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Chapter 1: Introduetion

1.1. Research background

1.1.1. Global warming and greenhouse gas emissions associated with human activity

Hurnan-induced global .warming has been reached 1°C -above the global average
temperature in pre-industrial levels (IPCC, 2018). In addition, since 1970 the global
average temperature has been rising rapidly. The greenhouse gas (GHG) caﬁsing global
4‘ warming, has Been.concentrated since 2000 about 2l) ppm per decade, which is up to 10
tlmes faster than any sustained rise in COz during the past 300,0’00 years (IPCC, 2018).
: AGlobal warming causes elimate change such as abnormal weather, rising sea levels, threat
~ to biodiversity and lisk of human health' and food crisis. Thus, United Nations held
Stockholm Conference and Earth Summits and discussed sustalnable development
and Kyoto Protocol was adopted at the third session of the Conference of the Parties (COP

3).

| In the Kyoto Protocol, developed countries committed themselves to binding targets
for GHG emissions, COy, melhane (CH4) nitrous oxide (N20), Hydroﬂuorocarbons
.’(HFCs) Perﬂuorocarbons (PFCs), and Sulphur hexaﬂuor1de (SF¢). In the Par1s
Agreement ratlﬁed in December 2015, not only developed countries but developlng

~countries commit themselves to binding targets for GHG emissions and “2-degree

temperature target”.



1.1.2. Global supply-chain complexity and emission responsibility

Although developed countries such as those included in the Kyoto Protocol Annex I
have been striving to reduce territprial COz emissions, the emissions arising from
international trade have been rapidly increasing in countries with lax environmeﬁtal _
regulations with the expansion of trade and the international fragmentation of prod.uction
(Peters et al., 2011). Peters ef al. (2011) demonstrated that CO; emissions associated with

international trade have increased from 43 Gtin 1990 to 7.8 Gt in 2008.

With this Eackgrou‘nd, the Paris\Agreement at the 21st Conference of thie Pérties .of
the UNFCCC exténdéd erﬁis_sion '}‘egulatiOns' to deve]oping countries that are ot included
-in Ahnex I (UNFcccg 2015). Ih réducin_g the global CO; emissions, develoﬁcd cc;untrics
need to consider consumption-based emissions (i.e., emissions arising» from domestic :
ﬁhal aemand) and emission transfers (i.e., emissions produced overseas érising' from
domestic demand) (e.g., Wiedmann, 2009) and effective cooperation beﬁeén deve]opéd
and developing countries is crucial in reduqiﬁg CO: emissions through supply-chain

engagement (e.g., Kagawa et al., 2015). |

Mapy studies on the calculation of consumption-Based emissions and emission -
transfers have been done by using MultiéRegi;)hal Input-Output (MRIO) Analysis (e.g.,
. Petersetal., 2011;Duet al., 2011),’ To apply the results of these studies to poiicy making,
policy makers_ need to focﬁs on high-priofity kéy stakeholders within the global supply-
cﬁain (Karstenéen et al., 2.013). Identifying the key sectors in supply-chain networks is
v important to advance negotiations for climate mitigatibn, as it can help inform policy
makefs about issues such as the transfer of greéner technologies.
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Identifying key sectors is nontrivial because of the complexity of the global supply-

¢hain network. Methodologies for identifying key sectors and the pafhs of supply-chains,
such‘ as Power and Sensitivity of dispersion (Rasmussen, 1956; Hirschman, 195 8; Hazari,
1970; Nagashima: et al., 2017; N'akarllo et al., 2017), Structural Path Analysis and
Structural Decomposition Analysis, have béen préposed (Lenze_n; 2003; Peter_s and
_Hértwich, 2005; Wood and .Lenzeﬁ,' 2009; Oshita, 2012). However, analyzing global
sUpply-cﬁains using these methodsl is not easy due to the ‘large.’computatio‘n time (e.g.,

Kagawa et al., 2015).

In particular, in recent decades, it can be said that the automotive industry supply-
chain network is,,compl‘ex'and global. A large part of the value chairi; associated with the
automotive iridustry in de&elopcd countries such as Germany, has been shifted overseas
and thus automotive supp’iy-éhains have contributed to the world ecoﬁo_my (Pavlinek et
al., 2011; Timmer ez;. al., 2015; Los et al., 2015). Thus, it can be said‘that ‘thc automotive
industry supply-chain network is complex and global. The manufacture of transport
equipment uses more indirect energy and emits CO; to ‘produce chemical products,'metal

.products, and électricity across its supply-chain than directly onsite (see Figure 1-1).

Los et al. (2015) reported that 34% of the total value added in,the supply-éhain of
transport equipment in Germany moved overseés; on the other hand, the frac’;ion of COs.
emissions in the supply-chain of trahsport equipment in Germany that moved overseas is
67% Y(Tokito, 2018). The shift from conventional gasoline—poweféd cars to the ﬁext

generation of more fuel-efficient vehicles, such as hybrid, electric and hydrogen vehicles,



will reduce CO; emissions from the driving phase. On the other hand, this shift will
increas¢ CO, émissions in the prodi;ction phase (TOYOTA, 2015). Therefore, detecting
key ‘upstream’ sectors and .decre_asing tﬁei'r maﬁufacturing emissions’ is crucial for -
rédlicing global CO; emissions. To the Best of our knowledge, _there; are few studies
analyzing the life-cycle of CO; emissions that focus on global automotive supply-chains.

The novelty in this thesis comprises the follo_wing two points. First, I dis;:ussed the
conventional key sector methods and clustering ,mefhpd iﬁ the relevan‘; global supply-
chain analysis. Second, I idcntiﬁed key secfors, clusters and supply-chain paths for

effective reduction in CO, emission from the supply-chain of transport equipment.

Direct émissi
17Mt

Emission from manufacture of
~ final products

Figure 1-1 CO; emissions from global supply-chain of Japanese transport equipment



1.2. Structure of this thesis

_ This Ph.D. thesis comprises 5 chapters (Figure 1-2). Chapter 2 .is a comprehensive
literature review focusing on Life Cycle Assessment and Environmentally Extended
Input-Output Analysis, related structuralfanalyses, as ‘Well.as augmented input-output
models and industrial cluster analysis. The research objectives and the significance of

addressing those objectives are also delineated in this chapter.
. \

Chapter 3 focused on two analysis frameworks of hypothetical ‘extra‘ction method
(HEM5 ‘ahd bétweerineés analysis to identify environméhtally .imﬁortantvsectors‘and
transactions in supély chain p_omplexity. This chapter derived an'analytié expression for
: thé'relationéhip- between hypothetical éxtradtién analysis and betweennesé cgntrélity
analysis. Second, using two widely used mulﬁi-regional ‘ir.lput-outp,ut databases,.Eora‘

(Lenzen et cﬂ., 2012, 2013) and WIOD (Dietzenbécher et al., 2013; Timmer et al.?' 2015),
| this chapter also analyzed how different the “important” sectors detected by two similar

approaches, hypothetical extraction analysis and betweenness centrality analysis, are.

vChapter 4 combined the input-output clustering analysis, node betweenness ‘ce.ntrality
analysis and hypothetical extraction method? and identified critical sectors belonging to
important emission clusters with stronger linkéges in the global supply chain networks
associated with final _demaﬁd of transport equipment in J apén. Clustering analysis can
divide the groups constructing.the' strong connecting supply chain with large emissions
from the global supply chain network, and structural path betweenness represents how

much CO; emissions from the supply chain paths a sector has in global supply chain



network. This chapter applied the combined method to the EORA database which covers

189 countries and focused on the whole global supply chain networks in detail.

"Chapter 5 summarizes the analysis results obtained from Chapters 3 and 4, and

presents the conclusions of this dissertation.

| Chapter | L
: . . . ! {
Introduction |
P G v [
therature review and research objective |
B -
Chapter 3 , _ % ‘ v

Hypothetical Extraction Method
~ versus Betweenness Centrality for
CO, Emission Attribution
in a Supply Chain

Qhapter4

.i
Enwronmentally—Targeted Sectm s |
and Linkages in. the Global jSupp]y- §

¢_
~ Chapter$
Conclusions

| .Figure 1-2. Structure of this thesis



Chapter 2: Literature Review

2.1. Life Cycle Assessment and Environmentally Extended Input-Output Analysis

When coneidefing the reduction’ in globalp CO2 emission through the gfobal
environmental cooperation, policy maker should focus on mnot only industries and
countries that emit a lot of CO, but large consumer industries and countries. Recently, it
has been more ilnportant to assess total environmental impact of economic activities. Life
Cycle Assessment (LCA) has been the standard in the env1ronmenta1 management of most
companies in industries as Corporate Soclal Responsibility (CSR). LCA assesses the
environmental impact such as GHG emission and resource use of each stage of life cycle

',of products, i.e. from mining ef, materials and processin_g phase to co'nSUmption and

- disposal.

LCA approach consists of two approaches, process-based approach and inpnt-output
approach. When using process-based approach, analyét has to decide ‘Syst'em boundary’,
which is the limit of production ppocess that analyst assess. Thus, process-baSed approach
tends to underestlmate emissions from productlon-processmg phase (Lenzen, 2001;
| Raynolds et al 2000) A combination of process-based and input-output approach is
called hybrid LCA. Hybrid LCA has been developed as a eompromise to correct for the
system poundary problem of process-based approach while taking advantage of its
prc;cess 'speciﬁeitif. Process-based LCA is used to assess the consumption, using and

disposal phase because it provides detailed information. On the other hand, input-output

approach. (Duchin, 1992; Leontief, 1970, 1936; Miller and Blair, 2009) is used to assess -



the emission of mining of matefials and production-processing phase. This is because
input-output approach can obtain total emission of supply-chain of a product without
decision of system boundary (Acquaye et al., 2011; Lenzeﬁ, 2006a; Li et al., 2019; Sato,

2014; Yang et al., 2017).

Incpeasing globalization and demand of resources which are Very unevenly
distributed around the ‘world makes global supp]y—chain more complicated, and that
makes it difficult to _'un_derstand | the relationship between producing countr>y-' and
consumption country (Kagawa et al., 2015; Zhang ef al., 2017). M‘a‘in‘subjccts of gloiaal
anvironmentally—extendéd input-output analysis ‘i_s grasping emission transfer due to the
, globalization and outsourcing of production to overskeas. Global environmentally--
extended input-output analysis oftén adopted two pgrspectives; productidn-based
accounting, wh}ch attribUtes environmental burdensbto emitting (producing) countries,
and consumpﬁon—based accouﬁting, whicH attributes environmental 'burdené to the
consumers who ﬁn@lly‘avail of those goods (Barrett et‘al., 2013; Gallego and Lenzen,
2005; Lenzen ez“al., 2007; Lenzen and Murray, 2010, 2003; I};Iiller,andv Blair, 2009;
Murray and Lenzen, 2001). Adopting these two emission-perspectives, Lenzeﬁ et al.

(2007) discussed emission responsibility between producer and consumer.

Whén assessing cbnsﬁmption-based emission of ‘products in - high-resolution
classiﬁcatioﬁ leveli, combiniﬁg bilateral trade data and domestic input-output data (e.g.,
Global Link Input-Output model) has been used (Hondo et al., 1998; Liu et al., 2017,
Nakano ef al., 2009; Nansai et al., 2012, 2009; Petérs, 2008; Su et al.,' 2013; Su and Ang,

2016,2014,2013). On the other hand, a lot of previous studies used Multi-Regional Input-

10



- Output model (e.g.; Tukker and Dietzenbacher, 2013). Sectors in MRIO are aggregated
(Lenzen, 2011; Lenzen ef al., 2010; Steen-Olsen et al., 2014) but MRIO model enable us
to discuss environmental relationship between developed countries and developing
countries spatially. Previous studies analyzed using various environmental-burden data
includingvcarbdn dioxide (CO2) (Kanemoto ef al., 2014, 2012; Karstensén et al., 2013;
Lenzen, 2016; Peters et dl.; 2011; Peters et al., 2011 ; Peters, 2008; Peters et al., 2007; Su
and Ang, 2014, 2011; Weber and MattheWs, 2008, 2007; Wiedménn, 2009; Wiedmann et
al., 2010, 2007, 2006), air pollution (Lopez et al., 2013; Moran énd Kanemoto, 2016;
Nagashima, 2018a; Nagashim'av et al., 2017; Wang and Song, 2019; Zﬁang et al., 2017),
.mt.atal (Nakajima et al., 2011; Nakamura ef al., 2007; Nansai et al., 2017, 2014; Tokito et
al., 2016) and biodiversity (Moran and Kanemoto, 2017). For example, Moran andr
Kanemoto (2017) visualized the threat to biodiversity all over the world induced by final
demand .in United States spatially using Eora database (Lenzen et al., 2013, 2012) covered
189 regions. Besides, various multi-regional input-output database such as WIOD
(Dietzenbacher et al., 2013; Timmer et al., 2015), EXIOBASE (Stadler et al., 2018;
Tukker et al., 2013), freely available data, are constructed, and global environﬁental

impact are analyzed using these database.

2.2 Structural Analysis

2.2.1 ‘Key sector analysis

‘High responsible countries from two emission perspectives, production-based

emitters that directly generate large environmental burden and consumption-based

11



emittérs that indirectly drivé large environmental burden through the sﬁpply-chéin, can .
be intérpretéd as both ends of supply-chéin path. Af the start point of supply-chain path;
large emitting country should .bé given technological aséistance, while at the end point of
sﬁpply-chain ﬁath, large consuming country lshould inform demand-sidé meésufcs
Ainﬂuencing the choice of final users, such as imposing consumptj_on tax (Liang et al.,
2016b). However, not only Both ends of supply-chain, producer and consumer, but also
interfnediate transxﬁissioﬁ sectors have a large influence on a whole eﬁission. Thus,
policy makers in the emissionfresﬁonéible- gountrie’s nered;to focus on a whole supply-
. chain and detect hi gh-pr_iority.kéy stakeho‘ld?rs withlin the input;output structure m global
supply-chain (Wiebe, 2018). Identifying the key sectors in supply-chain networks is
important to advance negotiations for. climate mitigation, aé it can help. inform policy
makers about issues such as the tijansfer of gfeener technologies. However, identifying -

key secfors is nontrivial because of the complexity of the global supply-chain.

As fhe methodologies for identifying key isectors and the paths of supply-chains,
with the underlying idea thaf éectors with strong linkages afe in the positionrto induce the
outputs expansion of other sebtors, the linkage‘indicators as measuring interdependencies
of sectors have been becoming a common tool. As key sectoroanalysis using iOA, |
estimation of the “power of dispersion aﬁd “sensitivity of dispersion_” has been,‘

- suggested (Rasmussen, 195_6;‘Hir.s¢hman, 1958; Hazari, 1970; Nagashima et al., 2017;
- Nakano ez al., 2017). These indicators defined the summation of row- or column-vector
of Inter-industry transactions fnatrix as tﬁe lihkage between sectors (Chenery and
Watanabe, 1958; Hazari, 1970). The power of dispersion reflects the back);)ard linkage

effect, which indicates how much the sector’s productionb induce other sector’s production.
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While, b_\the sensitivity of dispersion reflects the forWard linkagé‘ effect, hoiil mucli the
| sector’s production is vtriggered. These two indicators are used to apply in the field ‘oi‘
environmental analysis and detected keysectdrs for climate mitigation (Lenzen, 2003; -
Nagashlma et al., 2017, Nakano et al., 2017). The forward and backward hnkage was
deﬁned using another concept, “hypothetical extraction method (HEM) ”’. Hypothetical
- extraction method (Lahr and Dietzenbacher, 2001; Meller and Marfan, 1981; Mlller and |
Blair, 2009) is to quantify how much the total output of an economy would decrease ifa
par’cicular sector were removed from that economy. The hypothetical extraction method‘
can be developed to assess the influence of bothibaekward and forward linkage, “fofal
linkage”, for a sector- (Ali,. 2015; Cella, ’1984; Dietzenbacher et al., 1993; Dietzenbacher
and Lahr, 2013; Meller and Marfan, 1981; Song et al., 2006; Temurshoev, 2010) unlike
power and sensitivity of disnersion. Thete are various methods for detecting the key
sector by analyzing changes in the input structure (Casler and Hadlock, 1997; Guilhoto

et al., 2005, 1999; Sherman and Morrison, 1950; Sonis e al., 2003, 2000; Wiebe, 2018). )

222 Graph theoretic approach

For understanding Ia whole input-output structure, interQindnstry transactions matrix

‘can be interpreted as an adjacency matrix showing supply chain complexity of industries.
Graph theoretic cencentshave been widely used to nighlight and visnalize the important

. transactions in the sup'r)ly chain ‘compvlex‘it‘y (Rosenblatt, 1957). Qualitative In’put-Output
Analysis (QIOA) has Been proposed to Visualize the relation between industrial sectors
(Aroché Reyes and Muiiiz, 201 8;‘ Ghosh and' Roy, 1998; Holub and Schnabl, 1985;

Kagawa et al. 2009; de Mesnard 1995; Titze et al., 2011; Weber and Schnabl, 1998). In

13



additfon, key sector analysis using the centrality indicator (Freeman, 1977‘, 1978) from
social netwbrk analysis (Friedkin and Johnsen, 1990; Du et al., ,2017; Amador aﬁd Cabral,
2016; Blschl et al., 201 1; Brachert et al., 2016; Cerina et al., 2015; Chen et al., 2018; de
‘Mesnard, 19}95 ; Duan and Jiang, 2018; Muiiiz, 2013; Muiiiz et &l., 2008; Kagawa et al.,
2069; Kilkenny and Nalbarte, 1999; McNerney et dl., 2013; McNerney and Kryazhirnskiy,.
2009; Wang et al., 2017b, 2017a) and has been applied to model the intermediate goods

flow network.

Network analysis in the context of graph theory has been irﬁportant tools and applied
to various socioeconomic networks in the field of economics and business administrations '
(Granovetter, 1985; Burt, 1992). Input-output :analysis is the powerful to.*ol_. as for 'traéking
the propag'ation'of productions in the global supply chains, and the social network
analysis is the useful tool té understand a whole complex and hﬁge network
easily(Laﬁtn_er ahd Carl'uer,72004; Liang et al., 2016a; Ohno et al., 2016; Tseketris, 20‘1 7;
Wakeel ef al., 20117‘; Waﬁg et al., 2016; Z. Wang et al., 2017b, 2017a; Xing, 2017; Xing
et al., 2017; Zhao, 2015). In particular, betweenness centrality (Freeinan, 1977, 1978;
~ Freeman et al., 1991) is a major indicator for ass.ess the importance of éectdrs. :
Betweé‘nness centrality assess the influence a node has over the spread of information
through the network. Betweenness centrality is deﬁﬁéd as how often the node appear on
: _shortest paths betweeﬁ the other sectors. »A high betweennfess-sector has large C(‘)ntr(ﬂ over
information ﬂoWing bet§veen others. Thus, the concept of betweenness have been widely
used in the field of social networks, world trade networks and urban transp.ortétion.
networks (Liang ef al., 2016). In the ﬁeld of environmental ’extended input—outpqt

network, a high betweenness-sector plély the important role to control the emission from

14



a whole supply-chéin network. The bétwgennesscenﬁality in network analysis is mostly
measured based on binary networks in which the links between nodes are often undirected,
‘unweighted and single hierarchy network. Previoué studies applying centrality analysis
' té input-oﬁtput tables have integrated the multiple hierarchical supply chain network into
siflg]c hierarchy for eaée of handling (’Figure72-1). However, links in an input-dutput ’
network are directed and wei ghted and have procesSing hierarchy. Therefore, the concept
of links (edges) and paths in input-output network are different from social networké
(Lazzarini et al., 2008; Liang et al., 2016b). Thus, it requires significant modiﬁcation of

the betweenness indicator corresponding to the input-output “paths”.

Final demand

degree

Integration

Multiple hierarchical supply chain network Sinigle hierarchical supply chain network

Figure 2-1 Multiple hierarchical network and single hierarchical network

© Structural Path Analysis (SPA) (Acquaye et al., 2011; Defourny and Thorbecke,
2006; Lenzen, 2007, 2003; Nagashima, 2018; Nagashima et‘ al., 2017; Oshita, 2012;
Peters and Hertwich, 2006; Sonis et al., 2003; Suh, 2004; Treloar et al., 2002; Wood and

Lenzen, 2009) has been used to identify important sectors and transactions from the input-

15



outﬁut network. Structural path analysis (SPA) can detect important supply-chain pathsv
from complex input-output structures by decompoéing Leontief inverse into each
“-supply-chain paths SPA has since been used in an envirqﬁmental extended input-
output framework. For example, Nagashima (2017) detected the critical supply-chain |
_paths generating the deceased by PM2.5 in China. SPA déﬁned a supply;chain path as
the amount of environmental Burden .generated by the start point sector (producer) driven
by thé end point sector produciné final products (or consumer) and as a linear chain of
ssectors in which ﬁpstream_ ones supply’downstrea.m ones sequentially. It shouid be noted

that only the start point sector’s emissions are counted.

Wood and Lenzen (2009) combined SPA and Structuralv Decomposition Analysis
(SDA)(Lan et al., 201_6; Lenzen, 2006b, ‘2‘016; Matsumoto et al., 2018; Nag’éshima,
2018b; Nishijima, 2017; Oshita, 2012; Owen et al., 2014; Peters et al., 2007; Su and Ang,
2016; Tian et _&l., 2018; H.;Wang. et al., 2017»;>Wang and Song, 2019; Wang et al., 2019;
Wood et al .., 2015), whiéh is the methodology of comparative sfatics that deéomposes the
ch'gnge of emissidn into some factofs; and ahalyzed the key supply-chain paths in more

detail.

Liang et al. (2016) suggeéted betweenness-based méthod by applying the concept of
node bétweehness centrality (Freeman, 1977, 1978) intq‘ the concept of pdths in structural
" path analysis. Bétweenness-baséd emissions represent both the positional and quanﬁtative
importance ofa svec;cor in the supply chain network. Hanaka et al. (2017) expanded the
node betweennesé-based efni‘ssions to edgé_ betwéenness-based emissions and suggested

the use of the edge betweenness centrality.
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2.3 Cluster analysis

v While key sector analysis has been developed, the studies that focus on detecting
impqrtant sub-network structure from_ Whole network, clustering ,anélysis, has been
developed. The clustering method enables us to detect sectcirs that are large emitters and
‘strongly connected in the supply-chain networks. Poﬂer.(19§8) suggested an.importance
of formin g regional industrial ‘clusters’ and peinted out that it is an indispensabie source
to promote regional competltlveness innovation, and growth Previous studies 1dent1ﬁed
the relatively 1nterconnected industrial groups as the cluster (mdustrlal accumulatlon) and.
’ analyZed the ecoanic propagation by these industrial clusters. Czamanski (1974), and
Feser and Bergman (1999) identiﬁed the. clusters using the similarity of input structures.
Oosterhaven et al. (2001) detected the mdustr]al clusters and its core mdustrles by cuttmg
the networks Just focusmg on the 1nter-mdustr1al linkages that exceeded the threshold set
by authors. However, the computational cost of clustermg by usmg the threshold is qulte
huge and it is difﬁcult to apply these methods to enormous MRIO networks (Lanc;ichmettl
et al 2009). For this, Kagawa et al. (2013a 2013b) newly developed clustermg method
" in the input-output networks using Normalized cut based on graph theory (Shi and Malik,
2005; Zhang and-Jordan, 2008). This method can be easily calculated and- more time-
saving than conventional cl_ustering methods. Actually, it is applied to various input-
eutput networks and hasv identiﬁed important industrial clusters (Kagawa et al., 2015,

2013a, 2013b; Okamoto, 2015; Rifki et al., 2017; Tokito et al., 2016).

However, Kanemoto ef al. (2018) pointed out that this clustering method may divide
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an impdrtant transéction to diffefent clusters. For example, it supposes that the direct
linkages between material industry, manufacture industry and wholesale industry are
relatively strong. Howevér, in the integfated graph defined in '(Kagawa etal.,2015,2013b,
>2013a; Rifki et ;zl;,' 2017), the linkage between manufacturev industry a;nd whol@éale
industry becomes weak> due to the emiésion intensity of manufacture industry. Recgntly,
Kanemoto et al. (2018) proposed the fitter clustering method for the input-outpﬁt
neﬁ&on‘ks by modifying it. Although the clusterihg method proposed in Kanembto et al.

(2018) needs.too large cdmputation time to apply to Eora database.

2.4 Summary and contribution of the thesis

In the previous stﬁdies, the emissioh responsibility b¢tween producing countries and
consuming countries has been discussed calculating production-based and consumption-
_based emission by using global environmental extended input-output an‘al‘ys'is. Besides,
Various key sector analysis has been »developed for effective reductioh. in global

environmental burden through the ripple effect on supply-chain. -

However, methodologies of detecting key sector, key transaction, paths and clusters
in previous studies have_ computation problem (HEM and SPA) and consistency problem
(social network indicator), and they didn’t analyze key sectors in a large database like

Eora covered 189 countries and regions.

Chapter 3 introduced two analysis frameworks of hypothetical extraction method

(HEM) and betweenness analysis to’ identify environmentally important sectors and
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transactions in 'supply chain complexity.' Hypothetical extraction 'mefhod has a
computation problem and betweér;neés analysis has a double-counting problem (Liang et
al., 2016)’.»This‘ chapter derived an analytic expression for the relationship between
hypothetical extraction analysis and betweenness centrality analysis. Secon&, usiﬁg_ two
widely used multi-regional input-output databases, Eora and WIOD, this chapter also
analyzed how different the “importaﬁt » sectors detected by two similar approaches_',
hyp’othetiéal e)%traction v,analysis and betweenness centrality analysis, are. In ‘adciition,

Chapter 3 suggest how to use propérly-of two methods.

Next, Chapter 4 aimed to identify key sectors and clusters for effective reduction in
COzv emission from the suppiy-chain.of transport eqﬁipment by applying a spectral
clusfcring method and node betweenness centrality énalysis to the comprehensive EORA
database (Lenzen et al., 2()12,? 2013). In addition, I analyzed the critical transactions
between the clusters aetected by using edge hypothetical extraction method. Using the
EORA datébase, ‘which covers 189 countries and regions, enablés us to analyze whole
supply-chain networks in mofé detail and detect key sectors and clusters more precisely.
From tﬁve results of this thesis, I discussed the need for international coordination in the

!

relevant supply-chains.
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Chapter 3: Hypothetical Extraction Method versus Betweénness'

Centrality for CO2 Emission Attribution in a Supply Chain .

3.1. Introduction

The field of ‘Input-Outbut Analysis (IbA) was develéped as the empirical analysis of
both the ripple effect induced by changes ‘in the final demand aﬁd the interdependenciés
between different industrial sectors since the 1950s (.Chenery and Wétanabe, 1958;
Leontief, 1936, 1941; Miller and Blair, 2009; Rosenblatt, 1957). Input-output structural
analysis allows us to understand complex input-output networks. Previous studies have’
suggested indicators of key' seétofs and transactions that affect the whole netWork _
environmentally and econofnic'ally usihg complex input-output networks (see Table A; 1

for the previous relevarnt researches).

With the underlying idea that sectors with strohg linkages are iﬁ the position to induce
.the outputs expansion _6f other sectors, the linkage indicators as rheasuring _
interdependencies of sectors have been becoming a cbmmon tool. As i{ey ’sectof analysisi
using IO-A;, estimation of the “power of disperSioh” and “sensitivity of dispersion” has
been suggested (Rasmussen, 1956; lHirschman, 1958; Hazari, 1970; Nagashima et al.,
2017; Nakano ef al., 201"7.). These indicators focus on the linkage between sectors. The .
power of dispersion reflects the backward lihkage effect, and the sensitivity of dispersion
:reﬂects the forward linkage effect. There are various methods for detecting the key sector
by aﬁalyzing changes in the input structure (e.g., Casler and Hadlock, 1997; Wiebe, 201 8).
The hypothetical extraction method (Ali, 2015; Cella, 1984; Dietzenbacher et al., 1993;
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Dietzenbacher and Lahr, 2013; Meller and Marfan, 1981; Song et al., 2006; Temurshoev, .
2010) is to quantify how much the total output of an economy would decrease if a
particular sector were removed from that economy. The hypothetical extraction mefhod

can be used to assess the influence of backward and forward linkage for a sector.

Inter-industry transactions matrix-can bé interpréted as an adjac;:ncy matrix shoWing
supply chain complexity of indﬁstries. Gréph theoretic concéptsvhave been widely used
to highlight and visualize the important transactior.ls. in the supply chain c;omp_lexify
(Rosenblatt, 1957); Qualitative Iﬁput—Outpﬁt Analysis (QIOA) has been proposed fo
visualize the relaﬁon between industrial sectors (Holub and Schnabl, 1985; Ghosh apd
Roy, 1998; Weber and Schnabl, 1998)(de,Mesnafd,’ 1995; Kagawa et al., 2009; Titze et
al., 2011). In addition, key secfor analsrsis ﬁsing the centrality indicator (Freemlan, 1977,
.1978)‘ from social network analysis (Fric_adkin and Johnsen, 1990; Muniz et al., 2008;
Kagawa et al., 2009; Brachért ét él., 2016; Chen et al., 2017; Du et al., 2017; Duang and
Jiang, 2018) and cluster analysis (Kage\lwa et al;, 2015, 2013a, '2013b; Rifki et al., 2017,
Tokito, 2018; Tokito ef al., 2016) has been applied to rhodél the intermediate goods flow

network.

Stfuctural path analysis (De’foui’ny and Thorbecke, 1984; Trelor, 1997; Lenzen,
2003; Suh, 2004; Peters and Hertwitch, 2006, Wood and Lenzen, 2009; Oshita, 2012;
Nagashima et al., 2017), betweenneés-ﬁased emission analysis (Liang et al., 2016) and
edge betweenness centralify analysis (Hanaka et al.‘,2017) héve been used.to identify
important sectors and transactions from the I-O netwdrk. Structural path analysis is based

on economic influence and its transmission throughout the input-output system. Liang et l
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al. (2016) suggested betweenness-based émission' analysis by applying the concebt of
'node be'tweennéss.'(Freeman, 1977, 1978) into structural péth analysis. Betweenness-
based emissions represent both ,the‘ positional and quantitative importancerof a sector in‘
the supply chain nct\&ork. Hanaka et al. (2017) "expanded the node betweenness-based
emissions to edge betweennéss—bas'ed emissions and suggested the use of 'the edge

“betweenness centrality.

Note that bofh the hypothetical extraction method and betweenness analysis focus
on the output from all supply chain paths passing through the sector. Héwevér,
betweenness centrality is weighted by the number of times the sector appeérs in the supplyv
chain path.‘ Thus, sectors which have higher befweenness centrality indicatdrs will appear
maﬁy ﬁmes in a supply chain. Théfeforé, as in the policy discussions of Liang ef al. (2016),
Hanaka et al. (2017) and Tokito _(2(‘)‘1’ 8), climéte policies for the targeted sector and

transaction which have higher beméenness centrality (e.g., reduction in emissioﬁ '
intensity) can be implemented effectively using this information to reduce the emissions

embedded in the supply chain network.

The novelty in this thesis comprises the following two points. First, I focused onthe
relationship between the various I-O structural analysis méthods_ mentioned above and in
particular, I 'deriVed‘ an analytic expression for the relationshiﬁ ‘between hypothetical
extractioh analysis (Mqller and Marfan, 1981; Cella, 1984; Dietzenbachcr, 1993, 2013;
Miller énd Blair, 2009) and betweenness centrality analysis (Liang et al., 2016; Hanaka |
et al., 2017; Tokito, 2018). Second, usin;g two Widélly used datébases, Eora (Lenzen et al.,

2012, 201 3) and WIODV(Dietzeﬁbablcher etal., 2013; Timmer et al., 2015), I analyzed how
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different the “important” sectors detected by two similar approacfies, hypothetical
extraétion analysis and betweenness centrality analysis, are.x When the results of these
methods differ greatly, the iminortance of a sector thaf is high betweenness sector in the
supply chains is,‘ignore‘d. Thus, we can séy'that betweenness centrality analysis is more
approprié‘te fbr using the structure of a supply chain network to determine policies to

reduce emissions.

The remaindefof this Chapter is organized as follows: Sections 3.2 and 3.3 explain
the mefhod,ology and data used here, Section 3.4 presént the results, and Section 3.5

presents the discussion and conclusions.

3.2. Methodology

3.2.1 Leontief model

An intermediate input from industry i to industryj is den_otéd by z;(i,j=1,...,N).
The final demand for industry 7 is denoted by fi(i = 1,..., N). Thus, the total output g
of industry i is defined as q; = Z?’ﬂ Zij + f;. If intermediate input cbeﬁicients a;j =

z;;/q; are defined, the input coefficient matrix A = (ai j) is constructed as
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= ai
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Wheré af is the (N X 1) column vector —represénting the input coefficient from all
sectors to sector i and aj ié the (1‘>< N) row vector representing the input cbcfﬁcient
~ from sector i to all sectors. The first-order indirect economic influence induced by‘ithe
final demand for indﬁstry i is calculatevd as Yo—; ayif; =t 1aff;, in which I is the -
(N >< 1) column vector véihqse‘.all elements are 1. Sim_ilarly, the second ‘€conomic
influence induced by the ﬁqal demahd of éountry‘s from industry i in a country is
calculated as Y5, >N_. Aouluifi = IAaff;. The Leontief model, x = e(E— A)™f =
" eLf, can show the full extent of the final demand _that directly and indirectly generates '
the industrial erivironmental burden x. Here, e; Ef f | are the emission intensity vector, the
identity matrix and  final deménd vector, respectively, and the Leontief inverse,
L=(E—A)"! is the direct and indire'ct‘ requirement matrix. The Leontief invérse

involves all ripple effects as
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3-1)
where e;, f; are the i element of the emission intensity vector e and the final demand

vector f, respectively, and gy is the (i, j)th element of the technical coefficient matrix A.

The Leontief inverse L= (ly) is constructed as

ll.1 L; f Ln
L= 1;1 I Ly
L le L
= (IC TS L 1;,)
I
i
"

3.2.2. Hypothetical extraction method

¢)) Sect»ovr hypothetical extraction method
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Using this hypothetical extraction method, we can calculate the impact arising from
both the forward and backward direct linkage of a sector. In this Chapter, I calculate the
environmental impact of the case that a specific sector i is extracted from the economy.

The environmental sector extraction impact x! can be calculated as follows:
X=X : , - (G-2)

where, x. is the total emission from the economy that all sectors exist in, and 7l is
the total emission from the economy that a specific sector i is extracted from. X’ can

be obtained using the “extracted ” input coefficient matrix A’ as

. l—)—c-i =‘;{(E_Xi)1 —Jﬁ}fv

.= e—I—ff_ -ef

In which, %! is the total emission from the supply chain paths not passing through sector
. %, and Jy, is the matrix whose (u, v)th element is 1 and the other elements are zero. An

element of A = (@) isas:

a

uy

— ={aw UFIAVEIL

0 u=ivv=i

From the following equation (3-3), the environmental sector extraction iihpa'ct xt
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can be interpreted as the total emissions associated with the supply chain paths passing

through sector i. -

=eLf —r(ef"f —'-e,.f;)
=e(L-T) +e, - B A € 5

=e{(E_+A+A" }A3'+...)~(E+K" +@&F +(@&f +...)}fJ.re,.ff

(u uv vwf u zlcv_\iwf )+"‘

1

M=
Mz

:eif;. +Zz(e"a“" v €, uv )+i

u=l v=l u=1

<
-
3
i

(2) Edge hypothetical extraction method

Focusing on the direct linkage from sector i to sector j (i # j), the environmental
impact of the case that a specific transaction from sector i to sector j is extracted from
the economy also can be calculated. The total impact of extractmg the transaction from

sector i to sector j, xY can be obtalned alike sector extraction impact as follows:
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here AY = (ﬁff,,) is the input coefficient matrix where the (i, J)th element is zero, and
LY is the “extracted” Leonﬁef inverse calculated by using the “extracted” input
coefficient AY. From this equation, the extraction impact of transaction from sector i to
sector j, x"/ can beunderstood as the total emission from the supply chains that exclude -
the supply chain paths.not passing. through the transaction from sector i to sector j, and
“can be iliferpréfed as the total emissions associated with the ‘supply‘cha_in-paths passing

through the transaction from sector i to sector j.

3.2.3 Betweenness centrality

* (1) Node betweenneéss centrality

Liang ef al. (2016) probposed the input-output node betweenness _c'entrality,‘ which is

a measure of the betweenness of a specific sector that considers the production tiers in
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the supply chains. Sectors with higher betweenness centrality transmit larger amounts of
CO; emissions thrdughout the supply chains. Using an input-output table, Liang ef al.
(2016) defined b; as the input-output node betweenness centrality of a specific sector i

as follows:

h o0

b = iZZ( .xw(

s=l (=1 r=l

k). ' (3-5)

Here, s and ¢ are the start and end sectors of a supply chain path, respectively, g is the '
number of times that sector 7 appears in the supply chain path, w indicates the weight of -
the Supply chain path starting from sector s and passing through r sectors (k;, &z, ..., k) to

reach end sector ¢, and w is calculated as

W(S’tlkl’kzv--akr) ey Gy 0y,

Notice that a particular supply chain 'path paésing through the same sector multiple
times increases the sector betweenness. In other words, this definition allows the double-
counting of the weight of the same supply chain path based on the number of times that

sector i appears in this supply chain path.
Liang ef al. (2016) formulated b;(ly,1;) as the total emissions associated with the

supply chain paths that pass through sector i that has an industrial supply chain with [;

upstream sectors and [, downstream sectors.
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= h L
=(eAh ) (A"S)

=eA" T A"f

Here, (eA!); and (A"%f); are the i element of the vector eAl and Alzf,

" respectively. Using eq. (3-6), eq. (3-5) can be simplified as follows:

b= 3"5,(,.1,)
h=11,=1

o0 ol

= ZZV(eA"J,,‘A..’Zf)

=1 b=

= eAJ, Af +eAAT Af + eAAAT Af + ... (7

+eAJ AAT +eAJ AAAS +...

N

=Z - (eua'uiaivf;)_l_ZZZ(euauvaviaiwfw)+""

kLA

=] y= u=l w=l w=l o

=

=eTJ, Tf =et tf

Where T is the indirect requirement matrix, and T is obtained with the following
: t

equations:
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T is constructed as:

It should be noted that the betweenness centrality in Liang et al. (2016) does not

count the direct emission from sector i, eif; and the emission from the 1** supplier i

triggered by final demand of sector j, e;a;;fj, respectively.

In this Chapter, for comparison of the hypothetical extraction rhethod and input-

output betweenness centrality, I reformulated b; as the environmental input-output node
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betweenness centrality of a specific sector 7 as follows:

n 71

b, = ZZZ((], xw(s,tlkl,kz,...;k,)) - - (3-9)
s=1 t=1 r=0 .

where w(s,tkl,kz,...,k,.)= €0y a,, ** 4, ;. Note that r can be 0 in eq. (3-8) It means that

the betweenness centrality used in this Chapter counted the direct emission from sector i

from final demnand of sector 7. Thus, eq. (3-8) can be reformulated as

1=01,=0

b, ZZb zl,z)

ii(&A’lJ Al )
=0 1=0

(3-9)

cef S eanf )+ 3 an 0, 1)+ 333 0 f,)

u=l u=l v=1 : u=1 v=1 w=l

=eLJ,Lf =el’l'f

(2) Edge betweenness centrality

Hanaka et al. (2017) proposed input-output edge betweenness centrality, which is a
measure of the betweenness of transactions in the supply chains. Transactions with higher
betweenness .centrality transmit larger amounts of CO, emissions throughout the supply

chains. Reformulafing the methodology of Liang et al. (2016), Hanaka et al. (2017)
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defined b;; as the input-output node betweenness centrality of a specific transaction

from sector 7 to sector j (i # Jywitha simple equation (see Hanaka et al, 201 7):

b, = a,eLJ L
(3-10)

= elfa,.jl;f

' 3.2.4. Differences between hypotheticdl extrdctiqn methods and betweenness centralities.

In this Chapter, I address the question on what is the difference between the two
methods that have a similar concept, the extraction impact x! and x¥ and betweenness
centrality b; and b;;. From the equation A6 and A9, b; and b;; are described by

using x' and x% respectively as follows (See Appendix):
b=Q+t,)x (3-11)
b, =(1+a,,)x (3-12)

From equation (3-11) and (3-12), we can see that the value of the betweenness
ceﬁtrality is always higher than the value of the extraction impact. Figure 3-1 shows the

difference between the sector hypothetical extraction method and node betweenness

33



cehtrality. We can see that x! and x/ are same but b; ’and b; afe distinctly different.
The value of beﬁ;veenness ceﬁtrality is weighted'according to number of timesvthat‘ a
sector appears in the supply chain path. From the perspective of betweenn.ess centrality,
a sector appearing more tixﬁes ina supbly chain ié mdre importaﬁt than sectors appearing
feWer tifnes for ¢ and ajl;i in the node between‘ness and e.dge betweenness centrality,
respectively. Hypothetical extraction method ignored the nurﬁber of times that a sector
appeafé in the supply chain path. From the perspective ef policy implication, technical
improvemeet in a sector abpearing more times in supply chaiﬁ are more effective than
sectors appearing less times. When the results of these methods differ greatly,'vthe number
of appearing the sector in the supply chain is large, and the sector plays an important role

in the supply chain.

Production . dgf::(‘ll};d .

N T
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ector i

Production
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-based

Betweenness
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Extraction impact of scctor ¢ and j in the supply " Betweenness centrality of sector i and § in the supply
chain, x! and x/ are caleulated as: chain, b; and by are caleulated as:

(1) x'= e aijajagapmfn - (3) by =3 X egay; aj;a;;a;amfn

(2) x) = epay; ajjajiq;iainfn , (4) bj = 1 X epay; 0;;a:055Qinfn

Figure 3-1 Difference between the major emission accountings of production-based,

consumption-based, betweenness-based and hypothetical extraction methods.
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Suppose that there is an input-output table for three sectors as in Table 3-1. I assume
that the emission coefﬁcéients are 1 in this example to analyze how differences in the input V
structure result in differences in the obtained indicators. From the above methods, the

_input coefficient matrix and the Leontief inverse are defined as in Table 3-2 and 3-3.

Table 3-1 Input-Output table for three sectors

Industry 1 industry 2 Industry 3 Final Denmiand Total Qutput

Indusiry 1 50 30 25 2 125
Industey2 | 70 20 65 ol f 30 X 135
Industry 3 40 30 70 45 - 185

Value Added 15 1 B !
Total Qutput 125 135 185

Table 3-2 Input coefficient matrix

Industry 1 Industry 2 Industry 3

‘Industry 1 0.4 0.222 0.135
Industry 2 0.16 - 0.481 0.108

Industry3 ~ 0.32. 0.222 0.378

Table 3-3 Léontief iriVerse

~Industry 1 Industry 2 Industry 3
Industry 1 2.446 1.379 0.772
Industry 2 1.099 2704  0.709
Industry 3 1.652 1.676 2.259

The extraction impact and the betweenness centrality of the industries x! and b; can be
obtained from the equation (3-4) and (3-9), réspectively.
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Table 3-4 Results of hypothetical extraction method and betweenness centrality

i

Rank x'  x'  Rankb, b, Ry i’

Industry 1 3 265.60 3 649.62 1.45  384.02
Industry 2 2 28756 1 777.42 1.70  489.87
Industry 3 1 306.24 2 69190 1.26  385.66

From these two results, we can see that the value and the rank différ depending on the
size of t;;. For. example, indu}stry»i3, which has the h‘ighesf, extraction ifnpa¢t,_ has a lower
betweenness centrality than industry 2. In graph theory, the edgés connecting sectors to
itself’are called “self-loops.” If the self-loop is bigger, that means the diagonal element
of input coefficient ﬁa&ix ‘a;; is bigger, the proportion of transaction from sector i to
sector [ is higher, and’ ’the number of supply chains that sector i appears multiple timés _
is bigger. This is mean that ¢; | which is the total supply cha_inpéths from start sector i
to end sector i is bigger. Thelbﬁtweenness (lzentrality -emphasizes tﬁat the self-loopls of

sectors are important components of 10 networks (Liang ef al., 2016).

3.2.5. Analyzing correlation between hypothetical extraction methods and betweenness

centralities

I analyzed the substitution of x' and b;, x/ and by, and calculated the Spearman
rank correlation coefficient to see the consistency of the ranks assigned to different sectors

by the hypothetical extraction method and. betweenness centrality.
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3_.3. Data

In this thesis, I used the Eora MRIO table for 2015 covering 26 industrial sectors and

189 regions, which is publicly available at http://www.worldmrio.com/ (Lenzen et al.,

2012, 2013) and the WIOD MRIO table for 2008 covering 35 industrial sectors aﬁd 40

regions, which is publicly available at http://www.wiod.org/home (Dietzenbacher et al.,

- 2013; Timmer ef al., 2015).

3.4. Results

3.4.1. The result of hypothetical extraction method and betweenness centrality analysis

From WIOD for 2008, the emissions from industries in 41 couﬁtries total 25598 Mt
‘C02. From the prbduction—based CO:, emissions | obtained from WIOD, the largést
emitters were China (5923 Mt CO»), fbllowed by the Uﬁited States (4550 Mt CO»), Russia
(1_515‘ Mt COy), India (1367 Mt CO,), and Japan (1021 Mt COz). The emissions in these

five countries accounts for about 70% of the total emissions. -

Some studies have reported the production of trade goods in developing countries has -

also contributed greatly to the increase in CO; emissions in recent decades (e.g., Peters,
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2011). In this situation, considering the consumption-based emissions is important when
assessing the emission responsibility of developed and developing countries (Wiedmann,
2009; Peters, 2011). The .emission‘responsible countries should reduce the CO; emission

through the climate policy as technology investment to key sectors.

The hypothetical extraction method can be used for detecting key sectors. Using the -
hypothetieal extraction method, I can calculate the mdgnitude of the linkage between
sectors, and the emissions of the supply chain paths passing through a sector or a

transaction.

Applying the sector hypothetical extraction method and the edge hypothetical
extraction method outlined in (1) and (2) of Sections 3.2.2 to ’_the WIOD, I calculated two
indicators and ranks (TaBIes 3-5 and 3-6; the results for Eora are shown in Appendix).
From Table ’3-5, the highest e;ctraction impact sector is Electricity, Gas and Water Supply

(CHN)(3250Mt-CO).

From Table 3-6, we can also see vthe_ Chinese sectors have a large extraction impact.
Especially, transaction from the Electricity, Gas and Water Supply (CHN) sector or the
transaction to the Construction (CHN) sector affect the total emissions throughout the

supply chain network.
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Table 3-5 Top 10 sectorslby extraction impact: WIOD

. ~ Sector name (WIOD) ‘ x' (Mt-COp)

1 CHN _ Electricity, Gas and Water Supply _ 3250
2 USA _ Electricity, Gas and Water Supply . 2318
3 CHN _ Construction ' , ‘ : 1973
4 RoW _ Electricity, Gas and Water Supply » B 1861
5 CHN _ Basic Metals and Fabricated Metal - ' | 1737
6 CHN _ Other Non-Metallic Mineral : ‘ 1219
7 CHN _ Electrical and Optical Equipment 1085
8 CHN _ Chemicals and Chemical Products 1078
9 RoW _ Construction _ : 938

10 RoW _ Mining and Quarrying ~ ‘ T o 878

Table 3-6 Top 10 tr‘ansactionsy by extraction impact: WIOD

Source sector Target sector =7 (vt-cop)

1 CHN _ Other Non-Metallic Mineral — CHN _ Construction ‘ s 853
2 CHN _ Electricity, Gas and Water Supply — 'CHN _ Basic Metals and Fabricated Metal 608
3 CHN _ Basic Metals and Fabricated Metal — CHN _ Construction . 425
4 CHN _ Electricity, Gas and Water Supply — CHN _ Chemicals and Chemical Products 417
5 RoW _ Electricity, Gas and Water Supply — RoW _ Mining and Quarrying 407
6 CHN _ Basic Metals and Fabricated Metal. — CHN _ Electrical and‘O’pticaI Equipment 393
-7 CHN _ Electricity, Gas and Water Supply — CHN _ Mining and Quarrying . - 337
8 CHN _ Basic Metals and Fabricated Metal =~ — CHN _Machinery, Nec i ‘ ' 306
9 CHN-_ Electricity, Gas and Water Supply .. — CHN _ Other Non-Metallic Mineral ' 235

10 RoW _ Other Non-Metallic Mineral © — RoW _ Construction 222

Hypotheﬁcal extraction method anélysis allows us to calculate the CO; emissions
throughout a sector. In the actual supply chain, however, even if the CO, emissions are
the saﬁe, if a sector appeérs in a supply chain multiple times, then the sector and the
transaction Wili differ in importance. For climate policy, this perspective has important
implications beqause} the technical improvement in a sector that appears. in a supply chain

many times may reduce the more emission from the supply chain than that in a sector that
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has same extraction impact and appears in the same supply chain only once (see Figure

- 3-1). Therefore, I anailyze the results of the betweenness centrality in the next paragraph.

App‘lying the node betweenness centrality and edge betweenness centrality outlined
in Sections 3.2.3 to the WIOD, 1 calculated two indicators and sets of ranks (Tables 3-7

and 3-8, and the results for Eora are shown in Appendix).

From Table 3-7, the sector With the highest nddé betweenness centrality is also
Electricity, Gas and Water Supply (CHN)(4806Mt-COy). Similar to the results for the
extraction impact, the betweenness centrality of Chinese secto?s are h1 ghest. In th‘e list of
the top 10 sectors; the ranks in Table .3-7 are similar to those in Table 3-5. Focusing on
the Basic Metals and Fabricated Metal (CHN) sector, this sector is the 5t highe.st in
extraction im.pact-but 2nd high_esf in betweenness centrality. Thﬁs, I can'say the supply
chain paths in this sector z;ppcar multiple times, and are induced by g]obal final demand‘
~ more than the supply chains with the 2™'to 4 highest extraction impact. The betweenness
centrality reflects the size of the number of tiines that the sector appears in the sﬁpply
chain path. Policy makers should focus on Basic Metals and Fabricated Metal (CHN)

sector rather than sectors of 2™ to 4™ highest extraction impact.

Then, from Table 3-8, we can see the highest edgebbetweenness centrality transaction
is Other Non-Metallic Mineral (CHN) -> Construction (CHN). Similar to the results for
the extraCtion impact, the betweenness centrality of the transactions between the Chinese
sectors are higﬁest. In' comparison to Hanaka et al. (2017), thg size of both the node

betweenness and edge betweenness of the Chinese sectors and transactions are induced
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by Chinese final demand.

Note that the value and rank of the results- of the edge betweenness and edge

| hypothetical extraction method are almost the same. This is apparently attributable to self-

loop exclusion resulting in differences in both the value and rank being far smaller than -

those obtained in the results for the nodes. It may therefore be seen that in the Chinese

domestic supply chain, particularly in the input from Electricity, Gas and Water Suppfy

(CHN) and the input to Construction (CHN), not only is the intermediate emission rate

high but the number of occurrences of the Transaction is large and is important from a

graph theory perspective.

Table 3-7 Top 10 sectors by node betweenness centrality: WIOD -

Sector name (WIOD). _ b; (Mt-COy)

1 CHN _ Electricity, Gas and Water Supply
2 CHN _Basic Metals and Fabricated Met_al
3 USA _ Electricity, Gas and Water Supply
4 RoW _ Electricity, Gas and Water Supply
5 CHN. _ Construction
6 CHN _ Electrical and Optical Equipment
7 CHN _ Chemicals and Chemical Products
8 CHN _ Other Non-Metallic Miheral
9 RoW-_ Mining and Quarrying.

10 RoW _ Construction

4806
2147
2332

. 2190

1999
1567
1524
1449
1172

960

Table 3-8 Top 10 transactions by edge betweenness centrality: WIOD
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Source sector Target sector by (Mt-CO,)

1 GHN _ Other Non-Metallic Mineral = CHN _ Construction 853

2 CHN _ Electricity, Gas and Water Supply .~ CHN _ Basic Metals and Fabricated Metal 610

3 CHN _ Basic Metals and Fabricated Metal — CHN _ Construction ‘ 425

4 CHN _ Electricity, Gas and Water Supply — CHN _ Chemicals and Chemical Products 419

5 RoW _ Electricity, Gas and Water Supply — RoW _ Mining and Quérrying ' 416

6 CHN _ Basic Metals and Fabricated Metal — CHN _ Electrical and Optical Equipment 396

-7 CHN _ Electricity, Gas and Water Supply — CHN _ Mining and Quarryihg 343

-8 CHN _ Basic Metals and Fabricated Metal =~ — CHN-_ Machinery, Nec - 312

9 CHN _ Eleétricity, Gas and Water Supply — CHN _ Other Non-Metallic Mineral 235

10 RoW _ Other Non-Metallic Mineral — RoW _ Construction 222
3.4.2. Correlation between the sector hypothetical extraction method and node

betweenness centrality, and the edge hypothetical extraction method and edge

© betweenness centrality

Applying the sector hypothetical extraction method and node betweenness centrality

outlined in (1) olf. Sections 3.2.2 and 3.2.3 (see Figs. A-1 and 3-2) and the edge

hypoth'etic'al extraction method and edge betweenness centrality outlined in (2) of

Sections 3.2.2 and 3.2.3 (see Figs. A-2 and 3-3) to the WIOD and Eora datasets, I

calculated two correlation coefficients (see Table 3-9). These tables show that both

correlation coefficients are positive and significant.

42



Node betweenness centrality b, .
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Sector extraction impact x

Figure 3-2 Sector extraction impact values versus node betweenness centrality: Eora
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Edge betweenness centrality bz.j
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Figure 3-3 Edge extraction impact versus edge betweenness centrality: Eora

Table 3-9 Correlation between the sector hypothétical extraction method and

betweenness centrality

WI0D Eora
Rank correlation (x' and 5;) 0.999142 0.999996
“Rank correlation (x” and 5;) 0.999998 0.999995

3.5. Discussion and Conclusion

In this thesis, I detected and analyzed the key sectors and transactions in a supply
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chain by app_lying the hypothetical extraction method and betweenness centrality to
WIOD and Eora. From fhe results, Electricity, Gas and Water Supply (CHN) was
identified as a key sector by both indicators and‘ 12% of the total emissions accompanied
the supply ch‘ain passing through this sector. Cn the other hand, Other Non-Metallic
Mineral (CHN) -> Cbnstruction (CHN) had the highest values for both indicators, and of -
the éOz eﬁissions accompanying the supply chain via Other Non-Metallic Mineral
(CHN) énd Construction (CHN), these sectors account for 43% and 69%, respectively.
‘ Moredver, in the CO; emissions via the transactions including Electricity, Gas and Water
Supply (CHN), Electricity, Gas and W.ater Supply (CHN) -> Basic Metals and Fabricated

Metal (CHN) is largest, accounting for 18% of the total.

Results from the extraction impact, which is the emissions actually passing through
the sector and may be called the sector reduction potential, and the betvveennesé centrality
- analysis, which is the value representing the importance of a sec’for incl_uding a weighting -
based on the number of occurrences, were very similar. Furthermore, the rank correlation
of the results for these two indicators is large and positive. The double-counting of
transactions did not have a pélrticularly large effect on the results‘ of the edge betweenness,

and the results for the two methods were similar. -

In the hypothetical extraction method computation, for the calculation of one sector
and edge impaét,» setting the input coefficients and calculating the in&erse matrix would
take an extremely long time for a large matrix such as the Eora or WIOD datasets. In
contrast, computation of the betweenness centrality can be performed uéihg a fixed

Leontief inverse matrix and can therefore be accomplished in a very short time. For a
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large dataset such as WIOD or Eora, an extremely large caicul,ation is necessary and big
 data can be more readily treated. For analyéis of I-O networks that are more global, the -

computing-volume problem'is important. In this Chapter, I showed that the extraction

impact can be‘calculated from the"lesis computationally-expensive betweenness centrality

obtained using the equations (3-11) and (3-12).

The extraction impacts show the magnitude of iﬁﬂuencing outputs of other iridustrieé
alqng the supply chains related to transactions of an industry in question, Whéreas‘ the
betweenness .cehtrality shows the imporfance of networking industries through a ndde of
an.' in'dustfy in question as well as a transaction between the industry in question and
another industry. The hjpoth'etical extraction method is ‘widely uged to assess inter-
industry linkage§ and the economic im]ﬁortance of ihdustries (e.g., Dietzenbacher et al.,
2019). Thus, the both @ethods have different advantages. ,Thcréf'ore, I prdpose that
researchers firstly use betweennessA centrality that is less computationally-ex};ensive and
- secondly estimate the extraction impacté using equations (3-11) and (3-12) developed in

this thesis.
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Chapter 4: .Envir()nm'entally-Targeted Sectors an‘d'Linkages in the

Global Supply—Chain Complexity of Transport Equipment
4.1. Introduction

Although developed countries such as those included in the Kyoto Protocol Anne;x
I have been striving to rpducé territorial CO» emJissiéns, the emissions arising frdm
infeyrnational\ trade have been rapidly inéreasing in co_untfieS With lax environmental
‘ regulatiohs_ with the expansion of trade and the‘intemational. fragmentétion of production
(Peters et al., 2011). Peters et af. (2011) demonstrated that CO» erﬁissions-assbciatéd with
international trade ha{lg increased from 4.3 Gt in 1990 to 7.8 Gt in 2008, With;this
background,.the Paris Agreement at the 21st anferenc‘e of the Parties of the UNF CCC
e);tended_emission regulations to déveloping countrigs that are not included in Annex I\
(UNFCCC, 2015). In reducing the global CO, emissions, develop-ed counfr'iesbne'ed to
consider consumptién-based'emissions (i.e., emissions arising from domestié final
demand) and emission transfers (i.e., emissionsvprodﬁced ovérseas arising from domestic. ’
demand) (e.g., W_iedmanrn, 2009) and effective cooperati’on between deVejloped and
d}evelopi‘ng countfies is crucial in reducing CO> enﬁssions through supply-chain

engagement (e.g., Kagawa et al., 2015).

In particular, in recent decades, a large part of the value chains associated with the
automotive industry in developed countries. such as Germany, has been shifted overseas
and thus automotive supply-chains have contributed to the world economy (Pavlinek er

al., 2011; Timmer et al., 2015; Los et al., 2015). Thus, it can be said that the automotive
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industry supply-chain network is complex and giobal. The manufacthre of transport
‘equipment useé more indirect energy to produce chemipal products, metal products, and.
electricity‘ across ité supply-chain th;;n directly onsite (Kagawa ef al., 2013). Lés et al.
(2015) réported that 34% of the totél valu¢ added m the supply-chain of transport
equipment in Germany moved overseas; on fhe other hand, the fraction of CO2 emissions-
in the supply-chain ot; transport equipment in Germany that moved overseas is 67%
(Tokito, 2.01 8). The 'shiff from Conyentional gasolinc-pdwered cars to the next generation
of more fuel-efﬁciént vehicles, sﬁch as hybrid, electric and hydrogen vehicles, Will. reducé
C(Sz emissions from the driving phase. On the othér hand, this shiftkwill increase CO»
emissions in the productioh phase (TOYOTA, 2015). Theréfore, detécting kéy ‘upstream’
* sectors and decreasing their manufacturing emissions is crucial for reducing global CO;
emissions. To the best of our knowledge, there are few studies analyzing the life-cycle of
CO:z emissions that foéus on global automotive suppiy—chain.s._ This Chapter focused on
the supply-chain associated with final ‘demand for prodﬁction in the ‘V‘Tran‘sport
‘E‘quipment sector.

Many studi¢é on the calculation of consumptior;-based emissions and emission
transfers have been done by using Multi-Regional Input-Output (MRIO) Analysis (e.g., |
Peterset al., 2011; Du et al., 2011). To apply the results of these stu"dies to policy making,
policy makers need fQ focus on high-priority key stakeholders within_‘the global _'supply-'
chain (Karstensen et al., 2013). Identifying the key sectors iﬁ supply¥chéin networks. is
important to advance négotiations for climate mitigation, as it can help inform policy

makers about issues such as the transfer of greener technologies.
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Identifying key sectors ts nontrivial because of the complexity of the global supply-
chain network. Methodologies for identifying key‘sectors and the paths of supply-chains,
such as Struotural Path Ana]ysis and Structural Path Decomposition Analysis, have been
proposed (Lenzen, 2003; Peters -and Hértwich; 2005; Wood én-d Lenzén 2009' Oshita,
2012). However, analyzing global supply-chains using these methods is not easy due to

the large computatlon time (e g., Kagawa et al., 2015).

Studies applyingnetWork centrality analysis and clustering analysis to such complex
industrial networks have been perform.ed to mechanically elucidate the main
characteristics of networks (Amador, 2016) and visualize network structures. Various
indicators have been proposed (McNerﬁey, 2009; Zhao, 2015' Amador and Cabral, 2016;
Liang ef al, 2016 Xing, 2017) to enable the appllcatlon of ‘methodology originally
intended for the analysxs of somewhat sparse soclal networks to supply-chain networks
that are nearly complete graphs. In this way McNerney (2009), Zhao (2015), Amador and
- Cabral (2016) and Xing (2017) have used giant MRIO tables to elucidate global value

chain structures.

Kagawa et al. (2013a, 2013b, 2015) and Okarrtoto (2015) identified CO; emission-
intensive supply;chéin groups using cluster analysis to understand the structure of
production networks and enable the detection of the key sectors of th'o global supply-
chain network. Their methodology can quickly and consistently identify key sectors and
clusters. Kagéwa et al. (2015) analyzed the World Iﬁput-Output Database (WIOD) and lb
identiﬁed 4756 significant CO; clusters from the global supply-chain-network as'sociateci

with the final demand countries. However, they focused on' only the 40 countries and
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regions'covered in the WIOD, andb many other countries in Asia and Africa that are still
develdping were not considered in their supply-chain analysis. In addition, Kagawa e al.
(2015) did not consider sectors that belong to multiple clusters. Thus, undefStanding the
global supply-chain network in more detail is necessary to suggest climate policy for all

CO; emitting countries.

The clustefing method enables us to detect sectors that are large emitters and strongly.
conhected in the sﬁpply-’ch'ain netwo_fks_buz‘ are not suitable targets fér reduciﬂg CO;
‘emissions because there is little inter-induétry'linkage, and thus less opportunity for
emission reductibﬁs from adopting‘ greener technology in such sectors, due to their fewer

connections to other sectors.

Liang et ql . (2016) proposed the concept of i‘np‘ut-output node betweenness centrality
to identify sectors transmittih g large amounts of CO» émissions throughout their supply-
phains. Applying a poli(;y to sectors with highef betweenness is much’ more effective
across the whole nketwork, because global CO; emissions are efficiently reduced through
the inter-industry linkages centered around the key séctors with higher betweenness. A '
combination of the clﬁstering_ analysis and the structural betweenness analysis can
identify the envifonmentélly important clusters includfng-the key sectors with higher
betweenness. Hanaka et. al. (2017) expanded the node, betweenness-based emissions to
edge bgtweenness-based emissionsr and suggested the use of the edge betweenness
centrality. The concept of these methods is similar to the hypothetical extraction method
(Meller and Marfan, 1981.; Cella, 1984; Dietzeﬁbacher, 1993, 2013), which is to quantify

how much the total output of an economy would decrease if a particular sector were
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removed from that economy. The hypothetical extraction method can be used to assess
the influence of backward and forward linkage for a sector. However, betweenness

centrality is weighted by the number of times the sector appears in the supply-chain path.

This Chapter aimed to identify key sectors and clusters for effectivé reduction in
CO; emission from the sﬁpply—chain of transpo.rt ‘equipmeﬁt by applying a épectral»
clustering method and node betweenness centrality analysis to the comprehénéive EORA
database (Lehzen et al., 2012, 2013). In addition, I analy_zéd thc‘ critical transactions
between the clusters detected by usiﬁg edge hypothetical extraction method. Using the
EORA databaSe, which covers 189 countries and regions, enables us to analyze whole
-supply-chain networks in more detail and detect key sectors and clusters more precisely.
Frém the results of this thesis, I discuséed the need for international coordinati‘on in the

relevant supply-chains.

The remainder of this Chapter is organized as follows: Section 4.2 explains the
methodology uséd here, Sections 4.3 and 4.4 present and discuss the results, and Section

4.5 presents the conclusions.

4.2. Methodology

4.2.1. Unit structure model

In this section, I define adjacency matrices of the CO2 emissions associated with

global commodity flows. An intermediate input from industry i in country r to industry j
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in country s 1s defined as 'Zirjs(i,j =1,..,M; r,s' =1,...,N). The final demand from
industry 7 in country r to final consumers in country s is defined as F/*(i =
1; woMyr,s =1,...,N). As a result, the total output bf industry i in country r is defined -
as x] =¥, 294:1 Zij+ T F5.If intermediate input coefficients aflf = Zf7 [x are
defined, fhe widely used MRIO model can be formulatéd‘ as X = Ax+f in matrix
notation (e.g., Kagawa et al., 2015), where x = (xf), A = (aff) and f =N, F 5) 
Tﬁe MRIO model, x = (E — A)~f = Lf, can show the extens‘ioﬁ of the final demand
that directly and indirécﬂy generates.the industrial output. Here, E is the identity matrix,
and L= (E—A)"*=(l]]) is the direct and indirect requirement matrix that
| represents how many units of a product of industry iin country r are needed to produce
one unit of a prodﬁct of industry J in country-s. If the industrial CO; emission per Aunit of
output of industry’ i in country »is deﬁncd as the vector e = (e]), then the global CO»

“emission transaction matrix can be represented with the following equation:

X = éLdiag(f) | @D
where & is a diagonal matrix whose diagonal elements are the CO, emissions per unit of

output of industry 7 in country ».

Ozaki (1980) introdﬁced the unit struc'tufe model that rei)resents the economic
transactions associated with the final demand for products for a specific industry j in a
specific country s. Using this model, I can obtain the induced demand for the products of -
industry j in country s, de}scrib‘edbas xj =Iif{, where I represents thé direct and

indirect requirement for one unit of production of industry j in-country s, which is the
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{(s = 1) X M + j}th column vector in L. S, is the final consumption of products of

industry J in country s. Consequently, the study presented a new version of the economic
network model, X; = Adiag(lf i ), which shows the economic transactions: that are

triggered. by the final demand for industry j in country s.

Using the emission intensity vector, the global CO2 emissions Xj = (xlrf ) induced
by the geographical inter-industry deliverié’s from industry 7 in country r to industry j in
country s and associated with the final demand for a specific industry j in a specific.

' country s can be formulated as follows (Kagawa et al., 2015):
X = éAdiag(l’ f;) B

This thesis considered the directed graph of the CO emissions associated with the
geographical flow betweer industry i in country r and industry j in country 5. Each sector
is defined as a Vertex, and the emission transfers between sectors are indicated by arcs -

~ weighted by the fotal emissions.

This Chapter focused on the “Transport Equipment” sector. Over 60% of the global
- produetion of transport equipment was attributed to five countries in the EORA databése;
the United States, China, Germany, Japan and France. This thesis considered Japan and

the industry “Transport Equipment”, -

Following Kagawa et al. (2013b.) and Tokito et al. (2016), I used a clustér analysis
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method based on nonnégative mqtrix factorization (NMF). I partitioned thé COz emiséion
flow network of international trade G = ( 9i; ) into K groupsr (_hereéfter K ciusters). Heré,
gi; represents the CO, emission flow associated with trade volume between sector i in
couhtry r and sector j'in country s (eﬁports from sector 7 in country » to sector j in country
s + imports from sector j in country‘s into sector i in country r), and matrix G is the

i = gji - The diagonal components of G are zero and [ excluded

adjacency matrix, thus g
the domestic COz emissions from the network data. I defined the symmetric adjacency

matrix G = ( girjs) from the unit structure matrix X3, as follows:

(4-3)

rs. __ _.rs sr I
gy =x; +X5 (Otherwise)

At this point, I defined an index to express the degree to which the K groups are
separated from the network as in previoué studies (K-a‘gawafet al., 2015; Tokito et al.,
2016), the adjacency matrix G can be applied to the widely used industrial clustering

analysis.

4.2.2. Clustering analysis =

I defined an index to express the degree to which the X industrial groups are separated
from the global silpply-éhain network as Cut = Zlk{=1(2ievk,j ev 9ij — Siev, jev, gl_j)’
“where the value of the index is ‘called the cut value (Wu énd Leahy, 199.3), and V= |
{1,2, ..., N} represents a set of Veﬂiées (corfesponding to industrial sectors iﬁrthis thesis);

while V, is the set of vertices belonging to the ™ cluster. Note that the following
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mathematical relatiqnship holds: V = U¥_, V. By finding the combination of vertices
for which fhe cut value is minimized, I determined the CO; clusters that have close.
international flows. |

f/

Howeyer, if I divide th.e network in order to mivnimizévthe cut value, there is a -
tendency to arrive ata clusfér witha ‘single vertex (industrial sectof) (Shi and Malik, 2000).
" Therefore, tb'resolve this limitation, 1 défiﬁed d, as the degree .of vertéx i which
reﬁresents the total number of connections éf vertex i estimated By X Jij and thus can
simultaneously try to maximize the aggrggate vélue of thé degrees of vertices belonging
-to a particular cluster, Zievk d;. In other words, I can define 2 normalized cut value (4-4)
_ that includes an additional condition to maximize the total number connections of each

cluster, and apply a grouping to minimize this value.

Zler ]EV - Zier JV gij

K
d.
=1 Zler !
K
k=

Ncut =

k
Zh (D-G)b,

T

Here, h is the indicator vector associated with cluster k, defined below. The superscript

" T indicates the transposition.

h,k)={1 (%)

b =(h, 0 (ieW)

"D in Eq. (4-4) is the diagonal matrix having degree d; for the diagonal components.
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However, the- problem with minimizing Eq. (4-4) is that each vertex needs to be
assigned to one of the k clusters. Within the conteXt 6f computation time, this
minimization problem is réferred to as an NP-chplete problem (Shi and Malik, 2000).
By expanding the values obtained for this discrete indicator vector h over real space, the
vjdiscrete optimization problém. of Eq. (4-4) can be reduced to the NMF problem of Eq. (4~

5); see Ding et al. (2008, 2013) for details.

1

' 1
D 2GD 2 —-HH”

. 2
Minjmize
H>0

P (4-5)

Here, H is a non-negative matrix. If the number of vertices that cionstitu't_e the network is

N and the number of clusters'is K, then H is an N x K matrix.

By using th¢’ algorithm proposéd by Lee énd Seung (1999, 2061), I can determine
the matrix H that minimizes the norm of Eq. (4-5)..Th‘e result is that the zth row Véctof of
matrix H (h;) becomes a feature chtor of vertex i, and by identifying the vertex points of

_ similar feature vectors as belonging to fhe same clustér, I can identify the K clusters; this

 is referred to as the K-means technique (Bolla, 2011).

When identifying clusters using a combination of NMF and the K-means technique,

the number of clusters X is arbitrary, thus its value must be decided in advance. The choice
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of X strongly affects the shape of the cluster structure after partitioning. To assess the
quality of the cluster structure, I used the modularity index proposed by Newman and

Girvan (2004) and Clauset ef al. (2004):

Z:eV,‘ Z_]EV,‘ &y _ ‘ZiEVVk ngV &y
g non )
' Zzgy i Zzgy /

i=1 j=1 i=l j=1

Q(K) Z

| (4-6)

' The modularity index is accuracy of a clustering result widely used in cluster analysis.
The number of clustefs is selected to maximize the value of Q(K) in Eq (4-6) (Newman

\

and Girvan, 2004).

4.2.3. Node betweenness centrality

‘Liang et al. (2016) prdeSed node betweenness centrality, which is a measure of
betweenness of a specific sector that.considers the-production tieré in the supply-chains.
Sectors with higher node betweenness centraiit& transmit larger amounts of CO;
' emissions throughout the supply-chains. Using an input-output table, Liang et al. (2016)
defined b; as the node betweennesé centrality of a spééiﬁc sector i, énd reformulated it as

a simple eqﬁation as follows:
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n n 0

b, = ZZZ(qr xﬁ(s,t

s=l t=1 r=l

= eTJ Tf

kikynk,)) "

Here, s and ¢ are respectively the start and end sectors of a supply-chain path. g, is the
number of times that sector i appears in the supply-chain pafhs. w indicates the wéight of
the supply-chain path starting from sector s and passing through » sectors (ki, k, ..., k) to

" reach end sector £. w is calculated as ' . S
W(S,f|k1: kza---_»a kr'); €s s, A, ™ .ak,ltft

where e is the s™ element of the emission intensity vector e, and f; is the #* element of the
final demand vector f. as is the (s, k)th element of the technical coefficient matrix A. T is
the indirect requirement matrix, and J; is the matrix whose (,7)th element is 1 and other

elements are 0. T and J; are obtained with the following equations: _
T=A+A%+---

J. =

1

Jw=1 fu=v=i
Juw =0 otherwise

For the supply-chain induced by final demand of a sector ¢ for a specific country, I defined

the betweenness of sector 7 as follows:
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bil = - i(qrxw(s’tlkl’kz"."’k"))' : | : : (4-8)

Then, I reformulated b;,(I4,1;) as the total emissions associated with the supply-chain

paths of the final demand of sector # that pass through sector i that has an industrial supply- -

chain with /; upstream sectors and l‘2‘ -1 downstvrevam sectors.

bft (ll > ZZ ) = (éAII ),- { z (aU1 af,-ljZ o ajlz—ljlz =lf; )}

ISy <0

1< j1mes iy <1

(ert) (a1)

=eA"J A",

4-9)

‘ =(eAI1 ):{ Z (av"j‘qjljz';.;aflz-‘j’zﬂ )}ft |

Here, (Ak); and (Al2); are the # element of the vector Al and i row vector of the
matrix Az, respectively, and f, is the vector whose /" element is f, and other elements
~are 0. The node betweenness centrality of sector i associated with the final demand of

sector ¢ is obtained as foHows:
(4-10)
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4.2.5. Edge hypothetical exfraction method

Focusing on the direct linkage from sector i to sector ] @@ # J), the environmental
impact of the case that a specific transactibn from sector i _t'obsector J is extracted from
the economy associated with Ja'panesg transport équipment also can be calculated. The
total impact of extracting the transaction from sector i to sector - Js xéj . can be obtained

edge extraction impact as follows:

v _ _ 3V
'xt _xt xt

= eLf, —eL'f,

=e(L-T)f,
N ) ‘N N o o
b / - —Ij
=Y (e, f;—edlf )+ D D e,ana,f,— e @TLS )+ o
u= o u=1 v=1 S

here AY = (c_lllf,,) is the'input coefficient matrix where the (i, j)th element is zero, and
LU is the “extracted” Leontief inverse calculated by using the‘ “extracted” input
coefficient _Kif . From this equation, the extraction impact of transaction from sector i to
: séctor J» xtij can be undel;stood as the total emission from the supply-chains associated
with Japanése transport equipment that exclude the supply-chaiﬁ paths not passing
throiigh the transaction from sector i to sector j,v and can be interpreted as the total

emissions associated with the supply-chain paths passing through the transaction from
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- sector i to sector j. From Chapter 3, edge hypothetical extraction impact can be less-
computationally-expensive calculated using edge betweenness centrality (Hanaka ef al.,

2017) as follows:

(4-11)

4.2.6. Combining industrial clustering analysis with betweenness centrality analysis

Using the clustering method defined in Section 4.2.2, I divided the upstream sectors
into those with a strong connecting SUpplyéchain with large emissioris and those from the
global supply-chain network associated with the final demand of the transport equipment

industry inJ apan.

In addition, using the node betweenness centrality defined in Section “4.2.2, I
identified the upstream sectors with high node betweenness centrality, which represents
how much CO; emission from the supply-chain paths a sector has, from the global supply-

chain paths associated with the final demand of the transport equipment industry in Japan.
By only using a clustering analysis, we cannot analyze the importance of a node of a

. CO2 emission cluster, and only using the node betweenness cehtrali’cy, we cannot analyze’

the role a high-priority node fulfills in its CO2 emission cluster.
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By combining the results of the clustering analysis with those of the node betweenness
centrality analysis, we can visualize critical clusters focusing on high betweenness sectors
across the whole global supply-chain and suggest supply-chain management to high-

priority sectors and clusters.

4.2.7. Combining industrial clustering arialysis with hypothetical extraction analysis

input-bufput anaiysis is the powerful tool ,as- for tracking the propagation of
productions in the global supply-chains, and previbus studies applying clustering analysis
to input-output tables have intcgl;ated the r‘ﬁultiple hierarchical supply-chain network into
single hierarchy for ease of handling. However, Kanemoto ez al. (2018) pointed out that
this clustering method may divide an important transaction to .different clusters. For
example, it supp;)sés thét“the direct 'linkages. between material industry, manufacture
:industry_and wholesale industry are relatively strong. However, in the in.tégrated graph
déﬁned in Section 4.2.1 (Kagawé et al., 2015, 2013b, 2013a; Riﬂ(i‘et al., 2017), the
linkage between rhanufacture indﬁstry and wholesale iﬁdustry Bccomes weak due to the
emission intensify of manufacture industry (See Figure 4-1). Recenﬁy, Kanémoto et al.
(2018) proposed the ﬁttér clustering method for the input-butput networks by modifying
- it. Although the clustering method proposed in Kanemoto. et al. (2018) needs too large

computation time to apply to Eora database. .

: In'fhis thesis, I apply the edge hypothetical extraction rhethod to detect the important

transaction
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Figure 4-1 Linkages of the adjacency matrix defined by using unit structure model
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© 4.3. Data

In this thesié, T used the> EORA MRIO fable in 2015 covering 26 indusfrial se.ctors‘,
which is publicly available at http://www.worldmfio.com/ (Lenzen et al., 2012, 2013);
We céh obtain the global CO; emis._sidns"assoc»iated'{’v.ith the final demand for thé transport
equipment industry (=) in a country (s = Japan) by adding to'gefher the elements 'of the
unit stfucture matrix Xf , which is easily obtained by applying the EORA to the unit

r‘structure model defined in Eq. (4-2). For the CO emission accounting, I used “CO2

emissions (Gg) from EDGAR Total ” including\all emission sources (e.g., forest fire).

44, Results

)

4.4.1. Production-based emission induced by Japanese transport equipment and Global

emission clustering analysis

Applying the unit structure model outlined in Section 4.2.1 and spectral cluster
éﬁalysis outlined in Sectién 4.2.2 to the 2015 EORA database covering 189 countries a}nd
regions, I obtained production-Based emissioﬁ induced by Japanese transpbrt equipment
through the global supply-chain and identiﬁed 17 emission clusters. the Figure 4-2
describes the share by country and cluster of emitted CO; in the global supply-chain of |
Japanese transport equipmeht in 2015. Tables 4-1 describe the ranking of sectors by

country for the emitted CO2 in the global supply-chain of Japanese transport equipment
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in 2015. From table 4-1, we can see that in addition to the upstream spctor's such as
“Mining and Qualifying ” and “Electricity, Gas and Water ”, the intermediate sectors such
as “Petroleum, Chemical and Non-Metallic Mineral Products” and “‘Transpoi't 7 are
larger emitters. In addition, these supply-chains induced lérge CO2 emissi.ons in‘oil-
i producing or mining countries such as African and Middle Eastern countries.
quever, it ‘is difficult to make policies by focusing on the SUpply-chain structure
ﬁ*ofn only such an emission transfer aqalyéis. In the next section, I ide'n‘tify the key
. stakeholders. for'CO, emission reduction by combining the cluétering results with the

node betweenness centrality results defined in the preceding section.

I performed a cluster analysis on th-e COz emissions of global supply-chain networks
associated with‘the industry of concern in this thesis: traﬁsport equipment manufacturing
in Japan..It should be noted that the number of efnissioﬁ clusters for J apancsé tranépoﬁ
- equipment was determined by maximizing the modularity index and the maximum
mociu]arity\ index s'o obtained was 02995 Figure 1 shows the network of the 17 detected
clusters. The largestvcluster in terms of CO, emissions indﬁced within its cluster is clﬁster
#4, which:comprises 7 sectors, “Petroleﬁm, VChémical and Non-Metallic Mineral Products
(JPN) ’.’, “Metal Products (JPN)”, “Electrical and Machinery (JPN)”, Transport
Equipment (JPN) 7, “Electricity, Gas and Water’ (JPN) , “Transport (JPN)”, “Financial |
Intefmediati’on and Business A.c,tivitie’s (JPN) ”, that emitted large amounts of CO;. Thus,
Cluster #4 comprises the Japanese manufacturing and service sectors. In Japan, these
industries should cooperaté for reduction in CO, emission through the supply-chain of

transport equipment. The second largest cluster is cluster #2, which includes 43 80 sectors.
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The clustering method that is based on Normalized cut is a top down “cutting ” method.
Thus, this fnethod might detect “the rest.of many industries ” in the networks that have
relatively weak linkages ‘as the industrial clus_ter and recognize it as one of the}most
imbortant cluster because the. aggfegation .of total output of Within-cluster,in'dustries
becomes large even if totai output of each indﬁstry is tiny. The third largest' cluster consists

of the Chinese manufacturing sectors.

Tatwan
1%
Australia

1% .,

Saudi Arabia

. e
1% India

2%

South Korea .~
2%

vsa
3%

Russia _
3%

Figure 4-2 The share of which countries and clusters emitted CO; in the global supply

chain .of Japanese transport equlpment in 2015
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Table 4-1 Ranking of CO; emission induced by final demand of J apanese transport

equipment
Rank Code o : ‘ Sectorname _ CO, (Kt} Cluster#

1 JPN Electricity, Gas and Water , 45996 4

2 PN Petroleum, Chemical énd Non-Metallic Mineral Products ' 35448 4

3 UPN Transport : : o 34979 4

4 JPN Transport Equipment ‘ ' 29237 4

5 CHN - Electricity, Gas and Water ‘ o 9088 14

6 JPN Electrical-and Machinery - 8661

7 'JPN Metal Products ' ' _ ’ 8226

8 - CHN Petroleum, Chemical and Non-Metallic Mineral Products .7968 14

9 KOR Electricity, Gas and Water : 6094 15
10 USA Transport - 4945 2
11 RUS  Electricity, Gas and Water , 3633 16
12 IND Electricity, Gas-and Water ; ’ 3537 1
13 RUS Mining and Quarrying . - - 3374 16
14 CHN Metal Products ~ B 3242 14
15 -CHN Electrical and Makch‘inery . 3010 . 14
16 CHN Transport i . ' 2988 14
17 USA Electricity, Gas and Water ' 2473
18 JPN Finacial Intermediation and Business Activities | 1838 4
19 TWN Electricity, Gas and Water . R 1525 12
20" ZAF  Electricity, Gas and Water : | 1455 8
21 JPN  Other Manufacturing o o 1249 2
22 KOR  Petroleum, Chemical and Non-Metalilic Mineral Products 1168 9
23 USA Petroleum, Chemical and Non-Metallic Mineral Products . 1117 2
24 JPN Miningand Quarrying 1045 2
25 AUS Electricity, Gas and Water , ’ 1036 2
26 PN Others _ . o 913 2
27 RUS Petroleum, Chemical a'nd,Non-\MetaIIic Mineral Products ‘ 887 16
28" SAU Petroleum, Chemical and Non-Metallic Mineral Products 857 -2
29 CHN Mining and Quarrying ' ' B " 836 14
30

SAU Electricity, Gas and Water ) 790 1
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Flgure 4-3 CO; emission cluster structure in the global supply-chaln network associated
w1th final demand. of transport equipment in Japan

4.4.2. Node betweenness centrality

I calculated the network betwéenneés of the sectors in the global supply-chain
networks associated with the final demand of transport equipment of each country by
- using the method formulated in Section 4.2.2 (T-able 4-2). From these tables, I observed

that sectors with higher betweenness centrality (e.g., “Metal Products”, “Petroleum,
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Chemical and Non-Metallic Mineral Producté ”, “Electrical and Machinery”) tend to
A belong to larger clusters with higher within emissions (F iguré 4-4). Figure 4-4 shows the
“network structure of top 30 edges with large emilsksion induced by final demand of
Japanese transport equipment. The diameter of nodes -indiéatcé the node betweenness
centrality, and the thickness of the edge indicates the CO2 emiséions associated with
tradi'ng products from node to node. Conyeréely, the sectors ‘\with the highest emissions
such as “Eleétricity, ‘Gas and Wate;r”rdo not always show the highest bctweerihess in th¢

supply-chain network.

Sectors Wi_th a higher ‘betweénness may purchase prOdﬁcts' from rmany other
_upstream sectors and sell their products to many doWnsfream sectors. Therefore,
‘produc'tion efficiency improvement or supply-chain management in high-priority séctors
wifh_ higher. betweeﬁﬁess is effective for reducing CO2 emissions through the upstream
inter-industry linkages, wherea$ greener materials and products supplied to those high-
briority sectors can contribute to emission reducﬁon through the downstream intef—

industry linkages.
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Table 4-2 Rankihg of node betweernness centrality in the global supply-chain induced

Rank’

by final demand of J apanese transport equipment .

Code Sector name b; Cluster #
1 JPN Transport Equipment 125171 . 4 -
2 JPN  Meta! Products 30718 4
3 JPN Petroleum, Chemical and Non-Metallic Mineral Products 29878 4
4 JPN Electrical and Machinery - 26689 4
‘5 JPN Electricity, Gas and Water 21450 4
6 JPN Transport 11362 4
7 CHN Electricity, Gas and Water 7480 14
8 CHN Petroleum, Chemical and Non-Metallic Mineral Products 7124 14
9 JPN Finacial Intermediation and Business Activities 6465 4
10 CHN Metal Products ' 5869 - 14
11 CHN Electrical and Machinéry 5493 14
12 ROW Total . 3113
13 KOR Petroleum, Chemical and Non-Metallic Mineral Products 3009
14 KOR Metal Products ] 2704
15 JPN Other Manufacturing 2448
16 CHN Mining and Quarrying 2227 14
17 JPN Wholesale Trade 2064 2
18 RUS Mining and Quarrying 1681 16
19 JPN Wood and Paper 1625 2
20 JPN Mining and Quarrying " 1393
21 USA Petroleum, Chemical and Non-Metallic Mineral Products 1331
.22 KOR Electricity, Gas and Water 1327 15
23 CHN Transport 1287 14
'24 JPN  Others 1268 2
25 RUS Public Administration 1234
26 USA Transport 1123 2
27 IND Electricity, Gas and Water 1080 1
28 RUS Metal Products 998 16
29 RUS Electricity, Gas and Water 985 16
30 EIectrical and Machinery 955 2

KOR
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Figure 4-4 Visualization of top 30 edges with large emission induced by final demand .
v -of Japanese transport equipment '

Note that the size of nodes represents the node betweenness centrality and the color
depth and thickness of edges means the amount of CO2 emission induced by final demand

of Japanese transport equipment

4.4.3. Edge hypothetical extraction method

I visualized top 30 edges with large extraction impact in the global supply-chain
induced by final demand of Japanese transport equipmé:pt (Figure4-5). Figure 4-5 shows
thé network strﬁcture of top 30 edges with large extraction impact induced by final
demand of Japanese fransport equipment. The diameter of nodes indicates the node

betweenness . centrality, and the thickness of the edge indicates the edge hypothetical

71



éxtraction impact. From figure 4-4, the edges from “Electricity, Gas and Water” to other
seétors are high-weighted ;dggs. However, from figure 4-5, the edges from “Metal
Prodﬁéis ", ,"Petr(')leum, Chemical and Non-Mefallic Mineral Products ”, “Electrical_and
Machinery” to “Traﬁspoﬂ Equipment * are high-weighted edges.‘ Thué, policy maker -
should focus on each supply-chain path‘ (“Electricity, Gas‘land Water” -> “Metal
v Prod_ucts "’, ”P_éfroleum, ‘Chemical. and Non-Metallic Mineral,Produc‘ts ” or “E]ectfical
and Ma_chine;'y”‘ > “‘Transport equipment ') ‘when considefing enVironmgntal
cooperation within the cluster for efféctiveplimaté mitigation. In addition, comﬁar;irig
with figure 4-4, “M‘etal Products”, "Rctr\oléum, Chemical an‘d Non-Metallic Minerai
"Products”, “Electrical and Machinery” in cluster #4 are relatively strongly c'qnne'cted
witﬁ the cluster # 14 that is consist of Chinese in‘dust_ri'es. I can say that not oﬁly ﬁﬁancially
“support the relevant emission reduction engagements V\[/ithin the critical emission clﬁster
| but an emission reduction engagement or improving environmental technology such as
_ the resource .e‘:bf_ﬁciency of “Metal'Products ’;, “Petroleum, Chemical aﬁd_ Non-Metallic

Mineral Products ”, “Electrical and Machinery " in cluster #4 can-decrease CO, emissions

in cluster #14.
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Figure 4-5 Visualization of top 30 edges with large extraction impact induced by final
' demand of Japanese transport equipment
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4..4. 4. Discussion

Arﬁong the larger .cizlustAers iden’;iﬁed' in this thésis,‘the Iafgest cluster for Japan
comprises domestic sectors ‘With ‘higher’ betweenness centrality. In the global supply-
- chain network of transport eciuipment in Japan, “Metal Produ_cts l(JPN) ”, “Petroleum,

.Chemical and Nén-Metallic Mineral Products (JPN)” and “Eiectric'al and Machinery
+ (JPN)” are the sectors with the highest betweenness and these sectm"s are members of the _
largest cluster, cluster #4. In addition, these sectors strongly-connected with Chinese
sectors with higher betweenness centrality in cluster #14, which is the second largest ‘

~ emission cluster.

] apan should focus on domestic “Metalb Produéfs s “Petrovleum, Chemical and Non-
Met;allic Mineral  Products” and “Electrical and Machinery” as they have a higher
' betwcénness, and the sﬁpply—chain management of these two industries should be done
with a focus on the supply-chain paths from upstream “Electricity, Gas aﬂd Water (JPN)”
to downstream “Transport Equipment ”. Thus, domestic technological ifnprovements in
b“Metal Products " “Petroleum, Chem:i-cal and Non-Metallic Mineral »Products ” and
“Electrical and Méchinery "’ are more important than thé acquisition of greener -materials
in those fwo sectors because the high betweenness centrality sectors appear in the global
supr;ly-chain' associated with Japanlesev tranéport equipmént more times than the other
sectors. In addition, supplyfchain paths (Chinese Metal Products ”, “Petroleum, Chemical
and Non-Metallic Mineral Products” or “Electrical and Machinery” -> Japanese “Metal

Products”, “Petroleum, Chemical and Non-Metallic Mineral Products” or “Electrical
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and Machinery” ->. Japanese. “Trahspoﬁ equipment ) are high weighted-paths. Thus, the
| acquisition of greener resources and materials of these‘sectors could contribute to the
effective reduction of CO, emissions of not only the largest cluster but thé China through
the globaln supply-chain associated with the final demand of transport _equipment in Japan
(Figure 4-6). The Japanese tranéport equii)ment industry should positively commit to
domestic life-cycle management with a focus on different sectoral bharacteristics in the

global supply-chain networks..

Looking at the role of _t‘he'transpon“t equipment .industry' in climate mitigation,
Transport equipment should take a leadership role in. cross-border environmental
cooperation with not only domestic upétream industries but Chinesé countries to reduce
CO; emissions through the backward linkages. A meeting between the German and
French Environment Ministries, the world’s majér automobile nation;, was held on 4%
Septcrﬁber 2017 to promoté the swift implementation of the Paris Agreement through
envifonmental cbopel'atiqn betwéen these two countries (Federal Ministry for the
Envifonment, Nature Conservation, Building and Nuclear Safety, 2017). The results in
this thesis point out theb importance of having closer and stronger environmental
cooperation' between the stakeholder countries. An important suggestion is that
- stakeholder fneeﬁngS including key industries identified in this tﬁesis should be held in

the near future.
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Figure 4-6 Network structure of sectors in cluster #13 induced by final demand of
Japanese transport équipment

4.5. Conclusion

. This thesis addressed a question on how industrikes can reduce CO2 emissions throu'gh
‘the global supply-chain enéagements. In particular, the autdmotive industry constructs a
densé and complex ‘supply-chain network associated with many upstream industries. As
in Kagawa et al. >(2015), it is 'difficult to not oniy identify environmentally-important
se&ofs, supply-chain paths, and clusters for the global supply-chain management but
visuallize those key supply-chain structures. In this thesis, I proposed the combvined
approach of clustering analysis, node betweenness centrality analysis and edge.
hypothetical extraction méthod. This approach enables the detection of key sectors and
clusters and their links within a short computation time from large network databases,
which should provide useful information for informiﬁg CO”; mitigation policy from the

life-cycle perspective.
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In this thesis, I focused o,h tﬁe life-cycle CO; émissions associated with the global
automotive éupply-chains ahd found that sectors (“Metal ‘Products”, “Petroleum,
Chéfnical and Non-Metallic Mineral Products” and “Electrical and Machinery;’) with
- higher betweenness in the supply-cﬁains belong to high-emission clusters. I suggested
that cooperation within the high-emission ciusters ahd supply-chain management in hi gh-.
priority sectors to efﬁéiently reduce the CO2 emissions associated with the final demand

of transport equipment in the producing countries.
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Chapter 5: Conclusions

This Ph.D. dissertatidn reports on the desigri and execution of comprehensive
analyses focusing on Asian supply chain structures to provide the necessary basis. for
effectively mitigating anthropogénic air pollution from two perspectives: industry and

household.

In Chapter 3, 1 clari}ﬁedv the qﬁalitativc' and quantitative relationship between
hypothe'ticalv extraction method and betweenness-based method and .showed that the
extraction impact can be calculated from the le.gs comﬁdtationally-expensiﬁe betWeenness
.céntra.lity obtéined using the equations obta,in‘ed in this chapter. The extraction impacts
show the rflagnitude of influencing outputs of other ind‘ustﬁes .alohg fhe supply chains

related to transactions of an industry in question, whereaé the betweenness centrality
| showé the ’importance of networking industries through va npde of an industry in question
as well as a tr'ansactionr between the industry in ciuestion and another industry. The
hypotheticgl extraction method is widely used to assess intér-industry li.nkages‘ and the
economic importance of ihdﬁstries (e.g., 'Dictzenbachef et al., 2019). The both methods
have‘differexvlt advantages. However, when the results of these methods differ greatly, the
Aimp>ortance ofa Sect__or that is High betweennesbs sector ih the éupply' chains is ‘ignored.b
Thus, I can say that betweenness centfality analysis is morei appropria_té for using the

structure of a supply chain network to determine policies to reduce emissions. '

Chapter 4 focused on the life-cycle CO; emissions associated with the global transport

equipment supply-chains and found that key sectors with higher betweenness in the
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supply-chains belong ‘to high-emiséion clusters. I suggested that Japan bshould focus on
domestic “Metal Products ”, ‘Petroleum, Chemical and Non-Metallic Mineral Products”
and “Electrical and Machinery " as they have a higher betweenness, and the supply-chain
manageinen_t of these two industries should be done with a focus on the sUpply;chain
pgths from upstream “Electricity, Gas and Water (JPN),” to downstream “Transport
‘ Ec[uipment ”, Thus, doinestic technological improvemehts in “Metal Products”,
“Petroleum, Chemical and Non-Metallic Mineljal ProdliCts ” and “Electrical and
Machinery” are more important than the acquisition of greener materials in those two
sectors because the high betweenness centrality sectors appear in the global éupply-chain
associated with Japanese transport equipment more times than the otller sectors. ln,
~ addition, supply-chain paths (Chinese Metal Products”, “Petrole\im, Chemical and Non- .
Metallic Mineral Products” or “Electrical and Machinery ” -> Japanese “Metal Products”,
“Petroleum., Chemical ‘and Non-Metallic Mineral Products” or “l-E]ectrical and
Machinery” -> Japanese “Transpcﬁ equipment”’) are higll Weighted-pziths. Thus, the
acquisition cf greener resources and materials’ of these sectors could 'confributev to the
effective reduction of CO2 emiSsioris of not only the largest cliister but the China through
the global supply-chain associated with the final demand of transport equipment in J ap‘an.v
The Jabanese transport equipment industry should positively commit_ to domestic life-
cycle management with a focils on different sectoral characteristice in the global supply-

chain networks.

" This Ph.D. dissertation reveals critical sectors and transactions for mitigating CO;
* emissions from global supply-chain of Japanese transport equipment using cluster method

and the two methods, hypothetical extraction method and betweenness-based method..
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The combined approach I proposed in this thesis enables the dete;tion of key sectors and
clusters and their links within a short computation time 'from large. netwbrk databases,
which should provide useful informationkf‘or informing CO2 mitigafion, policy from the-
life-cycle perspective. An important suggestion is fhat stakeholder meetings including key

" industries identified in this thesis should be held in the near future.

80"



~ Appendix

A.1. Differences between extraction methods and betweenness centralities.

4

First, the input coefficient matrix can be decomposed to the “sector i -extracted ”
input coefficient matrix A’ = (c‘lfw) and the input coefficient matrix that has the element

associated with sectolf i Al = (a{w) as follows:

CA=EeA @
Where
i {a | uii/\i)%i

0 wu=ivv=i

. Ja, u=ivv=i
0 u#inv#i

Here,.x can be évaluated using eq. (A3-1) as follows: -
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x=Lf
= Ax+f
=&+ A K+f
x—A'x=A'x+f |
(EQ'A"f)x= A'LE of

x=(E- &) (AL+E)f
~ Here, (E-— Ki)__l can be replaced with L as: :

x=(CAL+T)f

Thus, the Leontief inverse can be represented as
L=(CAL+T) o (A2)

From egs. (A-2) and (3-3), the extraction impact of sector i x' can be reformulated as
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x' =eLf—(efif—e,./‘i) |

:e(L—f)f-l-eif,.

3 o (A-3)
= e(L'IA"L +L' - L’T)f +e, f;

=eL'A’Lf +¢,f,

Here, the left term in eq. (A-3) can be decomposed as:

eDA'Lf = e(L’V +J, — T, )ALE
= efiAiLf +eJ ,A'Lf —eJ A'LSf
DA (E+J, - J;.,. JLf +eJ,A'Lf —eJ ,A'Lf :
| =\ (€CA'Lf +eL'A'J,Lf —ef'AiJiiLf)+éJiiAiLf —eJ ,A'Lf
=eL'A'LS +ei"A".'J,.,.Lf’-e(1i" +3, =3, )A'T,LE +eJ A'LE —eJ, A'LE

=eL'A'Lf +eL'A’'J,Lf + (- €L/A'J,Lf —eJ ,A'J,Lf +eJ ,A'J, Lf)
+eJ,A'Lf —eJ, A'Lf

= (€T A'Lf+eDA'T,Lf —eL'A'J,Lf +eJ,A'T,Lf —eJ,A'Lf)—eJ, AT, LE
+eJ ,A'Lf

. DAL +eJ,A'J, LS - éJiiAfo}— eJ,A'J,Lf +eJ, A'LS
= ©(CA +3,AT,~J, A LA} e AT LS + 63, A'LS

=(CA +a,3, - T, A LE}—eT ,A'T,LE +eJ, A'LE
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(A-4)

Hére, the i th row elements of | i.iAi_ are i th row elements of the input coefficient matrix,
and J;A' is the matrix whose i th row elements are i th row elements of the input

coefficient matrix. Thus, eq. (A-4) can be reformulated as:

Eq.(A4)=(CA' +a,d, - J,A LE |- e , AT, Lf +eJ,A'LS
= (T AT, Lf}-eJ AT, LS +eJ,A'LS
oL A Lf+ e, A'LS —eJ A'T.LE a5
- eCa’l'f +ea’Lf —ea l'f

v

—eDalf+etf—ea l'f

uvi

Using eq. (A-2) and (3-9), the betweenness centrality: b; associated with a sector i can

be reformulated as: '

b, =eLJ,Lf
=l +L'A'LY, Lt

=eL'J,Lf +eL A'LT,Lf

Here, the i th row elements and the i th column elements of L} are 0 except (i, )th element,

1. Therefore, LJ; = Ji:. Thus,'u‘sing eq. (A-5), b; can be represent as:
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b =eL'J Lf +eLA'LY,Lf

=eJ, Lf +eUA'LI,Lf

el Lf +e(UA'J,L+J,A'L-J,A'J, LT, Lf

=eJ Lf +efiA'Ji,.LJi;Lf +eJ , A'LY, Lf
—eJ,.,.A’fJ,.;LJ,:‘,.Lf
—el f+eLa’l 1" f+el, TJ Lf —eaq,l,1'f

I g/ it i [t 10 it

=e,.l,.’fr+‘l (eTac1t - ealf)+etlf

LS ) ai

it

=+, e al f —e,a,1/f)+ (1 +1,)e 1/
| =(1+t,.,)(eL' Uf —e,a,lf)+ (1+t,.,.)(e,.t,’fz+e,.fi)
= (L+1, YeTall T ~ea /T +ot] £+, f,)

= (1 +1, )(eL"A"Lf tef)

:O+Qki

.(A-6) |

From this equation, in the betweenness central.ity analysis, the total emission from supply

chains passing through sector i is over calculated for #;.

Similarly, the edge betweenness centrality b;;- can be obtained by the

environmental edge extraction impact x% . First, the input coefficient matrix can be

85



decomposed to the “transaction from sector i to sector j-extracted” input coefficient
matrix AY = (&3;, ~and the input coefficient matrix whose (i, ))th element is a; and

others are 0, a;;J;; as follows:
A=A"+aJ, ' © (AT
Where

" {a, u#ivv#j
0 u=inv=j

Here, x can be evaluated using eq. (S3-7) as follows:

x=Lf
—Ax+f
(E va J,,)Hf
x—A'x=q,J x+f
(E— X’f)x = a,J,Lf +£

x=(E-&7)"(a,J,L+E}
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Here, (E —AY )—1 can be replaced with LY as:
x=(Uad,L+T )t

Thus, the Leontief inverse can be represented as L=(i.ij a;;Ji; L+ LY ), and xY as
the environmental extraction impact of a speciﬁc transaction between sector i and sector

- J can be reformulated using equation (3-4) as

= elL-T)r
=e(f,’7aijJijL+fj —f’j)f .
(A-8)

= el a,J Lf

— ¥, 7
=el’’a,l'f

Using eq. (A-8) and (3-10), the edge betweenness cenirality b;; associated with a

transaction from sector i to sector j can be reformulated as:
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b, =eLa,J Lf
=e(Ua,d,L+T ), Lf
=el/a,J,La,J Lf +el’a,J Lf | (A-9)

— a]i° r 3¢ r
=el! g,/ ,al'f +el] a,l'f

= (a0, Yol a8 )= L+ 0,0, b
From this equation, in the edge betweenness centrality analysis, the total emission from
supply chains passing through the transaction. from sector i to sector. J is over calculated

for ayilji .
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' Supplementary Tables

Table A-1 Input-output-based key sector-analyses.

Proposed Analysis

‘ Meth'odology

Article

Power of Dispersion and
- Sensitivity of Despersion

" Extraction Method

Stractural Path Analysis
Centrality Analysis

Clustering Analysis

[nput-Output
Betweenness Centrality

Measuring backward
linkage and forward
linkage

Measuring impact of '

extracting a sector from
economy

Measuring CO, emission
through a supply chain
path

Applying indicators of
.;ocial network analysis
Deviding and detecting
CO2 emission intensive.

clusters from 10 network -

Measuring CO, emission

through a sector or path

Rasmussen (1956); Hirschman

(1958); Hazari (1970)

Meller and Marfan (1981); Cella
(1984); Dietzenbacher (1993)

Defourny and Thorbecke (1984);
. Lenzen (2002);Nagashima et al.

(2017)
Kagawa et al. (2009); McNerny.
(2009); Duang and Jiang (2018)

Kagawa et al. (2013a, 2013b,
2015); Tokito (2018)

Liang et al. (2016); Hanaka et
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Table A-2 Top 10 sectors by extraction impact: Eora

Sector name (Eora) x' (Mt-COy)
1 CHN _ Electricity, Gas and Water . 5714
2 CHN _ Petroleum, Chemical and Non-Metallic Mineral Products 3810
3 CHN _ Construction S v 2749
4 CHN _ Electrical and Machinery ' 2747
5 USA _ Electricity, Gas and Water 2533
6 USA _ Transport » ’ o , 2325
7 CHN _ Metal Products ' , 2139
8 IND _ Electricity, Gas and Water o 1824
9 CHN _ Transport » i . 1235
10 USA _ Petroleum, Chemical-and Non-Metallic Mineral Products _ - 1192

Table A-3 Top 10 transactions by extraction impact: Eora

Source sector. Target sector x7 (Mt-cop)

1 CHN _ Electricity, Gas and Water — CHN__ Petroleum, Chemical and Non-Metallic Mineral Products 1360
2 CHN _ Electricity, Gas and Water — CHN _ Metal Products 944
3 CHN _ Petroleum, Chemical and Non-Metallic Mineral Products ~ — CHN _ Construction ) . 837
4 CHN _ Metal Products 4 ~ CHN _ Electrical and Machinery : ©o787
5 IND _ Elecfricity. Gas and Water . ~ IND _ Transport . . 590
6 CHN _ Metal Products : — CHN _ Construction : 551
7 CHN _ Electricity, Gas and Water =~ CHN _ Electrical and Machinery . 504 -
8 CHN _ Petroleum, Chemical and Non-Metalilc Mineral Products  — CHN _ Electrical and Machinery X 475
9 CHN _ Electricity, Gas and Water . — CHN _ Mining and Quarrying ) 427

10 CHN _ Mining and Quarrying : — ‘CHN _ Petroleum, Chemical and Non-Metallic Mineral Prdd:._lcts ' 379
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Table A-4 Top 10 sectors by node betweenness centra_lity:/Eora

Sector name (Eora) b; (Mt-COy) -
1 CHN _ Electricity; Gas and Water ' : 7957
2 CHN _ Petroleum, Chemical and Non-Metallic Mineral Products . . 5892
3 CHN _ Electrical and Machinery : ' S4111
4 CHN _ Metal Products - / : ' 3751
5 CHN _ Construction - ' ' 2764
6 USA._ Transport ‘ 2574
7 USA _ Electricity, Gas and Water . 2561
8 RUS _ Public Administration ' 2463
9 IND _ Electricity, Gas and Water : 2359
10 USA _ Petroleum, Chemical and Non-Metallic !\/Iinerél Products - 1546

Table A-5 Top 10 transactions by edge betweenness centrality: Eora

_ Source sector ) Target sector by (Mt-COp)
1 CHN _ Electriclty, Gas and Water . — CHN _ Petroleum, Chemical and Non-Metallic Mineral Products 1376
-2 CHN _ Electricity, Gas and Water o . — CHN _ Metal Products . 949
3 CHN _ Petroleum, Chemical and Non-Metallic Mineral Products ~ — CHN _ Construction . 838
4 CHN _ Metal Products o CHN _ Electrical and Machinery : 801
5 IND _ Electricity, Gés and Water — IND _ Transport . 596
6_CHN _ Metal Products — CHN _ Construction . . . 552
7 CHN _ Electricity, Gas and Water . — . CHN _ Electrical and Machinery . g 506
8 CHN _ Petroleum, Chemical and Non-Metallic Mineral Products ~ — CHN _ Electrical and Machinery 479
9 CHN _ Electricity, Gas and Water — CHN _ Mining and Quarryihg ’ 433
10 CHN _ 'Mining and Quarrying — CHN _ Petroleurﬁ, Chemical and Non-Metallic Mineral Products 386
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Supplementary Figures
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Figure A-1 Sector extraction inﬁpact values versus node betweenness centrality: WIOD
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Figure A-2 Edge extraction impact versus edge betweenness centrality: WIOD
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