~ _ X
dt 0 ¢<¢ o ¢ o (Ipt ) dt —o gb o gpt dt —o Spt(qs) ¢
Thus, X is a left invariant vector field on Isom(M) O

We denote by Lie(Isom(M)) the space of left invariatn vector fields on Isom(M) and
by K(M) the space of complete Killing vector fields on M. Then, by Lemma 3.9, we
can define the map 7 : Lie(Isom(M)) — K(M). By the Lemma 3.10, we see that T is
surjective. Morerover, for (M) and T the following folds:

PROPOSITION 3.11. (M) is a Lie subalgebra of the algebra X (M) of smooth vector
fields on M and the map T : Lie(Isom(M)) — K(M) is a linear isomorphism satisfying
the relation T([X,Y]) = —[X,Y], where X :=T(X), Y :=T(Y).

PROOF. Let X be a left invariant vector field and (@¢)¢ be the flow of X. Put ¢, :=

¢¢(id) and X :=T'(X). For each p € M, define the map =, : Isom(M) — M as

which is smooth by Proposition 3.2 (i). Then, we have

- d

d d
T(X)p :Xp = %

ei(p) = —|  mlp) = -

7| S ml@id) = drmy(Kia)

t=0

t=0

It follows that 7" is a linear isomorphism.
Next let X,Y be a left invariant vector fields and (&), be the flow of X. Put ¢, :=

@i(id) and X :=T'(X),Y :=T(Y). Then, for any ¢ € Isom(M) we have

Tp 0 Ry, 0 Ly, (1) = @roth o o_y(p) = @1 0 Ty_ () (1),
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and thus m,0 R,_, o L,, = ;0 T,_,(p). From this equality, we get the relation

T([X, }N/])p :dﬂp([j(v Y/]id)

_d d(mp 0 Ry_, 0 Ly, )(Yigq) — dmp(Yig)
dt|,_, E ]

_ i d(p 0 7Tsoft(/p))(yid) - dﬂp(Yid)
dt|,_, t

_ d dor(Yo_, ) — Yp
dt|,_, t

=—[X,Y],.

Moreove, It follows that Lie bracket [X,Y] of Killing vector fields X and Y is also a
Killing vector filed, and hence the conclusion follows. m

3.3 Dimension of isometry group and Bochner’s theorem

PROPOSITION 3.12. Let M be a complete n-domensional Riemannian manifold. Then,
for the dimension of isometry group Isom(M), the follwing inequality holds

1
dim Isom(M) < §n(n +1).

THEOREM 3.13 (Bochner). Let M be a compact connected n-dimensional Riemannian
manifold with Ric > 0. Then, for the dimension of isometry group Isom(M ), the inequality

dim Isom(M) <n
holds, and equality holds if and only if M is isometric to an n-dimensional flat torus.

PRrROOF. (a) Let X be a Killing vector field on M. Integrating the Bochner formula
(see Proposition 3.6), we get

/ IVX|? dva :/ Ric(X, X) dvy < 0.
M M
If follws that Killing vector fields on M are parallel. Take p € M and put
Vo ={X, e T,M | X e K(M)}.
Then, the linear map @, : (M) — V,, X — X, is injective, and thus we have
dim Isom(M) = dim (M) = dimIm & < n.
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(b) Assume that dimIsom(M) = n. Then, it holds that V, = T,M. For a Killing
vector field X, we denote by (¢); the flow of X. Since Killing vector fields X,Y are
prallel, we have

(X, Y]=VxY -VyX =0
and
vy o9 =9} opy.
Moreover, the equality
T =gl oy
holds. In fact, c(r) := ©X o . (q) is the integral curve of the Killing vector field sX + tY

since
%(r) = % . s 0 or(q) + % . rs © Pru(0)
- % N 0¥ o oh(q) + dir . ot 0 74(0)
= X xo0pY () T Y Y 00 (g)
= (sX +tY)e(r).

Since a Killing vector field X is parallel, the curve t — ¢X(p) is a geodesic and the
equality

exp,, tX, = @7 (p)
holds. From the above, we have

d
exp, (X, +1Y,) = —| @) 09 (p) = Yeup, x,-

d
d X,)Y, = —
epr( P) p dt 0 dt 0

Considering that the Riemannian metric on 7,M is defined in Example 2.17 and that
vector field Y is parallel, it follows that the exponetial map exp, : T,M — M is a local
isometry. In particular, by Proposition 2.78, the exponetial map exp, : T,M — M is a

universal Riemannian covering. Put

I := (exp,) ' (p).

Then, I is a descrete subgroup of T, M. In fact, for any X, Y € K(M) such that X,,Y, € I,
the following hold:

exp, (X, +Y,) = ¢ 0 ¢y (p) = o1 (exp, Y,) = o1 (p) = exp, X, = p,

exp,(—X,) = X, (p) = ¢ (exp, X,) = ¢ 0 07 (p) = p.
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Moreover, for any X,Y € K(M) such that exp, X, = exp, Y}, we have

exp, (X, — Y,) = ¥ 007 (p) = ¥ (exp, X)) = 0¥ (exp, Y,) = ¢¥ 0 01 (p) = p,
X, —-Y,el,

and thus the bijective map F': T,M/T" — M, X,+1T exp,, X, is well-defined. Note that
the projection map 7 : T,M — T,,M/T is a covering map. Let f be a deck transformation
of 7 such that f(o,) = X, (X € K(M), X, € I'). For each v € T,M, put

ol =pf, (teR)
where Z € IC(M) such that Z, = f(u). Then, we have

exp, (1) — X,) = o1™ 0 X (p) = o™ (exp, (= X,)) = 1™ (p) = expof(p) = exp, u,

and thus f = f — X, is also a deck transformation of 7. However, from f (0p) =0y, fis

the identitiy map, and we see that
flu) =u+X,

is an isometry on T,M. By Proposition 2.23, there exists a unique Riemannian metric
on T,M/T" such that the projection map 7 : T,M — T,M/T" is a local isometry. Since
the projection T,M — T,M/T" and the exponential map exp, : 7,M — M are universal
Riemannian coverings, we see that the map F' is a local isometry from T,M/I" to M.
Moreover, by Proposition 2.21, F' is an isomety. Thus, T,M/I' is compact and I" is

ismorphic to Z". Hence the conclusion follows. Il
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4 Riemannian curvature tensor on Lie group with

left invariant metric

DEFINITION 4.1 (Left invariant metric). Let G be a Lie group with Riemannian metric
ga. Then, g is called to be left invariant provided for any h € G the equality

Ln9¢ = g,
namely for any h € G the left translation Lj, is an isometry on G.

PROPOSITION 4.2. Let G be a Lie group with left invariant metric. Then, for any left
invariant vector fields X,Y on G, the following hold.
(i) The function (X,Y) is constant.

(ii) The covariant derivative V;(f/ s also a left invariant vector field.

PROPOSITION 4.3. Let G be a Lie group with left invariant metric. Then, for any left
invariant vector fields X,Y,Z,W on G, the following hold.

§ ViV = LK, ¥] ~ (ad) (V) — (ad)" ()},
(i)
(R(X.Y)Z,W) = (V3 Z, VW) = (Vg Z, VW) — (Vg 12, W)
(iii)
(R(X, T)V, %) =l(add)* (V) + (adg)* () — {(ac)*(X), (ady (V)
= SR TIP - S0 V] YL X) - (1Y X, XY
PROOF.

(i) By Proposition 4.2 (i), we have

0=X(Y,2)= (VY ,Z)+ (Y ,VZ),
0=Y(X,2)=(VeX,2)+(X,Vs2),
0=Z(X,Y)=(V;X,Y)+ (X,V,;Y).

and thus (i) follows.

31



(ii) By Proposition 4.2, we have

Thus, by the definition of Riemannian curvature tensore, we get (ii).

(iii) From (i) and (ii), we obtain (iii).
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5 Estimates of isoperimetric constants

In this section, a domain in a manifold means an open set which is not necessarily con-
nected. Let M} be the n-dimensional simply connected space form with constant curva-
ture k. We denote by B}(r) the open ball of radius r in M}’

5.1 Some isoperimetric inequalities
PROPOSITION 5.1. Let Q be a domain in Fuclidean space R" with smooth boundary
0N). Then, the following ineqauality holds
1))

vol,,—1(092) S vol,—1 (0B}
vol(Q)"n — vol(Br(1))"+

(1)
and equality holds only if 2 is a metric ball in R™.

The inequality (1) is called a isoperimetric inequality. Since a Riemanian manifold is

locally apploximated by the Fuclidean space locally, we have the followings:

COROLLARY 5.2. Let M be a compact connected Riemannian n-dimensional manifold.
Then, for any € > 0 there exists a positive constant r = r(M, gur,€) < i(M) such that for
any p € M and domain Q) C B(p,r) with smooth boundary the following inequality holds

vol,,—1(09Q2) vol,—1 (0B} (1))
)

(2)

n—1 Z (1 - 6) n—-1 =

vol(Q2) = vol(By (1)) =
PRrOOF. By the Rauch comparison theorem (Corollary 2.80 (ii)), there exist a constant
0 < r < i(M) such that for any p € M and domain 2 C B(p,r) with smooth boundary,

I
vol(§2) = vol(§2) =
where  := exp, 1 (Q), vol(Q) is the Euclidean volume on T,M induced by the its innner
product g,, and vol(92) is the (n — 1)-dimensional volume as the Riemanian submanifold
o0 C T,M. Since T,M is isometric to the Euclidean space R", by Proposition 5.1 the

inequality (2) follows. O

5.2 Isoperimetric constant and isoperimetric function

DEFINITION 5.3 (Isoperimetric constant). Let M be a compact connected n-dimensional
Riemannian manifold. Then, we define a isoperimetric constant I,(M) as follows: for
a >0,

VOln_l(aﬂ)
vol(©2)®

(M) = inf { vol(©) _ 1} .

‘ ) C M is a domain with smooth boundary, vol(M) = 3
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DEFINITION 5.4 (Isoperimetric function). Let M be a compact connected Riemannian
manifold. Then, the isoperimetric function hyy = h : (0,1) — Rsq is defined as for
fe(0.1)

h(B) = inf{v,,_1(092) | Q2 € Oz}
where Op := {2 C M |Q is a domain with smooth boundary, vol(2)/ vol(M) = S}.

The isoperimetric function A(f) has the following properties.

PROPOSITION 5.5.

(1) h(B) = h(1 = B).

(i) nfge(,1/2 (B)/ (B vol(M))* = La(M).

(iii) h(p) is continuous.

(iv) limg_,o h(B)/(Bvol(M))n=1/" = vol, 1(dBg(1))/ vol(Bg(1))"=V/". In particu-
lar, I,(M)=01if0<a< (n—1)/n.

PROOF.

(i) It is obvious, because for any Q2 € Og we have M \ Q € O;_5 and 9 = (M \ Q).

(i)

. VOln_l(aQ)
I,(M) = inf |_| {—Q‘QEOB}
se(o1/2 vol(§2)

[ vole1(69)
= f fe —————=1Q
,36%%)1,1/2] o { vol(§2)e €O

. . VOln_1<aQ)
- i Grvstare |2 € 97}
i M8
Be(0,1/2] (S vol(M))e
(iii) By the Rauch comparison theorem (Corollary 2.80 (ii)), there exists a constant
0 < ro < i(M) such that for any p € M and 0 < r <1

vol(B(p,r)) > % vol(By(1))r"

3
vol(0B(p,r)) < 5\701(833(1))7"”’1.
Let 8 € (0,1) and ©Q € Op. By the Fubini’s theorem we get

[ ol @n B o) = [ [ o (a) dusa)don o)
B /Q /]\/[ XB(g.r) () dvar (p)duas ()
:/vol(B(q,r))dUM(Q>
Q

> % vol(Bg (1))r™ vol(£2),
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and thus there exists p = p, o € M such that

vdmm3@¢»>%wmam»wa

Then,
vol(Q2\ B(p,7))  vol(Q) — vol(2N B(p,7))
vol(M) N vol(M)
<5t ins = . 6)

Put t(8) := max{0,t(ro, 8)}. For 5" € (to(5), 5), set

P ﬂﬁ—ﬂhdmﬂym <{%B—mmﬁ»meq””:T
L Bvol(By(1) =7 Bvl(BE() o)

Then, we have

vol(Q2\ B(p,7))
vol(M)
and thus there exists 0 < v’ < r such that

<t(r,p)=p

vol(@2\ B(p, "))
vol(M)

— 3.

Since we can show that Q \ B(p,r’) is a limit of a sequence of elements of Og, we get

h(B') < vol,_1(9(2\ B(p,r)
< vol(02) + gvol(ﬁBg D))"t < vol(9Q) + gVOlnl(aBg(l))rnl

B_ﬁ/ (n—1)/n
7)

2VOKA1)](HD/n
vol(Bg(1))

) < vol(99) + vol,,_1(0B(p,r"))

TN ~—

:wm&n+c(

where C' := gvoln_l(aBg(l)) { . Since for any €2 € Og, the inquality

ﬁ _ /B/) (n=1)/n

Mﬂ%&d@m+0( 5

holds, we have

i (=1)/m
wey<me e (P5)

On the other hand, put ¢;(f) := 1 — to(1 — B) and let 8 € (B,t1(8)). Then, since
1—-p0"€(t(1—p),1—p), we have

3_B)mnm

h@—ﬁ@ghu—ﬁy+0(l_ﬁ
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and thus by Proposition 5.5 (i),

B/ -8 (n=1)/n
-3 '
Therefore, for any 8’ € (to(5),t1(5)) the following inequality holds

|B/ . ﬁ| (n—=1)/n
e

h(E') < h(B) +C (

h(8) —h(B)] < C

which show that h(/) is continuous at f.
(iv) Let ¢ > 0 and take a constant 0 < r < (M) as in Corollary 5.2. By the
compactness of M, there exisits a finite family of balls (B(p;,r/2))~., which covers M.

Let €2 be a domain with smooth boudary. By the coarea formula, we get

vol(Q2) > vol(2 N B(r,pi) \ B(r/2,p;))

/ B(r,pi)\B(r/2,p;)
/ / deaB(pl dt
/2 J OB (p;,t

= / VOln—l(Q N aB(pzv )) dt
r/2

for every i, and thus there exists r/2 < r; < r such that
2
vol,—1(QNIB(p;,ri)) < —vol(Q2).
T

We denote by (€;); the family of connected componets of Q \ U, B(p;, ;). Then, we
get

vol,,_1(09) Zvoln 1 89 —2ZV01n (2N OB(pi,13))

> 5 vol,_1(95);) — ﬂ vol(2).
, r
j

Since we have taken the constant r as in Corollary 5.2, we can get the following estimates.

i vol,_1(9BE(1)) -
VOln,1 0(2] >(1l—¢ — vol Qj n
; (00;) 2 ( )vol(B"(l)) Zj (%)

b OB5W) 1N~ oian |
> (1-¢) vol(Br (1)) [ZJ: I(Qj)]

_yvol, L(OB2(1))
vol(B (1)) %

vol(Q)
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and thus

_vol(98) (1-¢)
vol(Q)"

VOlnl(aBO) ,2) — ﬂ Vol(Q)%.

vol(Bjy (1)) = r

Note that, for any 2 € Og, the above inequalities hold. Therefore, we get

h(5)
(Bvol(M))" =

S|=

vol,—1(0Bj(1)) 4N
) n—1

e

(Bvol(M))r.

r

Let 5 tends to 0. Then, we have

i M) g o (OB (1)
50 (Bvol (M)~ vol(By (1))

Since € > 0 is arbitary, we get

B vl (0B (D)
0 (@vol(M)) T vol(By (1)

The inverse inequality is obtained by Corollary 2.72 O

5.3 Almgren’s theorem and mean curvature
Note that a domain which attain

PROPOSITION 5.6. Let M be a compact connected n-dimensional Riemannian manifold
and € (0,1). Then, there exists a domain S in M such that

(i) vol(2)/ vol(M) = .

(ii) O is a submanifold of M with codimension 1 which is not necessarily smooth.

(iii) Let H be the set of all smooth points in OS2. Then, H is an open dense subset of
0 and h(B) = vol,_1(H).

(iv) For any p € M \ 09, it follows that if ¢ € 00 satisfies d(p,0Q) = d(p,q), then
qe H.

Take a domain €2 and a hypersurface H C 02 as in Proposition 5.6. Let v be the
unit outward normal vector field on H with respect to Q and f € C3°(H) where C§°(H)
is the set of all smooth functions on H with compact support. Define the functions
Uy HxR—Mand ¥y, : H— M as

Vy(p,7) = expy 7 (p)vp,

Uy-(p) = Ys(p,7).
Put
Qp = QU (710, 400) x [0,1)) \ Ws(f " (—00,0) x (0,1])
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Hf = \I’f,1<H>.

Note that H; is the set of all smooth points in 9y if || f|| e (w) is sufficiently small. Also,
it is know that
h(vol(€2s)/ vol(M)) < vol,,_1(Hy)

if || f|| oo (w) is sufficiently small.

LEMMA 5.7. Let f € C°(H). Foreachp € H, take an orthonormal basis {e,1,...,€pn-1}
of T,H and H-Jacobi fields Y,; (i = 1,...,n — 1) along the normal geodesic v, with
Y,i(0) = ey, VY,i(0) = A, e,i, where A, is the shape oparator of H. Then, if || f|| Lo ()
1s sufficiently small, following hold.

vol(€2;) = vol(© / i / Vs (TP A+ A Yy 1 (7 (0)] drdvn(p),

volu_1(H,) = / Y1 () + df (ep1) 0, (F ()] A
A [an 1(f(p)) + df (epn—1), (F ()] | dva(p).
PROOF. Define the smooth maps ¥ : H xR = M and Ty : H xR - N xR as
U(p,T) == expy TV,

Ty(p,7) == (p, 7S (p))
, which satisfy W; = W o T%. Then, the following holds.

d\I’(p, T) (ep,iv 0) = Y;m' (T)v
d\I’(p, T) <0p7 %) = ;}/Vp(T)7

d
150, 7) e30.0) = (e 0 7 )

i15(0,7) (o 52 ) = (on S0 )

[ det d¥|(p, 7) = [Ypa(6) A+~ A Vpoa(6) A iy (O] = [Ypa(8) A=+ A Vs (1),

From this, we have

| det dT¢|(p,7) =

(el,fdf(ep,l)dii) Ao A <ep,n_1,rdf(ep,n—1)d%> A <0p,f(p)%>’
~ (00 A A ot (o4, )| = 170
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| det dU¢|(p, 7) = (| det d¥| o Ty(p, 7))| det dT¢|(p, T)
= [fYp 1 (Tf ) A AYpua(Tf(p))].

Therefore, we get

vol(Qy) = vol(Q) + / o / | det dW | (p, T) drdvg(p)

/ i / | det AW, |(p, 7) drduy (p)
— vol(© / £ / Yo (7 F () A A Yo a (7 £ ()] drdun (p).
On the other hand, since for i = 1,. —
0V 1 (eps) = dU(p, £ (p))AT; (0. ) cps, O)
d
= a¥(p.19) (e T en) 7 )
= (. F ) e 0) + e 0. 9) (o
=Y,i(f(p)) + df (epi) v, (f(0)),

we get

| det dW z1|(p) = | [Ypr (F(2)) + df (1), (f(2))] A
A [ng,n—l(.f(p)) + df(ep,n—l);yup(f(p))] | )

so that the conclusion follows.

LEMMA 5.8. For any f € C§°(H) the following hold.

d

— 1(Qy) = d

G| vl = [ ra
d
—|  vol,_1(Hi) = (n— 1)/ nf dvg,
dt|,— H

where 1 is the mean curvature function of H.

PRrROOF. From Lemma 5.7,

vol(€2) —V01 / f(p / Yo (rtf(P) A AYpuoa(7tf(p))] drdvm(p)
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if |t| is sufficiently small. Thus, letting ¢ — 0, we get

dt

meﬁzéﬂmén@@A~wnmmmwmmm

t=

1
= / f(p) / |€p,1 JAERIAN 6p,n—1| de'UH(p)
H 0
— [ 1wydvutp)
H
Also, from Lemma 5.7, putting Y}, (t) := Y,,(t) + tdf (epi)h,(t) (i=1,...,n—1),

— VOln_l(Htf)

dt|,_,
Y1 (Ef (D) A+ A Y1 (t£(p))| don

_/i
Hdtt:()

:i/SfdﬂmA~-Aﬂmvﬁmw»~AzAm»ﬁmw»~Anqm»
Eg Y1(0) A+ A Y1 (0)

dvg (p)

_ / ni:_l <€p,1 JANRIRVAN f(p)[AVpep,i + df<€p,i)yp] ARERNA €pn—1,C€p,1 JANRIRVAN 6p,n—1>
H =

dv
lep1 A A epnil 1(p)

= /Iv{f(p)i<14up€p7i7€p,i> dvg (p)
— (n—l)/Hn(p)f(p) dvg (p)-

LEMMA 5.9. [, nfdvg =0 for any f € C°(H) with [, fdvg = 0.

PROOF. Let f,g € C5°(H) and assume [, fdvg = 0, [, gdvy = 1. Define the
function V' : R? — R as
V(s,t) = vol(Qsfttg)
for any (s,t) € R?, which is smooth at sufficiently small neighbourhood of (0,0) € R

From Lemma 5.8, we obtain

oV
5. (0.0) = /Hfde =0

%—‘;(0,0) = /Hgde = 1(#£0).

Applying the implicit function theorem for V| there exsits a smooth function t : (—¢,¢) —
R such that



V(s,t(s)) = V(0,0)
(& VOl(QSf+t(S)g) = vol({2)),

d, (s, f(s))

“(s) = 0s \ DI \7))
ds & (s,t(s))
Note that

vol(©) vol(©us1(0)
l,_1(H)=nh =h| —") <vol, {(H
voln—1(H) <VOI(M)> < vol(M) < Vobo (Hopta(ayg),

d

a . VOln—l(Hsf+t(s)g) =0.

On the other hand, applying Lemma 5.7 for sf + ¢(s)g and in a similar way to the proof

so that

of Lemma 5.8, we get

a4
ds

VOln—l(Hstrt(s)g) = (n - ]-)/ 77f dUH>
H

s=0

and thus the conclusion follows. OJ
By Lemma 5.9 we obtain the following proposition.
PROPOSITION 5.10. H has the constant mean curvature.

PROOF. Assume that there exist py,p1 € H such that n(py) < n(p1). Take a €
(n(po),m(p1)) and cutoff functions g, ¢; on H such that

/%dUH:/(PldUH:L
H H

n(p) <o,  Vp € supp(po

),
n(p) >a,  Vp € supp(pr)

Then, the function ¢ := ¢y — ¢ satisfies that ¢ € C;°(H) and [, ¢ dvy = 0. Applying

Lemma 5.9 for ¢, we obtain

/ nedvg =0
H

<:>/ (n—a)pdvy =0
H
‘:)/ (n — a)po dvg = / (n — a)er dvy.
H H
However, by the choice of a and ¢y, ¢1,

/(77—04)% dvg <0< / (n — )1 dvg,
H H

which is contradiction. O
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5.4 Estimate of isoperimetric constant [1(M) by Gallot

In this subsection, we give a lower bound of the isoperimetric constant I; (M) for Riema-
nian manifolds with Ricy, > kg, (k € R).

PROPOSITION 5.11. Let M be a compact connected n-dimensional Riemannian man-
ifold with Ricyy > kg,,. Then, the following inequality holds.

diam(M) /2 -1
L(M) > / ()" tdt| .
0

PROOF. By Proposition 5.5, there exists 5 € (0,1/2] such that I; (M) = h(53)/(8 vol(M)).
For the constant (3, take a domain €2 and a hypersurface H C 052 as in Proposition 5.6. Let
v be the unit outward normal vetor field on H with respect to 2, whose mean curvature

function of H with respect to v is constant n by Proposition 5.10. Put
dy := sup{d(p, H) | p € Q},

dy := sup{d(p, H) | p € M \ Q},

which satisfy dy + d; < diam(M). Applying the Heintze-Karcher theorem (see Theorem
2.82), we get

do
vol(Q) < Vol(H)/0 (cu(t) — nsp(t)* " dt,

_ d1
vol(M\ 90) < vol(H) /0 (c(t) + nsu(t)" L dt.

Since vol(2) < vol(M)/2 < vol(M \ ), we obtain

vol,_1(H) - vol(H)
vol(©2)  ~ min{vol(Q), vol(M \ Q)}

do diam(M)—do
> min { /0 (cx(t) — msp(t)" " dt, /0 (ce(t) + msp(t)" dt}

[1(M) =

-1

Next we shall show the following claim. Let £ € Rand d > 0 (d < \/k/(n — 1)7 if k > 0).
Define the function Jy : (0,d) x R — R as

Ji(t,¢) = max {cg () + Csp(t), 01" 1.

Claim: for any ¢ € R and a € (0,d) the following inequality holds.

@ d—a 2/d
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To prove this claim, we define the C''-function F' : (0,d) x R — R as

Fla,¢) = /Oajk(t,—g“)dt—/o SO dt

for (a,¢) € (0,d) x R. For every a € (0,d) lim¢,_ F(a,() = 400, lim,_ F(d,() =
—o00, and the function a — F(a,() is strictly decreasing, so that there exsits a unique
((a) € R such that F(a,((a)) = 0. Then, for any ¢ € R the inequality m(a,() <
m(a,((a)) holds. Since the equalities

0= ~Flag@) = [ hltc@)de- [t @) d = Fld-a.~(@) (Vo€ (0.4)
holds, by the uniqueness of {(d — a), we get

(3) ((d—a) = —((a).

In particular, we obtain

For any a,a’ € (0,d) (a < d’)

F(a,¢(a)) = 0= F(d,{(a)) > F(a,((d))

holds. By the monotonicity of the function ¢ — F(a,() we know the function a — ((a)
is strictly increasing. Moreover, we see that the function a — ((a) is class C'. In fact,
for any t,a € (0,d) and ¢ € R,

a¢

iy ) (n — D)sp(t)(cr(t) + Csp(8))™2 (> 0) if Jx(t,¢) > 0
’ 0 if Jy(t,¢) =0,

OF - a% B B dfa%
S =— [ Gre-oa- [ Freqm<o

and thus the function a — ((a) coincides with the function obtained by the implicit

function theorem. In particular, the following holds.

d¢ OF OF !
P (0) = =S | G (@)
— Uhlas—C(@)) + Ju(d = a,¢(@)] [ S —cayar+ [ _a%—?u,aa»dt]

Next we define the function G : (0,d) — R as G(a) := m(a,((a)). For any a € (0,d), we

express G(a) as follows.

6oy =3 | [ ntt—canar+ | T @) .

N | —
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By the equality (5.4), we have the equality G(d — a) = G(a). Thus, to prove the claim, it

Gla) <G (g) (: /Od/2 ck(t)”_ldt)

for any a € (d/2,d) and t € (0,a). To prove this we show that the function G is strictly
decreasing on (d/2,d). Note that

is sufficient to prove that

¢(a) > ¢(d/2) =0,
sp(a) > sp(d —a),
cx(a) < cp(d —a),
Ji(a, =¢) < Ji(d = a, =¢) < Ji(d — a,Q),
for any a € (d/2,d) and ¢ > 0. Put

a0 = sup{a € (d/2,d) | cx(a) - C(a)s(a) > O}.

Then, since the function ¢ — ¢ (t)/sk(t) on (0,d) is strictly decreasing, for any a €
(d/2,ap) and t € (0,a),

) = clasu(®) = ) (245~ <)) > sut0) (215 — 1))

sk () sk(a)
(ck(a) = C(a)sk(a)) >0,

and thus
J(tu C(CL)) > ‘]<t7 —C((l)) > 0.
Define the function ¢ : (0,d) — R as

o(t,¢) = {(()n — 1)sp(t) [er(t) + Csk(t)]_l (if J(t,¢) > 0)

Then, we have

%—‘?(t,o = (Ot C), (V€ (0,d),YC € R),

p(t,—=C(a)) > ¢(t,¢(a)) >0, (Va € (d/2,a0),t € (0,a)).

Also, since

— C(a)] i , (Va € (d/2,ap),Vt € (0,a))

44



for any a € (2/d,ap) the function t — (¢, —((a)) on (0,a) is strictly incleasing. From
the above, for any a € (d/2, ao)

2%(a):Jk(a ~((a)) — Juld — a,¢(a))+
+ @ |- [ ke s i [k cayarl
and
d—a
2| [ Sk —canars [ Gk ] i)

“0Jy

= [Jk(a, =¢(a)) = Ji(d — a,{(a))] [ o 9

Skt —~cayar+ [ a%—‘?(t,aa»dt]

d—a
+ 1l =) + id = a.c@)] |- [ G ~ca@yars [ Gy al
d—a
=2 e @) [ G c@) - - ac@) [ GEe gl

) {J,xa, ~((a)) / ot C(a)) Tt C(a) de
= o) [ ol Gt ~g(a) dt]
< 2Ji(d — a,((a)) /0 - ) Jk(t, C(a)) dt — /a o(t,—C(a))Jx(t, —C(a)) dt}

0
d—a

<2{d - a.g(a) | Dtcla)de - [ "ot —Cla)) i, —<<a>>dt}

d—a

= 2J,(d — a,C(a)) ) [Jk(t, ¢(a)) — Ji(t, —C(a))] dt

c\c\

- [ et ~ct@p e ~<@)]
2400 = 0,600 [old =, ~¢(a) [ Lt ) = (@) a
~etd=a,~c(@) [ i ~c(a))]
= 2210 a.c@)eld o) [ [t cy i [Tt~y af
— —24d - 0, C(@)pld — 4, ~C(@)) Fla,¢(a) =

Thus, the function G is strictly decreasing on (2/d,ag). If ag = d, then the proof is

completed. Now we consider the case when ag < d. Since
c(ao) — ((ag)s(ap) =0
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by the definition of ag, for any a € (ag,d) and t € (ag, a), we have

() = Glalsult) = su(®) (250~ ¢(@)) < () (212 = ¢(a)) =0,

sk (t) sk(ao)

and
Jk(ta —C(G)) =0.
Thus, for any a € (ag,d), G(a) is written as

Gla) = [t~ = [~

so that G is also stlictly decreasing on (ag, d), which is the conclusion. O]

5.5 Etimate of isoperimetric constant /(,_),,(M) by Gallot

In this subsection, we give a lower bound of the isoperimetric constant /(,,_1y/,1(M) for
Riemanian manifolds with Ricys > kg, (kK < 0).

If 8 € (0,1/2) satisfies that I,(M) = h(B)/( vol(M))* for some a > (n — 1)/n (see
Proposition 5.5 (ii)), then the mean curvature n of H is determined following.

LEMMA 5.12. Let 5 € (0,1/2), a > (n—1)/n, and assume 1,(M) = h(B)/(B vol(M))®.
For the constant 3, take a domain 2 and a hypersurface H C OS2 as in Proposition 5.6.

Let v be the unit outward normal vetor field on H with respect to 2. Then, for the mean

curvaure function n of H with respect to v the following holds.

T i 1V0igl(1§<2§[) " i 1 Bfo(l?])\/[) (2 n i 1[1(M))
PrOOF. Take f € C5°(H) satisfying [, fdvy = 1, and put £, := vol(€y)/ vol(M).

Since f; < 1/2 if |¢| is sufficiently small, by Proposition 5.5 (ii),

vol,_1(H) _ h(B) (M) < h(B:) < VOln_l(Htf).
vol(§2)e (Bvol(M))® (B vol(M))e vol(€2f)?

Thus, the function ¢ — vol,_1(H;f)/ vol(§2s) has a minimal value at ¢t = 0, so that
d|  voly_i(Hf)
dt],_, vol(§ky)e

On the other hand, by Lemma 5.8

d|  vol, ((Hif)  [&|,_ovoln-1(Hip)] vol(Q2) — avol, 1 (H) [ &],_, vol(uy)]

=0.

dt|,_y vol(Qp)s vol(Q)e+T
(n—1) [;nf dvg vol(2) —avol,_1(H) [, f dvg
N vol(2)e+!
_ (n — 1)nvol(Q2) — avol,_1(H)
vol(Q)e+t '
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Thus,
a vol,_1(H) a h(5)

P vol(Q)  n—1Bvol(M)

O

PROPOSITION 5.13. Let M be a compact connected n-dimensional Riemanian manifold
with Ricyr > kgyr (k< 0). Then, the following estimate holds.

[ Gy
PROOF.

(a) The case I(,—1)/n(M) = h(B)/(Bvol(M))™=1/" for some 3 € (0,1/2]
For the constant [, take a domain 2 and a hypersurface H C 0f) as in Proposition

3=

[(n,l)/n(M) Z VO](M)

5.6. Let v be the unit outward normal vetor field on H with respect to 2, whose mean
curvature function of H with respect to v is constant 1 by Proposition 5.10.
(a-1) The case g € (0,1/2)
Put
do := sup{d(p, H) | p € 1},
d, :=sup{d(p,H) | p € M\ Q},
which satisfy dy + d; < diam(M). Applying the Heintze-Karcher theorem, we get
dy

vol(M) < vol(H) /_ (alt) s (0)

diam (M)
< vol(H) /0 (c(t) + k()" dt,

and thus by Lemma 5.12,

~ vol,_1(H ) vol,_1(H) vol(M)
I(nfl)/n(M) - n—1 |: VOI(Q) :| [ Odlam(M)< k(t) —|—7]Sk(t)>n_1 dt]

vol(Q) "
dlam (M) vol, n—1
[ (Ck(t) + %Vl(’”;Té)H)sk(t)) dt]

]
IVOI(M)% diam (M) ( vol(Q )+Sk(t>>n_1dt] n
(it

3=

_1
n

3=

= vol(M)

i Vol

0 vol, 1 ( n
t t n—1
dt
iy )
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(a-2) The case § =1/2
By Proposition ,

-V01n_1(H) T
| vol(2)
[vol,,_1(H)
vol(§2)

Tn—1ym(M) =
>

-V01n,1 H) 1
vol(£2)

v

[vol,,_1(H) |
vol(Q2)

v

3=

> vol(M)

I

vol(M)

S|=

vol(M)
(cx(t) +nsi(t)" " dt

Sk (t) 1

n—1 Tn
ya
n

fodiam(M)

Ck(t)
1,(M)

(b) The case I(—1y/n(M) = limg_,o h(B)/(B vol(M))(n=/n
By Proposition 5.5, Corollarly 2.73, and Bishop’s inequality

Tn—1)/n(

vol,_ (0B (1))

= vol,_1(0By(1)) { n

Sl=

— "% [vol,_1 (0B (1))]

n—1
n

=n

3=

= vol(B}(diam(M)))

diam (M)
[voln_l(ﬁBQ(l)) /0 s(t)"! dt]

_n—1
] n

S=
3=

diam(M) N
/ sp(t)" Lt
0

L diam (M)
> vol(M)n / (
0

REMARK 5.14. If k£ > 0, then the following estimate holds:

n—1

Iaym(M) > 27

VOI(M)% diam(M) ™.
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6 Gallot’s two results

In this section, a domain in a manifold means an open set which is not necessarily con-
nected. Let M be a compact connected Riemannian manifold. For a domain €2 with

smooth boundary 02, we put

vol(2)

1(Q) i = ——=

vol():= Ty
vol(092)
1 Q) .= .
En—l(a ) VOI(M)
Similarly, define the measure v as
vol(M)”

Moreover, we define the isoperimetric constant /,, as

1,(M) := inf { vol,1(09)

()" ‘ ) C M is a domain with smooth boundary, vol(Q2) <

DN | —
—

Note that the equality
1,(M)

1 =
L.(M) vol(M)1~a
holds.

6.1 Gallot’s Sobolev inequality

PROPOSITION 6.1 (Gallot). Let M be a compact connected n-dimensional Riemannian
manifold, n/(n—1) > p>1, ¢ > 1, and assume 2(¢—1) < pq. Then, for any C'-function
f: M — R the following inequality holds:

2q
(4) £l zvew) < IV fllz2w + 112w,
Lpa(v) —Il/p( M) L2(v) L2(v)
where || fll e == (f3, J7dv)" (r > 0) is the L"(v)-norm of f.

LEMMA 6.2. Let M be a compact connected Riemannian manifold and p > 1. If a

bounded measurable function satisfies

(5) /M sen(f)|fP~\du = 0,

then for all t € R the following inequality holds.

__ 4P p
(6) /M I~ tPdy > /M Py
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PROOF.
e (p = 1) By the equality (5)

V_ol(f_l(—OO, O)) = V_Ol(f_1<07 OO))
If t > 0, then

Jur=daw= [ iiae= [ (£ -1 de

:/ tdy+/ (t—2f)dy—/ tdv
fﬁl(_oop) fﬁl[ovt) fﬁl[tvoo)

= txol(f (o004 [ (t=2f)do txl(f 1 o0))

7o)

—tol(f 0,00 + [ (¢ 2f) do— exol(f 1 o0))

FHost)
_ / (t —2f) dv + tvol (f (0, 1))
ftos)

> 2/ (t—f)dv
1)

> 0.

Similarly, if ¢ < 0, then we can show that [, [f —t[dv— [,,|f]dv > 0.
e (p>1) Let

p(t) = / |f = tPdu.
M
Then, we have

sz_f(t) =—p /MSgn<f —t)|f =t du.

If ¢ > 0, then by the equality (5)

/ sen(f — )|f — tP-dy
M

_ / f— Py / -t et / ot
fﬁl(_oo70) fﬁl[ovt) fﬁl[tvoo)

< - / |fIP du + 0 + / |fIP v
fﬁl(_oo’o) fﬁl[tvoo)

_ / sen(f)|f1Pdu
f_l(foozo)mf_l[troo)
_ / sgn(f)|fIP " do
Fo.t)

<0

and therefore dy/dt(t) > 0. Similarly, we can prove dy/dt(t) < 0 if t < 0.

©(t) > ¢(0) for every t € R. Hence the conclusion follows.

20
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PROPOSITION 6.3 (Bombieri). Let M be a compact connected n-dimensional Rieman-
nian manifold and 1 < p < n/(n — 1). Then, for any C'-function f : M — R with
Jasen(f)|fIP~ dv = 0 the following inequality holds:

1
7 Fllirw < ————V 1l w)-
(7) Il < 7519 e

PROOF. Since the set of Morse functions on M is dense in C*(M), it is sufficient to
show the inequality (7) for any Morse function f satisfying that [, sgn(f)|f[P~'dv = 0.
Take o € R satisfying that

) vol(f (o0, )) £ 5, vol(f ™ ay00)) <

N | —

(a) the case o = 0.
Put Q; := f~1(t,00). Since f is a Morse function, v(f~1(¢)) = 0 for any ¢ € R and thus
the map ¢ — v(£2;) is continuous. By the Fubini’s theorem

Fie 00
154y = [ 1prae= [ [T arao= [ [ v
M M Jo o Ja,,

:/ v_ol(Qtl/p)dt:p/ vol(Q,) P~ dt.
0

0

where f, := max{f,0}. On the other hand, by the co-area fomula, the definition of
1,,,(M), and the condition (8), we have

IV fillor ) :/ |Vf+|d22/ vol,, ,(0%2) dtZ—Il/p(M)/ vol (€))7 dt.
M 0 0

Combining the above, we see that if the inequality

() » /0 ol dt < < /0 ol dt)p,

holds, then we get the inequality (7) for the function f,.

d% (p/ vol ()7 dt) = ps”'vol(9),
0

—1

s p S p
i( / v_omt)”f“dt) =p( / v_olmt)l/pdt) v(QLP).
dS 0 0

Since the function ¢ +— vol(€);) is monotone decreasing, we have

/ vol(Q) VP dt > svol(Q,)
0
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and

d ® d s P
s (p/o V_Ol(Qt)tp_l dt) < s (/0 V_Ol(Qt)l/p dt) .

Therefore, we get the inequality (9). Hence, for the function f, the inequality (7) holds.
Similarly, for the function f_ := max{—f,0} the inequality (7) also holds. Thus, we
obtain

1 fllzecw) < N fllzr@ + I1f=llzew

1 1
< = IV IVl
L, () e e
1
= vaH Lw
L, ()
(b) the case a # 0.
Put f := f — a. Then, the inequalities
_ 1 < 1
vol(f 7 (=00,0)) < 5, vol(f71(0,00)) < 5

hold. Note that we did not use the condition [, sgn(f)|f|?"'dv = 0 in the proof of the
case a = 0. It follws that the inequality (7) also holds for f. Thus, by Lemma 6.2, we

have
1 ~ 1

1oy < 1fllr = = IVl = +r
w W1, (M) =1 ,(M)

IVl
U

Proof of Theorem 6.1. By the density of Morse functions in C'(M), we may assume that
f is a Morse function f. By the dominated convergence theorem it is sufficient to show
that for ¢ > 1. By the similar consideration of the proof of Proposition 6.3, we can take
a € R satisfying that

/sgn( —a)|f —a|®® Y dy = 0.
M

Applying the Proposition 6.3 for the function sgn(f — «)|f — a9, we get

IS = el < I, ( )|IV|f — |

Since
1F = o = IS = @l
and, by Holder’s inequality,

IVIf =l = alllf = el V il < alllf = ol lew V2w
= allf = all bt IV Fllz2w) < dllf = allfuy IV fll2).
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we have

f—Oé Pa(v Vf 2(v
17 = allmiy < 5119 i

On the other hand, we have

lallzraw) = laf = llellipiw < 1f = alliw + 1w < I1f = allaw + 1 Fll2w-

Thus, we obtain

[ llzrawy < 1 = allira) + ) < 201 = allrw) + 1 Fllz2w)

2q
< V2w + [ fllz2
1,0 )H 22w + 1 fll 2

6.2 Gallot’s estimate of L*°-norm from above by L?>-norm

PROPOSITION 6.4. Let M be a compact connected Riemannian manifold and \ > 0.
If a nonnegative continuous function f on M satisfies that
(1) f is C% on M, := f~1(0,00),
(1) Vf, fAf is bounded on M.,
(iii) Af < N2f on M,
then the following inequality holds:

A
(10) o < 2o (2] 1l
M

where cyr = I, 1), (M) and L, is a strictly increasing contivous function from [0, 00)
to R defined as

—1

REMARK 6.5. Note that L, (0) = 1 and that L,(¢) is finite for all ¢ > 0. In fact,

—1

00 . p o0 o0
4 7 —
L,(t)= H (1 + %t) < H + 4p’/2t H exp(4p2t))P
: B =0

=0 2pl
= ﬁ exp(4p~/%t) = exp | 4t ip_m = exp 4 < 00.
i=0 i=0 L—pi2

LEMMA 6.6. Assume the same notations and assumptions as in Propsition 6.4. Then,

for any a > 1, the following inequality holds:

a a/A a
(11) IVl < 5= 1z
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PROOF. Define the vector field V f and function fAf on M as

(o) = Vi (pe M) FAT(p) = fAf (p € My)
0 (pef0) 0 (p € £710)).

By the condition (iii), we have fAf < A2f2. We also see that f2*~'Vf is a C'-vector
field on M and the equality

div(f*7 V) = — [ FAT + (V7 V)

holds. Thus, by the divergence theorem

1/2
IR a g
V5 i = ol 1VfHL2<y>=—2 [ v I
a—1 M

1/2 1/2
2a—2 a\ 2a
e [/f fAfdv} S—T_l[/Mf dy}

= ﬁ”f“‘im@)
O

Proof of Theorem 6.4. For all a > 1 the function f¢ is class C?. Applying the Proposition
6.1 for the function f¢, for p =n/(n — 1), ¢ = 2, we have

a 4 a a
1oy < =V f 2w + 122
M

From Lemma 6.6, we have

a a 4 a a
£l %2ap ) = NN 220y < aHVf 2wy + [1f*ll 22 w)
4 a a a
E\/ﬁ”ﬂ'pa@ + 1f*Nl 22w

= (14 S 2

N 2a — 1 Cm L2(v)
Note that this inequality also holds for a = 1 by the dominated convergence theorem. It
follows that for all i € {0} UN

—1i

A p
4p" A
Hf||L2pi+1(y) < (1 + Wa) ||f||L2pi(y)
p=i
A
) 1£1220)-

||f||L2p’+1 < H < \/7]_0

o4

and



Thus,

—1

o0 ; p
4p" A A
Fllzsecsr = T |F]] apisr o < 14+ ——2 2 ¥ QU—Ln(—) Fllizo.
1 12oe @) = B (1] zpier i|:0| o 1o ) Mlrw o ) Il

]
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7 Proof of Proposition 1.1

First we note that by Proposition 5.11, Proposition 5.13, and Proposition 6.4, we have

the following corollary:

COROLLARY 7.1. Let M be a compact connected n-dimensional Riemannian manifold
such that
Ricy, > —kgM (k > O),

diam(M) < D.
Put

-1

_ diam(M)/2
Gn,k,D = / C,k(t)nil dt y
0

n—1 “n
Gnkp = / C:k( ) + s-(t) dt ,
0 Gnk.D n

and define the the continuous function L, p : [0,00) = R as

t2
Ln,k,D(t) = Ln ( ) P

Gn,k,D

|

where Ly, is the function defined in Proposition 6.4. The function L,y q is strictly increas-
ing and continuous, and satisfies that Ly, ; 4(0) = 1. Then, for any nonnegative continuous
function f on M satisfying the conditions (i), (ii), (iii) in Proposition 6.4, the following
inequality holds:

1) < Lok oAl 22w

By Corollary 7.1, we have the following proposition:

PROPOSITION 7.2. If a compact connected n-dimensional Riemannian manifold M

satisfies

—kgn < Ricyr < egar,
diam(M) < D,

then, for a Killing vector field X on M, the following inequality holds.
[ X[z 0) < Lk, p (€)1 X [ 220)

PROOF. We apply Proposition 6.4 for f = | X|. By the Kato’s inequality (Proposition
3.7)
VIX|| < [VX]

o6



and the equality
1
SAX] = [X]A[X] = [VIXP,

we see that V|X| and |X|A|X| are bounded on M, = {p € M | |X| > 0}. Combining
with the Bochner formula (Proposition 3.6)

1
5A|X|2 = —|VX* + Ric(X, X),

we have
[ X|AIX] < e[ X
and
AlX| < elX].
Thus, by Corollary 7.1, the conclusion follows. O]

The following proposition is essentially given by Li [12]. Since followings are slightly
different to the corresponding statements in [12], we give a proof for the sake of complete-

ness.

PROPOSITION 7.3. Let E be any Riemannian vector bundle over M of the rank n.
Let T'(E) be a subspace of the space T'(E) of all sections of E. Assume that there esists a
constant a > 0 such that for any w € I' the inequality

[wllzoe ) < allwllzow)
holds. Then, the following hold:

dimI' < @*max dim{w(p) € E,|w € T}
peEM

< a’n,

where E, is the fibre of £ at p € M.

PROOF. Let I” be a finite dimensional subspace of I'. Take an L?(v)-orthonormal
basis {w;}7, of IV and put

= Z |wi(p) ?

Note that F can be independent to the choice of an L?(v)-orthonormal basis. Then we

At =Y el = [ zywl W dulp) = | Flp)duty)
=1

have
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For each p € M, take the evaluation map @, : [V — E, with ®,(w) = w(p) and take an
L?(v)-orthonormal basis {w;}™, such that the vectors ®(w;) = w;(p), i = 1, ..., k form

the basis of the orthogonal complement (ker ®,,)* of the kernel of ®,. Then, we have

k
F(p) =) |w(p)f <a*k <a®p
=1

where § = max dim{w(p) € E,|w € I'}. Thus, we have
pe

dim I = / F(p)du(p) < a® B < a’n.
M

By the choice of I, we get the conclusion.
O

We apply this proposition for the case that £ = T'M, the tangent bundle of M, and
I' is the space of Killing vector fields on M. Then, combining with Proposition 7.2, it

implies Proposition 1.1.

o8



8 Proof of Theorem 1.4

We start from the following lemma which follows from Proposition 7.3 here and Theorem

2.2 in [16]. Since the proof given in [16] is somewhat sketchy, we give a proof here.

LEMMA 8.1. For constants k, D > 0, there exists a constant € = e(n, k, D) > 0 such
that if M satisfies the assumption in Theorem 1.4, then M is a Riemannian homogeneous

space.

Proor. We also apply Proposition 7.3 for the case mentioned in the sentence right
after the proof of Proposition 7.3. Take p € M satisfying

dim{X, € T,M | X is a Killing vector field.} =n

Let B C M be a set whose element ¢ is an image of p by an isometry of M. We shall
prove that B is open. Take Killing vector fields X;,7 = 1,2, ...n such whose vectors X,
at p form a basis of T,M. Let ;¥ denote the flow generated by a vector field X. We
define a map F': R" — M by

F(tl,...,tn):gpﬁlo---ogpi"(p).

Then, the rank of the differential dF' at the origin of F' is n. By the inverse function
theorem, we see that F' is a local diffeomorphism near the origin ,and thus p is an interior
point of B. For ¢ € B, take an isometry ¢ such that ¢(p) = ¢. Since ¢ is homeomorphism,
we see that ¢ is also an interior point of B. Thus B is open in M.

To prove the closedness of B, take a point ¢ in the closure of B. For a sequence ¢; € B
converging ¢, take isometries ¢; with ¢;(p) = ¢;, Since the isometry group Isom(M) is a
compact Lie group, there is a subsequence of {p;} converge to some isometry . Note

that ¢(p) = ¢, and thus ¢ € B, hence the conclusion follows. [

LEMMA 8.2. If M satisfies

—k}gM S RiCM S Eqm,
diam(M) < D,
dim Isom(M) = n,

then for any Killing vector field X on M, we have

X2 2 (n— (0 = DI2 4 p(@) [ X[
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PROOF. Take an L?(v)-orthonomal basis {X;} of the space of Killing vector fields
on M. Since the function F(p) = Z |X;|? does not depend on the choice of an L?(v)-

orthonomal basis and for any isometry ¢, {dp(X;)} is also L?*(v)-orthonomal basis, we

have
F(e(p)) = Z |do(X:) (0 (p)]* = Z |dp(Xi(p))* = Z 1 Xi(p)]* = F(p).

Thus, F is a constant function. Since fM F dv =n, we know that F' = n. Thus,

XiP=n=Y |Xi> > n—(n—-1)L;, ().
i#1

We get the conclusion by putting Xy = X/[|X || r2(y)- O

LEMMA 8.3. There exists a finite covering 7 : M — M such that M is isometric to
the identity component G of the isometry group Isom(M) of M, which is equipped with a

certain left invariant Riemannian metric.

PrROOF. From Lemma 8.1, M can be written as
M =G/K,

where K is the isotropy subgroup of G at p.

We shall prove that K is a finite group. Note that we can identify the Lie algebra g of
G and the space of the Killing vector fields on M. Since Isom(M) is a compact Lie group,
it suffices to show that the Lie algebra £ of K, which corresponds to the space of Killing
vector field X with X, = 0, is trivial. By Lemma 8.2, we see that the evaluation map
®, : g — T,M defined by ©,(X) = X(p) is a linear isomorphism for sufficiently small ¢,
and thus dim ¢ = dim ker(®,) = 0.

A left invariant metric g5 on G is given as follows; Take a point p € M. We define a
map 7, : G — M by 7,(¢)) = ¢¥(p) and g¢ on G by induced metric g = m,* g from the
Riemannian metric gy on M. We shall show that g¢ is left invariant. Let L, denote the

left translation of ¢ on GG. Then we have

Tp o Ly(¥) = mp(p o)) = poip(p) = pom(v),

namely, 7, o L, = ¢ o m,. Then, we get the conclusion by
Ly*ge = Lo"mp"gn = (mp 0 L) "gn = (9 0 ™) "gm = 7" 9" gus = ™" g = 9o

Here we have used ¢*gy; = g which is implied by the fact that ¢ is isometry. O
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LEMMA 8.4. M is an almost flat manifold. Namely, for any 6 > 0, there exists
e =¢(k,D,6) > 0 such that if

—kgy < Ric < eg,
diam(M) < D,
dim Isom(M) = n,

then
|KyD?| <6

where Ky is the sectional curvaure of M.

PRrROOF. First we give a pointwise estimate of the Lie bracket [X, Y] of Killing vector
fields X,Y. Integrating the Bochner formula

1
SAIX[? = Rie(X, X) — [Vx[?

we have

VX200 = / Ric(X, X) du < X g,
M

Since [X, Y] is also Killing, we can apply Proposition 7.2. Then, we have, for p € M, by

Lemma 8.2,
XYL < X Y]llew
< Luro@X Yllzw
= Luip(e) [VxY = VyX| 2,

(12) < Logp(©) (IVY 21X @) + VX 2 1Y ([ 22w))
< L5 p(@) (IVY 2wl X 2w + IV X 2w 1Y 22w
= 2\/_LnkD( )HXHL2(Q)||Y||L2(E)
< 2VEDole) )

n—(n 1)Ln,k,D(5)
< VeIV

for sufficiently small € > 0.

Next we estimate K ;. For this purpose, it suffices to estimate the sectional curvature
Kgof G = M by Lemma 8.3. By Lemma 3.11, Killing vector fields on M correspond to
left invariant vector fields on G. By Proposition 4.3, for left invariant vector fileds X,Y
on GG



where R is the Riemannian curvature tensor and (adg)* is the (formal) adjoint of the
linear transformation adg defined by ad;(Y) = [X,Y] with respect to the Riemannian
inner product (-,-) on G.

For p € M, we induce left invariant metric on G by m,. Take Killing vector field
Xi,t=1,2,...n such that the vectors X, , of X; at p forms an orthonornal basis in 7}, M
and put X; = T71(X;), then X; forms an orthonomal basis on each tangent space of G.

Then, we have an estimate of the numerator of the sectional curvature

S5 R(X;, X)) X;, X,
KG(Xz,XJ): ~< 2(~72 ]) Z ~> .
| X2 XG]? = (X3, X5)
by (12) and (13). The denominator is equal to 1. We have an estimate of K which is in-

dependent to the choice of orthonormal basis, and thus K; at p. Since M is homogeneous,

we have uniform estimate of K;;. Hence the conclusion follows follows. O

We finally give a proof of Theorem 1.4. By the structure theorem of compact Lie group
(Theorem 2.94), the universal covering of G = M can be split as a product R* x Gy of
abelian group R* and a simply connected semi-simple compact Lie group Gy. By Lemma
8.4 and Gromov’s almost flat theorem (Theorem 2.83), R¥ x Gy is diffeomorphic to R™.
Thus we see that Gy is trivial and thus G is an abelian group by the structure theorem.
Then by the formula (13), we see that M and G = M are flat manifolds. Bochner’s

classical theorem mentioned in the introduction implies the conclusion.

REMARK 8.5. The referee of [11] pointed out that the following short-cut of the proof
is possible. By Proposition 4.3 (i), Proposition 3.11 and the estimate (12), we have

Vo V| < 12vEU]|V]

for any left invariant vector fields U,V on G. This implies the following estimate of the
Maurer-Cartan form w of G:
|dw| < 0(n, k, D,¢),

where d(n,k,D,e) — 0 if ¢ — 0. Then the Zassenhaus and Kazhdan-Margulis lemma
(Theorem 1.4. in [8]) implies G is nilpotent. Since G is compact Lie group, we see that G
is abelian. Then, combining with (2), we conclude that M is a flat torus by the Bochner’s

classical theorem.
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