A p-ADIC INTERPOLATING FUNCTION OF THE GENERALIZED EULER NUMBERS--AND ITS INVARIANTS

小塚 和人
九州大学理学研究科数学科

https://doi.org/10.11501/3054108

出版情報：九州大学，1990，理学博士，課程博士
バージョン：
権利関係：
A p-ADIC INTERPOLATING FUNCTION OF THE GENERALIZED EULER NUMBERS AND ITS INVARIANTS
A p-ADIC INTERPOLATING FUNCTION OF THE GENERALIZED EULER NUMBERS AND ITS INVARIANTS
CONTENTS

Introduction 1

Chapter 1. An interpolating power series and the μ-invariant 6

1. The p-adic measures 6
2. Construction of an interpolating power series $F_{x,u}(T)$ 9
3. The μ-invariant of $F_{x,u}(T)$ 12
4. Another proof of Theorem 1 15

Chapter 2. Analytic property of the function $F_{x,u}(z)$ 27

Chapter 3. The p-adic valuation of the generalized Euler numbers 30

1. The p-adic valuation of the generalized Euler numbers 30
2. Another proof of Theorem 3 39

References 47
Let \(u \neq 1 \) be an algebraic number. The \(n \)-th Euler number \(H^n(u) \) belonging to \(u \) is defined by

\[
\frac{1-u}{e^{t-u}} = \sum_{n=0}^{\infty} \frac{H^n(u)}{n!} t^n.
\]

Let \(p \) be a prime number and \(x \) a primitive Dirichlet character. Shiratani-Yamamoto ([15]) constructed a \(p \)-adic interpolating function \(G_p(s,u) \) of the Euler numbers \(H^n(u) \), and as its applications to the \(p \)-adic \(L \)-functions \(L_p(s,x) \), derived an explicit formula for \(L_p'(0,x) \) including the Ferrero-Greenberg formula ([2]), and gave an explanation of Diamond's formula ([1]).

Let \(f \) be the conductor of \(x \). As analogue to the generalized Bernoulli numbers, Tsumura ([19]) defined the \(n \)-th generalized Euler number \(H^n_{\chi}(u) \) for \(\chi \) belonging to \(u \) by

\[
(0.1) \quad \frac{f_{\chi}^{-1}}{2} \sum_{a=0}^{f_{\chi}} \frac{f_{\chi}(a)}{f_{\chi} t} \frac{a t u \chi^{-a-1}}{e^{\chi t - u \chi}} = \sum_{n=0}^{\infty} \frac{H^n_{\chi}(u)}{n!} t^n,
\]

and he constructed a \(p \)-adic interpolating function \(l_p(u,s,\chi) \), which is an extension of \(G_p(s,u) \). Further, by considering the expansion of \(l_p(u,s,\chi) \) at \(s=1 \), he obtained some congruences for the generalized Euler numbers.

As for the \(p \)-adic \(L \)-functions \(L_p(s,x) \), Ferrero-Washington ([3]) showed that when \(\chi \) is even, the \(\mu \)-invariant of the interpolating

- 1 -
The power series of $L_p(s,\chi)$ is zero. This implies that Iwasawa's μ-invariant is zero for the basic \mathbb{Z}_p-extension of any finite abelian number field ([3]). Friedman ([4]) generalized the Ferrero-Washington theorem to the basic $\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$-extension of any finite abelian number field.

Sinnott ([16]) showed how to calculate the μ-invariants of the Γ-transforms of rational functions and gave a new proof of the Ferrero-Washington theorem. By similar technique, an analytic property of the interpolating power series of $L_p(s,\chi)$ was investigated in [17] and a new proof of Friedman's theorem was given in [18].

In the present paper, by using the methods in the above references, we shall investigate p-adic properties of the generalized Euler numbers.

In Chapter 1, we first summarize some of the basic properties of the p-adic measures, and then, we reconstruct the function $l_p(u,s,\chi)$ by constructing an interpolating power series $F_{x,u}(T) \in O_{x,u}[\mathbb{Z}^\mathbb{Z}]$. Here, $O_{x,u}$ is the ring of integers of the field generated by u and the values of x over the p-adic rational number field \mathbb{Q}_p. Let \mathbb{C}_p denote the completion of the algebraic closure of \mathbb{Q}_p, $\| \|$ denote the multiplicative valuation of \mathbb{C}_p normalized by $\|p\|=1/p$ and ord$_p(\)$ denote the additive valuation of \mathbb{C}_p normalized by ord$_p(p)=1$. As usual, we put ord$_p(0)=\infty$ and understand $\infty > c$ for all rational numbers c. Let $F_{x,u}(T) = \sum_{n=0}^{\infty} a_{x,n,u}(T-1)^n$ and we define its μ-invariant $\mu_{x,u}$ by $\mu_{x,u} = \min(\text{ord}_p(a_{x,n,u})|n \geq 0)$. The purpose of Chapter 1 is to calculate the value of $\mu_{x,u}$. Denote by N the set of positive integers as usual and
we put \(\mathbb{N} = \mathbb{N} \cup \{0\} \). We shall obtain the following

THEOREM 1. Suppose that we have

\[
|1-uX^p|^n \geq 1 \quad \text{for all } n \in \mathbb{N}.
\]

Then,

\[
\mu_{x,u} = \begin{cases}
-\text{ord}_p(u) & \text{if } |u| > 1 \\
\text{ord}_p(u) & \text{if } |u| < 1 \\
\text{ord}_p(1+u) & \text{if } |u| = 1 \text{ and } x \text{ is even} \\
0 & \text{otherwise.}
\end{cases}
\]

We shall give two proofs, firstly by the methods of Sinnott ([16]) and secondly by the methods of Ferrero-Washington ([3]) and Gillard ([5]). Further, we shall note that Theorem 1 includes the Ferrero-Washington theorem under the appropriate condition on the conductor of \(x \).

In Chapter 2, we shall investigate an analytic property of the function \(F_{x,u}(z) \) defined on the set \(D = \{ z \in \mathbb{C}_p | |z-1| < 1 \} \). (Here and in the sequel, "analytic" means "Krasner analytic" ([10]).) We shall prove the following

THEOREM 2. Assume that the condition (0.2) holds. Then, \(F_{x,u}(z) \) is an analytic function on \(D \). If \(u \neq 0 \) and if either \(x(-1) = -1 \) or \(u \neq -1 \) holds, then \(F_{x,u}(z) \) has no analytic continuation to any quasi-connected subset of \(\mathbb{C}_p \) properly containing \(D \).
In Chapter 3, fixing a finite set $S=(p_1, \cdots, p_t)$ of prime numbers distinct from p, and denoting by Ψ (resp. Φ) the set of Dirichlet characters of the second kind for S (resp. p), we shall investigate the p-adic valuation of $H_{\chi_\omega^{-n}\psi \varphi}^{n}(u)$ for $\psi \in \Psi$, $\varphi \in \Phi$ and $n \in \mathbb{N}$, where ω is the Teichmüller character for p. The main result is as follows.

THEOREM 3. Suppose that we have

$$1 -\frac{u}{1-u} \prod_{i=1}^{n} p_{i}^{n_{i}} \geq 1 \quad \text{for all } n_1, \cdots, n_t, n \in \mathbb{N}. \tag{0.3}$$

For each $n \in \mathbb{N}$, put $\chi_n = \chi_\omega^{-n}$. Then, we have

$$\ord_p \left(\frac{u}{1-u} H_{\chi_\omega^{-n}\psi \varphi}^{n}(u) \right) = \mu \chi, u \tag{0.4}$$

for almost all $\psi \in \Psi$ and for all $\varphi \in \Phi$ and all $n \in \mathbb{N}$. In particular, if $|u| > 1$, then (0.4) holds for all $\psi \in \Psi$, all $\varphi \in \Phi$ and all $n \in \mathbb{N}$, except for the case that $n=0$, $\chi \varphi = 1$ and $|u| > 1$, in which case, we have

$$\ord_p \left(\frac{u}{1-u} H_{\chi_0}^{0}(u) \right) = 0. \tag{Here and in the sequel, "almost all" means "all but finitely many".}$$

Now, let $B_{n, \chi}$ denote the n-th generalized Bernoulli number for χ as usual. Friedman (14) showed that if χ is even, then we have

$$\left| \frac{B_{n, \chi \varphi \chi}}{2n} \right| = 1 \tag{0.5}$$
for almost all \(\psi \in \Phi \) and for all \(\varphi \in \Phi \) and \(n \in \mathbb{N} \). We can view Theorem 3 as an analogous result on Euler numbers to Friedman's theorem described above. Further, we shall note that Theorem 3 includes Friedman's theorem under the appropriate condition on \(\chi \).

Throughout this paper, denoting by \(\bar{Q} \) the algebraic closure of the rational number field \(Q \) in the complex number field \(C \), we fix an embedding of \(\bar{Q} \) into \(C_p \) and regard \(\bar{Q} \) also as a field contained in \(C_p \). A Dirichlet character always means a primitive one. In general, if \(R \) is a ring, we write \(R^\times \) for the multiplicative group of units of \(R \), \(R[T] \) for the ring of polynomials in an indeterminate \(T \) with coefficients in \(R \), and \(R[[T^{-1}]] \) for the ring of formal power series in an indeterminate \(T^{-1} \) with coefficients in \(R \). If \(F \) is a field, we write \(F(T) \) for the field of rational functions with coefficients in \(F \).

Denoting by \(\mathbb{Z}_p \) the ring of integers of \(Q_p \) as usual, we put \(\langle x \rangle = x/\omega(x) \) for any \(x \in \mathbb{Z}_p^\times \).

The author wishes here to express his deep gratitude to Professor Shiratani for his constant encouragement.
1. The p-adic measures

In this section, we summarize some of the basic properties of the p-adic measures which will be used later ([12],[13],[16]).

If O is the ring of integers of a finite extension k of \mathbb{Q}_p, we denote by Λ_O the ring of O-valued measures on \mathbb{Z}_p. If $\alpha \in \Lambda_O$, we put

$$a(T) = \sum_{n=0}^{\infty} \left(\int_{\mathbb{Z}_p} \frac{x}{n!} \alpha(x) \right) (T-1)^n \in O[[T-1]].$$

Then,

$$(1.1.1) \quad a(T) = \sum_{a=0}^{p-1} \alpha(a+p \mathbb{Z}_p) T^a \mod (T^{p^n}-1) O[[T-1]].$$

for all $n \in \mathbb{N}$, and the map $\alpha \mapsto a(T)$ gives an isomorphism of Λ_O with $O[[T-1]]$. If $\alpha \in \mathbb{Z}_p^\times$, we write $\alpha \cdot a$ for the measure defined by $\alpha \cdot a(X) = \alpha(aX)$ for any compact and open subset X of \mathbb{Z}_p. Then $a(T) = a(T^{-1})$.

where we put $T^x = \sum_{n=0}^{\infty} (x)(T-1)^n$ for $x \in \mathbb{Z}_p$.

We define the Γ-transform $\Gamma_{\alpha} : \mathbb{Z}_p \to O$ of $\alpha \in \Lambda_O$ by

$$\Gamma_{\alpha}(s) = \int_{\mathbb{Z}_p} \frac{x}{s} \alpha(x) \cdot \delta(x).$$
We put \(q = 4 \) or \(p \) according as \(p = 2 \) or \(p \geq 3 \) and fix a topological generator \(u_0 \) of the multiplicative group \(1 + q \mathbb{Z}_p \). We define a continuous homomorphism \(t: \mathbb{Z}_p^\times \to \mathbb{Z}_p \) by \(\langle x \rangle = u_0^{t(x)} \) for each \(x \in \mathbb{Z}_p^\times \). Put

\[
\mathcal{F}_\alpha(T) = \sum_{n=0}^{\infty} \left(\int_{\mathbb{Z}_p^\times} x^n d\alpha(x) \right) (T-1)^n \in \mathbb{O}[[T-1]].
\]

Then,

\[
\Gamma_\alpha(s) = \mathcal{F}_\alpha(u_0^s).
\]

If \(\alpha^* \) denote the measure defined by

\[
\alpha^*(a + p^n \mathbb{Z}_p) = \alpha(t^{-1}(a + p^n \mathbb{Z}_p))
\]

for all \(a \in \mathbb{Z}_p \) and \(n \in \mathbb{N} \), then we have

\[
(1.1.2) \quad \mathcal{F}_\alpha(T) = \sum_{a=1}^{p^n-1} \alpha^*(a + p^n \mathbb{Z}_p) T^a \pmod{(T^{p^n}-1) \mathbb{O}[[T-1]]}).
\]

For any \(\alpha \in \mathbb{A}_0 \), we denote by \(\tilde{\alpha} \) the measure on \(\mathbb{Z}_p \) defined by restricting \(\alpha \) to \(\mathbb{Z}_p^\times \) and extending by 0. For any \(g(T) \in \mathbb{O}[[T-1]] \), we put \(\tilde{g}(T) = g(T) - 1/p \sum_{\xi = 1}^{p-1} g(\xi T) \in \mathbb{O}[[T-1]] \). Then, we have

\[
(\tilde{\alpha})(T) = (\tilde{\alpha})(1).
\]
We also note that $F_\alpha(T)=F_{-\alpha}(T)$.

For any $g(T)\in\mathcal{O}[[T-1]]$ and any Dirichlet character ν with conductor p^n, we put

$$g_\nu(T)=\frac{1}{\tau(\nu^{-1},\zeta_p^n)} \sum_{a=1}^{p^n} \nu^{-1}(a)g(\zeta_p^n aT),$$

where ζ_p^n is a primitive p^n-th root of unity and $\tau(\nu^{-1},\zeta_p^n)=$

$$\sum_{a=1}^{p^n} \nu^{-1}(a)\zeta_p^n a.$$

It is easy to see that $g_\nu(T)$ is independent of the choice of ζ_p^n. Let \mathcal{O}_ν' denote the ring of integers of the field $k(\zeta_p^n)$, which contains the values of ν. Then $g_\nu(T)\in\mathcal{O}_\nu'[[T-1]]$. For any $\alpha\in\Lambda_0$ and any $n\in\mathbb{N}$, we have

$$F_\alpha(u_0^n)=(T\cdot d/dT)^n((\hat{\alpha}))^\omega_{-n}(T)|_{T=1}$$

$$=(d/dz)^n((\hat{\alpha}))^\omega_{-n}(e^z)|_{z=0}.$$

For any $\alpha\in\Lambda_0$ and any Dirichlet character ϕ of the second kind for ρ, we denote by α_ϕ the measure in $\Lambda_{\mathcal{O}_\phi}$, satisfying $(\hat{\alpha}_\phi)(T)=(\hat{\alpha})_\phi(T)$ $\in\mathcal{O}_\phi'[[T-1]]$. Then, we have

$$F_{\alpha_\phi}(T)=F_{\alpha}(\phi(u_0)T).$$
2. Construction of an interpolating power series $F_{\chi, u}(T)$

Let χ be a Dirichlet character with conductor f_{χ} and $u \neq 1$ an element of \bar{Q}. As in Introduction, we define the n-th generalized Euler number $H_{\chi}^n(u)$ by (0.1). Let $Q_p(\chi, u)$ be the field generated by u and the values of χ over Q_p and, as described in Introduction, we denote by $O_{\chi, u}$ the ring of integers of $Q_p(\chi, u)$. In this section, we assume the condition (0.2) and construct a power series $F_{\chi, u}(T) \in O_{\chi, u}[[T^{-1}]]$ which interpolates the generalized Euler numbers.

If $g \in \mathbb{N}$ is any multiple of f_{χ}, we put

$$R_{\chi, u}(T) = \sum_{a=0}^{g-1} \frac{\chi(a) u^{g-a} T^a}{T^g - u^g} \in O_{\chi, u}[[T^{-1}]],$$

which is independent of the choice of g.

PROPOSITION 1.2.1. $R_{\chi, u}(T)$ lies in $O_{\chi, u}[[T^{-1}]]$.

Proof. Put $g = f_{\chi}$. If $|u| \leq 1$, then the condition (0.2) implies $|1-u^g|=1$, and so, $T^g - u^g = (1-u^g) + \sum_{a=0}^{g-1} \binom{g}{a} (T-1)^a \in O_{\chi, u}[[T^{-1}]]$. Hence, $R_{\chi, u}(T)$ lies in $O_{\chi, u}[[T^{-1}]]$. If $|u| > 1$, then $|(1/u)^{g-1}| = 1$, and so, $(T/u)^{g-1} \in O_{\chi, u}[[T^{-1}]]$. Hence, $R_{\chi, u}(T) = \sum_{a=0}^{g-1} \frac{\chi(a) u^{-a} T^a}{(T/u)^g - 1} \in O_{\chi, u}[[T^{-1}]]$.

Now, we put $\Lambda_{\chi, u} = \Lambda_{\chi, u}$ and let $\alpha_{\chi, u} \in \Lambda_{\chi, u}$ be the measure satisfying $\sum_{a=0}^{g-1} \frac{\chi(a) u^{-a} T^a}{(T/u)^g - 1} \in O_{\chi, u}[[T^{-1}]]$. Put

$-g-$
\[F_{\chi, u}(T) = F_{\alpha_{\chi}, u}(T) = F_{\alpha_{\chi}, u}(T). \]

Lemma 1.2.2. (1) If \(g \in \mathbb{N} \) is a common multiple of \(f_{\chi} \) and \(p \), then,

\[
R_{\chi, u}(T) = \sum_{a=0}^{g-1} \frac{\mu(a)u^{g-a_{\gamma}a}}{\tau^{g-u}g} = R_{\chi, u}(T) - x(p)R_{\chi, u}(T^p).
\]

(2) If \(\nu \) is a Dirichlet character with conductor a power of \(p \), then

\[
(R_{\chi, u\nu}(T)) = R_{\chi, u\nu}(T).
\]

Proof. If \(g \in \mathbb{N} \) is divisible by \(f_{\chi} \) and \(p \), then

\[
\sum_{\xi^p=1} R_{\chi, u}(\xi T) = \sum_{\xi^p=1} \frac{\mu(a)u^{g-a_{\gamma}a}}{\tau^{g-u}g} = \frac{\mu(a)u^{g-a_{\gamma}a}}{\tau^{g-u}g}.
\]

Considering the special case \(g = f_{\chi}p \), we see that

\[
R_{\chi, u}(T) = \sum_{\xi^p=1} R_{\chi, u}(\xi T) = \sum_{\xi^p=1} \frac{\mu(a)u^{g-a_{\gamma}a}}{\tau^{g-u}g}.
\]

Hence, we obtain the assertion of (1).

As for (2), the assertion is obvious if \(\nu = 1 \). Suppose that \(\nu \neq 1 \) and \(f_{\nu} = p^n \), and put \(g = f_{\chi}p^n \). Then, a direct calculation shows...
\[
\langle R_{\chi, u} \rangle_{u(T)} = \frac{1}{\tau(v^{-1}, \xi)} \sum_{\substack{a=1 \ b=0 \ (b,p)=1 \ g-1 \ v^{-1}(b(b)v(b))u^g-b+b \ g-1 \ b=0 \ b=0 \ b=0 \ b=0 \ g-1 \ (b,p)=1 \ p_n \ a=1}} \sum_{b=0}^{p_n} \frac{\chi(b)v(b)u^{g-b+b}}{T^g - u^g} \]

\[
= R_{\chi, u(T)} - \frac{1}{p} \sum_{\psi^p = 1} R_{\chi, u}(\xi T).
\]

Hence, we deduce our assertion.

In the sequel, we put \(\chi_n = \chi^{\omega^{-n}} \) for each \(n \in \mathbb{N} \).

PROPOSITION 1.2.3. For each \(n \in \mathbb{N} \), let \(f_n \) denote the conductor of \(\chi_n \). Then, we have

\[
F_{\chi, u}(u^0, n) = \frac{u}{f_n} \frac{u^{-n}}{1-u} \frac{\chi_n(p)^n u^p}{1-u} - \frac{\chi_n(p)^n u^p}{1-u} \frac{h_n(u^p)}{1-u}.
\]

Proof. From (1.1.3) and the definition of \(F_{\chi, u}(T) \), we have

\[
\frac{\chi_n(\omega^{-n})}{(d/dz) \big|_{z=0}} \bigg(\frac{\chi_n(\omega^{-n})}{\omega^{-n}(e^z)} \bigg) = 0.
\]

Since \(\langle \alpha(\chi, u) \rangle(T) = \langle \alpha(\chi, u) \rangle(T) = \hat{R}_{\chi, u}(T) \), Lemma 1.2.2 shows that

\[
\langle \alpha(\chi, u) \rangle_{\omega^{-n}}(T) = R_{\chi_n, u(T)} - \chi_n(p) R_{\chi_n, u(T)}.
\]

Hence, the assertion follows from the definition of the generalized...
Euler numbers (0.1).

PROPOSITION 1.2.4. Let \(\phi \) be a Dirichlet character of the second kind for \(p \). Then,

\[
F_{\chi \phi, u}(T) = F_{\chi, u}(\phi(u_0)T).
\]

Proof. Lemma 1.2.2 shows that \(\alpha_{\chi \phi, u} = (\alpha_{\chi, u}) \phi \). Hence, the assertion follows from (1.1.4).

Remark. From Proposition 1.2.3 and Theorem 1 of [19], we see that the function \(L_p(u, s, x) \) in [19] is equal to \(F_{\chi, u}(u_0^{-S}) \).

3. The \(\mu \)-invariant of \(F_{\chi, u}(T) \)

In this section, we calculate the \(\mu \)-invariant of \(F_{\chi, u}(T) \) by the methods in [16] and prove Theorem 1.

For any power series \(f(T) = \sum_{n=0}^{\infty} a_n(T-1)^n \in \mathbb{C}_p[[T-1]] \) with \(|a_n| \leq 1 \) for all \(n \in \mathbb{N} \), we define its \(\mu \)-invariant by \(\mu(f(T)) = \inf_{n \in \mathbb{N}} \{ \text{ord}_p(a_n) \} \). Note that if \(f(T) \) is a polynomial such that \(f(T) = \sum_{n=0}^{m} b_n T^n \), then \(\mu(f(T)) = \min_{0 \leq n \leq m} \{ \text{ord}_p(b_n) \} \). As described in Introduction, we put \(\mu_{\chi, u} = \mu(F_{\chi, u}(T)) \).

Proof of Theorem 1. Theorem 1 of [16] states that \(\mu_{\chi, u} = \mu(R_{\chi, u}(T)) \). Put \(g = f \chi \rho \). Then, a direct calculation shows
(1.3.1) \(R_{x,u}(T) + R_{x,u}(T^{-1}) = \sum_{a=0}^{g-1} \frac{\chi(a)u^a(u^2(g-a)-\chi(-1)) \left(T^a + T^{-a} \right)}{(T^a - u^a)(T^{-a} - u^a)} \)

\[
= \sum_{a=0}^{g-1} \frac{\chi(a)u^a(u^2(g-a)-\chi(-1)) \left(T^a + T^{-a} \right)}{(T^a - u^a)(T^{-a} - u^a)}.
\]

If \(|u| > 1\), then

\[
\mu_{x,u} = \mu \left(\sum_{a=0}^{g-1} \frac{\chi(a)u^a(u^2(g-a)-\chi(-1)) \left(T^a + T^{-a} \right)}{(T^a - u^a)(T^{-a} - u^a)} \right).
\]

Since \(\mu((T/u)^g - 1)(T^{-g} - (1/u)^g) = 0\), we obtain

\[
\mu_{x,u} = \min \{ \text{ord}_p (u^a(u^2(g-a)-\chi(-1))) \mid 1 \leq a < g, (a,g) = 1 \} = -\text{ord}_p(u).
\]

Next, suppose that \(|u| \leq 1\). Then \(\mu((T^g - u^g)(T^{-g} - u^g)) = 0\), hence we have

\[
\mu_{x,u} = \min \{ \text{ord}_p (u^a(u^2(g-a)-\chi(-1))) \mid 1 \leq a < g, (a,g) = 1 \}.
\]

If \(|u| < 1\), then \(\mu_{x,u} = \text{ord}_p(u)\). If \(|u| = 1\) and if \(x\) is even, then

\[
\mu_{x,u} = \min \{ \text{ord}_p (u^2a - 1) \mid 1 \leq a < g, (a,g) = 1 \} = \text{ord}_p(u^2 - 1).
\]

Moreover (0.2) implies \(|u-1| = 1\) if \(|u| = 1\). Hence, \(\mu_{x,u} = \text{ord}_p(1+u)\). If \(|u| = 1\) and if \(x\) is odd, then we have

\[
-13-
\]
\[\mu_{\chi, u} = \min \{ \text{ord}_p (u^{2a} + 1) \mid 1 \leq a < g, (a, g) = 1 \}. \]

If \(2 \mid g \), then \(4 \mid f_{\chi} \) or \(p = 2 \), and so, \(4 \mid f_{\chi} p^2 \). Then, \((0.2) \) implies \(|1-u^4| = 1 \) and we deduce \(|1+u^2| = 1 \). Thus, we obtain \(\mu_{\chi, u} = 0 \). If \(2 \nmid g \), then both \(u^2 + 1 \) and \(u^4 + 1 \) belong to the set \(\{ u^{2a} + 1 \mid 1 \leq a < g, (a, g) = 1 \} \). If \(|u^2 + 1| = 1 \), then we immediately have \(\mu_{\chi, u} = 0 \). If \(|u^2 + 1| < 1 \), then \(|u + 1| = |(u^2 + 1)(u - 1)| = 1 \), hence, \(|u^4 + 1| = |u^2(u + 1)(u - 1)(u^2 + 1)| = 1 \). Thus, we obtain \(\mu_{\chi, u} = 0 \).

Remark. Suppose that \(\chi \) is odd. If \(c \) is an integer with \(c > 1 \) and \((c, f_{\chi} p) = 1 \), we have

\[\sum_{\xi \in \mathbb{Z}} l_p (\xi, \chi, \sigma) = (1 - \chi \omega (c)^{<c\sigma>^{1-g}}) L_p (\sigma, \chi \omega) \]

(119). In particular, if \((2, f_{\chi} p) = 1 \), then

\[l_p (-1, \sigma, \chi) = (1 - \chi \omega (2)^{<2\sigma>^{1-g}}) L_p (\sigma, \chi \omega). \]

Consequently

\[L_p (\sigma, \chi \omega) = g_{\chi \omega} (u_0^{1-g}), \]

where \(g_{\chi \omega} (T) = F_{\chi, -1} (u_0^{1-T}) / (1 - \chi \omega (2)^T (2)^{<2\sigma>}). \) Hence, by Theorem 1, we deduce the Ferrero-Washington theorem under the restricted condition that \((2, f_{\chi} p) = 1 \).
4. Another proof of Theorem 1

In this section, using the methods in [3] and [5], we give another proof of Theorem 1. We first introduce notations.

We write $f_\chi = dp^n$ with $(d, p) = 1$ and $r \in \mathbb{N}$. For each $n \in \mathbb{N}$, the canonical ring homomorphism $\rho_n : \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/dp^n\mathbb{Z}$ is defined, and we can view χ also as a function on $\mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/p^n\mathbb{Z}$.

For any $x \in \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/p^n\mathbb{Z}$, we write $s_{n,d}(x)$ for the unique integer satisfying $0 \leq s_{n,d}(x) < dp^n$ and $s_{n,d}(x) \mod dp^n = \rho_n(x)$. Similarly, for any $y \in \mathbb{Z}/p^n$, we write $s_n(y)$ for the unique integer satisfying $0 \leq s_n(y) < qp^n$ and $s_n(y) \equiv y \mod qp^n$.

We identify an element $x \in \mathbb{Z}/p^n$ with $(1 \mod d, x) \in \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/p^n\mathbb{Z}$. We decompose the character χ as

$$\chi = \Theta \phi,$$

where Θ is a character of the first kind for p and ϕ is a character of the second kind for p. We denote by V the torsion subgroup of \mathbb{Z}/p^n and put $W = \mathbb{Z}/d\mathbb{Z} \times V$.

LEMMAN 1.4.1. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $0 \leq a < p^{n+r}$, we have

$$\alpha_{\chi, u}(a+p^n+r \mathbb{Z}/p^n) = \sum_{i=0}^{d-1} x(a+ip^n+r) \frac{f_x p^n - (a+ip^n+r)}{1-u x p^n}.$$

- 15 -
Proof. Put $g = f p^{-1} d p^{n+r}$ and $a = (T p^{n+r} - 1) O_{x, u[[T^{-1}]]}$.

If $|u| \leq 1$, then $T^g - u^g \in (O_{x, u[[T^{-1}]]})^\times$ and $(T^g - u^g)^{-1} \equiv (1 - u^g)^{-1} \pmod{a}$. Then,

$$
\alpha_{x, u}(T) = R_{x, u}(T) \sum_{a=0}^{g-1} \chi(a) u^{-aT} \frac{p^{n+r} - 1}{T^g - u^g} \equiv \sum_{a=0}^{p^{n+r} - 1} \sum_{i=0}^{d-1} \chi(a+i p^{n+r}) u^{g-(a+i p^{n+r})} (1-i p^{n+r})(1-u^g)^{-1} \pmod{a}.
$$

Hence, by (1.1.1), we obtain our assertion.

If $|u| > 1$, then $(T/u)^{g-1} \in (O_{x, u[[T^{-1}]]})^\times$ and $((T/u)^{g-1})^{-1} \equiv ((1/u)^{g-1})^{-1} \pmod{a}$. Then,

$$
\alpha_{x, u}(T) = \sum_{a=0}^{g-1} \chi(a) u^{-aT} \frac{T^{g-1}}{(T/u)^{g-1}} \equiv \sum_{a=0}^{p^{n+r} - 1} \sum_{i=0}^{d-1} \chi(a+i p^{n+r}) u^{g-(a+i p^{n+r})} (1-i p^{n+r})(1/u)^{g-1} \pmod{a}.
$$

Hence our assertion holds also in the case $|u| > 1$.

Proposition 1.4.2. If $\nu_{x, u}$, then $\nu_{x, u}$ is the largest c in \mathbb{Q}
such that

\begin{equation}
\left| \sum_{\eta \in \mathbb{W}} \frac{d\eta_{\Phi}^{m} g_{\eta, d_{\Phi}(x\eta)}}{i - u d\eta_{\Phi}^{m}} \right| \leq |\alpha|_{p}^{c}
\end{equation}

holds for all \(x \in \mathbb{Z}_{p}^{\times} \) and all \(n \in \mathbb{N} \). Further, \(\mu_{x, u} = \infty \) holds if and only if (1.4.1) holds for all \(c \in \mathbb{Q} \), \(x \in \mathbb{Z}_{p}^{\times} \) and \(n \in \mathbb{N} \).

Proof. For each \(n \in \mathbb{N} \), put \(a_{n} = (T_{p}^{n} - 1)\mathcal{O}_{x, u}[[T_{-1}]] \). From (1.1.2) and the definition of \(F_{x, u}(T) \), we have

\begin{equation}
F_{x, u}(T) = \sum_{a=0}^{p_{n-1}} a_{x, u}(a + p_{n}^{\mathbb{Z}_{p}}) T^{a} \pmod{a_{n}}.
\end{equation}

Note that, for any \(f(T) = \sum_{m=0}^{\infty} c_{m} (T-1)^{m} \in \mathcal{O}_{x, u}[[T_{-1}]] \), there are uniquely determined elements \(b_{0, n}, \ldots, b_{p_{n-1}, n} \in \mathcal{O}_{x, u} \) satisfying

\begin{equation}
f(T) \equiv \sum_{j=0}^{p_{n-1}} b_{j, n} T^{j} \pmod{a_{n}}.
\end{equation}

and that, for a given \(c \in \mathbb{Q} \), \(\operatorname{ord}_{p}(c_{m}) > c \) holds for all \(m \in \mathbb{N} \) if and only if \(\operatorname{ord}_{p}(b_{j, n}) > c \) holds for all \(n \in \mathbb{N} \) and \(j \in \mathbb{Z} \) with \(0 \leq j < p_{n-1} \).

Hence, for a given \(c \in \mathbb{Q} \), \(\mu_{x, u} > c \) holds if and only if

\begin{equation}
|c_{x, u}(v + p_{n}^{\mathbb{Z}_{p}})| < |\rho|^{c}
\end{equation}

holds for all \(v \in \mathbb{Z}_{p} \) and \(n \in \mathbb{N} \).

For each \(x \in \mathbb{Z}_{p}^{\times} \), we have

- 17 -
If \(p^n | q^n \), then Lemma 1.4.1 shows that

\[
\alpha_{x, u}^* (t(x) + p^n\mathbb{Z}_p^n) = \sum_{\eta \in \mathcal{V}} \alpha_{x, u} (s_n(x\eta) + iq^n_p)p^n\mathbb{Z}_p^n)
\]

Recall that \(\chi=0\varphi \) and that \(f_x=dp^n \) with \((d, p)=1 \). Then, the conductor of \(\varphi \) divides \(p^n \), and so, \(\chi(s_n(x\eta) + iq^n) = \theta(s_n(x\eta) + iq^n)\varphi(x) \). Further the integers \(s_n(x\eta) + iq^n \) with \(\eta \in \mathcal{V} \) and \(0 \leq i \leq d-1 \) are precisely \(g_n(x\eta) \) with \(\eta \in \mathcal{W} \). Since the conductor of \(\theta \) is \(d \) or \(dq \), we obtain

\[
(1.4.3) \quad \alpha_{x, u}^* (t(x) + p^n\mathbb{Z}_p^n) = \varphi(u_0) t(x) \sum_{\eta \in \mathcal{W}} \frac{d\varphi^n - s_n(x\eta)}{1 - u d\varphi^n}
\]

for all \(\eta \in \mathcal{W} \) with \(p^n | q^n \). In particular, we have

\[
(1.4.3)' \quad \alpha_{\theta, u}^* (t(x) + p^n\mathbb{Z}_p^n) = \theta(x) \sum_{\eta \in \mathcal{W}} \frac{d\varphi^n - s_n(x\eta)}{1 - u d\varphi^n}
\]

for all \(x \in \mathbb{Z}_p^\times \) and \(\eta \in \mathcal{W} \).

From (1.4.2), (1.4.3), (1.4.3)', and the fact that \(t(\mathbb{Z}_p^\times) = \mathbb{Z}_p^\times \), we obtain \(F_{x, u}(T) = F_{\theta, u}(\varphi(u_0)T) \). (Note that this can be obtained also from Proposition 1.2.4.) Hence, we see \(\mu_{x, u} = \mu_{\theta, u} \) and it follows that, for a given \(\alpha \in \mathcal{Q} \), \(\mu_{x, u} \succ \alpha \) holds if and only if \(|\alpha_{\theta, u}^*(v + p^n\mathbb{Z}_p^n)| < |p|^c \)
holds for all $v \in \mathbb{Z}_p$ and $\pi \in \mathbb{N}$. Taking account of the fact that $t(\mathbb{Z}_p^\times) = \mathbb{Z}_p$ again, we obtain from (1.4.3)' the required assertion.

Now, we prove Theorem 1.

If $|u| > 1$, then $|\sum_{\pi \in \mathbb{Z}} \theta(\pi) \frac{d_{\pi}^{\pi - \pi, d_n(x)}}{1 - u d_{\pi}^{\pi - \pi, d_n(x)}}| \leq |u|^{-1}$ for all $x \in \mathbb{Z}_p^\times$ and $\pi \in \mathbb{N}$. In particular, we have

$$|\sum_{\pi \in \mathbb{Z}} \theta(\pi) \frac{d_{\pi}^{\pi - \pi, d_n(x)}}{1 - u d_{\pi}^{\pi - \pi, d_n(x)}}| = |\sum_{\pi = 0}^{\pi - j} \theta(\pi) \frac{d_{\pi}^{\pi - \pi, d_n(x)}}{1 - u d_{\pi}^{\pi - \pi, d_n(x)}}| = |u|^{-1}.$$

Hence, we see from Proposition 1.4.2 that $\mu_x, u = -\text{ord}_p(u)$. In a similar way, we obtain $\mu_x, u = \text{ord}_p(u)$ if $|u| < 1$.

Now, we assume in the sequel that $|u| = 1$. Then, by (0.2), we have $|1 - u d_{\pi}^{\pi - \pi, d_n(x)}| = 1$ for all $\pi \in \mathbb{N}$. In order to prove Theorem 1, we use the following lemma (Proposition 4 of [5], Chapter 11 of [13]).

Lemma 1.4.3. Let $g, \pi \in \mathbb{N}$ with $(g, \pi) = 1$. Then, we can choose a complete set R_0 of representatives of V modulo $(1, -1)$ such that, for any sufficiently large integer l, there exist $x_1, x_2 \in \mathbb{Z}_p^\times$ and $\eta_0 \in R_0$ satisfying the following properties.

1. $s_{l + m}(x_1, \eta) = s_{l}(x_1, \eta) \equiv 0 \text{ (mod g)}$ for all $\eta \in R_0$,
2. $s_{l + m}(x_2, \eta) = s_{l}(x_2, \eta) \equiv 0 \text{ (mod g)}$ for all $\eta \in R_0 - \{\eta_0\}$,
3. $s_{l + m}(x_2, \eta_0) = s_{l}(x_2, \eta_0) + \pi p^l \equiv 0 \text{ (mod g)}$.

- 19 -
Proof. If $p \neq 2$, the proof is already given in [5]. If $p = 2$, we can easily obtain our assertion as in the following way. Put $R_0 = \{1\}$.

Choose $n_1 \in \mathbb{N}$ such that $g^{n_1} \equiv 1 \pmod{2^m}$, and let the 2-adic expansion of g^{n_1} be $g^{n_1} = 1 + 2^m a_m + 2^{m+1} a_{m+1} + \cdots + 2^{l-1} a_l$, where $m \geq m$ and $a_i = 0$ or 1 for each i with $m \leq i \leq m_1 - 1$. Suppose that $l \in \mathbb{N}$ is an integer such that $l > 2m_1 - 2$.

Then, putting $x_1 = g^{n_1}$ and $x_2 = (1 + 2^{l-1}) g^{n_1}$, we have $x_1 \equiv x_2 \equiv 1 \pmod{2^m}$, and x_1 and x_2 satisfy the conditions (1), (2) and (3) for $n_0 = 1$.

Now, we continue to prove Theorem 1. For any $x \in \mathbb{Z}_p^\times$ and any $n \in \mathbb{N}$, we put

$$H(x, n) = H(0, u, x, n) = \theta(x) \sum_{\eta \in \mathbb{W}} (-s_n, d(x\eta)) - s_n(x\eta) - iq^{p^n}.$$

Then, for any complete set R of representatives of V modulo $(1, -1)$,

$$H(x, n) = \sum_{\eta \in R} \sum_{i=0}^{d-1} \theta(s_n(x\eta) + iq^{p^n}) (u^{-s_n(x\eta)} - iq^{p^n}) - dqp^n s_n(x\eta) + iq^{p^n} + \theta(-1)u.$$

We put further

$$G(x, n, n) = G(0, u, x, n, n)$$

$$= \sum_{i=0}^{d-1} \theta(s_n(x\eta) + iq^{p^n}) (u^{-s_n(x\eta)} - iq^{p^n}) - dqp^n s_n(x\eta) + iq^{p^n} + \theta(-1)u$$

for any $\eta \in V$. Then,
(1.4.4) \[H(x,n) = \sum_{\eta \in R} G(x, \eta, n). \]

Let \(p_{x,u} \) denote the maximal ideal of \(\mathcal{O}_{x,u} \) and \(g_1 \in \mathbb{N} \) the order of \(u \mod p_{x,u} \) in the multiplicative group \((\mathcal{O}_{x,u}/p_{x,u})^\times \). Write \(g_1 = d_0 p_{x,u}^{r_0} \) with \((d_0, p) = 1 \) and \(r_0 > 0 \), and put \(g = d_0 d \). Let \(m \) be an integer with \(qp^m | p^m \) and suppose that \(l \) is a sufficiently large integer. We can choose a complete set \(R_0 \) of representatives of \(V \) modulo \((1, -1) \), \(x_1, x_2 \in 1 + p^m \mathbb{Z}_p \) and \(\eta_0 \in R_0 \) satisfying the conditions (1), (2) and (3) of Lemma 1.4.3. Then, we have

\[s_l(x_1 \eta) \equiv s_l(x_2 \eta) \pmod{g_1 dq} \]

for all \(\eta \in R_0 - \{\eta_0\} \),

and so,

\[(1.4.5) \theta(s_l(x_1 \eta) + iqp^l) = \theta(s_l(x_2 \eta) + iqp^l) \]

and

\[u s_l(x_1 \eta) \equiv u s_l(x_2 \eta) \pmod{p_{x,u}} \]

hold for all \(\eta \in R_0 - \{\eta_0\} \). On the other hand, we have

\[(1.4.6) s_l(x_1 \eta_0) \equiv s_l(x_2 \eta_0) + qp^l \pmod{g_1 dq}, \]

and we obtain

\[(1.4.7) \theta(s_l(x_1 \eta_0) + iqp^l) = \theta(s_l(x_2 \eta_0) + (i+1)qp^l) \]

and

\[u s_l(x_1 \eta_0) \equiv u s_l(x_2 \eta_0) + qp^l \pmod{p_{x,u}}. \]
In the first place, we prove Theorem 1 in the case $g_1 = 2$, that is, $u \equiv -1 \pmod{p_{\chi,u}}$. Then, since g_1 divides the order of the group $(O_{\chi,u}, p_{\chi,u})^X$, we have $(p, 2) = 1$, and so, $d_0 = 2$, $r_0 = 0$ and by (0.2) we must have $(d, 2) = 1$. It is sufficient to show that $\mu_{\chi,u} = \text{ord}_p(u + \theta(-1))$.

We first have

$$G(x, n, n)$$

$$d-1 \sum_{i=0}^{d-1} \theta(s_n(xn) + iqpn^n) + \sum_{j=0}^{d-1} u^j$$

for all $x \in \mathbb{Z}_{p_{\chi,u}}$, all $n \in \mathbb{V}$ and all $n \in \mathbb{N}$. The case $u + \theta(-1) = 0$ occurs if and only if both $\theta(-1) = 1$ and $u = -1$ hold, and in this case we have $G(x, n, n) = 0$. Then by (1.4.1) we have $H(x, n) = 0$ and it follows from Proposition 1.4.2 and the definition of $H(x, n)$ that $\mu_{\chi,u} = \infty$.

Consequently, we obtain $\mu_{\chi,u} = \text{ord}_p(u + \theta(-1)) = \infty$. Now suppose that $u + \theta(-1) \neq 0$. Then, $\frac{1}{u + \theta(-1)}G(x, n, n) \in O_{\chi,u}$ and we have

$$\frac{1}{u + \theta(-1)}G(x, n, n) \equiv \sum_{i=0}^{d-1} \theta(s_n(xn) + iqpn^n)((\theta(-1) + 1)xn$$

$$- \sum_{j=0}^{d-1} \theta(-1)^j (\text{mod } p_{\chi,u}).$$

- 22 -
Since \(g = d_0 d = 2d \), we have \(g_1 (x_1 \eta_0) \equiv 0 \pmod{2} \). Hence by (1.4.5) and (1.4.7)

\[
\frac{1}{u+\theta(-1)} G(x_1, \eta, l) \equiv \frac{1}{u+\theta(-1)} G(x_2, \eta, l) \pmod{p_{x,u}} \text{ for all } \eta \in R_0 - (\eta_0)
\]

and

\[
\frac{1}{u+\theta(-1)} (G(x_1, \eta_0, l) - G(x_2, \eta_0, l)) \equiv -2\theta(s_L(x_2 \eta_0)) \pmod{p_{x,u}}.
\]

It follows from (1.4.3) that

\[
\frac{1}{u+\theta(-1)} (H(x_1, l) - H(x_2, l)) \equiv \frac{1}{u+\theta(-1)} (G(x_1, \eta_0, l) - G(x_2, \eta_0, l)) \pmod{p_{x,u}}
\]

\[
\equiv \begin{cases}
-4\theta(s_L(x_2 \eta_0)) \eta_0 & \text{if } \theta(-1) = 1 \\
2\theta(s_L(x_2 \eta_0)) & \text{if } \theta(-1) = -1
\end{cases} \pmod{p_{x,u}}.
\]

Consequently we must have

\[
|H(x_1, l)| = |u+\theta(-1)| \text{ or } |H(x_2, l)| = |u+\theta(-1)|.
\]

Therefore, we see from Proposition 1.4.2 and the definition of \(H(x, \eta) \) that \(\mu_{x,u} = \text{ord}_{p} (u+\theta(-1)) \). Thus, Theorem 1 is proved in the case \(g_1 = 2 \). In particular, we have

\[
- 23 -
\]
\(\mu_{x,-1} = 0 \) if \(\theta(-1) = -1 \).

We shall use this equation later.

Next, suppose that \(g_1 \neq 2 \), namely \(u^2 \not\equiv 1 \pmod{p_x,u} \). We must show that \(\mu_{x,u} = 0 \). By (1.4.5), we have

\[
G(x_1, n, l) \equiv G(x_2, n, l) \pmod{p_x,u} \quad \text{for all } n \in \mathbb{Z}.
\]

Hence by (1.4.4) and (1.4.7),

\[
H(x_1, l) - H(x_2, l) \equiv G(x_1, n_0, l) - G(x_2, n_0, l) \pmod{p_x,u}
\]

\[
\equiv \theta(s_l(x_2 n_0))((u^{-1} - dp^l) + \theta(-1)u)
\]

\[
+ \theta(s_l(x_2 n_0))u^{-1} - dp^l + s_l(x_2 n_0)(u^{-1} - \theta(-1)u^{-1})
\]

\[
\equiv \theta(s_l(x_2 n_0))u^{-1} - dp^l + s_l(x_2 n_0)(u^{-1} - \theta(-1)u^{-1})
\]

(1.4.8)

If \(u \not\equiv 0 \pmod{p_x,u} \), then \(|H(x_1, l) - H(x_2, l)| = 1 \), and so, \(|H(x_1, l)| = 1 \) or \(|H(x_2, l)| = 1 \). Hence, from Proposition 1.4.2 and the definition of \(H(x,n) \), we obtain \(\mu_{x,u} = 0 \). Now suppose that \(u^2 \not\equiv s_l(x_2 n_0) \equiv 0 \pmod{p_x,u} \). From (1.4.6) and the congruence \(s_l(x_1 n_0) \equiv 0 \pmod{d_0} \), we see \(s_l(x_2 n_0) \equiv 0 \). If \(\theta(-1) = 1 \), then \(u^2 \equiv 1 \pmod{p_x,u} \), which contradicts the assumption that \(g_1 \neq 2 \). If \(\theta(-1) = -1 \), then we obtain \(u^2 \equiv -1 \pmod{p_x,u} \).

In order to complete the proof of Theorem 1, we must deduce \(\mu_{x,u} = 0 \) under the condition that both \(\theta(-1) = -1 \) and \(u^2 \equiv -1 \pmod{p_x,u} \).
hold. In this case we have $(p, 2) = 1$. We assume $\mu_x, u > 0$ under the above condition and derive a contradiction.

Proposition 1.4.2 shows that $\mu_x, u > 0$ holds if and only if $|H(\theta, u, x, n)| < 1$ holds for all $x \in \mathbb{Z}_p^x$ and $n \in \mathbb{Q}$. Now we have

\[
H(\theta, u^{-1}, x, n) = \theta(x) \sum_{\eta \in \mathbb{W}} \theta(\eta) u^s_n, d(\eta x) = \theta(x) \sum_{\eta \in \mathbb{W}} \theta(-\eta) u^s_n, d(-\eta x) \]
\[
= \theta(-x) \sum_{\eta \in \mathbb{W}} \theta(\eta) u^s_n, d(\eta x) = u^d q^n \theta(-1) H(\theta, u, x, n).
\]

Hence, we see from Proposition 1.4.2 that $\mu_x, u = u_{x, u}^{\mu}$. The condition $u^2 \equiv -1 (\text{mod } p_x, u)$ implies $|u - \sqrt{-1}| < 1$ or $|u^{-1} - \sqrt{-1}| < 1$. In either case, by the assumption that $\mu_x, u > 0$, we obtain $|H(\theta, \sqrt{-1}, x, n)| = |H(\theta, -\sqrt{-1}, x, n)| < 1$. Consequently, $\mu_{x, \sqrt{-1}} = \mu_{x, -\sqrt{-1}} > 0$. Now, from $u^2 \equiv -1 (\text{mod } p_x, u)$ and (0.2), we must have $(x, 2) = 1$. Then, a direct calculation shows

\[
f_{\chi}^{-1} \sum_{a=0}^{f_{\chi}} x(a) e^{\frac{at}{x}} \frac{f_{\chi}^{-1}}{f_{\chi}^{-1}} x^{-a} + \sum_{a=0}^{f_{\chi}} x(a) e^{\frac{a}{x} \left(-\frac{1}{x}
ight)} \frac{f_{\chi}^{-1}}{f_{\chi}^{-1}} x^{-a} = 2 \sum_{a=0}^{f_{\chi}} x(a) e^{\frac{2at}{x} \left(-\frac{1}{x}
ight)} x^{-a}.
\]

It follows from the definition of the generalized Euler numbers that

\[
\frac{f_{\chi}^{-1}}{f_{\chi}^{-1}} H_x^{\mu}(\sqrt{-1}) + \frac{f_{\chi}^{-1}}{f_{\chi}^{-1}} H_x^{\mu}(-\sqrt{-1}) = x(2) 2^n H_x^{\mu}(-1).
\]

Since $(p, 2) = 1$, we see from Proposition 1.2.3 and the above equation that
\[
\frac{F_{\chi,\sqrt{-1}}(T)+F_{\chi,-\sqrt{-1}}(T)}{2X(2)T^{\ell(2)}F_{\chi,-1}(T)} = 2X(2) \sum_{n=0}^{\infty} \frac{t(2)}{(T-1)^n} F_{\chi,-1}(T).
\]

Therefore, if \(\mu_{\chi,\sqrt{-1}} > 0 \), we must have \(\mu_{\chi,-1} > 0 \), which contradicts the equation (1.4.8) in the case \(\Theta(-1) = -1 \). Thus, we obtain the assertion of Theorem 1 in the final case.
CHAPTER 2. Analytic property of the function $F_{x,u}(z)$

In this chapter, we view $F_{x,u}(z)$ as an analytic function on the set $D=\{z \in \mathbb{C} \mid |z-1|<1\}$ and prove Theorem 2.

We put $R_{x,u}(t) = R_{x,u}(t) + R_{x,u}(t^{-1})$ and $\alpha_{x,u}(t) = \alpha_{x,u}(t) + \alpha_{x,u}(t^{-1})(-1)$.

Then, $\alpha_{x,u}$ is an even measure supported on \mathbb{Z}_{p}^\times and we have

$(\alpha_{x,u}(t) + \alpha_{x,u}(t^{-1}))(T) = R_{x,u}(t)$ and $\frac{1}{2\pi} \alpha_{x,u}(T) = F_{x,u}(u_0^{\mu})$. Now, we apply Theorem 1 or 2 of [17].

Case 1. $|u|=1$. Put $F=O_{x,u}/p_{x,u}$. We first consider the case $\mu_{x,u}=0$. Suppose that the assertion of Theorem 2 does not hold. Then, it follows from the first paragraph of Section 3 of [17] that

$F_{x,u}(T) \equiv p_{x,u} \in F(T)$, and Theorem 1 of [17] shows that

$\Xi_{x,u}^{+}(T) \equiv p_{x,u} \in F[T]$ for a sufficiently large $n \in \mathbb{N}$. Putting $g=f_{x,u}$, it follows from (1.3.1) that $(T^{g} - u^{g})(T^{g} - u^{-g}) \equiv p_{x,u}$ in $F[T]$. Considering

the degrees of these polynomials, we deduce $u^{2a} - u^{a+1} \equiv 0 (mod p_{x,u})$ for any a with $1 \leq a < g$ and $(a,g)=1$. This contradicts the fact that $|u^{2a} - u^{a+1}|=1$ for some a with $1 \leq a < g$ and $(a,g)=1$, as is known from the proof of Theorem 1 in Section 3 of the preceding Chapter. Hence, Theorem 2 must hold in the case $\mu_{x,u}=0$.

Next, if $\mu_{x,u} \neq 0$, then Theorem 1 shows that $\chi(-1)=1$ and that $\mu_{x,u} = \text{ord}_p(1+u)$. Applying the above argument to $(1+u)^{-1}F_{x,u}(T)$ and
\((1+u)^{-1} \widetilde{R}_{x,u}^* (T)\) instead of \(F_{x,u}(T)\) and \(\widetilde{R}_{x,u}^* (T)\), we obtain the assertion of Theorem 2.

Case 2. \(|u|>1\). In this case, putting \(g=f \gamma p\), we have

\[
\widetilde{R}_{x,u}^* (T) = \sum_{a=0}^{g-1} x(a) u^{-a} \left((T/u)^{g-1}\right) = \sum_{a=0}^{g-1} x(a) u^{-a} \sum_{m=0}^{\infty} (u^{-1}T)^{gm}
\]

and so

\[
(2.1) \quad \widetilde{R}_{x,u}^* (T) = \sum_{m=0}^{\infty} x(m) u^{-m} (T^m + T^{-m}).
\]

In order to apply Theorem 2 of [17], we first prove the following

Lemma 2.1. Let \(\mathbb{O}\) be the ring of integers of a finite extension of \(\mathbb{Q}_\gamma\), and let \((a_m)\) and \((b_m)\) be sequences of \(\mathbb{O}\) such that \(\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = 0\). If both of the elements \(\sum_{m=0}^{\infty} a_m (T^m + T^{-m})\) and \(\sum_{m=0}^{\infty} b_m (T^m + T^{-m})\) in \(\mathbb{O}[T^{-1}]\) are equal, then we have \(a_m = b_m\) for all \(m \in \mathbb{N}\).

Proof. Put \(f(T) = \sum_{m=0}^{\infty} a_m (T^m + T^{-m})\). It is sufficient to show that if \(f(T) = 0\), then we have \(a_m = 0\) for all \(m \in \mathbb{N}\). For each \(c \in \mathbb{Z}_\gamma\), let \(\delta_c\) denote the Dirac measure of mass 1 supported at \(c\). Then, \(\delta_c(T) = T^c\). Let \(\alpha_f \in \mathbb{A}_0\)
be the measure satisfying \(\alpha_f(T)=f(T) \). Then, for any \(n \in \mathbb{N} \) and any integer \(l \), we have
\[
\alpha_f(l+p^nL_p) = \sum_{m=0}^{\infty} a_m.
\]
Now, assume that \(a_m \neq 0 \) for some \(m_0 \in \mathbb{N} \). Since \(\lim_{m \to \infty} a_m=0 \), there is an integer \(m_1 \in \mathbb{N} \) such that \(|a_m|<|a_{m_1}| \) for all \(m>m_1 \). Choose an integer \(n \in \mathbb{N} \) with \(p^{n-m_0}>m_1 \). Then, we have \(\alpha_f(m_0+p^nL_p)=0 \). In fact, if \(m_0 \neq 0 \), then
\[
|\alpha_f(m_0+p^nL_p)| = |a_{m_0}| = |\alpha_{m_0}| = 0,
\]
and if \(m_0 = 0 \), then
\[
|\alpha_f(m_0+p^nL_p)| = |2a_0| = 0.
\]
Thus, we see that if \(\alpha_f=0 \), we have \(a_m=0 \) for all \(m \in \mathbb{N} \). Now, \(\alpha_f=0 \) holds if and only if \(f(T)=0 \). Hence, if \(f(T)=0 \), we have \(a_m=0 \) for all \(m \in \mathbb{N} \).

Let \(\mathcal{V} \) be the torsion subgroup of \(\mathbb{Z}_p^\times \). Lemma 1 of [17] states that there is a rational number \(r \geq 1 \) such that
\[
\mathcal{V}u_0\mathbb{Z}_p^\times \cap \mathbb{Q}^\times = (1,-1)r^\mathbb{Z}.
\]

Now, we continue to prove Theorem 1 in the case \(|u|>1 \). From (2.1), Lemma 2.1 and Theorem 2 of [17], it is sufficient to show that there exists an integer \(n \in \mathbb{N} \) prime to \(g \) which does not belong to \(r^\mathbb{Z} \). Indeed, for any \(k \in \mathbb{N} \), the integer \(kg+1 \) is prime to \(g \), but not all of the integers of this form belong to \(r^\mathbb{Z} \).

Case 3. \(|u|<1 \). From Lemma 1.2.2, a direct calculation shows that
\[
\tilde{\alpha}_{\chi, u^{-1}}(T) = -\chi(-1)\tilde{\alpha}_{\chi, u}(T^{-1}),
\]
namely
\[
\tilde{\alpha}_{\chi, u^{-1}} = -\chi(-1)\tilde{\alpha}_{\chi, u}(-1).
\]
Hence, the case \(|u|<1 \) is reduced to Case 2.
CHAPTER 3. The p-adic valuation of the generalized Euler numbers

1. The p-adic valuation of the generalized Euler numbers

Let $S = \{p_1, \ldots, p_l\}$ be a finite set of prime numbers distinct from p and, as described in Introduction, we denote by Ψ (resp. Φ) the set of Dirichlet characters of the second kind for S (resp. p). Let χ be a Dirichlet character with conductor f_{χ}. In this section, we assume the condition (0.3) and, by using the methods in [18], we prove Theorem 3.

Fix $\psi \in \Psi$, $\varphi \in \Phi$ and $n \in \mathbb{N}$ arbitrarily, and denote the conductor of $\chi_n \psi \varphi$ simply by f. We denote by $Q_p(\chi, \psi, \varphi, u)$ the field generated by u and the values of χ, ψ and φ over Q_p, by $O_{\chi, \psi, \varphi, u}$ the ring of integers of $Q_p(\chi, \psi, \varphi, u)$ and by $p_{\chi, \psi, \varphi, u}$ the maximal ideal of $O_{\chi, \psi, \varphi, u}$. Let e denote the ramification index of the extension $Q_p(\chi, \psi, \varphi, u)/Q_p$.

In the case $|u| \neq 1$ and $n \geq 1$, we see from Lemma 1 of [19] and Theorem 1 that for any sufficiently large $N \in \mathbb{N}$,

$$\sum_{\psi, \varphi \in \Phi} e_{\chi, \psi, \varphi}^u \left(\frac{fp_{\chi, \psi, \varphi}^N - 1}{1 - u} \right)$$

where

$$\sum_{\psi, \varphi \in \Phi} e_{\chi, \psi, \varphi}^u \left(\frac{fp_{\chi, \psi, \varphi}^N - 1}{1 - u} \right) \equiv \sum_{a=1}^{f_{\chi}} (a, \varphi = 1) \frac{\psi(a) a^n u^{fp_{\chi, \psi, \varphi}^N - a}}{1 - u} \left(\mod p_{\chi, \psi, \varphi, u} \right)$$

On account of Theorem 1 again, we see
Hence, we obtain (0.4).

In the case $|u| \neq 1$ and $n=0$, since we have $H^0_{\chi \psi \phi} = \sum_{a=0}^{f-1} \chi \psi \phi(u)^a u^{-a-1}$, it is easy to deduce the assertion of Theorem 3.

In the case $|u|=1$, we use the methods in [18]. For that purpose, we first introduce notations and propositions without assuming $|u|=1$.

We put $Z_S = \mathbb{Z} \times \cdots \times \mathbb{Z}$ and $P = P_1 \cdots P_t$. For each $m \in \mathbb{N}$, let μ_m denote the group of m-th root of unity in \mathbb{Q} and put $\mu_S = \bigcup_{n=0}^{m} \mu_n$. We put $k=Q(\chi, u)$ and $k_S=k(\mu_S)$.

For any k_S-valued measure ν on Z_S, its Fourier transform $\hat{\nu}: \mu_S \rightarrow k_S$ is defined by $\hat{\nu}(\xi) = \int_{Z_S} \psi(x) d\nu(x)$. If there exists $R(T) \in k_S(T)$ such that $\hat{\nu}(\xi) = R(\xi)$ holds for almost all $\xi \in \mu_S$, we call ν a rational function measure and $R(T)$ the associated rational function of ν. Any rational function in $k_S(T)$ can occur as the associated rational function of a certain k_S-valued rational function measure on Z_S ([18]§2).

Let $\nu_{\chi, u}$ be a rational function measure on Z_S whose associated rational function is $R_{\chi, u}(T)$. We assume that in the case $|u| \neq 1$, $R_{\chi, u}(\xi) = \nu_{\chi, u}(\xi)$ holds for all $\xi \in \mu_S$. For any $\psi \in \Psi$, regarding ψ as a character of Z_S^\times, we put

$$\Gamma_{\nu_{\chi, u}}(\psi) = \int_{Z_S} \psi(x) d\nu_{\chi, u}(x).$$
For any $S' \subset S$, we put

$$\Psi_{S'} = (\psi \in \Psi \mid l \not| f_{\chi,\psi} \text{ if } l \not\in S' \text{ and } l \not| f_{\chi,\psi} \text{ if } l \in S-S').$$

Proposition 3.1.1. For almost all $\psi \in \Psi_{S'}$, we have

(3.1.1) \[\Gamma_{\nu,\chi,u}(\psi) = \frac{\Gamma_{\nu,\chi,u}^0(u)}{1 - u \chi,\psi \nu_{\chi,u}(\psi)}. \]

If $|u| \neq 1$, then (3.1.1) holds for all $\psi \in \Psi_{S'}$.

Proof. For any $\psi \in \Psi$, choose $n_1, \psi, \ldots, n_t, \psi \in \mathbb{N}$ such that the conductor f_ψ of ψ divides $F_{\psi} = \prod_{i=1}^t p_{n_i,\psi}$. As in the proof of Proposition 2.2 of [18], we have

$$\Gamma_{\nu,\chi,u}(\psi) = \sum_{\xi \in \mu_{F_{\psi}}} a_{\psi}(\xi) v_{\chi,u}(\xi),$$

where $a_{\psi}(\xi) = 1/F_{\psi} \sum_{a=0}^{F_{\psi}-1} \psi(a) \xi^{-a}$. If ξ is a F_{ψ}-th root of unity whose order is not divisible by f_ψ, then $a_{\psi}(\xi) = 0$. Since $v_{\chi,u}$ is a rational function measure with the associated rational function $R_{\chi,u}(T)$, there is an integer $L \in \mathbb{N}$ divisible only by the primes in S such that

$$v_{\chi,u}(\xi) = R_{\chi,u}(\xi) \text{ for all } \xi \in \mu_{S-L}. \text{ Now, there are only finitely many } \psi \text{ with } f_\psi \not| L. \text{ If } f_\psi \not| L, \text{ then we have } L \not| 1 \text{ for any } F_{\psi}-\text{th root of unity } \xi.$$
whose order is divisible by f_{ψ}. Hence,

$$(3.1.2) \quad \Gamma_{\chi, u}^{(\psi)} = \sum_{\xi \in \mu_{F_{\psi}}} a_{\psi}(\xi) R_{\chi, u}(\xi) \mid_{T=1}. $$

Put $g=f_{\chi} F_{\psi}$. Then, a direct calculation shows

$$(3.1.3) \quad \sum_{\xi \in \mu_{F_{\psi}}} a_{\psi}(\xi) R_{\chi, u}(\xi) = \sum_{a=1}^{g-1} \frac{\chi_{\psi}(a) u^{g-a} - \chi_{\psi}(a) u^{-a}}{1 - u^{g}}. $$

In the case $\psi \in \Psi_{S}$, we have

$$(3.1.4) \quad \sum_{\xi \in \mu_{F_{\psi}}} a_{\psi}(\xi) R_{\chi, u}(\xi) = R_{\chi \psi, u}(T). $$

Since $R_{\chi \psi, u}(1) = \frac{u}{1 - u^{\psi} x^{\psi}(y)}$, we see that (3.1.1) holds for any $\psi \in \Psi_{S}$ with $f_{\psi} \neq L$.

If $|u| \neq 1$, (3.1.2) holds for all $\psi \in \Psi$, and so, if $\psi \in \Psi_{S}$, we see from (3.1.4) that (3.1.1) holds. This completes the proof.

Proposition 3.1.2. For almost all $\psi \in \Psi$, we have

$$(3.1.5) \quad \text{ord}_{p} (\Gamma_{\chi, u}^{(\psi)}) = \mu_{\chi, u}. $$

If $|u| \neq 1$, then (3.1.5) holds for all $\psi \in \Psi$.

- 33 -
Proof. Let $\nu_{x,u}^*$ be the measure on \mathbb{Z}_S obtained by restricting $\nu_{x,u}$ to \mathbb{Z}_S^\times and extending by 0. Let $\phi(x)$ be the characteristic function on \mathbb{Z}_S^\times. Then,

$$\phi(x) = \sum_{\xi \in \mu_{PS}} a_\xi x^\xi,$$

where $a_\xi = \frac{1}{\sum_{a=1}^{PS} \xi^{-a}}$. Put

$$R_{x,u}^*(T) = \sum_{\xi \in \mu_{PS}} a_\xi R_{x,u}(\xi T).$$

Then, $\nu_{x,u}^*$ is a rational function measure whose associated rational function is $R_{x,u}^*(T)$. Let $\nu_{x,u}^*(-1)$ be the measure on \mathbb{Z}_S defined by $\nu_{x,u}^*(-1)(X) = \nu_{x,u}^*(-X)$ for any compact and open subset X of \mathbb{Z}_S.

Then, $\nu_{x,u}^*(-1)$ is also a rational function measure whose associated rational function is $R_{x,u}^*(T^{-1})$. Put $g = f^P_{xPS}$. Then, a direct calculation shows

$$R_{x,u}^*(T) = \sum_{a=0}^{g-1} \frac{\chi(a) u^{g-a} T^a}{T^a u^g}$$

and in the same way as we have shown Proposition 1.2.1, we see that $R_{x,u}^*(T) \in \mathcal{O}_{x,u}[[T^{-1}]]$. From the remark after Theorem 3.1 of [18], we have, for almost all $\psi \in \Psi$,
Further, in the same way as in the proof of Theorem 1 in the second section of Chapter 1, we see

\[\mu(R_{\chi,u}^*(T) + R_{\chi,u}^*(T^{-1})) = \mu_{\lambda}^u. \]

Hence (3.1.5) holds for almost all \(\psi \in \Psi \).

In the case \(|u| \neq 1\), (3.1.2) holds for all \(\psi \in \Psi \). Hence, we see from (3.1.3) and Theorem 1 that (3.1.5) holds for all \(\psi \in \Psi \).

PROPOSITION 3.1.3. Suppose that \(\mu_{\lambda}^u \neq 0 \). Let \(\pi \) be a prime of \(O_{\chi,\psi,\varphi,\psi} \). Then, for almost all \(\psi \in \Psi_S \),

(3.1.6) \[F_{\chi,\psi,u}(T)/\pi \in \mu_{\lambda}^u, u \in (O_{\chi,\psi,u[[T^{-1}]]})^\times. \]

If \(|u| \neq 1\), then (3.1.6) holds for all \(\psi \in \Psi_S \).

Proof. If \(p \) divides \(f_{\chi,\psi} \), then \(p \) divides \(f_{\chi,\psi} \) and Proposition 1.2.3 shows \(F_{\chi,\psi,u}(1) = \frac{u}{f_{\chi,\psi}(u)} \). Hence by Propositions 3.1.1, 3.1.2, we have, for almost all \(\psi \in \Psi_S \),

(3.1.7) \[\ord_p (F_{\chi,\psi,u}(1)) = \mu_{\lambda}^u, u \]

Hence (3.1.6) holds for all \(\psi \in \Psi_S \) satisfying (3.1.7).
Unless \(p \) divides \(f_\chi \), then \(p \) divides \(f_{\chi \psi} \) for all \(\psi \in \Phi^{-1}(1) \). For any \(\psi \in \Psi \), we have \(\psi \in \Psi_S \) if and only if \(P_\psi \mid f_{\chi \psi} \). Hence, for almost all \(\psi \in \Psi_S \), we have

\[
\text{ord}_p (F_{\chi \psi}, u(1)) = \mu_{\chi \psi}, u.
\]

From Proposition 1.2.4 and Theorem 1, we see that (3.1.8) is equivalent to (3.1.6). Therefore, (3.1.6) holds for almost all \(\psi \in \Psi_S \).

Finally, if \(|u| \neq 1 \), we see from Propositions 3.1.1, 3.1.2 that, for all \(\psi \in \Psi_S \), (3.1.7) or (3.1.8) holds. Hence, (3.1.6) holds for all \(\psi \in \Psi_S \). This completes the proof.

Proof of Theorem 3 in the case \(|u| = 1 \). Again, we fix \(\psi \in \Psi \), \(\phi \in \Phi \) and \(n \in \mathbb{N} \), and write \(f \) for the conductor of \(\chi_n \psi \).

We first assume that \(\psi \in \Psi_S \). Suppose that \(n \geq 1 \) in the first place.

Case 1. \(\mu_{\chi_n} u = 0 \). From Lemma 1 of [19], we have, for any sufficiently large \(N \in \mathbb{N} \),

\[
\frac{u}{1-u} f_{\chi_n \psi} (u) \equiv \sum_{a=0}^{f_p^n-1} \chi_n \psi (a) \frac{u^{f_p^n-a}}{1-u^{f_p^n}} \pmod{p_{\chi_n \psi}}.
\]

Hence, we have
Therefore, if \(\psi \) satisfies (3.1.6), we have
\[
\left| \frac{u}{1-u^f} h_n^{\psi} \phi(u) \right| = |F| \chi_{\psi}, u(1) = 1 = \frac{u}{1-u^f} h_n^{\psi} \phi(u) \mod p, \phi, u.
\]

and (0.4) holds.

Case 2. \(\mu, u > 0 \). In this case, Theorem 1 states that \(\chi \) is even and that \(\mu = \text{ord}_p (1+u) \), and (0.3) implies \(2^f p \). Choose \(N_0 \in \mathbb{N} \) arbitrarily. Then, Lemma 1 of [19] shows that, for any sufficiently large \(N \in \mathbb{N} \), we have
\[
\frac{u}{1-u^f} h_n^{\psi} \phi(u) = \sum_{a=1}^{f_p - 1} \chi_n^{\psi}(a) a \frac{u^{f_p - a}}{1-u^{f_p}} \mod p, \phi, u.
\]

Since \(2^f p \), we have \(|u^{f_p - 2a + 1}| \leq |u + 1| \). If \(u = -1 \), then \(h_n^{\psi} \phi(u) = 0 \), and (0.4) holds. If \(u = -1 \), choose the above \(N_0 \) such that \(p, \phi, u \subset (1+u) \). Then,
\[
\frac{u}{1-u^f} h_n^{\psi} \phi(u) = \sum_{a=1}^{f_p - 1} \chi_n^{\psi}(a) a \frac{u^{f_p - a}}{1-u^{f_p}} \mod p, \phi, u.
\]
Thus, we have shown

\[\frac{u}{1-u'} \frac{\mu_n}{1+u} \chi_n \psi(u) = \frac{1}{1+u} F, \psi, u(1) (\mod p, \psi, \varphi, \mu). \]

Therefore, if \(\psi \) satisfies (3.1.6), then (0.4) holds.

Next, we consider the case \(n=0 \). If \(p \mid f \psi \), then Propositions 1.2.3, 1.2.4 show that \(F, \psi, u(\varphi(u)) = \frac{u}{1-u} H^0, \psi(u) \). In the case \(\mu_n, u = \infty \), we have \(H^0, \psi(u) = 0 \), and (0.4) holds. In the case \(\mu_n, u = \infty \), if \(\psi \) satisfies (3.1.6), then (0.4) holds. If \(p \not\mid f \psi \), then Theorem 1 and Propositions 3.1.1, 3.1.2 show that \(\text{ord}_p \left(\frac{u}{1-u} H^0, \psi'(u) \right) = \mu_n, u = \mu_n, u \) holds for almost all \(\psi' \in \Psi_S \). Further, we note that such \(\varphi \) is unique in \(\Phi \) if it exists.

Thus, we conclude that (0.4) holds for almost all \(\psi \in \Psi_S \) and for all \(\varphi \in \Phi \) and \(n \in \mathbb{N} \).

Finally, let \(S' \) be a proper subset of \(S \). If \(S' \) is empty, then \(\Psi_S \) is empty or a set consisting of only one element. If \(\Psi_S \) is an infinite set, then each element \(\psi \) of \(\Psi_S \) is expressed as \(\psi = \psi_S, \psi' \), where \(\psi_S \) (resp. \(\psi'_S \)) is a Dirichlet character of the second kind for \(S \) (resp. \(S-S' \)), and it is easy to see that \(\psi'_S \) depends only on the set \(S' \). Hence, putting \(\psi'_S = (\psi'_S,^{-1})_l \in \Psi_S \) and applying the above argument to \(S' \), \(\Psi'_S \), and \(\psi'_S \) instead of \(S \), \(\Psi_S \) and \(\chi \), we deduce that

- 38 -
(0.4) holds for almost all $\psi \in \Psi_S$, and for all $\varphi \in \Phi$ and $n \in \mathbb{N}$. Since $\Psi = \cup \Psi_S$, we complete the proof of Theorem 3.

Remark. If $X(-1) = 1$ and if $(2, f_x^{p_1 \cdots p_t} \varphi) = 1$, then

$$
(1 - 2^n x_n \varphi(2)) \frac{B_n, x_n \varphi}{n} = \frac{1}{2^n x_n \varphi(-1)}
$$

for all $n \in \mathbb{N}$, $\psi \in \Psi$ and $\varphi \in \Phi$ ([19]). Since $x_n = (x_{\psi}^{-1})_{n-1}$ and $x_{\psi}^{-1}(-1) = -1$, we obtain from Theorems 1, 3 the result (0.5) of Friedman under the restricted condition that $(2, f_x^{p_1 \cdots p_t} \varphi) = 1$.

2. Another proof of Theorem 3

In this section, using the methods in [4] and [20], we give another proof of Theorem 3 in the case $|\psi| = 1$. Note that if $|\psi| \neq 1$, the assertion of Theorem 3 was obtained easily from Lemma 1 of [19].

As in Section 1, let $S = (p_1, \cdots, p_t)$ be a finite set of prime numbers distinct from p and put $\mathbb{Z}_S = \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_t}$. Let $q_i = p_i$ or $q_i = 4$ according as $p_t > 2$ or $p_t = 2$ and put $Q = \prod q_i$. For $N = (n_1, \cdots, n_t) \in \mathbb{Z}^t$, put $Q^t = \prod q_i^{n_i}$. For $N = (n_1, \cdots, n_t), H = (m_1, \cdots, m_t) \in \mathbb{Z}^t$, we write $N \geq H$ to mean

$$
n_i \geq m_i$$

for each $1 \leq i \leq t$. We write simply $N \geq 0$ (resp. $N > 0$) for $N \geq (0, \cdots, 0)$ (resp. $N > (1, \cdots, 1)$). We write $N > 0$ to mean $N \geq N_0$ for some fixed $N_0 > 0$. For each $x = (x_1, \cdots, x_t) \in \mathbb{Z}_S$ and $N = (n_1, \cdots, n_t) \geq 0$, we denote by $S_N(x)$ the
unique integer satisfying \(0 \leq S_N(x) < \Omega^n\) and \(S_N(x) \equiv x \pmod{q_i \rho_i l_i} \) for \(1 \leq i \leq l\). We regard each \(\psi \in \Psi\) also as a character of \(\mathbb{Z}_S^\times\). Let \(H\) denote the torsion subgroup of \(\mathbb{Z}_S^\times\). For each \(m \in \mathbb{N}\), let \(\xi_m\) denote an arbitrarily chosen primitive \(m\)-th root of unity. In the case \(|u| = 1\), Theorem 3 can be expressed as in the following

THEOREM 3'. Suppose that \(|u| = 1\) and that the condition (0.3) holds. Then, we have

\[
(3.2.1) \quad |H^n_{\chi_{n,\psi}}(u)| = \begin{cases} |1+u| & \text{if } x \text{ is even} \\ 1 & \text{if } x \text{ is odd} \end{cases}
\]

for almost all \(\psi \in \Psi\) and for all \(\phi \in \Phi\) and \(n \in \mathbb{N}\).

In order to prove this, we use the following

LEMMA 3.2.1 (Friedman [4]). Let \(H \in \mathbb{Z}_t^\times\) with \(H > 0\) and \(g \in \mathbb{N}\) with \((g, Q) = 1\). Then, we can choose a complete set \(E\) of representatives of \(H\) modulo its subgroup \((1,-1) = ((1, \cdots, 1), (-1, \cdots, -1))\), \(\eta_0 \in E\) and \(N_0 \in \mathbb{Z}_t^\times\) with \(N_0 > H\), such that for all \(N > N_0\), there exist \(x_1\) and \(x_2\) in \(\mathbb{Z}_S^\times\) satisfying

1. \(S_N(x_1 \eta) = S_{N-H}(x_1 \eta) \equiv 0 \pmod{g}\) for all \(\eta \in E\),
2. \(S_N(x_2 \eta) = S_{N-H}(x_2 \eta) \equiv 0 \pmod{g}\) for all \(\eta \in E - \{\eta_0\}\),
3. \(S_N(x_2 \eta_0) = S_{N-H}(x_2 \eta_0) + \Omega^n_{N-H} \equiv 0 \pmod{g}\),
4. \(S_H(x_1) = S_H(x_2) = 1\).

- 40 -
Now, we prove Theorem 3'. Without loss of generality, we assume that χ is of the first kind for each p_1, \ldots, p_t and p. For each $\psi \in \Psi$, let $N_\psi \in \mathbb{Z}$ be such that $f_\psi = N_\psi^{\psi}$. Applying induction on t, it is sufficient to prove that (3.2.1) holds for all $\psi \in \Psi$ with $N_\psi > 0$, all $\varphi \in \Phi$ and all $n \in \mathbb{N}$.

In the case where χ is even and $u = -1$, we can deduce $H_n^{\chi \psi \varphi}(u) = 0$ for all $\psi \in \Psi$, $\varphi \in \Phi$ and $n \in \mathbb{N}$ directly from Lemma 1 of [19]. We exclude this case in the rest of this section.

We deduce from Lemma 1 of [19] that

$$
\frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \equiv \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \pmod{p, \chi, \psi, \varphi, u}
$$

holds for all $\varphi \in \Phi$ and $n \in \mathbb{N}$ and that

$$
\frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \equiv \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \pmod{p, \chi, \psi, \varphi, u}
$$

holds for all $\varphi \in \Phi - \{1\}$ and $n \in \mathbb{N}$. If χ is even, we have

$$
\frac{1}{1+u} \cdot \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) = \frac{1}{1+u} \cdot \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \pmod{p, \chi, \psi, \varphi, u}
$$

for all $\varphi \in \Phi$ and $n \in \mathbb{N}$ and

$$
\frac{1}{1+u} \cdot \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) = \frac{1}{1+u} \cdot \frac{u}{f_{\chi \psi \varphi} x_n^\varphi}(u) \pmod{p, \chi, \psi, \varphi, u}
$$
for all \(\psi \in \Psi - (1) \) and \(n \in \mathbb{N} \). Hence, it is sufficient to prove that, for
an arbitrarily fixed \(\psi \in \Psi \), \((3.2.1)\) holds for any \(\psi \in \Psi \) with \(N_\psi > 0 \) and \(n=0 \).

We write \(\chi_\psi = d \prod_{i=1}^{N_\psi} q_i^{a_i} \) with \((d,Q)=1 \) and \(a_i = 0 \) or \(1 \). We fix \(\psi \in \Psi \) and denote the conductor of \(\chi_\psi \) simply by \(f \). Then, \(f=dQ\prod_{i=1}^{N_\psi} p_i \).

Let \(k \) be the field obtained by adjoining \(u \) and the values of \(\chi \) and \(\psi \) to \(\mathbb{Q} \), and put \(k_N = k(t \prod_{N=1}^{N_\psi} \) for each \(N \in \mathbb{Z}^+ \). We can choose \(M \in \mathbb{Z}^+ \) with \(M > 0 \) such that, for any \(N \geq M \), \([k_N:k_M] = \frac{N-M}{n-N-M} \) and that the prime ideal of \(k_M \) defined by the valuation \(1 \) does not split in \(k_N \). Then, denoting by \(T_{N,M} \) the trace map from \(k_N \) to \(k_M \), we have \(|T_{N,M}(x)| < 1 \) for any \(x \in k_N \) with \(|x| < 1 \).

Let \(f' \) be the least positive integer such that \(|u^{-1}| < 1 \) and write \(f' = d_1 \prod_{N=1}^{M_1} \) with \((d_1,Q)=1 \) and \(M_1 \in \mathbb{Z}^+ \). In what follows, we fix \(M \in \mathbb{Z}^+ \) satisfying \(M > M_1 \) and the property described above. Further, we always suppose that \(N \geq M \) and write simply \(T \) for \(T_{N,M} \). We denote the prime ideal of the completion of \(k_N \) in \(\mathbb{C}_p \) simply by \(p \). For each \(x \in k_S^\times \), \(j \in \mathbb{Z} \) and \(\eta \in H \), we put \(\tau_{x,j,\eta} = S_{N-M}(x \eta) + jQ \eta^{N-M} \), \(A(x,j,\eta) = \psi(x)^{-1} \chi_\psi(\tau_{x,j,\eta}) \) and \(B(x,j,\eta) = u^{-f+1} \chi_\psi(\tau_{x,j,\eta}) \). We first prove the following

Lemma 3.2.2. Let \(E \) be a complete set of representatives of \(H \) modulo \((1,-1)\), and suppose that \(N=N_\psi \). Then, for any \(x \in k_S^\times \), we have

\[
T(\psi(x)^{-1} H_0 \chi_\psi(u)) = u^{f-1} \prod_{N=1}^{N_\psi} \sum_{\eta \in E} \sum_{j=0}^{\eta - M - 1} A(x,j,\eta) B(x,j,\eta).
\]
Proof. We have \(\sum_{a=0}^{f-1} x_1^a u^{-a} \). Hence,

\[
\sum_{a=0}^{f-1} x_1^a u^{-a} T(x^{-1}a).
\]

As in the proof of Lemma 1 of [4], we see that \(T(x^{-1}a) \neq 0 \) holds if and only if \(\psi(x^{-1}a)^n \equiv 1 \) and in that case, we have \(T(x^{-1}a) = \psi(x^{-1}a)^n \equiv 1 \) if and only if \(a \equiv \pm nx \) (mod \(QnH \)) for some \(n \in E \). Since the integers \(a \) with \(0 < a < f \) satisfying the above property are exactly the integers \(\tau x, j, n \) and \(f - \tau x, j, n \) with \(0 < j < d nH \), we obtain the assertion of this lemma.

We continue to prove Theorem 3'. In the first place, we consider the case \(|1 + x(-1)u| = 1 \), that is, \(x \) is odd or both \(x(-1) = 1 \) and \(|1 + u| = 1 \) hold. We put \(g = dd_1 \) and apply Lemma 3.2.1. Suppose that \(N = n \psi \geq H \) and that \(E, x_1, x_2 \) in \(Z/S \) and \(n_0 \in E \) satisfy the conditions (1)-(4) of Lemma 3.2.1. We prove \(|H_0^0 \chi_{\psi\theta}(u)| = 1 \).

If \(n \neq n_0 \), we have \(x_1^{-1} \tau x_1, j, n \equiv x_2^{-1} \tau x_2, j, n \) (mod \(f_\psi \)) and \(\tau x_1, j, n \) is congruent to \(\tau x_2, j, n \) modulo both \(f \chi_\psi \) and \(f' \). Hence,

\[
A(x_1, j, n)B(x_1, j, n) \equiv A(x_2, j, n)B(x_2, j, n) \pmod{p}.
\]

On the other hand, if \(n = n_0 \), we have \(x_1^{-1} \tau x_1, j, n_0 \equiv x_2^{-1} \tau x_2, j, n_0 \) (mod \(f_\psi \)) and \(\tau x_1, j, n_0 \) is congruent to \(\tau x_2, j, n_0 \) modulo both \(f \chi_\psi \) and \(f' \). Hence,
\[A(x_1, j-1, n_0)B(x_1, j-1, n_0) \equiv A(x_2, j, n_0)B(x_2, j, n_0) \pmod{p}. \]

Therefore, we see from Lemma 3.2.2 that

\[
(3.2.2) \quad u^{-f+1} \prod_{T=(\psi(x_1)^{-1} \psi(x_2)^{-1})H^0_{X_{\psi\psi}(u)}}
\equiv A(x_1, d\eta-1, n_0)B(x_1, d\eta-1, n_0)-A(x_1, -1, n_0)B(x_1, -1, n_0) \pmod{p}
\equiv A(x_1, -1, n_0)u^{-2\tau_{x_1, -1, n_0}}(\mod{p}).
\]

Now, it is easy to see that \((\tau_{x_1, -1, n_0}, f_{X_{\psi\psi}}) = 1\), and so,

\[|A(x_1, -1, n_0)| = 1. \] From (0.3), we have \(|u - d\eta| = 1\).

Suppose that \(|H^0_{X_{\psi\psi}(u)}| < 1\). Then, we have \(|u - d\eta| \equiv 0(\mod f')\) and we deduce \(f' = 2\), namely, \(|u + 1| < 1\), which contradicts the assumption that \(|u + 1| = 1\). If \(x\) is even, then we have \(4\tau_{x_1, -1, n_0} \equiv 0(\mod f')\) and we deduce \(f' = 4\). Further, we see easily that

\[
\sum_{a=0}^{2f-1} x_{\psi\psi}(a)u^a \equiv \sum_{a=0}^{2f-1} x_{\psi\psi}(a)u^{-a} \equiv 0(\mod p),
\]

and so

\[
2f-1 \sum_{a=0}^{f-1} x_{\psi\psi}(a)(u^a + u^{-a}) \equiv 0(\mod p).
\]

Since \(f' = 4\), we have \(u^2 \equiv -1(\mod p)\). Hence, we obtain

\[
2(2, f_pQ) = 1. \] Hence, \(H^0_{X_{\psi\psi}}(-1) \equiv 0(\mod p)\). Then, in the same way as

we have deduced (3.2.2), we obtain

\[
-2\tau_{x_1, -1, n_0}(\mod{p}).
\]

namely \(2(-2) \equiv 0(\mod p)\), which is a contradiction. Thus, we conclude
that \(|H^0_{\chi\psi\phi}(u)|=1\).

Finally, suppose that \(x\) is even and that \(|1+u|<1\). Then, (0.3) implies \((f,pQ,2)=1\), and we have \(|(1+u)^{-1}H^0_{\chi\psi\phi}(u)|\leq 1\). We must show that \(|(1+u)^{-1}H^0_{\chi\psi\phi}(u)|=1\). Put \(g=2dp\) and apply Lemma 3.2.1. Suppose that \(N=N\psi=g\) and that \(E, x_1\) and \(x_2\) in \(\mathbb{Z}_S^X\) and \(\eta_0\in E\) satisfy the conditions (1)-(4) of Lemma 3.2.1. We prove \(|(1+u)^{-1}H^0_{\chi\psi\phi}(u)|=1\). We have, for \(\eta\neq\eta_0\),

\[
(3.2.3) \quad S_{N-H}(x_1\eta) - S_{N-H}(x_2\eta) \quad \text{and} \quad \frac{u}{u+1} \equiv 0 \pmod{p}.
\]

In fact, putting \(a=\max(S_{N-H}(x_1\eta) - S_{N-H}(x_2\eta), S_{N-H}(x_2\eta) - S_{N-H}(x_1\eta))\), we have \((u^a-1)/(u+1)=\sum_{j=0}^{a-1} (-u)^j \equiv a \pmod{p}\). Since \(p|g\), we have \(a\equiv 0 \pmod{p}\).

Hence (3.2.3) holds. In the case \(\eta=\eta_0\), we have

\[
(3.2.4) \quad S_{N-H}(x_1\eta_0) - Q\eta^{N-H} S_{N-H}(x_2\eta_0) \quad \text{and} \quad \frac{u}{u+1} \equiv 0 \pmod{p}.
\]

Using a similar method that we have deduced (3.2.2) and taking account of (3.2.3) and (3.2.4), we deduce

\[
u^{-f+1} \frac{1}{\chi^{N-H}} (\psi(x_1)^{-1} - \psi(x_2)^{-1}) H^0_{\chi\psi\phi}(u) / (u+1) = \tau x_1^{-1} - 1, \eta_0^-(u - dQ^N)^{-1} / (u+1) \pmod{p}.
\]

Now,
\[\frac{2r_{x_1, -1, \eta_0^{-1}}}{(u+1)} = \sum_{f=0}^{2r_{x_1, -1, \eta_0^{-1}}} (-u)^f \equiv 2r_{x_1, -1, \eta_0} \pmod{p}, \]

and since \((p, 2)=1\) and \(r_{x_1, -1, \eta_0} \equiv -Q_n^{N-H} \neq 0 \pmod{p}\), we see

\[T((\psi(x_1)^{-1} - \psi(x_2)^{-1})H^0_{x, \psi}(u))/(u+1) \neq 0 \pmod{p}. \]

Thus, we obtain \(|(1+u)^{-1}H^0_{x, \psi}(u)| = 1\).
REFERENCES
