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1 Introduction

LetM be a compact connected n-dimensional Riemannian manifold. Bochner’s celebrated

theorem asserts that ifM has nonpositive Ricci curvature, then the dimension of the space

of Killing vector fields, i.e. that of the isometry group Isom(M), of M is smaller than or

equal to n. Moreover, if it is equal to n, then M is isometric to a flat torus. The purpose

of this paper is to give a perturbative result of this theorem. For a Riemannian manifold

M , we denote by gM the Riemannian metric, by RicM the Ricci tensor, and by diam(M)

the diameter of M .

First we give the following proposition.

Proposition 1.1. For constants k,D > 0, there exists a constant ε = ε(n, k,D) > 0

such that if a compact connected n-dimensional Riemannian manifold M satisfies

−kgM ≤ RicM ≤ εgM ,

diam(M) ≤ D,

then we have

dim Isom(M) ≤ n

The proof of this proposition can be obtained by an easy modification of the proof

due to Gallot [7] for the following theorem, which is a positive counterpart of Proposition

1.1.

Theorem 1.2 (Gromov [10], Gallot [7]). For a constant D > 0, there exists a constant

ε = ε(n,D) > 0 such that if a compact connected orientable n-dimensional Riemannian

manifold M satisfies

RicM ≥ −εgM ,
diam(M) ≤ D,

then the first Betti number b1(M) of M satisfies

b1(M) ≤ n.

Our main concern is the case when dim Isom(M) = n. A positive counterpart is

already obtained by Colding [6], Cheeger-Colding [4].

Theorem 1.3. For a constant D > 0, there exists a constant ε = ε(n,D) > 0 such

that if a compact connected n-dimensional Riemannian manifold M satisfies

RicM ≥ −εgM ,
diam(M) ≤ D,

b1(M) = n,
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then M is diffeomorphic to an n-torus Tn.

Note that their proof does not give an explicit estimate of the constant ε = ε(n,D)

since it utilizes some compactness arguments. Our main result in this note is the follow-

ings.

Theorem 1.4. For constants k,D > 0, there exists a constant ε = ε(n, k,D) > 0 such

that if a compact connected n-dimensional Riemannian manifold M satisfies

−kgM ≤ RicM ≤ εgM ,

diam(M) ≤ D,

dim Isom(M) = n,

then M is isometric to a flat n-torus Tn.

The proof of this theorem is different from that of Theorem 1.3. Moreover, since

we do not use any kind of compactness or convergence arguments, we can estimate ε =

ε(n, k, D) explicitly.

This paper ia organized as follows. In section 2, we prepare basic notions and ter-

minologies of Riemannian geometry and Lie group theory. In section 3, we recall basic

properties of isometry groups and Killing vector fields. In section 4, we recall the Rieman-

nian curvature tensor of Lie group with left invariant metric. To prove Theorem 1.4, we

consider the curvature of isometry group, which is a Lie group, with left ivariant metric.

In section 5, we introduce the notion of the isoperimetric constant and recall Gallot’s

estimate of isoperimetric constant. In section 6, we recall Gallot’s two results. One is a

Sobolev inequality, and the other is an estimate of L∞-norm by L2-norm, which is used

the isoperimetric constant. In section 7, we give a proof of Proposition 1.1, which is used

Gallot’s results in section 5 and section 6. In section 8, we give a proof of Theorem 1.4. To

prove this, we shall show that a given Riemannian manifold is homogeneous and almost

flat, and apply the structure theorem of compact Lie group to the identity component of

the isometry group.
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2 Preliminaries

In this section, we prepare basic notion and terminologiy with respect to Riemannian

geometry, and Lie group theory. We refer to [15] and [3]. Throughout this paper, we

assume that manifold is Hausdorff and second countable.

2.1 Vector bundle and linear connection

Definition 2.1 (Vector bundle). Let M and E be smooth manifolds, let π : E →M

be a smooth map, and let k be a nonnegative integer. If the following two conditions are

satisfied, then the triple (E,M, π) is said to be a vector bundle of rank k over M .

(i) For every p ∈M , Ep := π−1(p) has the structure of a k-dimensional real vector space.

(ii) For every p ∈M , there exists a coordinate neighborhood U of p and a diffeomorphism

φ̃ : π−1(U) → U × Rk such that the following hold:

(a) The equality pr1 ◦ φ̃ = π|π−1(U) holds, where pr1 is the canonical projection from

U × Rk to U .

(b) For all q ∈ U , the map pr2 ◦ φ̃|π−1(q) : π−1(q) → Rk is a linear isomorphism, where

pr2 is the canonical projection from U × Rk to Rk.

For a vector bundle (E,M, π), the manifold E is called a total space, the manifold M

is called a base space, the map π is called a projection, and the vector space Ep = π−1(p)

is called a fiber at p ∈M . A pair (U, φ̃) in Definition 2.1 is called a local trivialization. If

(U, φ̃), (V, ψ̃) is local trivializations, then the map ψ̃ ◦ φ̃−1 : (U ∩V )×Rk → (U ∩V )×Rk

is diffeomorphic by the definition of the local trivialization. We also say just vctor bundle

E for short, omitting M and π.

Definition 2.2 (Bundle map and bundle isomorphism). Let (E,M, π) and (F,N, ρ)

is vector bundles, let Φ : E → F , f : M → N be smooth maps. The map Φ is called a

bundle map from (E,M, π) to (F,N, ρ) covering f provided the follwing properties hold.

(i) ρ ◦ Φ = f ◦ π,
(ii) for every p ∈M the image Φ(Ep) is a vetor subspace of Ff(p),

(iii) for every p ∈M the map Φ|Ep : Ep → Ff(p) is a linear map.

In Particular, if M = N , f = idM , and the bundle map Φ is bijective, then Φ is

called a bundle isomorhism and the vector bundle (E,M, π) is called to be isomorphic to

(F,N, ρ).

For a vector space V we denote by V ∗ the space of dual space of V , defined by

V ∗ := {f : V → R | linear map}.
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Definition 2.3 (Dual bundle). Let E = (E,M, π) be a vector bundle and take the

dual space (Ep)
∗ of each fibre Ep. Put

E∗ :=
⊔
p∈M

(Ep)
∗

and define the map π∗ : E∗ →M as

π∗(v∗p) := p.

for any v∗p ∈ (Ep)
∗. Then, we can natulally define the structure of a vector bundle with

respect to the triple (E∗,M, π∗) which is called a dual bundle of E.

Definition 2.4 (Tangent bundle and cotangent bundle). Let M be an n-dimensional

manifold, let TM be the disjoint union of the family of tanget spaces {TpM}p∈M , and

define the map πM : TM → M as πM(vp) := p for vp ∈ TpM . Then, we can natulally

define the structure of a vector bundle with respect to the triple (TM,M, πM). The

vector bundle TM is called a tangent bundle and the dual bundle T ∗M := (TM)∗ of TM

is called a cotangent bundle.

Definition 2.5 (Tensor and tensor space). Let V be an n-dimensionl real vector

space and V ∗ be a dual space of V . Then, for nonnegative integers r, s, the (r, s)-tensor

space T rs (V ) is defined by

T rs (V ) := {t :
r︷ ︸︸ ︷

V ∗ × · · · × V ∗×
s︷ ︸︸ ︷

V × · · · × V → R | f is a multilinear map}
(In the case (r, s) = (0, 0), we identify T rs (V ) = R).

A element of the (r, s)-tensor space T rs (V ) is called a (r, s)-tensor on V

Let {vi}i be a basis of V and let {vi}i be the dual basis of {vi}i. We define vi1 ⊗ · · · ⊗
vir ⊗ vj1 ⊗ · · · ⊗ vjs ∈ T rs (V ) (ik = 1, . . . , n (k = 1, . . . , r), jl = 1, . . . , n (l = 1, . . . , s)) as

vi1 ⊗ · · · ⊗ vir ⊗ vj1 ⊗ · · · ⊗ vjs(u∗1, . . . , u
∗
r, w1, . . . , ws) :=

r∏
k=1

u∗k(vik)
s∏
l=1

vjl(vl).

Then, {vi1 ⊗ · · · ⊗ vir ⊗ vj1 ⊗ · · · ⊗ vjs}i1,...,ir,j1,...,js becomes a basis of the vector space

T rs (V ), and dimT rs (V ) = nr+s.

Definition 2.6 (Tensor bundle). Let (E,M, π) be a vector bundle of rank k. Put

T rs (E) :=
⊔
p∈M

T rs (Ep),
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and define the map πrs : T
r
s (E) →M as

πrs(tp) := p

for any tp ∈ T rs (Ep). Then, we can natulally define the structure of a vector bundle of

rank kr+s with respect to the triple (T rs (E),M, πrs). This vector bundle T
r
s (E) is called a

(r, s)-tensor bundle of E. In particular, if the vector bundle E is the tangent bandle TM ,

then T rs (M) := T rs (TM) is called a (r, s)-tensor bundle over M . Note that T 1
0 (E) = E∗∗

and T 0
1 (E) = E∗.

Remark 2.7. A (1, 0)-tensor bundle T 1
0 (E) = E∗∗ is identified with the tangent bundle

E by the natural bundle isomorphism T : E → E∗∗, defined by (T (up))(v
∗
p) := v∗p(up) for

up ∈ Ep and v
∗
p ∈ E∗

p .

Definition 2.8 (Section of vector bundle). Let E = (E,M, π) be a vector bundle. A

smooth map ξ : M → E is called a section of E if π ◦ ξ = idM . We denote by Γ(E) the

space of all sections, which has a structure of a C∞(M)-module.

Remark 2.9. T 0
0 (E) is identified with C∞(M). Γ(T 1

0 (E)) = Γ(E∗∗) is also identified

with Γ(E) (see Remark 2.7). If E = TM , then Γ(TM) is the space X (M) of all vector

fields and Γ(T ∗M) is the space Ω(M) of all differential 1-forms on M . In particular,

(1, 0)-tensor fields on M are identified with vector fields on M .

Definition 2.10 (Tensor field). Let E = (E,M, π) be a vector bundle. Then, a

section of T rs (E) is called a (r, s)-tensor field.

Let T ∈ T rs (E), ωi ∈ Γ(E∗) (i = 1, . . . , r), and Xj ∈ Γ(E) (j = 1, . . . , s). The

C∞-function T (ω1, . . . , ωr, X1, . . . , Xs) ∈ C∞(M) on M is defined by

T (ω1, . . . , ωr, X1, . . . , Xs)(p) := Tp(ω1(p), . . . , ωr(p), X1(p), . . . , Xs(p)).

Then, the map T : (ω1, . . . , ωr, X1, . . . , Xs) 7→ T (ω1, . . . , ωr, X1, . . . , Xs) becomes a C∞(M)-

multilinear map from

r︷ ︸︸ ︷
Γ(E∗)× · · · × Γ(E∗)×

s︷ ︸︸ ︷
Γ(E)× · · · × Γ(E) to C∞(M). Conversely,

let T :

r︷ ︸︸ ︷
Γ(E∗)× · · · × Γ(E∗)×

s︷ ︸︸ ︷
Γ(E)× · · · × Γ(E) → C∞(M) be a C∞-multilinear map.

For each p ∈ M we define the (r, s)-tensor Tp ∈ T rs (Ep) as for αi ∈ E∗
p (i = 1, . . . r) and

for vi ∈ Ep (j = 1, . . . , s)

Tp(α1, . . . , αr, v1, . . . , vs) := T (ω1, . . . , ωr, X1, . . . , Xs)(p)

where ωi ∈ Γ(E∗) (i = 1, . . . r) with ωi(p) = αi and Xj ∈ Γ(E) (j = 1, . . . , s) with

Xi(p) = vi, which is well-difined. These give a correspondence between a (r, s)-tensor

field and a C∞(M)-multiliniear map from

r︷ ︸︸ ︷
Γ(E∗)× · · · × Γ(E∗)×

s︷ ︸︸ ︷
Γ(E)× · · · × Γ(E) to

C∞(M).
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Example 2.11. The identification between a (1, 0)-tensor fields on M and a vector

fields on M in Remark 2.9 is also given as follows: Let X ∈ X (M). Then, the corre-

sponding element TX ∈ Γ(T 1
0 (M)), which is is given by TX(ω) = ω(X) for ω ∈ Ω(M).

Conversely, let T ∈ Γ(T 1
0 (M)). Then, the corresponding element XT ∈ X (M) is given by

XT (f) = T (df) for f ∈ C∞(M).

Example 2.12. By Example 2.11, a C∞(M)-multilinaer map

T :

r︷ ︸︸ ︷
Ω(M)× · · · × Ω(M)×

s︷ ︸︸ ︷
X (M)× · · · × X (M) → X (M)

is regarded as a C∞-multilnilear map

T :

r+1︷ ︸︸ ︷
Ω(M)× · · · × Ω(M)×

s︷ ︸︸ ︷
X (M)× · · · × X (M) → C∞(M).

Thus, we can regard T as (r + 1, s)-tensor field on M .

Definition 2.13 (Linear connection and covariant derivative). Let (E,M, π) be a

vector bundle. Then, a real bilinear map ∇ : X (M) × Γ(E) → Γ(E), (X, ξ) 7→ ∇Xξ is

called a linear connection on E provided ∇ satisfies that∇fXξ = f∇Xξ,

∇X(fξ) = X(f)ξ + f∇Xξ.

for any f ∈ C∞(M), X ∈ X (M), and ξ ∈ Γ(E). A section ∇Xξ ∈ Γ(E) is also called a

covariant derivative of ξ with resoect to X.

Definition 2.14 (Positive definite and symmetric (0, 2)-tensor field). Let E be a

vector bundle and g be a (0, 2)-tensor field on E.

(i) The (0, 2)-tensor field g is called to be positive definite provided for any X ∈ Γ(E)

the inequality g(X,X) ≥ 0 holds, and equality holds if and only if X ≡ 0.

(ii) The (0, 2)-tensor field g is called to be symmetric provided for any X,Y ∈ Γ(E)

the inequality g(X,Y ) = g(Y,X) holds.

Definition 2.15 (Bundle metric and Riemannian vector bundle). Let E be a vector

bundle. Then, a positive definite symmetric (0, 2)-tensor field is called a bundle metric

on E and the pair (E, g) is called a Riemannian vector bundle.

2.2 Riemannian geometry

Definition 2.16 (Riemannian metric and Riemannian manifold). LetM be a smooth

manifold. Then, a positive definite symmetric (0, 2)-tensor field g on M is called a

Riemannian metric on M and the pair (M, g) is called a Riemannian Manifold. Note

that for each p ∈M the (0, 2)-tensor gp become an inner product on TpM .
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For simplicity, for tangent vectors u, v ∈ TpM and vector fields X,Y ∈ X (M), we

denote the inner product by ⟨u, v⟩ = gp(u, v) and ⟨X,Y ⟩ = g(X,Y ), and denote the norm

by |u| = gp(u, u)
1/2 and |X| = g(X,X)1/2.

Example 2.17. Let (V, ⟨·, ·⟩) be a finite dimensional real inner product space, u ∈ V .

We define the linear isomorphism ιu : V → TuV as ιu(v) := ċv(0) ∈ TuV for any v ∈ V ,

where cv is the curve on V defined by cv(t) := u+ tv for any t ∈ R. Then, the canonical

Riemannian metric gV on V is defined by

(gV )u(ιu(v), ιu(w)) := ⟨v, w⟩

for any u, v, w ∈ V .

The canonical Riemannian metirc on the Euclidean space Rn is defined as in Example

2.17. For any Riemannian manifold M and p ∈M we shall also consider the Riemannian

metric on TpM defined as in Example 2.17 (consider (gM)p as the inner product on

V = TpM) and identify ιu(v) ∈ Tu(TpM) with v ∈ TpM .

Definition 2.18 (Induced metric). Let (M, g) be a Riemannian manifold and let N

be a manifold and let φ : N → M be a immersion map. Then, the map φ induces

Riemannian metric h on N as follows: for u, v ∈ TpN

hp(u, v) := gφ(p)(dφ(u), dφ(v)).

The metric h is called a induced metric (pullback metric) of g by φ, and denoted by φ∗g.

Definition 2.19 (Riemannian submanifold). LetN be a submanifold of a Riemannian

manifold (M, g). Then, for the inclusion map ι : N , the Riemannian manifold (N, ι∗g) is

called a Riemannian submanifold of (M, g).

Definition 2.20 (Local isometry and isometry). Let (M, g) and (N, h) be Riemannian

manifolds and let φ :M → N is a smooth map. If the map φ satisfies φ∗h = g, then φ is

called a local isometry. Moreover, if the map φ is diffeomorphism, then φ is called a an

isometry.

Proposition 2.21. Let M,N be Riemannian manifolds and f :M → N be a smooth

map. Then, the following are equivalent.

(i) f is an isometry.

(ii) f is a bijective local isometry.

Definition 2.22 (Riemannian covering). Let M,N be Riemannian manifolds and

π : M → N be a covering map. If π is a local isometry, then π is called a Riemannian

covering. In particular, if M is simply connected, then π is called a universal Riemannian

covering.
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Proposition 2.23. Let M be a Riemannian manifold and N be a smooth manifold.

Let π : M → N be a covering map. If for all deck transformations of π are isometries,

then there exists a unique Riemannian metric on N such that π is a Riemannian covering.

Definition 2.24 (Length of curves). Let M be a Riemannian manifold and let c :

[a, b] →M be a smooth curve on M . Then, the length L(c) of the curve c, is defined by

L(c) :=

∫ b

a

|ċ(t)| dt

where ċ(t) ∈ Tc(t)M is the velocity vector of c at t ∈ [a, b].

Definition 2.25 (Riemannian distance function). LetM be a connected Riemannian

manifold. Then, the Riemannian distance function d :M ×M is defined by

d(p, q) := inf{L(c) | c is a smooth curve from p to q}.

Proposition 2.26. The Riemannian distance function is a distance. Moreover, the

topology induced by the Riemannian distance function coincides with the topology as a

manifold.

Definition 2.27 (Levi-Civita connection). Let M be a Riemannian manifold. Then,

the Levi-Civita connection ∇ is a connection on the tangent bundle TM satisfying that

for vector fields X,Y, Z ∈ X (M),

∇XY −∇YX = [X,Y ],

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩,

where [X,Y ] is the Lie bracket of vector fields X and Y.

Proposition 2.28. The Levi-Civita connection exists and is unique, and for smooth

vector fields X,Y, Z the folloing equality holds:

⟨∇XY, Z⟩ =
1

2
{X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩

+ ⟨[X,Y ], Z⟩ − ⟨[Y, Z], X⟩+ ⟨[Z,X], Y ⟩}.

Remark 2.29. If vector fields X,X ′ ∈ X (M) satisfy that Xp = X ′
p for some p ∈ M ,

then we have (∇XY )p = (∇X′Y )p for any Y ∈ X (M). Thus, for v ∈ TpM and Y ∈ X (M)

we can define the vector ∇vY ∈ TpM

∇vY := (∇XY )p

for some X ∈ X (M) with Xp = v, which is well-defined. Moreover, if Z ∈ X (M) satisfies

that Y = Z on some smooth curve c : (−ε, ε) → M with c(0) = p and ċ(0) = v, then we

have ∇vX = ∇vY .
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Let M,N be Riemannian manifolds and φ be a diffeomorphism from M to N . For a

vector field X ∈ X (M), we define the vector field dφ(X) as

dφ(X)p := dφ(Xφ−1(p))

for any p ∈M .

Proposition 2.30. Let M,N be Riemannian manifolds and ∇, ∇̄ be Levi-Civita con-

nectons on M and N , respectively. Suppose that a smooth map φ :M → N is isometric.

Then, the follwing holds: for any vector fields X,Y ∈ X (M),

dφ(∇XY ) = ∇̄dφ(X)dφ(Y ).

Definition 2.31 (Gradient, Hessian, divergence, and Laplacian). Let M be a Rie-

mannian manifold.

(1) For f ∈ C∞(M), the gradient vector field of f , denoted by ∇f , is the smooth vector

field on M defined by

Xf := ⟨∇f,X⟩, X ∈ X (M).

(2) For f ∈ C∞(M), the Hessian of f , denoted by Hess(f), is the symmetric (0, 2)-tensor

field on M defined by

Hess(f)(X,Y ) := ⟨∇X∇f, Y ⟩, X, Y ∈ X (M).

(3) For X ∈ X (M), the divergence of X, denoted by div(X), is the smooth function on

M defined by

divX(p) := trace(TpM → TpM,u 7→ ∇uX).

(4) For f ∈ C∞(M), the Laplacian of f , denoted by ∆f , is the smooth function on M

defined by

∆f := − traceHess(f) = − div(∇f).

Levi-Civita connection is extended on the (r, s)-tensor bundle T rs (M) as follows: for

any T ∈ T rs (M) and X ∈ X (M), we define ∇XT as

• (r, s) = (0, 0) (T ∈ C∞(M))

∇XT := X(T ),

• (r, s) = (0, 1)

∇XT (Y ) := X(T (Y ))− T (∇XY )

for any X ∈ X (M),
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• (r, s) ̸= (0, 0), (0, 1)

∇XT (ω1, . . . , ωr, X1, . . . , Xs) := X(T (ω1, . . . , ωr, X1, . . . , Xs))

−
r∑
i=1

T (ω1, . . . ,∇Xωi, . . . , ωr, X1, . . . , Xs)

−
s∑
j=1

T (ω1, . . . , ωr, X1, . . . ,∇XXj, . . . , Xs),

for any Xi ∈ X (M) (i = 1, . . . , r) and ωj ∈ Ω(M) (j = 1, . . . , s).

For a vector field X on M and a (0, 1)-tensor field T on M which corresponds to X in

the sense of the identification as in Remark 2.9, ∇YX also corresponds to ∇Y T for every

Y ∈ X (M) by Example 2.11.

Definition 2.32 (∇T and∇X (T ∈ Γ(T rs (M)), X ∈ X (M))). Let T be a (r, s)-tensor

field on a Riemannian manifold M . Then, the (r, s+ 1)-tensor ∇X is defined by

∇T (ω1, . . . , ωr, X,X1, . . . , Xs) := ∇XT (ω1, . . . , ωr, X1, . . . , Xs)

for any X,Xi ∈ X (M) (i = 1, . . . , r) and ωj ∈ Ω(M) (j = 1, . . . , s). Similarly, for a vector

field X, we define the C∞(M)-linear map ∇X : X (M) → X (M) as

∇X(Y ) := ∇YX

for Y ∈ X (M).

Definition 2.33 (Parallel tensor field and parallel vector field). We say that the

tensor field T on a Riemannian manifold is parallel provided ∇T ≡ 0. Similarly, we say

that the vector field X on a Riemannian manifold is parallel provided ∇X = 0.

For a smooth manifolds M,N and a smooth map φ : N →M , we denote by X (φ,M)

the space of smooth functions from N to TM such that for any p ∈ N the image of p is

an element of Tφ(p)M . X (φ,M) become a C∞(N)-module.

Definition 2.34 (Vector field along curve). Let M be a smooth manifold and c :

(a, b) → M be a smooth cureve on M . Then, an element of X (c,M) is called a vector

field along the curve c.

Definition 2.35 (Covariant derivative of Y ∈ X (φ,M)). Let φ : N →M be a smooth

map from a smooth manifold N to an n-dimensional Riemannian manifold N and ∇ be a

Levi-Civita connection on M . Then, we define the covariant derivative ∇XY ∈ X (φ,M)

of Y ∈ X (φ,M) with respect to X ∈ X (N) as for any p ∈ N

(∇XY )(p) :=
n∑
i=1

(
Xp(Y

i)
∂

∂xi
(φ(p)) +∇dφ(Xp)

∂

∂xi

) (
∈ Tφ(p)M

)
,

10



where (x1, . . . , xn) is a coordinate neighbourhood of φ(p) ∈M and Y i (i = 1, . . . , n) is the

smooth function on the coordinate neighbourhood such that Y (q) =
∑n

i=1 Y
i(q)∂/∂xi(φ(q)).

This definition is well-defined. Moreover, since for any f ∈ C∞(N), X ∈ X (N), and

Y ∈ X (φ,M) the equalities∇fXY = f∇XY,

∇X(fY ) = X(f)Y + f∇XY

hold, the real bilinear map ∇ : X (N) × X (φ,M) → X (φ,M), (X,Y ) 7→ ∇XY regard as

a linear connection. In the same way as Remark 2.29, for v ∈ TpN and Y ∈ X (φ,M) we

can define the vector ∇vY ∈ Tφ(p)M .

For a vector field X(t) along a curve c(t) on a Riemannian manifold, we sometimes

denote by ∇X the covariant derivative ∇ d
dt
X for simplicity.

Definition 2.36 (Parallel vector field along curve). Let c : (a, b) →M be a curve on

a Riemannian manifold M and X be a vector field along c. Then, X is called parallel if

∇X(t) = 0 for any t ∈ (a, b).

Proposition 2.37. Let c : (a, b) →M be a smooth curve on a Riemannian manifold

M . Then, the following hold.

(i) For any t0 ∈ (a, b) and u ∈ Tc(t)M , there exists a unique parallel vector field X

along c such that X(t0) = u.

(ii) For any parallel vector fields X,Y along c, the following holds: for any s, t ∈ (a, b),

⟨X(s), Y (s)⟩ = ⟨X(t), Y (t)⟩.

In particular, |X(t)| is a constant function.

Now we define the curvatures.

Definition 2.38 (Riemannian curvature tensor). Let M be a Riemannian manifold.

Then, the Riemannian curvature tensor of M , denoted by R, is (1, 3)-tensor field on M

defined by

R(X,Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X (M).

Proposition 2.39. The Riemannian curvature tensor R on a Riemannian manifold

M satisfies the following inequalities: for any X,Y, Z,W ∈ X (M),

R(X,Y )Z = −R(Y,X)Z,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

⟨R(X,Y )Z,W ⟩ = −⟨R(X,Y )W,Z⟩,
⟨R(X,Y )Z,W ⟩ = ⟨R(Z,W )X,Y ⟩,
(∇XR)(Y, Z)W + (∇YR)(Z,X)W + (∇ZR)(X,Y )W = 0.

11



Proposition 2.40. Let M,N be Riemannian manifolds and R, R̄ be Riemannian

curvature tensor on M,N . Suppose that a smooth map φ : M → N is locally isometric.

Then, the following holds: for any u, v, w ∈ TpM (p ∈M),

dφ(R(u, v)w) = R̄(dφ(u), dφ(v))dφ(w).

Definition 2.41 (Sectional curvature). Let M be a Riemannian manifold. Let σ be

a two-dimensional subspace of TpM and {u, v} be a basis of σ. We define the sectional

curvature Kσ of σ as

Kσ :=
⟨R(u, v)v, u⟩

|u|2|v|2 − ⟨u, v⟩2
,

which dose not depend on the choice of the basis {u, v} of σ. We sometimes denote by

K(u, v) instead of Kσ.

If there exists a constant c ∈ R such that for any p ∈M and two-dimensional subspace

σ of TpM the sectional curvature Kσ is equal to c, then we say that M has constant

curvature c. A Riemannian manifold with constant curvature 0 is asid to be flat. The

Euclidean space with canonical Riemannian metric has constant curvature 0.

Definition 2.42 (Flat torus). Let Γ be a descrete subgroup of Rn such that Γ is

isomorphic to Zn. By Proposition 2.23, there exists a unique metric gTn on Tn := Rn/Γ

such that the projection map π : Rn → Tn is a universal Riemannian covering. The

Riemannian manifold (Tn, gTn) is flat and called a flat torus.

Definition 2.43 (Ricci curvature tensor). Let M be a Riemannian manifold. We

define the Ricci curvature tensor, which is a symmetric (0, 2)-tensor field, as follows: for

any u, v ∈ TpM (p ∈M),

Ric(u, v) := trace(w 7→ R(w, u)v).

Definition 2.44 (Normal bundle and normal vector field). Let M be a Riemannian

manifold and N be a submanifold of M . Put

TN⊥ :=
⊔
p∈M

TpN
⊥,

where TpN
⊥ is the orthogonal complement of TpN ⊂ TpM . Then, TN⊥ becomes a

submanifold of TM . Moreover, for the smooth map π⊥
N := πM |TN⊥ : TN⊥ → N , the

triple (TN⊥, π⊥
N , N) become a vector bundle. This vector bundle is called a normal bundle,

and a section of TN⊥ is called a normal vector field on N .
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Definition 2.45 (Shape operator). Let M be a Riemannian manifold and N be a

submanifold of M . Let ∇ be the Levi-Civita connecton on M . For ξ ∈ TpN
⊥ (p ∈ N),

we define the shape operator Aξ : TpN → TpN as

Aξ(u) := (∇uX)⊤,

where X is a normal vector field on N such that Xp = ξ and (∇uX)⊤ is the horizontal

component of ∇uX with respect to TpN . This definition is not depend on the choice of

X, and Aξ become a symmetric linear operator.

Definition 2.46 (Mean curvature). Let H be a hypersurface of an n-dimensional

Riemannian manifold M and ν be a unit normal vector to H. Then, the mean curvature

η of H with respect to ν is defined as

η :=
1

n− 1
traceAν =

1

n− 1

n−1∑
i=1

⟨Aν(ei), ei⟩

where {ei}n−1
i=1 is an orthonormal basis of TpN .

Next, we define geodesics, exponetinal maps, and Jacobi fields.

Definition 2.47 (Geodesic). Let γ be a smooth curve on a Riemannian manifold.

We say that γ is a geodesic provided γ satisfies

∇ d
dt
γ̇(t) ≡ 0.

Remark 2.48. Geodesics on a Riemannian manifold exist and are unique in the fol-

lowing sense:

(i) For any t0 ∈ R and u ∈ TM , there exist an open interbal (a, b) and a geodesic

γ : (a, b) →M such that t0 ∈ (a, b), γ(t0) = πM(u), and γ̇(t0) = u.

(ii) For geodesics γ : (a, b) → M and δ : (c, d) → M , if γ(t0) = δ(s0) (t0 ∈ (a, b),

s0 ∈ (c, d) ) and dγ/dt(t0) = dδ/ds, then the equality

γ(t) = δ(t− t0 + s0)

holds for any t ∈ (a, b) ∩ (t0 + c − s0, t0 + d − s0). Moreover, γ is extend on the open

interval (a′, b′), where a′ := min{a, t0 + c− s0} and b′ := max{b, t0 + d− s0}).

For u ∈ TM , we denote by γu the geodesic on a Riemannian manifoldM with γu(0) =

πM(u) and γ̇(0) = u. For a ∈ R and u ∈ TM , if γau(t) is defiend, then the inequality

γau(t) = γu(at)

holds. In particular, γu(t) = γtu(1).
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Proposition 2.49. Let M be a Riemannian manifold and u0 ∈ TM . Then, there

exist ε > 0 and a neighbourhood U ⊂ TM of u0 such that for any u ∈ U the geodesic γu

is defined on the open interval (−ε, ε) and the map U × (−ε, ε) → M, (u, t) 7→ γu(t) is

smooth.

Definition 2.50 (Exponential map). Let M be aRiemannian manifold and p ∈ M .

Put

Ũ := {u ∈ TpM | the geodesic γu(t) is defined at t = 1},

which is an open set in TpM . Then, the exponential map expp : Ũ →M at p is defined as

expp u := γu(1),

which is smooth.

Proposition 2.51. The exponetial map expp is a diffeomorphism from a neighbour-

hood of the origin of TpM to a neighbourhood of p.

Definition 2.52 (Normal coordinate system). LetM be a Riemannian manifold, p ∈
M , and {ei}ni=1 be an orthonormal basis of TpM . By Proposition 2.51, a differomorphism

f from a neibourhood Ũ of 0 ∈ Rn to a neibourhood U of p is defined as

f(x1, . . . , xn) := expp(x
1e1 + . . .+ xnen).

Then, (U,φ := f−1) become a coordinate system on M . The coordinate system (U,φ) is

called a normal coordinate system at p.

Proposition 2.53. Let M be a Riemannian manifold and p ∈ M . For the normal

coordinate sysytem (U, (x1, . . . , xn)) at p, we put ∂i := ∂/∂xi (i = 1, . . . , n). Then, the

following hold:

(i)

⟨∂i, ∂j⟩ (p) = δij.

(ii) For any X ∈ X (M),

∇X∂i(p) = 0.

Definition 2.54 (Injective radius). Let M be a Riemannian manifold. Then, the

injectivity radius at p ∈M is defined as

ip(M) := sup{r > 0 | expp |B(op, r) is a diffeomorphism},

where op is the origin of the tangent space TpM . The injectivity radius of M is defined as

i(M) := inf{ip(M) | p ∈M}.
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Proposition 2.55. For a compact Riemannian manifold, the injectivity radius i(M)

is positive.

Definition 2.56 (Normal exponetial map). Let M be a Riemannian manifold and N

be a submanifold of M . Put

Ṽ := {u ∈ TN⊥ | the geodesic γu(t) is defined at t = 1},

which is an open set in TN⊥. Then, the normal exponential map expN : Ṽ →M of N is

defined as

expN u := γu(1),

which is smooth.

Definition 2.57 (Jacobi field). The vector field Y along a geodesic γ on a Riemannian

manifold is called a Jacobi field provided the equality

∇∇Y (t) = R(Y (t), γ̇(t))γ̇(t)

holds.

Proposition 2.58. Let γ : (a, b) → M be a geodesic on a Riemannian manifold and

t0 ∈ (a, b). Then, for any u, v ∈ Tc(t0)M , there exists a unique Jacobi field along γ with

Y (t0) = u, ∇Y (t0) = v.

Example 2.59. Let M be a Riemannian manifold and u, v ∈ TpM . Then, the Jacobi

field Y along γu with Y (0) = 0,∇Y (0) = v can be written as

Y (t) = td expp(tu)v.

Example 2.60. Let M be a complete Riemanian manifold with constant curvature k

and γ : (−∞,∞) →M be a normal geodesic on M . Let Y be a normal Jacobi field along

γ and take the parallel vector fields E1, E2 along γ with E1(0) = Y (0), E2(0) = ∇Y (0)

respectively. Put

sk(t) =


sin(

√
kt)/

√
k (k > 0)

t (k = 0)

sinh(
√
|k|t)/

√
|k| (k < 0)

,

ck(t) =


cos(

√
kt) (k > 0)

1 (k = 0)

cosh(
√

|k|t) (k < 0)

.

Then, Y (t) can be written as

Y (t) = ck(t)E1(t) + sk(t)E2(t).
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Proposition 2.61 (Gauss’s Lemma). Let M be a Riemmanian manifold, p ∈M , and

u, v ∈ TpM . Then, for any u, v ∈ TpM the following inequality holds.

⟨d expp(u)v, d expp(u)u⟩ = ⟨u, v⟩.

Definition 2.62 (Conjugate point). LetM be a Riemannian manifold and γ : [a, b] →
M be a geodesic. Put p := γ(a), q := γ(b). We say that q is conjugate to p along γ provided

there exists a nonzero Jacobi field Y along γ satisfying that Y (a) = 0, Y (b) = 0.

Definition 2.63 (N -Jacobi field). Let N be a submanifold of a Riemannian manifold

M and u ∈ TpN
⊥ (p ∈ N). Then, a Jacobi field Y along γu is called a N -Jacobi field

provided Y satisfies

Y (0) ∈ TpN, ∇Y (0)− AuY (0) ∈ TpN
⊥,

where Au is the shape operator of N with respect to u.

Example 2.64. Let H be a hypersurface in a Riemannian manifoldM , ν be a normal

vector field on N , and u ∈ TpN . Define the function Ψ : N × R as

Ψ(p, t) := tνp.

Then, the H-Jacobi field Y along γνp (p ∈ N) with Y (0) = u,∇Y (0) = Aνp can be written

as

Y (t) = d(exp ◦Ψ)(p, t)(u, 0),

where (u, 0) ∈ TpN ⊕ TtR = T(p,t)(N × R).

Next we recall the Riemannian measure.

Definition 2.65 (Inner product on exterior power). Let V be an n-dimennsional real

inner product space and {ei}ni=1 be an orthonormal basis on V . We denote by
∧r(V ) the

rth exterior power of V ∗. Then, the inner product on
∧r(V ) is defined as⟨ ∑

i1<···<ir

ai1,...,irei1 ∧ · · · ∧ eir ,
∑

j1<···<jr

bj1,...,jrej1 ∧ · · · ∧ ejr

⟩
:=

∑
i1<···<ir

ai1,...,irbi1,...,ir ,

which does not depend on the choice of the orthonormal basis {ei}ni=1.

Remark 2.66. Let V be an n-dimennsional real inner product space and {ei}ni=1 be

an orthonormal basis on V . Then, for v1, . . . , vn ∈ V , the follwing equalities hold:

v1 ∧ · · · ∧ vn = det(⟨vi, ej⟩)i,je1 ∧ · · · ∧ en.

|v1 ∧ · · · ∧ vn| = | det(⟨vi, ej⟩)i,j| =
√

det(⟨vi, vj⟩)i,j.
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Definition 2.67 (Determinant of linear map between inner product spaces). Let V,W

be n-dimensional inner product spaces and {e1, . . . , en}, {f1, . . . , fn} be orthonormal bases

of V and W , respectively. Let T : V → W be a linear map. We define the determinant

of T as

detT := det(⟨T (ei), fj⟩W )ij.

By the definition, the following holds.

| detT | =
√

det(⟨T (ei), T (ej)⟩W )ij = |T (e1) ∧ · · · ∧ T (en)| .

For A ⊂M , we denote by χA the indicator function of A.

Definition 2.68 (Riemannian measure). Let M be an n-dimensional Riemannian

manifold M and B be the Borel algebra on M (or the σ-algebra generated by the family

of inverse images of Lebesgue measurable sets by coordinate systems onM). Take an atlas

{(Uα, φα = (x1α, . . . , x
n
α))}α∈A and a partition of unity {ρα}α∈A subordinate to {Uα}α∈A.

Define the function Jα : Uα → R as

Jα(p) := | det dφ−1
α (φα(p))| =

√
det

(⟨
∂

∂xiα
(p),

∂

∂xjα
(p)

⟩)
ij

=

∣∣∣∣ ∂∂x1α (p) ∧ · · · ∧ ∂

∂xnα
(p)

∣∣∣∣
Then, the Riemannian measure vM : B → [0,+∞] is defined as

vM(B) :=
∑
α∈A

∫
φα(Uα)

(ραχBJα) ◦ φ−1
α (x1α, . . . , x

n
α) dx

1
α · · · dxnα,

which does not depend on the choice of the atlas {(Uα, φα = (x1α, . . . , x
n
α))}α∈A and the

partition of unity {ρα}α∈A. Then, a triple (M,B, vM) become a measure space. vM(B) is

called a volume of B, denoted by vol(B).

Proposition 2.69. Let M,N be Riemannian manifolds with dimM = dimN and

φ : N →M be a diffeomorphism. Then, for any integrable function f on M , the following

equality holds: ∫
M

f dvM =

∫
N

f ◦ φ| det dφ| dvN .

In particular, for an isometry φ : N →M ,∫
M

f dvM =

∫
N

f ◦ φdvN .

For a Riemannian manifoldM and p ∈M , we define the diffeomorphism Θp : (0,∞)×
SpM → TpM \ {op},

Θp(t, u) := tu
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where SpM := {u ∈ TpM | |u| = 1} ⊂ TpM the unit sphere in TpM and op is the origin of

TpM . For any r > 0 define the map Θp,r : SpM → TpM \ {op} as Θp,r(u) := Θp(r, u). We

shall estimate the (n − 1)-dimesional volume voln−1(∂B(p, r)) applying Proposition 2.69

for the diffeomorphism expp ◦Θp,r : SpM → ∂B(p, r) (r > 0 is sufficiently small).

Proposition 2.70. We put

θp(t, u) := | det d(expp ◦Θp)(t, u)|

θp,r(u) := | det d(expp ◦Θp,r)(u)|

For (t, u) ∈ (0,+∞) × SpM and an orthonormal basis {e1, . . . , en} of TpM with en = u,

we take the Jacobi fields Yi (i = 1, . . . , n − 1) along the normal geodesic γu with Yi(0) =

0,∇Yi(0) = ei. Then, the following equalities hold.

θp(t, u) = tn−1
√

det⟨d expp(u)ei, d expp(u)ej⟩1≤i,j≤n−1

=
√

det⟨Yi(t), Yj(t)⟩1≤i,j≤n−1,

θp,r(u) = θp(r, u).

Example 2.71. Let r0 be a positive constant such that expp |B(op, r0) is a diffeomor-

phism. Then, by Proposition 2.70 we have, for 0 < r < r0,

vol(B(p, r)) =

∫
SpM

∫ r

0

θp(t, u) dtdvSpM(u)

voln−1(∂B(p, r)) =

∫
SpM

θp,r(u) dvSpM(u)

Corollary 2.72. LetM be a n-dimensional Riemannian manifold and p ∈M . Then,

the following hold:

lim
ε→0

vol(B(p, ε))

εn
= vol(Bn

0 (1)),

lim
ε→0

voln−1(∂B(p, ε))

εn−1
= voln−1(∂B

n
0 (1)),

lim
ε→0

voln−1(∂B(p, ε))

vol(B(p, ε))
n−1
n

=
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

,

where Bn
0 (1) is a unit ball in n-dimensional Euclidean space Rn.

If M has a constant curvature k, then a Jacobi field Y along the normal geodesic γu

(u ∈ SpM) with Y (0) = 0 can be written as

Y (t) = sk(t)E(t),

where E is the parallel vector field along γu with E(0) = ∇Y (0). In this case, the following

corollary holds.
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Corollary 2.73. Let M be a n-dimensional Riemannian manifold with constant

curvature k. Then, we have

θp(t, u) = sn−1
k (t),

θp,r(u) = sn−1
k (r),

and for a constant r0 such that expp |B(op, r0) is a diffeomorphism, the following hold: for

any 0 < r < r0,

vol(B(p, r)) = voln−1(∂B
n
0 (1))

∫ r

0

sn−1
k (t) dt,

voln−1(∂B(p, r)) = voln−1(∂B
n
0 (1))s

n−1
k (r).

In particular,

vol(Bn
0 (1)) =

voln−1(∂B
n
0 (1))

n
.

Proposition 2.74 (Coarea formula). Let M be a Riemannian manifold and f be a

proper smooth function on M . By Sard’s theorem, the set of critical values is a null set

in R, and for almost everywhere regular point t ∈ R, f−1(t) is a compact hypersurface in

M . Then, for any integrable function u, the following equality holds.∫
m

u|∇f |dvM =

∫ +∞

−∞

[∫
f−1(t)

u dvf−1(t)

]
dt,

where vf−1(t) is the Riemannian measure of the Riemannian submanifold f−1(t) of M .

Theorem 2.75 (Divergence theorem). Let M be a Riemannian manifold. Then, for

any C1-vector field Xon M with compact support, the following equality holds.∫
M

divXdvM = 0.

Next, we define the completeness and recall some comparison theorems.

Definition 2.76 (Geodesically complete). A Riemannian manifold M is called to be

geodesically complete at p ∈ M provided for any u ∈ TpM the geodesic γu is defined on

R. M is called to be geodesically complete provided for any p ∈ M , M is geodesically

complete at p.

Theorem 2.77 (Hopf-Rinow theorem). Let M be a connected Riemannian manifold.

Then, the following are equivalent.

(i) M is a complete metric space for the Riemannian distance d of M .

(ii) There exists p ∈M shuch that M is geodesically complete at p.

(iii) M is geodesically complete.

(iv) There exists p ∈ M such that for any r > 0, B(p, r) := {q ∈ M | d(p, q) ≤ r} is

compact.

(v) For any p ∈M and r > 0, B(p, r) is compact.
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We simply say that a connected Riemannian manifold M is complete provided M

satisfies the condition in Theorem 2.77. We see that compact connected Riemannian

manifolds are complete.

Proposition 2.78. Let M,N be connected Riemannian manifolds and f : M → N

be a local isometry. If M is complete, then f is a Riemannian covering.

Theorem 2.79 (Rauch comparison theorem). Let M be a complete Riemannian man-

ifold and KM be a sectional curvature of M . Let γ : [0,∞) → M be a normal geodesic

and Y be a normal Jacobi field along γ with Y (0) = 0.

(i) Assume KM ≤ ∆ and put t0 := sup{t > 0 | 0 < ∀t′ < t, s∆(t′) > 0}. Then, for

0 < t < t0,

|Y (t)| ≥ |∇Y (0)|s∆(t).

(ii) Assune KM ≥ δ and let t0 be the minimum positive value of t such that γ(t) is

conjugate to γ(0) along γ (if for all t > 0 the point γ(t) is not conjugate to γ(0) along γ,

then put t0 := +∞). Then, for 0 < t < t0,

|Y (t)| ≤ |∇Y (0)|sδ(t).

Corollary 2.80. LetM be a complete Riemannian manifold satisfying δ ≤ KM ≤ ∆.

(i) Let p ∈ M and u ∈ TpM be a non-zero tangent vector such that 0 < |u| < π/
√
∆

(when ∆ ≥ 0, we interpret π/
√
∆ = +∞). Then, for all non-zero tangent vector v ∈ TpM

with u ⊥ v the following inequalities hold.

s∆(|u|)
|u|

≤
|d expp(u)v|

|v|
≤ sδ(|u|)

|u|
.

(ii) Assume M is compact. Then, for ε > 0 there exists a positive constant r =

r(M, gM , ε) < i(M) such that for any p ∈ M and domain Ω ⊂ B(r, p) with smooth

boudary the following inequlities hold.

(1− ε) vol(Ω̃) < vol(Ω) < (1 + ε) vol(Ω̃),

(1− ε) vol(∂̃Ω) < vol(∂Ω) < (1 + ε) vol(∂Ω̃).

where Ω̃ := exp−1
p (Ω), vol(Ω̃) is the Euclidean volume on TpM induced by the its innner

product gp, and vol(∂Ω̃) is the (n− 1)-dimensional volume as the Riemanian submanifold

∂Ω̃ ⊂ TpM .

Proposition 2.81 (Bishop’s inequality). Let M be a complete n-dimensiona Rieman-

nian manifold with RicM ≥ k (k ∈ R). Then, for any p ∈ M and r > 0 the following

inequality holds.

vol(B(p, r)) ≤ vol(Bn
k (r)),
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where Bn
k (r) is the ball of radius r on the n-dimensional simply connected space form with

constant curvature k.

Theorem 2.82 (Heintze-Karcher). Let M be a complete Riemannian manifold with

RicM ≥ kgM for some k ∈ R and H be a hypersurface in M . Let ν be a unit normal

vetor field on H and η be the mean curvature function of H with respect to ν. Then, the

following inequality holds.

| det dΨ|(p, t) ≤ (ck(t) + η(p)sk(t))
n−1, 0 ≤ t ≤ t0(H, νp),

where t0(H, νp) := sup{t > 0 | for any t′ ∈ (0, t), rank dΨ(p, t′) = n}.

Finally, we recall the Gromov’s almost flat theorem [9].

Proposition 2.83 (Gromov’s almost flat theorem). Let M be a compact connected

n-dimensional Riemannian manifold. Then, there exists an explicit postitive constant ε =

ε(n) such that if |KM diam(M)2| < ε, then the universal covering of M is diffeomorphic

to Rn.

2.3 Lie group, Lie algebra, and homogeneous space

Definition 2.84 (Lie Group). Let G be a group with structure of a C∞-manifold.

Then, G is called a Lie group provided the map G × G → G defined by (a, b) 7→ ab−1 is

smooth.

Proposition 2.85. The product of two Lie groups is also a Lie group.

Definition 2.86 (Lie subgroup). Let H be a subgroup of a Lie group G. Then, H is

called a Lie subgroup provided H is a Lie group and the inclusion map ι : H ↪→ G is a

smooth immersion.

Proposition 2.87. Let G be a subgroup and N be a normal Lie subgroup of G. Then,

the quatient G/N is also a Lie group.

Definition 2.88 (Lie group homomorphism and Lie group isomorphism). Let G and

H be Lie groups. Then, a smooth homomorhism F : G → H is called a Lie group

homomorphism. Moreover, if F : G → H is bijective and F−1 : H → G is a Lie group

homomorphism, then F is called a Lie group isomorphism and we say that G is isomorphic

to H.

For a group G, we denote by La (resp. Ra) the left (resp. right) translation of a ∈ G

defined by La : G → G, x → ax (resp. Ra : G → G, x → xa). Note that if G is a

Lie group, then for any a ∈ G the left translation La and the right translation Ra are

diffeomorphisms on M
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Definition 2.89 (Left invariant vector field and Right invariant vector field). Let X̃

be a smooth vector field on a Lie group G. Then, X̃ is called a left (resp. right) invariant

vector field on G provided for any a ∈ G the equality

dLa(X̃) = X̃ (resp. dRa(X̃) = X̃)

holds.

Definition 2.90 (Lie algebra). Let g be a real vector field with binary operation [·, ·]
on g. The binary operation [·, ·] is called a Lie bracket on g provided the following hold:

(i) For any a, b ∈ R and x, y, z ∈ g,

[ax+ by, z] =a[x, z] + b[y, z],

[x, ay + bz] =a[x, y] + b[x, z].

(ii) For any x, y ∈ g,

[x, y] = −[y, x].

(iii) For any x, y, z ∈ g,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

If [·, ·] is a Lie bracket, then we say that g is a Lie algebra.

For instance, the space X (M) of vector fields on a smooth manifoldM with Lie bracket

[·, ·], defined by [X,Y ](f) := X(Y (f))− Y (X(f)) (f ∈ C∞(M)), is a Lie algebra.

Definition 2.91 (Adjoint endmorphism). Let g be a Lie algebra. For any a ∈ g, we

define the adjoint endmorphism ada : g → g as

ada(x) := [a, x].

Definition 2.92 (Lie algebra of Lie group). Let G be a Lie group. Since for any

left invariant vector fields X̃ and Ỹ on G the Lie bracket [X̃, Ỹ ] is also a left invariant

vector field, the space Lie(G) of left invariant vector fields on G become a Lie subalgebra

of X (G). We say that Lie(G) is the Lie algebra of G.

For a Lie group G, we see that the dimension of G as a manifold is equal to the

dimension of Lie(G) as a vector field.

Definition 2.93 (Universal covering group). Let G be a connected Lie group and

take a universal cover π : G̃ → G. Then, there exists a structure of Lie group on G̃ such

that π become a group homomorphism and a smooth map. We say that G̃ is a universal

covering group. The universal covering group G̃ is unique up to group isomorphism.
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Theorem 2.94 (Structure theorem of compact Lie group [3]). Let G be a compact

connected Lie group. Then, there exist a nonnegative integer k (≤ n), a simply connected

compact Lie group G0, and a finite central subgroup Z of Tn×G0 such that G is ismorphic

to (Tn ×G0)/Z.

Remark 2.95. Note that the simply connected Lie group Rn × G0 is a universal

covering group of G = (Tn ×G0)/Z.

Next, we define homogeneous spaces.

Definition 2.96 (Lie transformation group). Let G be a Lie group and M be a

smooth manifold. If G acts on M (on the left) and the group action (g, p) 7→ g · p is

smooth, then G is called a Lie transformation group acting on M .

Definition 2.97 (Homogeneous space). Let G be a Lie transformation group acting

a smooth manifold M . If G acts transitively, then M is called a homogeneous space.

Definition 2.98 (Isotoropy group). Let G be a Lie transformation group acting a

smooth manifold M and p ∈M . Then, the closed Lie subgroup H of G defined as

H := {g ∈ G | g · p = p}

is called an isotoropy group.

Proposition 2.99. Let G be a Lie transformation group acting a smooth manifold

M , p ∈ M . Assume that M is a homogeneous space. Then, for the isotoropy group

H := {g ∈ G | g · p = p}, G/H becomes a smooth manifold. Moreover, the map G/H →
M, gH 7→ g · p is a diffeomorphism.
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3 Isometry group and Killing vector fields

3.1 Definition and some properties

Definition 3.1. Let M be a Riemannian manifold and Isom(M) be the set of isome-

tries on M . Then, considering the composition of isometries as the group law, Isom(M)

become a group. The group Isom(M) is called an isometry group.

Proposition 3.2. For a Riemannian manifold M , there exists a unique way to make

Isom(M) a Lie group as follws:

(i) The action Isom(M)×M →M, (φ, p) 7→ φ(p) is smooth.

(ii) A one-parameter group α : R → Isom(M) is smooth as a map if the map R×M →
M, (t, p) 7→ α(t)(p) is smooth.

Definition 3.3 (Riemannian homogeneous space). Let M be a Riemannian mani-

fold. Then, if the isometry group Isom(M) acts on M transitively, then M is called a

Riemannian homogeneous space

Definition 3.4 (Killing vector field). A smooth vector field X on a Riemannian

manifold on M is called a Killing vector field provided

LXgM = 0,

where LXgM be the Lie derivative of gM with respect to X.

By the definition of Lie derivative, X is a Killing vector field on a Riemannian manifold

M if and only if for any vector fields Y, Z ∈ X (M) the following eaualiy holds:

⟨∇YX,Z⟩+ ⟨∇ZX,Y ⟩ = 0.

Proposition 3.5. Let X be a Killing vector field on a Riemannian maniofld M .

Then, the following hold.

(i) For any isometry φ ∈ Isom(M), the vector field dφ(X) is also a Killing vector

filed.

(ii) For any (local) flow (φt)t of X the map φt is (locally) isometric if and only if X

is a Killing vector field. In particular, if X is a complete vector field, then φt ∈ Isom(M)

for the flow (φt)t of X.

(iii) For any geodesic γ on M , X(t) := Xγ(t) is a Jacobi field along γ.

(iv) For any integral cunrve c of X, c have a constant speed.

(v) If the manifold M is complete, then X is a complete vector field.
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Proposition 3.6 (Bochner formula [14]). Let X be a Killing vector field on a n-

dimensional Riemannian maniofld M . Then, the following equality holds:

1

2
∆|X|2 = −|∇X|2 +Ric(X,X),

where |∇X|(p) := (
∑n

i=1 |∇eiX|2)1/2 ({ei}ni=1 is an orthonormal basis of TpM).

Proof. By the definition of Killing vector fields, for any vector field Y ∈ X (M) we

have

⟨∇|X|2, Y ⟩ = Y (|X|2) = 2⟨∇YX,X⟩ = −2⟨∇XX,Y ⟩,

and thus

∇|X|2 = −2∇XX.

From this equality, we have
1

2
∆|X|2 = div∇XX.

Let (U, (x1, . . . , xn)) be a normal coordinate system at p ∈ M and put ∂i := ∂/∂xi

(i = 1, . . . , n). By the definition of divergene and curvature tensor, we have

1

2
∆|X|2 =

n∑
i=1

⟨∇∂i∇XX, ∂i⟩

=
n∑
i=1

[
⟨R (∂i, X)X, ∂i⟩+ ⟨∇X∇∂iX, ∂i⟩+

⟨
∇[∂i,X]X, ∂i

⟩]
= Ric(X,X) +

n∑
i=1

[
⟨∇X∇∂iX, ∂i⟩+

⟨
∇[∂i,X]X, ∂i

⟩]
.

Since ⟨∇∂iX, ∂i⟩ ≡ 0, we have

⟨∇X∇∂iX, ∂i⟩+
⟨
∇[∂i,X]X, ∂i

⟩
= ⟨∇X∇∂iX, ∂i⟩ − ⟨∇∂iX, [∂i, X]⟩
= ⟨∇X∇∂iX, ∂i⟩+ ⟨∇∂iX,∇X∂i⟩ − |∇∂iX|2

= X⟨∇∂iX, ∂i⟩ − |∇∂iX|2

= −|∇∂iX|2.

Thus, we get the conclusion.

Proposition 3.7 (Kato’s inequality [1]). Let X be a Killing vector field on a Rie-

mannian maniofld M . Then, the inequality

|∇|X|| ≤ |∇X|

holds on {p ∈M | |Xp| > 0}.
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Proof. Let p ∈ M such that |Xp| > 0 and {ei}ni=1 be an orthonormal basis of TpM .

Then,

|∇|X||2(p) =
n∑
i=1

⟨∇|X|, ei⟩2 =
n∑
i=1

ei(|X|)2 =
n∑
i=1

⟨∇eiX,Xp⟩2

|Xp|2
≤

n∑
i=1

|∇eiX|2 = |∇X|2.

3.2 Correspondence between Killing vector fields and left in-

variant vector fields

Lemma 3.8. Let X̃ be a left invariant vctor field on a Lie group G. Then, for the flow

(φ̃t)t of X̃, the follwing inequlity holds:

φ̃t = Rgt ,

where gt := φ̃t(e) ∈ G (e is the identity element of G).

Proof. Let h ∈ G and define the curve c on G as c(t) := Rgt(h). Then, we have

d

dt
c(t) =

d

dt
Rgt(h) =

d

dt
hgt =

d

dt
Lh(gt) =

d

dt
(φ̃t(e)) = dLh(X̃φ̃t(e)) = X̃Lh(gt) = X̃c(t),

and thus c(t) is a integral curve of X̃ with c(0) = h. By the uniqueness of integral curve

and the definition of the flow φ̃ of vector field X̃, we get φ̃t(h) = Rgt(h), which is the

conclusion.

Lemma 3.9. Let M be a Riemannian manifold and X̃ be a left invariant vector field

on the isometry group Isom(M). For the flow (φ̃t)t of X̃, we put φt := φ̃t(id), where id

is the identity map on M which is the identity element of Isom(M). Then, (φt)t become

a one-parameter transformation group on M and induce a Killing vector field X on M .

Proof. By Proposition 3.2 (i), the map R ×M → M, (t, p) 7→ φt(p) is smooth. By

Lemma 3.8, we have

φs ◦ φt = Rφt(φs) = φ̃t(φs) = φ̃t(φ̃s(id)) = φ̃s+t(id) = φs+t.

Thus, (φt)t is a one-parameter transformation group on M . Moreover, by Proposition 3.5

(ii), X is a complete Killing vector field.

Lemma 3.10. Let M be a Riemannian manifold and X be a complete Killing vector

field on the isometry group Isom(M). For the flow (φt)t of X, we put φ̃t := Rφt. Then,

(φ̃t)t become a one-parameter transformation group on G and induce a left invariant vector

field X̃ on G.
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Proof. By Proposition 3.2 (ii) and the definition of Lie group, the map R×Isom(M) →
Isom(M), (t, φ) 7→ φ̃t(ψ) = ψ ◦ φt is smooth. By the definition of φ̃t, for any ψ we have

φ̃s ◦ φ̃t(ψ) = φ̃s(ψ ◦ φt) = ψ ◦ φt ◦ φs = ψ ◦ φs+t = φ̃s+t(ψ),

and thus we get φ̃s ◦ φ̃t = φ̃s+t(ψ). Hence, (φt)t is a one-parameter transformation group

on Isom(M). Moreover, we have

(dLψ(X̃))ϕ = dLψ(X̃ψ−1◦ϕ) =
d

dt

∣∣∣∣
t=0

Lψ(φ̃t(ψ
−1 ◦ ϕ))

=
d

dt

∣∣∣∣
t=0

Lψ(ψ
−1 ◦ ϕ ◦ φXt ) =

d

dt

∣∣∣∣
t=0

ϕ ◦ φXt =
d

dt

∣∣∣∣
t=0

φ̃t(ϕ) = X̃ϕ.

Thus, X̃ is a left invariant vector field on Isom(M)

We denote by Lie(Isom(M)) the space of left invariatn vector fields on Isom(M) and

by K(M) the space of complete Killing vector fields on M . Then, by Lemma 3.9, we

can define the map T : Lie(Isom(M)) → K(M). By the Lemma 3.10, we see that T is

surjective. Morerover, for K(M) and T the following folds:

Proposition 3.11. K(M) is a Lie subalgebra of the algebra X (M) of smooth vector

fields on M and the map T : Lie(Isom(M)) → K(M) is a linear isomorphism satisfying

the relation T ([X̃, Ỹ ]) = −[X,Y ], where X := T (X̃), Y := T (Ỹ ).

Proof. Let X̃ be a left invariant vector field and (φ̃t)t be the flow of X̃. Put φt :=

φ̃t(id) and X := T (X̃). For each p ∈M , define the map πp : Isom(M) →M as

πp(φ) := φ(p),

which is smooth by Proposition 3.2 (i). Then, we have

T (X̃)p = Xp =
d

dt

∣∣∣∣
t=0

φt(p) =
d

dt

∣∣∣∣
t=0

πp(φt) =
d

dt

∣∣∣∣
t=0

πp(φ̃t(id)) = dπp(X̃id).

It follows that T is a linear isomorphism.

Next let X̃, Ỹ be a left invariant vector fields and (φ̃t)t be the flow of X̃. Put φt :=

φ̃t(id) and X := T (X̃), Y := T (Ỹ ). Then, for any ψ ∈ Isom(M) we have

πp ◦Rφ−t ◦ Lφt(ψ) = φt ◦ ψ ◦ φ−t(p) = φt ◦ πφ−t(p)(ψ),
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and thus πp ◦Rφ−t ◦ Lφt = φt ◦ πφ−t(p). From this equality, we get the relation

T ([X̃, Ỹ ])p =dπp([X̃, Ỹ ]id)

=dπp

(
d

dt

∣∣∣∣
t=0

dRφ−tdLφt(Ỹid)− Ỹid
t

)

=
d

dt

∣∣∣∣
t=0

d(πp ◦Rφ−t ◦ Lφt)(Ỹid)− dπp(Ỹid)

t

=
d

dt

∣∣∣∣
t=0

d(φt ◦ πφ−t(p))(Ỹid)− dπp(Ỹid)

t

=
d

dt

∣∣∣∣
t=0

dφt(Yφ−t(p))− Yp
t

=− [X,Y ]p.

Moreove, It follows that Lie bracket [X,Y ] of Killing vector fields X and Y is also a

Killing vector filed, and hence the conclusion follows.

3.3 Dimension of isometry group and Bochner’s theorem

Proposition 3.12. LetM be a complete n-domensional Riemannian manifold. Then,

for the dimension of isometry group Isom(M), the follwing inequality holds

dim Isom(M) ≤ 1

2
n(n+ 1).

Theorem 3.13 (Bochner). Let M be a compact connected n-dimensional Riemannian

manifold with Ric ≥ 0. Then, for the dimension of isometry group Isom(M), the inequality

dim Isom(M) ≤ n

holds, and equality holds if and only if M is isometric to an n-dimensional flat torus.

Proof. (a) Let X be a Killing vector field on M . Integrating the Bochner formula

(see Proposition 3.6), we get∫
M

|∇X|2 dvM =

∫
M

Ric(X,X) dvM ≤ 0.

If follws that Killing vector fields on M are parallel. Take p ∈M and put

Vp := {Xp ∈ TpM | X ∈ K(M)}.

Then, the linear map Φp : K(M) → Vp, X 7→ Xp is injective, and thus we have

dim Isom(M) = dimK(M) = dim ImΦ ≤ n.
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(b) Assume that dim Isom(M) = n. Then, it holds that Vp = TpM . For a Killing

vector field X, we denote by (φXt )t the flow of X. Since Killing vector fields X,Y are

prallel, we have

[X,Y ] = ∇XY −∇YX = 0

and

φXs ◦ φYt = φYt ◦ φXs .

Moreover, the equality

φsX+tY
1 = φXs ◦ φYt

holds. In fact, c(r) := φXrs ◦φYrt(q) is the integral curve of the Killing vector field sX + tY

since

dc

dr
(r) =

d

dr′

∣∣∣∣
r′=r

φXr′s ◦ φYrt(q) +
d

dr′

∣∣∣∣
r′=r

φXrs ◦ φYr′t(q)

=
d

dr′

∣∣∣∣
r′=r

φXr′s ◦ φYrt(q) +
d

dr′

∣∣∣∣
r′=r

φYr′t ◦ φXrs(q)

= sXφX
rs◦φY

rt(q)
+ tYφY

rt◦φX
rs(q)

= (sX + tY )c(r).

Since a Killing vector field X is parallel, the curve t 7→ φXt (p) is a geodesic and the

equality

expp tXp = φXt (p)

holds. From the above, we have

d expp(Xp)Yp =
d

dt

∣∣∣∣
t=0

expp(Xp + tYp) =
d

dt

∣∣∣∣
t=0

φYt ◦ φX1 (p) = YexppXp .

Considering that the Riemannian metric on TpM is defined in Example 2.17 and that

vector field Y is parallel, it follows that the exponetial map expp : TpM → M is a local

isometry. In particular, by Proposition 2.78, the exponetial map expp : TpM → M is a

universal Riemannian covering. Put

Γ := (expp)
−1(p).

Then, Γ is a descrete subgroup of TpM . In fact, for anyX,Y ∈ K(M) such thatXp, Yp ∈ Γ,

the following hold:

expp(Xp + Yp) = φX1 ◦ φY1 (p) = φX1 (expp Yp) = φX1 (p) = exppXp = p,

expp(−Xp) = φX−1(p) = φX−1(exppXp) = φX−1 ◦ φX1 (p) = p.
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Moreover, for any X,Y ∈ K(M) such that exppXp = expp Yp, we have

expp(Xp − Yp) = φY−1 ◦ φX1 (p) = φY−1(exppXp) = φY−1(expp Yp) = φY−1 ◦ φY1 (p) = p,

Xp − Yp ∈ Γ,

and thus the bijective map F : TpM/Γ →M,Xp+Γ 7→ exppXp is well-defined. Note that

the projection map π : TpM → TpM/Γ is a covering map. Let f be a deck transformation

of π such that f(op) = Xp (X ∈ K(M), Xp ∈ Γ). For each u ∈ TpM , put

φ
f(u)
t := φZt , (t ∈ R)

where Z ∈ K(M) such that Zp = f(u). Then, we have

expp(f(u)−Xp) = φ
f(u)
1 ◦ φX−1(p) = φ

f(u)
1 (expp(−Xp)) = φ

f(u)
1 (p) = exp ◦f(p) = expp u,

and thus f̃ := f −Xp is also a deck transformation of π. However, from f̃(op) = op, f̃ is

the identitiy map, and we see that

f(u) = u+Xp

is an isometry on TpM . By Proposition 2.23, there exists a unique Riemannian metric

on TpM/Γ such that the projection map π : TpM → TpM/Γ is a local isometry. Since

the projection TpM → TpM/Γ and the exponential map expp : TpM → M are universal

Riemannian coverings, we see that the map F is a local isometry from TpM/Γ to M .

Moreover, by Proposition 2.21, F is an isomety. Thus, TpM/Γ is compact and Γ is

ismorphic to Zn. Hence the conclusion follows.
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4 Riemannian curvature tensor on Lie group with

left invariant metric

Definition 4.1 (Left invariant metric). Let G be a Lie group with Riemannian metric

gG. Then, gG is called to be left invariant provided for any h ∈ G the equality

L∗
hgG = gG,

namely for any h ∈ G the left translation Lh is an isometry on G.

Proposition 4.2. Let G be a Lie group with left invariant metric. Then, for any left

invariant vector fields X̃, Ỹ on G, the following hold.

(i) The function ⟨X̃, Ỹ ⟩ is constant.
(ii) The covariant derivative ∇X̃ Ỹ is also a left invariant vector field.

Proposition 4.3. Let G be a Lie group with left invariant metric. Then, for any left

invariant vector fields X̃, Ỹ , Z̃, W̃ on G, the following hold.

(i)

∇X̃ Ỹ =
1

2
{[X̃, Ỹ ]− (adX̃)

∗(Ỹ )− (adỸ )
∗(X̃)}.

(ii)

⟨R(X̃, Ỹ )Z̃, W̃ ⟩ = ⟨∇X̃Z̃,∇Ỹ W̃ ⟩ − ⟨∇Ỹ Z̃,∇X̃W̃ ⟩ − ⟨∇[X̃,Ỹ ]Z̃, W̃ ⟩.

(iii)

⟨R(X̃, Ỹ )Ỹ , X̃⟩ =|(adX̃)
∗(Ỹ ) + (adỸ )

∗(X̃)|2 − ⟨(adX̃)
∗(X̃), (adỸ )

∗(Ỹ )⟩

− 3

4
|[X̃, Ỹ ]|2 − 1

2
⟨[[X,Y ], Y ], X⟩ − 1

2
⟨[[Y,X], X], Y ⟩.

Proof.

(i) By Proposition 4.2 (i), we have

0 = X̃⟨Ỹ , Z̃⟩ = ⟨∇X̃ Ỹ , Z̃⟩+ ⟨Ỹ ,∇X̃Z̃⟩,
0 = Ỹ ⟨X̃, Z̃⟩ = ⟨∇Ỹ X̃, Z̃⟩+ ⟨X̃,∇Ỹ Z̃⟩,
0 = Z̃⟨X̃, Ỹ ⟩ = ⟨∇Z̃X̃, Ỹ ⟩+ ⟨X̃,∇Z̃ Ỹ ⟩.

By combining these equalities, we have

X̃⟨Ỹ , Z̃⟩ = 1

2
{⟨[X̃, Ỹ ], Z̃⟩ − ⟨Ỹ , [X̃, Z̃]⟩ − ⟨X̃, [Ỹ , Z̃]⟩},

and thus (i) follows.
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(ii) By Proposition 4.2, we have

0 = X̃⟨∇Ỹ Z̃, W̃ ⟩ = ⟨∇X̃∇Ỹ Z̃, W̃ ⟩+ ⟨∇Ỹ Z̃,∇X̃W̃ ⟩,
0 = Ỹ ⟨∇X̃Z̃, W̃ ⟩ = ⟨∇Ỹ∇X̃Z̃, W̃ ⟩+ ⟨∇X̃Z̃,∇Ỹ W̃ ⟩,
0 = ˜[X,Y ]⟨Z̃, W̃ ⟩ = ⟨∇ ˜[X,Y ]Z̃, W̃ ⟩+ ⟨Z̃,∇ ˜[X,Y ]W̃ ⟩.

Thus, by the definition of Riemannian curvature tensore, we get (ii).

(iii) From (i) and (ii), we obtain (iii).
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5 Estimates of isoperimetric constants

In this section, a domain in a manifold means an open set which is not necessarily con-

nected. Let Mn
k be the n-dimensional simply connected space form with constant curva-

ture k. We denote by Bn
k (r) the open ball of radius r in Mn

k .

5.1 Some isoperimetric inequalities

Proposition 5.1. Let Ω be a domain in Euclidean space Rn with smooth boundary

∂Ω. Then, the following ineqauality holds

voln−1(∂Ω)

vol(Ω)
n−1
n

≥ voln−1(∂B
n
0 (1))

vol(Bn
0 (1))

n−1
n

(1)

and equality holds only if Ω is a metric ball in Rn.

The inequality (1) is called a isoperimetric inequality. Since a Riemanian manifold is

locally apploximated by the Euclidean space locally, we have the followings:

Corollary 5.2. Let M be a compact connected Riemannian n-dimensional manifold.

Then, for any ε > 0 there exists a positive constant r = r(M, gM , ε) < i(M) such that for

any p ∈M and domain Ω ⊂ B(p, r) with smooth boundary the following inequality holds

voln−1(∂Ω)

vol(Ω)
n−1
n

≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

.(2)

Proof. By the Rauch comparison theorem (Corollary 2.80 (ii)), there exist a constant

0 < r < i(M) such that for any p ∈M and domain Ω ⊂ B(p, r) with smooth boundary,

voln−1(∂Ω)

vol(Ω)
n−1
n

≥ (1− ε)
voln−1(∂Ω̃)

vol(Ω̃)
n−1
n

where Ω̃ := exp−1
p (Ω), vol(Ω̃) is the Euclidean volume on TpM induced by the its innner

product gp, and vol(∂Ω̃) is the (n− 1)-dimensional volume as the Riemanian submanifold

∂Ω̃ ⊂ TpM . Since TpM is isometric to the Euclidean space Rn, by Proposition 5.1 the

inequality (2) follows.

5.2 Isoperimetric constant and isoperimetric function

Definition 5.3 (Isoperimetric constant). LetM be a compact connected n-dimensional

Riemannian manifold. Then, we define a isoperimetric constant Ia(M) as follows: for

a > 0,

Ia(M) := inf

{
voln−1(∂Ω)

vol(Ω)a

∣∣∣∣Ω ⊂M is a domain with smooth boundary,
vol(Ω)

vol(M)
≤ 1

2

}
.
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Definition 5.4 (Isoperimetric function). LetM be a compact connected Riemannian

manifold. Then, the isoperimetric function hM = h : (0, 1) → R≥0 is defined as for

β ∈ (0, 1)

h(β) := inf{vn−1(∂Ω) |Ω ∈ Oβ}

where Oβ := {Ω ⊂M |Ω is a domain with smooth boundary, vol(Ω)/ vol(M) = β}.

The isoperimetric function h(β) has the following properties.

Proposition 5.5.

(i) h(β) = h(1− β).

(ii) infβ∈(0,1/2] h(β)/(β vol(M))a = Ia(M).

(iii) h(β) is continuous.

(iv) limβ→0 h(β)/(β vol(M))(n−1)/n = voln−1(∂B
n
0 (1))/ vol(B

n
0 (1))

(n−1)/n. In particu-

lar, Ia(M) = 0 if 0 < a < (n− 1)/n.

Proof.

(i) It is obvious, because for any Ω ∈ Oβ we have M \Ω ∈ O1−β and ∂Ω = ∂(M \Ω).
(ii)

Ia(M) = inf
⊔

β∈(0,1/2]

{
voln−1(∂Ω)

vol(Ω)a

∣∣∣∣Ω ∈ Oβ

}

= inf
β∈(0,1/2]

inf

{
voln−1(∂Ω)

vol(Ω)a

∣∣∣∣Ω ∈ Oβ

}
= inf

β∈(0,1/2]
inf

{
voln−1(∂Ω)

(β vol(M))a

∣∣∣∣Ω ∈ Oβ

}
= inf

β∈(0,1/2]

h(β)

(β vol(M))a
.

(iii) By the Rauch comparison theorem (Corollary 2.80 (ii)), there exists a constant

0 < r0 < i(M) such that for any p ∈M and 0 < r ≤ r0

vol(B(p, r)) >
1

2
vol(Bn

0 (1))r
n

vol(∂B(p, r)) <
3

2
vol(∂Bn

0 (1))r
n−1.

Let β ∈ (0, 1) and Ω ∈ Oβ. By the Fubini’s theorem we get∫
M

vol(Ω ∩B(p, r)) dvM(p) =

∫
M

∫
Ω

χB(p,r)(q) dvM(q)dvM(p)

=

∫
Ω

∫
M

χB(q,r)(p) dvM(p)dvM(q)

=

∫
Ω

vol(B(q, r)) dvM(q)

>
1

2
vol(Bn

0 (1))r
n vol(Ω),
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and thus there exists p = pr,Ω ∈M such that

vol(Ω ∩B(p, r)) >
1

2
vol(Bn

0 (1))r
nβ.

Then,

vol(Ω \B(p, r))

vol(M)
=

vol(Ω)− vol(Ω ∩B(p, r))

vol(M)

< β − vol(Bn
0 (1))

2 vol(M)
rnβ =: t(r, β).

Put t0(β) := max{0, t(r0, β)}. For β′ ∈ (t0(β), β), set

r :=

[
2(β − β′) vol(M)

β vol(Bn
0 (1))

]1/n(
≤
[
2(β − t(r0, β)) vol(M)

β vol(Bn
0 (1))

]1/n
= r0

)
.

Then, we have
vol(Ω \B(p, r))

vol(M)
< t(r, β) = β′

and thus there exists 0 < r′ < r such that

vol(Ω \B(p, r′))

vol(M)
= β′.

Since we can show that Ω \B(p, r′) is a limit of a sequence of elements of Oβ′ , we get

h(β′) ≤ voln−1(∂(Ω \B(p, r′) )) ≤ vol(∂Ω) + voln−1(∂B(p, r′))

< vol(∂Ω) +
3

2
vol(∂Bn

0 (1))(r
′)n−1 < vol(∂Ω) +

3

2
voln−1(∂B

n
0 (1))r

n−1

= vol(∂Ω) + C

(
β − β′

β

)(n−1)/n

where C :=
3

2
voln−1(∂B

n
0 (1))

[
2 vol(M)

vol(Bn
0 (1))

](n−1)/n

. Since for any Ω ∈ Oβ, the inquality

h(β′) < vol(∂Ω) + C

(
β − β′

β

)(n−1)/n

holds, we have

h(β′) ≤ h(β) + C

(
β − β′

β

)(n−1)/n

.

On the other hand, put t1(β) := 1 − t0(1 − β) and let β′ ∈ (β, t1(β)). Then, since

1− β′ ∈ (t0(1− β), 1− β), we have

h(1− β′) ≤ h(1− β) + C

(
β′ − β

1− β

)(n−1)/n

,
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and thus by Proposition 5.5 (i),

h(β′) ≤ h(β) + C

(
β′ − β

1− β

)(n−1)/n

.

Therefore, for any β′ ∈ (t0(β), t1(β)) the following inequality holds

|h(β′)− h(β)| ≤ C

[
|β′ − β|

min{β, 1− β}

](n−1)/n

which show that h(β) is continuous at β.

(iv) Let ε > 0 and take a constant 0 < r < i(M) as in Corollary 5.2. By the

compactness of M , there exisits a finite family of balls (B(pi, r/2))
N
i=1 which covers M .

Let Ω be a domain with smooth boudary. By the coarea formula, we get

vol(Ω) ≥ vol(Ω ∩B(r, pi) \B(r/2, pi))

=

∫
B(r,pi)\B(r/2,pi)

χΩ|∇dpi| dvM

=

∫ r

r/2

∫
∂B(pi,t)

χΩ dv∂B(pi,t)dt

=

∫ r

r/2

voln−1(Ω ∩ ∂B(pi, t)) dt

for every i, and thus there exists r/2 ≤ ri ≤ r such that

voln−1(Ω ∩ ∂B(pi, ri)) ≤
2

r
vol(Ω).

We denote by (Ω̃j)j the family of connected componets of Ω \
∪N
i=1B(pi, ri). Then, we

get

voln−1(∂Ω) =
∑
j

voln−1(∂Ω̃j)− 2
N∑
i=1

voln−1(Ω ∩ ∂B(pi, ri))

≥
∑
j

voln−1(∂Ω̃j)−
4N

r
vol(Ω).

Since we have taken the constant r as in Corollary 5.2, we can get the following estimates.∑
j

voln−1(∂Ω̃j) ≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

∑
j

vol(Ω̃j)
n−1
n

≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

[∑
j

vol(Ω̃j)

]n−1
n

= (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

vol(Ω)
n−1
n ,
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and thus

vol(∂Ω)

vol(Ω)
n−1
n

≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

− 4N

r
vol(Ω)

1
n .

Note that, for any Ω ∈ Oβ, the above inequalities hold. Therefore, we get

h(β)

(β vol(M))
n−1
n

≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

− 4N

r
(β vol(M))

1
n .

Let β tends to 0. Then, we have

lim
β→0

h(β)

(β vol(M))
n−1
n

≥ (1− ε)
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

.

Since ε > 0 is arbitary, we get

lim
β→0

h(β)

(β vol(M))
n−1
n

≥ voln−1(∂B
n
0 (1))

vol(Bn
0 (1))

n−1
n

.

The inverse inequality is obtained by Corollary 2.72

5.3 Almgren’s theorem and mean curvature

Note that a domain which attain

Proposition 5.6. LetM be a compact connected n-dimensional Riemannian manifold

and β ∈ (0, 1). Then, there exists a domain Ω in M such that

(i) vol(Ω)/ vol(M) = β.

(ii) ∂Ω is a submanifold of M with codimension 1 which is not necessarily smooth.

(iii) Let H be the set of all smooth points in ∂Ω. Then, H is an open dense subset of

∂Ω and h(β) = voln−1(H).

(iv) For any p ∈ M \ ∂Ω, it follows that if q ∈ ∂Ω satisfies d(p, ∂Ω) = d(p, q), then

q ∈ H.

Take a domain Ω and a hypersurface H ⊂ ∂Ω as in Proposition 5.6. Let ν be the

unit outward normal vector field on H with respect to Ω and f ∈ C∞
0 (H) where C∞

0 (H)

is the set of all smooth functions on H with compact support. Define the functions

Ψf : H × R →M and Ψf,τ : H →M as

Ψf (p, τ) := expH τf(p)νp,

Ψf,τ (p) := Ψf (p, τ).

Put

Ωf := Ω ∪Ψf (f
−1(0,+∞)× [0, 1)) \Ψf (f

−1(−∞, 0)× (0, 1])
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Hf := Ψf,1(H).

Note that Hf is the set of all smooth points in ∂Ωf if ∥f∥L∞(v) is sufficiently small. Also,

it is know that

h(vol(Ωf )/ vol(M)) ≤ voln−1(Hf )

if ∥f∥L∞(v) is sufficiently small.

Lemma 5.7. Let f ∈ C∞
0 (H). For each p ∈ H, take an orthonormal basis {ep,1, . . . , ep,n−1}

of TpH and H-Jacobi fields Yp,i (i = 1, . . . , n − 1) along the normal geodesic γνp with

Yp,i(0) = ep,i, ∇Yp,i(0) = Aνpep,i, where Aνp is the shape oparator of H. Then, if ∥f∥L∞(v)

is sufficiently small, following hold.

vol(Ωf ) = vol(Ω) +

∫
H

f(p)

∫ 1

0

|Yp,1(τf(p))) ∧ · · · ∧ Yp,n−1(τf(p))| dτdvH(p),

voln−1(Hf ) =

∫
H

∣∣[Yp,1(f(p)) + df(ep,1)γ̇νp(f(p))
]
∧

· · · ∧
[
Yp,n−1(f(p)) + df(ep,n−1)γ̇νp(f(p))

]∣∣ dvH(p).
Proof. Define the smooth maps Ψ : H × R →M and Tf : H × R → N × R as

Ψ(p, τ) := expH τνp,

Tf (p, τ) := (p, τf(p))

, which satisfy Ψf = Ψ ◦ Tf . Then, the following holds.

dΨ(p, τ)(ep,i, 0) = Yp,i(τ),

dΨ(p, τ)

(
op,

d

dτ

)
= γ̇νp(τ),

dTf (p, τ)(ep,i, 0) =

(
ep,i, τdf(ep,i)

d

dτ

)
,

dTf (p, τ)

(
op,

d

dτ

)
=

(
op, f(p)

d

dτ

)
.

From this, we have

| det dΨ|(p, τ) = |Yp,1(t) ∧ · · · ∧ Yp,n−1(t) ∧ γ̇νp(t)| = |Yp,1(t) ∧ · · · ∧ Yp,n−1(t)|,

| det dTf |(p, τ) =
∣∣∣∣(e1, τdf(ep,1) ddτ

)
∧ · · · ∧

(
ep,n−1, τdf(ep,n−1)

d

dτ

)
∧
(
op, f(p)

d

dτ

)∣∣∣∣
= |f(p)|

∣∣∣∣(ep,1, 0) ∧ · · · ∧ (ep,n−1, 0) ∧
(
op,

d

dτ

)∣∣∣∣ = |f(p)|,
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| det dΨf |(p, τ) = (| det dΨ| ◦ Tf (p, τ))| det dTf |(p, τ)
= |f(p)||Yp,1(τf(p)) ∧ · · · ∧ Yp,n−1(τf(p))|.

Therefore, we get

vol(Ωf ) = vol(Ω) +

∫
f−1(0,+∞)

∫ 1

0

| det dΨf |(p, τ) dτdvH(p)

−
∫
f−1(−∞,0)

∫ 1

0

| det dΨf |(p, τ) dτdvH(p)

= vol(Ω) +

∫
H

f(p)

∫ 1

0

|Yp,1(τf(p))) ∧ · · · ∧ Yp,n−1(τf(p))| dτdvH(p).

On the other hand, since for i = 1, . . . , n− 1

dΨf,1(ep,i) = dΨ(p, f(p))dTf (p, t)(ep,i, 0)

= dΨ(p, f(p))

(
ei, df(ep,i)

d

dτ

)
= dΨ(p, f(p))(ei,p, 0) + df(ep,i)Ψ(p, f(p))

(
op,

d

dτ

)
= Yp,i(f(p)) + df(ep,i)γνp(f(p)),

we get

| det dΨf,1|(p) =
∣∣[Yp,1(f(p)) + df(ep,1)γ̇νp(f(p))

]
∧

· · · ∧
[
Yp,n−1(f(p)) + df(ep,n−1)γ̇νp(f(p))

]∣∣ ,
so that the conclusion follows.

Lemma 5.8. For any f ∈ C∞
0 (H) the following hold.

d

dt

∣∣∣∣
t=0

vol(Ωtf ) =

∫
H

f dvH ,

d

dt

∣∣∣∣
t=0

voln−1(Htf ) = (n− 1)

∫
H

ηf dvH ,

where η is the mean curvature function of H.

Proof. From Lemma 5.7,

vol(Ωtf )− vol(Ω)

t
=

∫
H

f(p)

∫ 1

0

|Yp,1(τtf(p))) ∧ · · · ∧ Yp,n−1(τtf(p))| dτdvH(p)
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if |t| is sufficiently small. Thus, letting t→ 0, we get

d

dt

∣∣∣∣
t=0

vol(Ωtf ) =

∫
H

f(p)

∫ 1

0

|Yp,1(0) ∧ · · · ∧ Yp,n−1(0)| dτdvH(p)

=

∫
H

f(p)

∫ 1

0

|ep,1 ∧ · · · ∧ ep,n−1| dτdvH(p)

=

∫
H

f(p)dvH(p).

Also, from Lemma 5.7, putting Ỹp,i(t) := Yp,i(t) + tdf(ep,i)γ̇νp(t) (i = 1, . . . , n− 1),

d

dt

∣∣∣∣
t=0

voln−1(Htf )

=

∫
H

d

dt

∣∣∣∣
t=0

|Ỹp,1(tf(p)) ∧ · · · ∧ Ỹp,n−1(tf(p))| dvH

=

∫
H

n−1∑
i=1

⟨Ỹ1(0) ∧ · · · ∧ f(p)∇Ỹi(0) ∧ · · · ∧ Ỹn−1(0), Ỹ1(0) ∧ · · · ∧ Ỹn−1(0)⟩
|Ỹ1(0) ∧ · · · ∧ Ỹn−1(0)|

dvH(p)

=

∫
H

n−1∑
i=1

⟨ep,1 ∧ · · · ∧ f(p)[Aνpep,i + df(ep,i)νp] ∧ · · · ∧ ep,n−1, ep,1 ∧ · · · ∧ ep,n−1⟩
|ep,1 ∧ · · · ∧ ep,n−1|

dvH(p)

=

∫
H

f(p)
n−1∑
i=1

⟨Aνpep,i, ep,i⟩ dvH(p)

= (n− 1)

∫
H

η(p)f(p) dvH(p).

Lemma 5.9.
∫
H
ηf dvH = 0 for any f ∈ C∞

0 (H) with
∫
H
f dvH = 0.

Proof. Let f, g ∈ C∞
0 (H) and assume

∫
H
f dvH = 0,

∫
H
g dvH = 1. Define the

function V : R2 → R as

V (s, t) := vol(Ωsf+tg)

for any (s, t) ∈ R2, which is smooth at sufficiently small neighbourhood of (0, 0) ∈ R2.

From Lemma 5.8, we obtain

∂V

∂s
(0, 0) =

∫
H

f dvH = 0

∂V

∂t
(0, 0) =

∫
H

g dvH = 1( ̸= 0).

Applying the implicit function theorem for V , there exsits a smooth function t : (−ε, ε) →
R such that

t(0) = 0,
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V (s, t(s)) = V (0, 0)

(⇔ vol(Ωsf+t(s)g) = vol(Ω)),

dt

ds
(s) =

∂V
∂s
(s, f(s))

∂V
∂t
(s, t(s))

.

Note that

voln−1(H) = h

(
vol(Ω)

vol(M)

)
= h

(
vol(Ωsf+t(s)g)

vol(M)

)
≤ voln−1(Hsf+t(s)g),

so that
d

dt

∣∣∣∣
s=0

voln−1(Hsf+t(s)g) = 0.

On the other hand, applying Lemma 5.7 for sf + t(s)g and in a similar way to the proof

of Lemma 5.8, we get

d

ds

∣∣∣∣
s=0

voln−1(Hsf+t(s)g) = (n− 1)

∫
H

ηf dvH ,

and thus the conclusion follows.

By Lemma 5.9 we obtain the following proposition.

Proposition 5.10. H has the constant mean curvature.

Proof. Assume that there exist p0, p1 ∈ H such that η(p0) < η(p1). Take α ∈
(η(p0), η(p1)) and cutoff functions φ0, φ1 on H such that∫

H

φ0 dvH =

∫
H

φ1 dvH = 1,

η(p) < α, ∀p ∈ supp(φ0),

η(p) > α, ∀p ∈ supp(φ1).

Then, the function φ := φ0 − φ1 satisfies that φ ∈ C∞
0 (H) and

∫
H
φdvH = 0. Applying

Lemma 5.9 for φ, we obtain∫
H

ηφ dvH = 0

⇔
∫
H

(η − α)φdvH = 0

⇔
∫
H

(η − α)φ0 dvH =

∫
H

(η − α)φ1 dvH .

However, by the choice of α and φ0, φ1,∫
H

(η − α)φ0 dvH < 0 <

∫
H

(η − α)φ1 dvH ,

which is contradiction.
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5.4 Estimate of isoperimetric constant I1(M) by Gallot

In this subsection, we give a lower bound of the isoperimetric constant I1(M) for Riema-

nian manifolds with RicM ≥ kgm (k ∈ R).

Proposition 5.11. Let M be a compact connected n-dimensional Riemannian man-

ifold with RicM ≥ kgm. Then, the following inequality holds.

I1(M) ≥

[∫ diam(M)/2

0

ck(t)
n−1 dt

]−1

.

Proof. By Proposition 5.5, there exists β ∈ (0, 1/2] such that I1(M) = h(β)/(β vol(M)).

For the constant β, take a domain Ω and a hypersurfaceH ⊂ ∂Ω as in Proposition 5.6. Let

ν be the unit outward normal vetor field on H with respect to Ω, whose mean curvature

function of H with respect to ν is constant η by Proposition 5.10. Put

d0 := sup{d(p,H) | p ∈ Ω},

d1 := sup{d(p,H) | p ∈M \ Ω},

which satisfy d0 + d1 ≤ diam(M). Applying the Heintze-Karcher theorem (see Theorem

2.82), we get

vol(Ω) ≤ vol(H)

∫ d0

0

(ck(t)− ηsk(t))
n−1 dt,

vol(M \ Ω) ≤ vol(H)

∫ d1

0

(ck(t) + ηsk(t))
n−1 dt.

Since vol(Ω) ≤ vol(M)/2 ≤ vol(M \ Ω), we obtain

I1(M) =
voln−1(H)

vol(Ω)
≥ vol(H)

min{vol(Ω), vol(M \ Ω)}

≥ min

{∫ d0

0

(ck(t)− ηsk(t))
n−1 dt,

∫ diam(M)−d0

0

(ck(t) + ηsk(t))
n−1 dt

}−1

.

Next we shall show the following claim. Let k ∈ R and d > 0 (d ≤
√
k/(n− 1)π if k > 0).

Define the function Jk : (0, d)× R → R as

Jk(t, ζ) := max {ck(t) + ζsk(t), 0}n−1 .

Claim: for any ζ ∈ R and a ∈ (0, d) the following inequality holds.

m(a, ζ) := min

{∫ a

0

Jk(t,−ζ) dt,
∫ d−a

0

Jk(t, ζ) dt

}
≤
∫ 2/d

0

ck(t)
n−1 dt.
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To prove this claim, we define the C1-function F : (0, d)× R → R as

F (a, ζ) :=

∫ a

0

Jk(t,−ζ) dt−
∫ d−a

0

Jk(t, ζ) dt

for (a, ζ) ∈ (0, d) × R. For every a ∈ (0, d) limζ→−∞ F (a, ζ) = +∞, limζ→−∞ F (d, ζ) =

−∞, and the function a 7→ F (a, ζ) is strictly decreasing, so that there exsits a unique

ζ(a) ∈ R such that F (a, ζ(a)) = 0. Then, for any ζ ∈ R the inequality m(a, ζ) ≤
m(a, ζ(a)) holds. Since the equalities

0 = −F (a, ζ(a)) =
∫ d−a

0

Jk(t, ζ(a)) dt−
∫ a

0

Jk(t,−ζ(a)) dt = F (d−a,−ζ(a)) (∀a ∈ (0, d))

holds, by the uniqueness of ζ(d− a), we get

ζ(d− a) = −ζ(a).(3)

In particular, we obtain

ζ

(
d

2

)
= 0.

For any a, a′ ∈ (0, d) (a < a′)

F (a, ζ(a)) = 0 = F (a′, ζ(a′)) > F (a, ζ(a′))

holds. By the monotonicity of the function ζ 7→ F (a, ζ) we know the function a 7→ ζ(a)

is strictly increasing. Moreover, we see that the function a 7→ ζ(a) is class C1. In fact,

for any t, a ∈ (0, d) and ζ ∈ R,

∂Jk
∂ζ

(t, ζ) =

(n− 1)sk(t)(ck(t) + ζsk(t))
n−2 (> 0) if Jk(t, ζ) > 0

0 if Jk(t, ζ) = 0,

∂F

∂ζ
(a, ζ) = −

∫ a

0

∂Jk
∂ζ

(t,−ζ) dt−
∫ d−a

0

∂Jk
∂ζ

(t, ζ) dt < 0,

and thus the function a 7→ ζ(a) coincides with the function obtained by the implicit

function theorem. In particular, the following holds.

dζ

da
(a) = −∂F

∂a
(a, ζ(a))

[
∂F

∂ζ
(a, ζ(a))

]−1

= [Jk(a,−ζ(a)) + Jk(d− a, ζ(a))]

[∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt+
∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt

]−1

.

Next we define the function G : (0, d) → R as G(a) := m(a, ζ(a)). For any a ∈ (0, d), we

express G(a) as follows.

G(a) =
1

2

[∫ a

0

Jk(t,−ζ(a)) dt+
∫ d−a

0

Jk(t, ζ(a)) dt

]
.
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By the equality (5.4), we have the equality G(d− a) = G(a). Thus, to prove the claim, it

is sufficient to prove that

G(a) ≤ G

(
d

2

)(
=

∫ d/2

0

ck(t)
n−1dt

)

for any a ∈ (d/2, d) and t ∈ (0, a). To prove this we show that the function G is strictly

decreasing on (d/2, d). Note that

ζ(a) > ζ(d/2) = 0,

sk(a) ≥ sk(d− a),

ck(a) < ck(d− a),

Jk(a,−ζ) ≤ Jk(d− a,−ζ) ≤ Jk(d− a, ζ),

for any a ∈ (d/2, d) and ζ > 0. Put

a0 := sup{a ∈ (d/2, d) | ck(a)− ζ(a)sk(a) > 0}.

Then, since the function t 7→ ck(t)/sk(t) on (0, d) is strictly decreasing, for any a ∈
(d/2, a0) and t ∈ (0, a),

ck(t)− ζ(a)sk(t) = sk(t)

(
ck(t)

sk(t)
− ζ(a)

)
> sk(t)

(
ck(a)

sk(a)
− ζ(a)

)
=
sk(t)

sk(a)
(ck(a)− ζ(a)sk(a)) > 0,

and thus

J(t, ζ(a)) > J(t,−ζ(a)) > 0.

Define the function φ : (0, d) → R as

φ(t, ζ) :=

(n− 1)sk(t) [ck(t) + ζsk(t)]
−1 (if Jk(t, ζ) > 0)

0 (if Jk(t, ζ) = 0).

Then, we have

∂Jk
∂ζ

(t, ζ) = φ(t, ζ)Jk(t, ζ), (∀t ∈ (0, d), ∀ζ ∈ R),

φ(t,−ζ(a)) > φ(t, ζ(a)) > 0, (∀a ∈ (d/2, a0),∀t ∈ (0, a)).

Also, since

φ(t,−ζ(a)) = (n− 1)

[
ck(t)

sk(t)
− ζ(a)

]−1

, (∀a ∈ (d/2, a0),∀t ∈ (0, a))
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for any a ∈ (2/d, a0) the function t 7→ φ(t,−ζ(a)) on (0, a) is strictly incleasing. From

the above, for any a ∈ (d/2, a0)

2
dG

da
(a) = Jk(a,−ζ(a))− Jk(d− a, ζ(a))+

+
dζ

da
(a)

[
−
∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt+
∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt

]
,

and

2

[∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt+
∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt

]
dG

da
(a)

= [Jk(a,−ζ(a))− Jk(d− a, ζ(a))]

[∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt+
∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt

]
+ [Jk(a,−ζ(a)) + Jk(d− a, ζ(a))]

[
−
∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt+
∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt

]
= 2

[
Jk(a,−ζ(a))

∫ d−a

0

∂Jk
∂ζ

(t, ζ(a)) dt− Jk(d− a, ζ(a))

∫ a

0

∂Jk
∂ζ

(t,−ζ(a)) dt
]

= 2

[
Jk(a,−ζ(a))

∫ d−a

0

φ(t, ζ(a))Jk(t, ζ(a)) dt

−Jk(d− a, ζ(a))

∫ a

0

φ(t,−ζ(a))Jk(t,−ζ(a)) dt
]

< 2Jk(d− a, ζ(a))

[∫ d−a

0

φ(t, ζ(a))Jk(t, ζ(a)) dt−
∫ a

0

φ(t,−ζ(a))Jk(t,−ζ(a)) dt
]

< 2Jk(d− a, ζ(a))

[∫ d−a

0

φ(t,−ζ(a))Jk(t, ζ(a)) dt−
∫ a

0

φ(t,−ζ(a))Jk(t,−ζ(a)) dt
]

= 2Jk(d− a, ζ(a))

[∫ d−a

0

φ(t,−ζ(a)) [Jk(t, ζ(a))− Jk(t,−ζ(a))] dt

−
∫ a

d−a
φ(t,−ζ(a))Jk(t,−ζ(a))

]
2Jk(d− a, ζ(a))

[
φ(d− a,−ζ(a))

∫ d−a

0

[Jk(t, ζ(a))− Jk(t,−ζ(a))] dt

− φ(d− a,−ζ(a))
∫ a

d−a
Jk(t,−ζ(a))

]
= 2Jk(d− a, ζ(a))φ(d− a,−ζ(a))

[∫ d−a

0

Jk(t, ζ(a)) dt−
∫ a

0

Jk(t,−ζ(a)) dt
]

= −2Jk(d− a, ζ(a))φ(d− a,−ζ(a))F (a, ζ(a)) = 0.

Thus, the function G is strictly decreasing on (2/d, a0). If a0 = d, then the proof is

completed. Now we consider the case when a0 < d. Since

c(a0)− ζ(a0)s(a0) = 0
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by the definition of a0, for any a ∈ (a0, d) and t ∈ (a0, a), we have

ck(t)− ζ(a)sk(t) = sk(t)

(
ck(t)

sk(t)
− ζ(a)

)
< sk(t)

(
ck(a0)

sk(a0)
− ζ(a0)

)
= 0,

and

Jk(t,−ζ(a)) = 0.

Thus, for any a ∈ (a0, d), G(a) is written as

G(a) =

∫ a

0

J(t,−ζ(a)) dt =
∫ a0

0

J(t,−ζ(a)) dt,

so that G is also stlictly decreasing on (a0, d), which is the conclusion.

5.5 Etimate of isoperimetric constant I(n−1)/n(M) by Gallot

In this subsection, we give a lower bound of the isoperimetric constant I(n−1)/n1(M) for

Riemanian manifolds with RicM ≥ kgm (k < 0).

If β ∈ (0, 1/2) satisfies that Ia(M) = h(β)/(β vol(M))a for some a ≥ (n − 1)/n (see

Proposition 5.5 (ii)), then the mean curvature η of H is determined following.

Lemma 5.12. Let β ∈ (0, 1/2), a ≥ (n−1)/n, and assume Ia(M) = h(β)/(β vol(M))a.

For the constant β, take a domain Ω and a hypersurface H ⊂ ∂Ω as in Proposition 5.6.

Let ν be the unit outward normal vetor field on H with respect to Ω. Then, for the mean

curvaure function η of H with respect to ν the following holds.

η =
a

n− 1

voln−1(H)

vol(Ω)
=

a

n− 1

h(β)

β vol(M)

(
≥ a

n− 1
I1(M)

)
Proof. Take f ∈ C∞

0 (H) satisfying
∫
H
f dvH = 1, and put βt := vol(Ωtf )/ vol(M).

Since βt ≤ 1/2 if |t| is sufficiently small, by Proposition 5.5 (ii),

voln−1(H)

vol(Ω)a
=

h(β)

(β vol(M))a
= Ia(M) ≤ h(βt)

(βt vol(M))a
≤ voln−1(Htf )

vol(Ωtf )a
.

Thus, the function t→ voln−1(Htf)/ vol(Ωtf ) has a minimal value at t = 0, so that

d

dt

∣∣∣∣
t=0

voln−1(Htf)

vol(Ωtf )a
= 0.

On the other hand, by Lemma 5.8

d

dt

∣∣∣∣
t=0

voln−1(Htf)

vol(Ωtf )a
=

[
d
dt

∣∣
t=0

voln−1(Htf )
]
vol(Ω)− a voln−1(H)

[
d
dt

∣∣
t=0

vol(Ωtf )
]

vol(Ω)a+1

=
(n− 1)

∫
H
ηf dvH vol(Ω)− a voln−1(H)

∫
H
f dvH

vol(Ω)a+1

=
(n− 1)η vol(Ω)− a voln−1(H)

vol(Ω)a+1
.
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Thus,

η =
a

n− 1

voln−1(H)

vol(Ω)
=

a

n− 1

h(β)

β vol(M)
.

Proposition 5.13. LetM be a compact connected n-dimensional Riemanian manifold

with RicM ≥ kgM (k < 0). Then, the following estimate holds.

I(n−1)/n(M) ≥ vol(M)
1
n

[∫ diam(M)

0

(
ck(t)

I1(M)
+
sk(t)

n

)n−1

dt

]− 1
n

.

Proof.

(a) The case I(n−1)/n(M) = h(β)/(β vol(M))(n−1)/n for some β ∈ (0, 1/2]

For the constant β, take a domain Ω and a hypersurface H ⊂ ∂Ω as in Proposition

5.6. Let ν be the unit outward normal vetor field on H with respect to Ω, whose mean

curvature function of H with respect to ν is constant η by Proposition 5.10.

(a-1) The case β ∈ (0, 1/2)

Put

d0 := sup{d(p,H) | p ∈ Ω},

d1 := sup{d(p,H) | p ∈M \ Ω},

which satisfy d0 + d1 ≤ diam(M). Applying the Heintze-Karcher theorem, we get

vol(M) ≤ vol(H)

∫ d1

−d0
(ck(t) + ηsk(t))

n−1 dt

≤ vol(H)

∫ diam(M)

0

(ck(t) + ηsk(t))
n−1 dt,

and thus by Lemma 5.12,

I(n−1)/n(M) =
voln−1(H)

vol(Ω)
n−1
n

≥
[
voln−1(H)

vol(Ω)

]n−1
n

[
vol(M)∫ diam(M)

0
(ck(t) + ηsk(t))

n−1 dt

] 1
n

= vol(M)
1
n

[
voln−1(H)

vol(Ω)

]n−1
n

[∫ diam(M)

0

(
ck(t) +

1

n

voln−1(H)

vol(Ω)
sk(t)

)n−1

dt

]− 1
n

= vol(M)
1
n

[∫ diam(M)

0

(
vol(Ω)

voln−1(H)
ck(t) +

sk(t)

n

)n−1

dt

]− 1
n

≥ vol(M)
1
n

[∫ diam(M)

0

(
ck(t)

I1(M)
+
sk(t)

n

)n−1

dt

]− 1
n

47



(a-2) The case β = 1/2

By Proposition ,

I(n−1)/n(M) =

[
voln−1(H)

vol(Ω)

]n−1
n
[
voln−1(H)

vol(Ω)

] 1
n

vol(Ω)
1
n

≥
[
voln−1(H)

vol(Ω)

]n−1
n

I1(M)
1
n

[
vol(M)

2

] 1
n

≥
[
voln−1(H)

vol(Ω)

]n−1
n

[
vol(M)

2
∫ diam(M)/2

0
ck(t)n−1dt

] 1
n

≥
[
voln−1(H)

vol(Ω)

]n−1
n

[
vol(M)∫ diam(M)

0
(ck(t) + ηsk(t))

n−1 dt

] 1
n

≥ vol(M)
1
n

[∫ diam(M)

0

(
ck(t)

I1(M)
+
sk(t)

n

)n−1

dt

]− 1
n

.

(b) The case I(n−1)/n(M) = limβ→0 h(β)/(β vol(M))(n−1)/n

By Proposition 5.5, Corollarly 2.73, and Bishop’s inequality

I(n−1)/n(M) =
voln−1(∂B

n
0 (1))

vol(Bn
0 (1))

n−1
n

= voln−1(∂B
n
0 (1))

[
voln−1(∂B

n
0 (1))

n

]−n−1
n

= n
n−1
n [voln−1(∂B

n
0 (1))]

1
n

= n
n−1
n

[
voln−1(∂B

n
0 (1))

∫ diam(M)

0

sk(t)
n−1 dt

] 1
n
[∫ diam(M)

0

sk(t)
n−1 dt

]− 1
n

= vol(Bn
k (diam(M)))

1
n

[∫ diam(M)

0

(
sk(t)

n

)n−1

dt

]− 1
n

≥ vol(M)
1
n

[∫ diam(M)

0

(
ck(t)

I1(M)
+
sk(t)

n

)n−1

dt

]− 1
n

.

Remark 5.14. If k ≥ 0, then the following estimate holds:

I(n−1)/n(M) ≥ 2
n−1
n vol(M)

1
n diam(M)−1.
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6 Gallot’s two results

In this section, a domain in a manifold means an open set which is not necessarily con-

nected. Let M be a compact connected Riemannian manifold. For a domain Ω with

smooth boundary ∂Ω, we put

vol(Ω) :=
vol(Ω)

vol(M)
,

voln−1(∂Ω) :=
vol(∂Ω)

vol(M)
.

Similarly, define the measure v as

v :=
vM

vol(M)
.

Moreover, we define the isoperimetric constant Ia as

Ia(M) := inf

{
voln−1(∂Ω)

v(Ω)a

∣∣∣∣Ω ⊂M is a domain with smooth boundary, vol(Ω) ≤ 1

2

}
.

Note that the equality

Ia(M) =
Ia(M)

vol(M)1−a

holds.

6.1 Gallot’s Sobolev inequality

Proposition 6.1 (Gallot). LetM be a compact connected n-dimensional Riemannian

manifold, n/(n−1) ≥ p ≥ 1, q ≥ 1, and assume 2(q−1) ≤ pq. Then, for any C1-function

f :M → R the following inequality holds:

∥f∥Lpq(v) ≤
2q

I1/p(M)
∥∇f∥L2(v) + ∥f∥L2(v),(4)

where ∥f∥Lr(v) := (
∫
M
f r dv)1/r (r > 0) is the Lr(v)-norm of f .

Lemma 6.2. Let M be a compact connected Riemannian manifold and p ≥ 1. If a

bounded measurable function satisfies∫
M

sgn(f)|f |p−1dv = 0,(5)

then for all t ∈ R the following inequality holds.∫
M

|f − t|pdv ≥
∫
M

|f |pdv(6)
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Proof.

• (p = 1) By the equality (5)

vol(f−1(−∞, 0)) = vol(f−1(0,∞)).

If t > 0, then∫
M

|f − t| dv −
∫
M

|f | dv =

∫
M

(|f − t| − |f |) dv

=

∫
f−1(−∞,0)

t dv +

∫
f−1[0,t)

(t− 2f) dv −
∫
f−1[t,∞)

t dv

= t vol(f−1(−∞, 0)) +

∫
f−1[0,t)

(t− 2f) dv − t vol(f−1[t,∞))

= t vol(f−1(0,∞)) +

∫
f−1[0,t)

(t− 2f) dv − t vol(f−1[t,∞))

=

∫
f−1[0,t)

(t− 2f) dv + t vol(f−1(0, t))

≥ 2

∫
f−1(0,t)

(t− f) dv

≥ 0.

Similarly, if t < 0, then we can show that
∫
M
|f − t| dv −

∫
M
|f | dv ≥ 0.

• (p > 1) Let

φ(t) =

∫
M

|f − t|pdv.

Then, we have
dφ

dt
(t) = −p

∫
M

sgn(f − t)|f − t|p−1dv.

If t > 0, then by the equality (5)∫
M

sgn(f − t)|f − t|p−1dv

=−
∫
f−1(−∞,0)

|f − t|p−1dv −
∫
f−1[0,t)

|f − t|p−1dv +

∫
f−1[t,∞)

|f − t|p−1dv

≤−
∫
f−1(−∞,0)

|f |p−1dv + 0 +

∫
f−1[t,∞)

|f |p−1dv

=

∫
f−1(−∞,0)∩f−1[t,∞)

sgn(f)|f |p−1dv

=−
∫
f−1[0,t)

sgn(f)|f |p−1dv

≤0

and therefore dφ/dt(t) ≥ 0. Similarly, we can prove dφ/dt(t) ≤ 0 if t < 0. Thus,

φ(t) ≥ φ(0) for every t ∈ R. Hence the conclusion follows.
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Proposition 6.3 (Bombieri). Let M be a compact connected n-dimensional Rieman-

nian manifold and 1 ≤ p ≤ n/(n − 1). Then, for any C1-function f : M → R with∫
M
sgn(f)|f |p−1dv = 0 the following inequality holds:

∥f∥Lp(v) ≤
1

I1/p(M)
∥∇f∥L1(v).(7)

Proof. Since the set of Morse functions on M is dense in C1(M), it is sufficient to

show the inequality (7) for any Morse function f satisfying that
∫
M
sgn(f)|f |p−1dv = 0.

Take α ∈ R satisfying that

vol(f−1(−∞, α)) ≤ 1

2
, vol(f−1(α,∞)) ≤ 1

2
.(8)

(a) the case α = 0.

Put Ωt := f−1(t,∞). Since f is a Morse function, v(f−1(t)) = 0 for any t ∈ R and thus

the map t 7→ v(Ωt) is continuous. By the Fubini’s theorem

∥f+∥pLp(v) =

∫
M

|f+|pdv =

∫
M

∫ fp+

0

dt dv =

∫ ∞

0

∫
Ω

t1/p

dv dt

=

∫ ∞

0

vol(Ωt1/p) dt = p

∫ ∞

0

vol(Ωt)t
p−1 dt.

where f+ := max{f, 0}. On the other hand, by the co-area fomula, the definition of

I1/p(M), and the condition (8), we have

∥∇f+∥L1(v) =

∫
M

|∇f+| dv =

∫ ∞

0

voln−1(∂Ωt) dt ≥ I1/p(M)

∫ ∞

0

vol(Ωt)
1/p dt.

Combining the above, we see that if the inequality

p

∫ ∞

0

vol(Ωt)t
p−1 dt ≤

(∫ ∞

0

vol(Ωt)
1/p dt

)p
,(9)

holds, then we get the inequality (7) for the function f+.

d

ds

(
p

∫ s

0

vol(Ωt)t
p−1 dt

)
= psp−1vol(Ωs),

d

ds

(∫ s

0

vol(Ωt)
1/p dt

)p
= p

(∫ s

0

vol(Ωt)
1/p dt

)p−1

v(Ω1/p
s ).

Since the function t 7→ vol(Ωt) is monotone decreasing, we have∫ s

0

vol(Ωt)
1/p dt ≥ svol(Ωs)

1/p
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and
d

ds

(
p

∫ s

0

vol(Ωt)t
p−1 dt

)
≤ d

ds

(∫ s

0

vol(Ωt)
1/p dt

)p
.

Therefore, we get the inequality (9). Hence, for the function f+ the inequality (7) holds.

Similarly, for the function f− := max{−f, 0} the inequality (7) also holds. Thus, we

obtain

∥f∥Lp(v) ≤ ∥f+∥Lp(v) + ∥f−∥Lp(v)

≤ 1

I1/p(M)
∥∇f+∥L1(v) +

1

I1/p(M)
∥∇f−∥L1(v)

=
1

I1/p(M)
∥∇f∥L1(v).

(b) the case α ̸= 0.

Put f̃ := f − α. Then, the inequalities

vol(f−1(−∞, 0)) ≤ 1

2
, vol(f̃−1(0,∞)) ≤ 1

2

hold. Note that we did not use the condition
∫
M
sgn(f)|f |p−1dv = 0 in the proof of the

case α = 0. It follws that the inequality (7) also holds for f̃ . Thus, by Lemma 6.2, we

have

∥f∥Lp(v) ≤ ∥f̃∥Lp(v) =
1

I1/p(M)
∥∇f̃∥L1(v) =

1

I1/p(M)
∥∇f∥L1(v).

Proof of Theorem 6.1. By the density of Morse functions in C1(M), we may assume that

f is a Morse function f . By the dominated convergence theorem it is sufficient to show

that for q > 1. By the similar consideration of the proof of Proposition 6.3, we can take

α ∈ R satisfying that ∫
M

sgn(f − α)|f − α|q(p−1) dv = 0.

Applying the Proposition 6.3 for the function sgn(f − α)|f − α|q, we get

∥|f − α|q∥Lp(v) ≤
1

I1/p(M)
∥∇|f − α|q∥L1(v).

Since

∥|f − α|q∥Lp(v) = ∥f − α∥qLpq(v)

and, by Hölder’s inequality,

∥∇|f − α|q∥L1(v) = q∥|f − α|q−1∇f∥L1(v) ≤ q∥|f − α|q−1∥L2(v)∥∇f∥L2(v)

= q∥f − α∥q−1

L2(q−1)(v)
∥∇f∥L2(v) ≤ q∥f − α∥q−1

Lpq(v)∥∇f∥L2(v),
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we have

∥f − α∥Lpq(v) ≤
q

I1/p(M)
∥∇f∥L2(v).

On the other hand, we have

∥α∥Lpq(v) = |α| = ∥α∥L1(v) ≤ ∥f − α∥L1(v) + ∥f∥L1(v) ≤ ∥f − α∥Lpq(v) + ∥f∥L2(v).

Thus, we obtain

∥f∥Lpq(v) ≤ ∥f − α∥Lpq(v) + ∥α∥Lpq(v) ≤ 2∥f − α∥Lpq(v) + ∥f∥L2(v)

≤ 2q

I1/p(M)
∥∇f∥L2(v) + ∥f∥L2(v).

6.2 Gallot’s estimate of L∞-norm from above by L2-norm

Proposition 6.4. Let M be a compact connected Riemannian manifold and λ ≥ 0.

If a nonnegative continuous function f on M satisfies that

(i) f is C2 on M+ := f−1(0,∞),

(ii) ∇f , f∆f is bounded on M+,

(iii) ∆f ≤ λ2f on M+,

then the following inequality holds:

∥f∥L∞(v) ≤ Ln

(
λ

cM

)
∥f∥L2(v).(10)

where cM := I(n−1)/n(M) and Ln is a strictly increasing contiuous function from [0,∞)

to R defined as

Ln(t) :=
∞∏
i=0

(
1 +

4pi√
2pi − 1

t

)p−i (
p :=

n

n− 1

)
Remark 6.5. Note that Ln(0) = 1 and that Ln(t) is finite for all t > 0. In fact,

Ln(t) =
∞∏
i=0

(
1 +

4pi√
2pi − 1

t

)p−i

≤
∞∏
i=0

(
1 + 4pi/2t

)p−i

≤
∞∏
i=0

(exp(4pi/2t))p
−i

=
∞∏
i=0

exp(4p−i/2t) = exp

(
4t

∞∑
i=0

p−i/2

)
= exp

(
4t

1− p−1/2

)
<∞.

Lemma 6.6. Assume the same notations and assumptions as in Propsition 6.4. Then,

for any a > 1, the following inequality holds:

∥∇fa∥L2(v) ≤
aλ√
2a− 1

∥f∥aL2a(v).(11)
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Proof. Define the vector field ∇f and function f∆f on M as

∇f(p) :=

∇f (p ∈M+)

0 (p ∈ f−1(0))
, f∆f(p) :=

f∆f (p ∈M+)

0 (p ∈ f−1(0)).

By the condition (iii), we have f∆f ≤ λ2f 2. We also see that f 2a−1∇f is a C1-vector

field on M and the equality

div(f 2a−1∇f) = −f 2a−2f∆f + ⟨∇f 2a−1,∇f⟩

holds. Thus, by the divergence theorem

∥∇fa∥L2(v) = a∥fa−1∇f∥L2(v) =
a√

2a− 1

[∫
M

⟨∇f 2a−1,∇f⟩ dv
]1/2

=
a√

2a− 1

[∫
M

f 2a−2f∆f dv

]1/2
≤ aλ√

2a− 1

[∫
M

f 2a dv

]1/2
=

aλ√
2a− 1

∥f∥aL2a(v).

Proof of Theorem 6.4. For all a > 1 the function fa is class C2. Applying the Proposition

6.1 for the function fa, for p = n/(n− 1), q = 2, we have

∥fa∥L2p(v) ≤
4

cM
∥∇fa∥L2(v) + ∥fa∥L2(v).

From Lemma 6.6, we have

∥f∥aL2ap(v) = ∥fa∥L2p(v) ≤
4

cM
∥∇fa∥L2(v) + ∥fa∥L2(v)

≤ 4

cM

aλ√
2a− 1

∥f∥aL2a(v) + ∥fa∥L2(v)

=

(
1 +

4a√
2a− 1

λ

cM

)
∥f∥aL2a(v).

Note that this inequality also holds for a = 1 by the dominated convergence theorem. It

follows that for all i ∈ {0} ∪ N

∥f∥L2pi+1 (v) ≤

(
1 +

4pi√
2pi − 1

λ

cM

)p−i

∥f∥L2pi (v)

and

∥f∥L2pi+1 (v) ≤
i∏

j=0

(
1 +

4pj√
2pj − 1

λ

cM

)p−j

∥f∥L2(v).
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Thus,

∥f∥L∞(v) = lim
i→∞

∥f∥L2pi+1 (v) ≤
∞∏
i=0

(
1 +

4pi√
2pi − 1

λ

cM

)p−i

∥f∥L2(v) = Ln

(
λ

cM

)
∥f∥L2(v).
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7 Proof of Proposition 1.1

First we note that by Proposition 5.11, Proposition 5.13, and Proposition 6.4, we have

the following corollary:

Corollary 7.1. Let M be a compact connected n-dimensional Riemannian manifold

such that

RicM ≥ −kgM (k > 0),

diam(M) ≤ D.

Put

G̃n,k,D :=

[∫ diam(M)/2

0

c−k(t)
n−1 dt

]−1

,

Gn,k,D :=

∫ diam(M)

0

(
c−k(t)

G̃n,k,D

+
s−k(t)

n

)n−1

dt

− 1
n

,

and define the the continuous function Ln,k,D : [0,∞) → R as

Ln,k,D(t) := Ln

(
t2

Gn,k,D

)
,

where Ln is the function defined in Proposition 6.4. The function Ln,k,d is strictly increas-

ing and continuous, and satisfies that Ln,k,d(0) = 1. Then, for any nonnegative continuous

function f on M satisfying the conditions (i), (ii), (iii) in Proposition 6.4, the following

inequality holds:

∥f∥L∞(v) ≤ Ln,k,D(λ
2)∥f∥L2(v).

By Corollary 7.1, we have the following proposition:

Proposition 7.2. If a compact connected n-dimensional Riemannian manifold M

satisfies

−kgM ≤ RicM ≤ εgM ,

diam(M) ≤ D,

then, for a Killing vector field X on M , the following inequality holds.

∥X∥L∞(v) ≤ Ln,k,D(ε)∥X∥L2(v)

Proof. We apply Proposition 6.4 for f = |X|. By the Kato’s inequality (Proposition

3.7)

|∇|X|| ≤ |∇X|
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and the equality
1

2
∆|X|2 = |X|∆|X| − |∇|X||2,

we see that ∇|X| and |X|∆|X| are bounded on M+ = {p ∈ M | |X| > 0}. Combining

with the Bochner formula (Proposition 3.6)

1

2
∆|X|2 = −|∇X|2 +Ric(X, X),

we have

|X|∆|X| ≤ ε|X|2

and

∆|X| ≤ ε|X|.

Thus, by Corollary 7.1, the conclusion follows.

The following proposition is essentially given by Li [12]. Since followings are slightly

different to the corresponding statements in [12], we give a proof for the sake of complete-

ness.

Proposition 7.3. Let E be any Riemannian vector bundle over M of the rank n.

Let Γ(E) be a subspace of the space Γ(E) of all sections of E. Assume that there esists a

constant a > 0 such that for any ω ∈ Γ the inequality

∥ω∥L∞(v) ≤ a∥ω∥L2(v)

holds. Then, the following hold:

dimΓ ≤ a2max
p∈M

dim{ω(p) ∈ Ep |ω ∈ Γ}

≤ a2n,

where Ep is the fibre of E at p ∈M .

Proof. Let Γ′ be a finite dimensional subspace of Γ. Take an L2(v)-orthonormal

basis {ωi}mi=1 of Γ′ and put

F (p) =
m∑
i=1

|ωi(p)|2.

Note that F can be independent to the choice of an L2(v)-orthonormal basis. Then we

have

dimΓ′ =
m∑
i=1

∥ωi∥2L2(v) =

∫
M

m∑
i=1

|ωi(p)|2 dv(p) =
∫
M

F (p) dv(p).
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For each p ∈ M , take the evaluation map Φp : Γ
′ → Ep with Φp(ω) = ω(p) and take an

L2(v)-orthonormal basis {ωi}mi=1 such that the vectors Φ(ωi) = ωi(p), i = 1, . . . , k form

the basis of the orthogonal complement (kerΦp)
⊥ of the kernel of Φp. Then, we have

F (p) =
k∑
i=1

|ωi(p)|2 ≤ a2 k ≤ a2 β

where β = max
p∈M

dim{ω(p) ∈ Ep |w ∈ Γ}. Thus, we have

dimΓ′ =

∫
M

F (p) dv(p) ≤ a2 β ≤ a2n.

By the choice of Γ′, we get the conclusion.

We apply this proposition for the case that E = TM , the tangent bundle of M , and

Γ is the space of Killing vector fields on M . Then, combining with Proposition 7.2, it

implies Proposition 1.1.
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8 Proof of Theorem 1.4

We start from the following lemma which follows from Proposition 7.3 here and Theorem

2.2 in [16]. Since the proof given in [16] is somewhat sketchy, we give a proof here.

Lemma 8.1. For constants k, D > 0, there exists a constant ε = ε(n, k, D) > 0 such

that if M satisfies the assumption in Theorem 1.4, then M is a Riemannian homogeneous

space.

Proof. We also apply Proposition 7.3 for the case mentioned in the sentence right

after the proof of Proposition 7.3. Take p ∈M satisfying

dim{Xp ∈ TpM | X is a Killing vector field.} = n

Let B ⊂M be a set whose element q is an image of p by an isometry of M . We shall

prove that B is open. Take Killing vector fields Xi, i = 1, 2, . . . n such whose vectors Xi,p

at p form a basis of TpM . Let φXt denote the flow generated by a vector field X. We

define a map F : Rn →M by

F (t1, . . . , tn) = φX1
t1 ◦ · · · ◦ φXn

tn (p).

Then, the rank of the differential dF at the origin of F is n. By the inverse function

theorem, we see that F is a local diffeomorphism near the origin ,and thus p is an interior

point of B. For q ∈ B, take an isometry φ such that φ(p) = q. Since φ is homeomorphism,

we see that q is also an interior point of B. Thus B is open in M .

To prove the closedness of B, take a point q in the closure of B. For a sequence qi ∈ B

converging q, take isometries φi with φi(p) = qi, Since the isometry group Isom(M) is a

compact Lie group, there is a subsequence of {φi} converge to some isometry φ. Note

that φ(p) = q, and thus q ∈ B, hence the conclusion follows.

Lemma 8.2. If M satisfies

−kgM ≤ RicM ≤ εgM ,

diam(M) ≤ D,

dim Isom(M) = n,

then for any Killing vector field X on M, we have

|X|2 ≥ (n− (n− 1)L2
n,k,D(ε))∥X∥2L2(v).
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Proof. Take an L2(v)-orthonomal basis {Xi} of the space of Killing vector fields

on M . Since the function F (p) =
∑
i

|Xi|2 does not depend on the choice of an L2(v)-

orthonomal basis and for any isometry φ, {dφ(Xi)} is also L2(v)-orthonomal basis, we

have

F (φ(p)) =
∑
i

|dφ(Xi)(φ(p))|2 =
∑
i

|dφ(Xi(p))|2 =
∑
i

|Xi(p)|2 = F (p).

Thus, F is a constant function. Since
∫
M
F dv = n, we know that F ≡ n. Thus,

|X1|2 = n−
∑
i ̸=1

|Xi|2 ≥ n− (n− 1)L2
n,k,D(ε).

We get the conclusion by putting X1 = X/∥X∥L2(v).

Lemma 8.3. There exists a finite covering π : M̂ → M such that M̂ is isometric to

the identity component G of the isometry group Isom(M) of M , which is equipped with a

certain left invariant Riemannian metric.

Proof. From Lemma 8.1, M can be written as

M = G/K,

where K is the isotropy subgroup of G at p.

We shall prove that K is a finite group. Note that we can identify the Lie algebra g of

G and the space of the Killing vector fields onM . Since Isom(M) is a compact Lie group,

it suffices to show that the Lie algebra k of K, which corresponds to the space of Killing

vector field X with Xp = 0, is trivial. By Lemma 8.2, we see that the evaluation map

Φp : g → TpM defined by Φp(X) = X(p) is a linear isomorphism for sufficiently small ε,

and thus dim k = dimker(Φp) = 0.

A left invariant metric gG on G is given as follows; Take a point p ∈ M . We define a

map πp : G → M by πp(ψ) = ψ(p) and gG on G by induced metric gG = πp
∗gM from the

Riemannian metric gM on M . We shall show that gG is left invariant. Let Lφ denote the

left translation of φ on G. Then we have

πp ◦ Lφ(ψ) = πp(φ ◦ ψ) = φ ◦ ψ(p) = φ ◦ πp(ψ),

namely, πp ◦ Lφ = φ ◦ πp. Then, we get the conclusion by

Lφ
∗gG = Lφ

∗πp
∗gM = (πp ◦ Lφ)∗gM = (φ ◦ πp)∗gM = πp

∗φ∗gM = πp
∗gM = gG

Here we have used φ∗gM = gM which is implied by the fact that φ is isometry.
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Lemma 8.4. M is an almost flat manifold. Namely, for any δ > 0, there exists

ε = ε(k,D, δ) > 0 such that if

−kgM ≤ Ric ≤ εgM ,

diam(M) ≤ D,

dim Isom(M) = n,

then

|KMD
2| ≤ δ

where KM is the sectional curvaure of M .

Proof. First we give a pointwise estimate of the Lie bracket [X,Y ] of Killing vector

fields X,Y . Integrating the Bochner formula

1

2
∆|X|2 = Ric(X,X)− |∇X|2,

we have

∥∇X∥2L2(v) =

∫
M

Ric(X,X) dv ≤ ε∥X∥2L2(v).

Since [X,Y ] is also Killing, we can apply Proposition 7.2. Then, we have, for p ∈ M , by

Lemma 8.2,

|[X,Y ]p| ≤ ∥[X,Y ]∥L∞(v)

≤ Ln,k,D(ε)∥[X,Y ]∥L2(v)

= Ln,k,D(ε) ∥∇XY −∇YX∥L2(v)

≤ Ln,k,D(ε)
(
∥∇Y ∥L2(v)∥X∥L∞(v) + ∥∇X∥L2(v)∥Y ∥L∞(v)

)
(12)

≤ L2
n,k,D(ε)

(
∥∇Y ∥L2(v)∥X∥L2(v) + ∥∇X∥L2(v)∥Y ∥L2(v)

)
= 2

√
εL2

n,k,D(ε)∥X∥L2(v)∥Y ∥L2(v)

≤
2
√
εL2

n,k,D(ε)

n− (n− 1)L2
n,k,D(ε)

|Xp||Yp|

≤ 4
√
ε|Xp||Yp|.

for sufficiently small ε > 0.

Next we estimate KM . For this purpose, it suffices to estimate the sectional curvature

KG of G = M̂ by Lemma 8.3. By Lemma 3.11, Killing vector fields on M correspond to

left invariant vector fields on G. By Proposition 4.3, for left invariant vector fileds X̃, Ỹ

on G

⟨R(X̃, Ỹ )Ỹ , X̃⟩ = |(adX̃)
∗(Ỹ ) + (adỸ )

∗(X̃)|2 − ⟨(adX̃)
∗(X̃), (adỸ )

∗(Ỹ )⟩(13)

− 3

4
|[X̃, Ỹ ]|2 − 1

2
⟨[[X̃, Ỹ ], Ỹ ], X̃⟩ − 1

2
⟨[[Ỹ , X̃], X̃], Ỹ ⟩,

61



where R is the Riemannian curvature tensor and (adX̃)
∗ is the (formal) adjoint of the

linear transformation adX̃ defined by adX̃(Ỹ ) = [X̃, Ỹ ] with respect to the Riemannian

inner product ⟨·, ·⟩ on G.
For p ∈ M , we induce left invariant metric on G by πp. Take Killing vector field

Xi, i = 1, 2, . . . n such that the vectors Xi,p of Xi at p forms an orthonornal basis in TpM

and put X̃i = T−1(Xi), then X̃i forms an orthonomal basis on each tangent space of G.

Then, we have an estimate of the numerator of the sectional curvature

KG(X̃i, X̃j) =
⟨R(X̃i, X̃j)X̃j, X̃i⟩

|X̃i|2|X̃j|2 − ⟨X̃i, X̃j⟩2
.

by (12) and (13). The denominator is equal to 1. We have an estimate of KG which is in-

dependent to the choice of orthonormal basis, and thusKM at p. SinceM is homogeneous,

we have uniform estimate of KM . Hence the conclusion follows follows.

We finally give a proof of Theorem 1.4. By the structure theorem of compact Lie group

(Theorem 2.94), the universal covering of G = M̂ can be split as a product Rk × G0 of

abelian group Rk and a simply connected semi-simple compact Lie group G0. By Lemma

8.4 and Gromov’s almost flat theorem (Theorem 2.83), Rk × G0 is diffeomorphic to Rn.

Thus we see that G0 is trivial and thus G is an abelian group by the structure theorem.

Then by the formula (13), we see that M and G = M̂ are flat manifolds. Bochner’s

classical theorem mentioned in the introduction implies the conclusion.

Remark 8.5. The referee of [11] pointed out that the following short-cut of the proof

is possible. By Proposition 4.3 (i), Proposition 3.11 and the estimate (12), we have

|∇UV | ≤ 12
√
ε|U ||V |

for any left invariant vector fields U, V on G. This implies the following estimate of the

Maurer-Cartan form ω of G:

|dω| ≤ δ(n, k,D, ε),

where δ(n, k,D, ε) → 0 if ε → 0. Then the Zassenhaus and Kazhdan-Margulis lemma

(Theorem 1.4. in [8]) implies G is nilpotent. Since G is compact Lie group, we see that G

is abelian. Then, combining with (2), we conclude thatM is a flat torus by the Bochner’s

classical theorem.
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