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Preface 

Dispersal is one of the fundamental components common to life histories of 

almost all species, the means of which are full of variety. Larger animals which are 

equipped with wings, legs, tails, and fins can migrate by themselves for long distance, 

although smaller animals and other organisms such as plants and microorganisms can 

disperse by help of wind, stream, tide, and other animal including the human. Even if 

means of dispersal are passive, organisms often develop structures advantageous for 

dispersal: wings of planthoppers, feathers of dandelion's seeds, colorful nutritious fruits 

of many endozoochorious plants, etc. 

Many theoretical and empirical studies so far have revealed that the dispersal in 

spatially heterogeneous and even homogeneous habitats strongly affects on the 

population dynamics as well as the genetic ones. For example, the system of 

competitive or prey- predator species can be maintained by the difference between the 

dispersal ability of each species (Huffaker, 1958: Hanski, 1983: Nee and May: 1992). 

On the other hand, the population living in the heterogeneous environment may extinct 

for larger dispersal rate because of excessive emigration from favorable patches 

(Shigesada et al., 1986). Theoretical studies on population dynamics with dispersal 

have mainly been done adopting metapopulation models (Han ski and Gilpin, 1991; 

Hanski and Gilpin, 1997) and reaction - diffusion models (Okubo, 1980; Shigesada and 

Kawasaki, 1997), although in recent years increasing researchers becomes engaged in 

studying lattice models (Matsuda et al., 1987; Durrett and Levin, 1994; Durrett and 

Levin, 1997; Harada et al., 1995; Harada and Iwasa, 1996; Kubo et al., 1996; 

Nakamaru et al., 1997). 

Yet why do organisms disperse, or, what benefit do dispersers gain at the co t of 

dispersal, such as energy loss for migration itself, physiological cost of developing 

structures for dispersal, and additional cost of mortality? Hamilton, who was 

interested in the wing polymorphism within insect species, and May were first to show 

that the trait for dispersal evolve even when the patchy habitats are stable and the 

mortality cost of dispersal is extremely high (Hamilton and May, 1977; Hamilton, 

1996). They analyzed the evolutionarily stable strategy (ESS), which are defined as 

the strategy that when the most of the population adopted that strategy, no mutants who 

adopt other strategy can invade (Maynard Smith, 1982). Many ESS dispersal models 

have been developed, most of which are more realistic extensions of Hamilton and May 

( 1977) (e.g. Crespi and Taylor, 1990; Ozaki, 1995). 

In general, however, mathematical models con idering realistic factors may 
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often be o complicate that it is difficult to derive the explicit criteria for ESS as well as 

ESS solutions itself. In the fir t chapter of thi article, I apply genetic algorithm 

combined a neural network to calculate the ESS dispersal rate when the quality of 

patches are different from each other. Genetic algorithm are a method of optimization 

analogous to the evolution of organisms(Holland, 1985) and recently it has been applied 

to evolutionary ecology (e. g. Toquenaga et al., 1994). On the other hand, neural 

network is analogous to nervous systems of organisms, which has been studied mainly 

in computer science, and it has also been applied to behavioral ecology (e.g. Enquist 

and Arak, 1993; Enquist and Arak, 1994). In this article I used a neural network in 

order to construct the variety of reaction norm functions of individuals. 

In the second chapter, I develop a new model to evaluate ESS dispersal range. 

In the three model used to study population dynamics with spatial structure, 

meta population models cannot deal with dispersal range explicitly, although those 

models have been applied most widely to study the evolution of dispersal. On the 

other hand, it is difficult for reaction-diffusion models to deal with the difference in the 

strategies and fitness of each individual, that is a reason why that models have seldom 

been applied to evolutionary ecology. Lattice models are the most flexible in the three 

models, while in the most case theoretical analysis is almost impossible and computer 

simulation is often an unique method for analysis. The model I propose in the second 

chapter is a simple and abstract one such that an approximated ESS solution can be 

evaluated by theoretical and numerical analysis, although it can predict the results of the 

more realistic individual-based computer simulation, which proves the promising 

possibility of that model. 

In the following I summarize the content of each chapter in more detail. 

Chapter 1: Evolution of Condition-Dependent Dispersal: A Genetic-Algorithm 

Search for the ESS Reaction Norm 

Many insects produce two types (winged and wingless) of offspring that greatly 

differ in dispersal ability. The fraction of the two often depends on quality of the local 

habitat and crowding experienced by the mother. Here we studied the condition­

dependent dispersal that is evolutionarily stable. The model is also applicable to 

annual plants that produce two types of seeds differing in dispersal rate. Assumption 

are: the population is composed of a number of sites each occupied by a single adult. 

The total number of offspring produced by a mother depends on the environmental 

quality of the site which varies over the years and between sites. The ESS fraction of 

dispersing type as a function of the quality of the habitat (or ESS reaction norm) states 

that no disperser should be produced if habitat quality m is smaller than a critical value 
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k. If m is larger than k, the number of disper ers should increase with m and that of 

nondi persers hould be kept constant. Second, we developed an alternative way of 

searching for the ESS: the reaction norm i represented as a three-layered neural 

network, and the parameters (weights and biases) are chosen by genetic algorithm (GA). 

This method can be extended easily to the cases of multiple environmental factors. 

There was an optimal (relatively wide) range of mutation rates for weights and biases, 

outside of which the convergence of the network to the valid ESS was likely to fail. 

Recombination, or crossing-over, was not effective in improving the success rate. The 

learned network often shows several characteristic ways of deviation from the ESS. 

We also examined the case in which the quality of different sites are correlated. In 

this case the ESS fraction of dispersers increases both with the quality of the site and 

with the average quality of the whole population in that year. 

Chapter 2: Optimal Dispersal Range and Seed Size in a Stable Environment 

The evolutionarily stable (ESS) dispersal range for annual plants is studied in a 

stable environment when there is a trade-off between seed survivability and dispersal 

range via seed size. Larger seed size is more beneficial in the competition for safe 

sites, but likely to be dispersed shorter and to suffer competition among siblings. 

Previously Hamilton and May ( 1977) found that the dispersal can be adaptive in a 

stable environment to reduce competition among sibs, but they assumed that disperser 

can go to all the patches equally likely, which is not suitable for many terrestrial plants 

with limited dispersal range. In this article I discuss the evolution of dispersal range 

for wind dispersed seeds when dispersal range is tightly coupled with seed size. I 

assume that the density of dispersed seed follows two-dimensional normal distribution 

function, with variance decreasing with seed size. Due to the trade-off between the 

seed rtumber and the survivability of a seedling off pring, there is a seed size w that 

maximizes the product of the two quantities. This is the optimal seed size when size­

dependent dispersal is neglected. The ESS seed size considering the size-dependent 

dispersal w
* is also calculated by neglecting the effect of spatial clumping of relatives. 

Under the environment unfavorable for seed dispersal, the ESS seed size w
· can be 

much smaller than the optimal seed size w, but there is a lower limit for the ESS 

dispersal range even in the extremely sticky environment. Even if the dependency of 

seed survivability on the seed size is so weak that the cost of long range disper al is 

small, the ESS seed dispersal range cannot become very large. These results are 

confirmed by individual-based computer simulations with more realistic assumptions 

con idering spatial clumping of non-sib relatives. 
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Chapter 1 

Evolution of Condition-Dependent Dispersal: 

A Genetic-Algorithm Search for 

the ESS Reaction Norm* 

1.1 Introduction 

Many life history traits as well as behavioural or morphological traits show 

environmental plasticity -- the phenotypes depend strongly on the environmental 

conditions experienced by the individuals or by their mothers. A typical example is 

"phase change" of insects, which produce two types of offspring (winged and wingless) 

that greatly differ in dispersal ability. Wing polymorphism of insects has been 

observed in many taxa, including aphids (Kawada, 1987; Liu, 1994 ), plant hoppers 

(Denno, 1994), crickets (Masaki and Shimizu, 1995; Tanaka, 1994; Zera and Mole, 

1994), and beetles (Aukema, 1995). For wing polymorphism of aphids, it i known 

that the phenotype is controlled by the food quality and availability, temperature (Liu, 

1994) and the frequency of physical contacts with conspecifics, indicating the degree of 

crowding (Kawada, 1987). 

Cost-benefit analysis and comparative studies between species and between 

different populations of the same species revealed that the evolution of dispersal 

tendency depends on the habitat persistence (Denno, 1994). Solbreck (1995) 

summarized the study of the habitats and resource density of a lygaeid bug in a patchy 

landscape over a seventeen year period and concluded that migration is more likely to 

evolve if the habitat is patchy, per capita food resources greatly fluctuate, and the 

relative favorability of patches changes between years (see also Gatehouse, 1994). 

Because the evolutionary advantage of different fractions of the two types 

within a brood depends on their frequency in the population, and on the environmental 

condition experienced by the mothers, the evolutionary outcome can be calculated by 

game models (e.g. Crespi and Taylor, 1990; Ozaki, 1995). The population structure 

• This Chapter was done in collaboration with Professor Yoh Iwasa. The original paper is accepted for 

publication in Researches on Population Ecology. 
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commonly assumed is as follows (e.g. Hamilton and May, 1977; Comins et al., 1980; 

Cohen and Motro, 1989; Crespi and Taylor, 1990): The population is composed of a 

large number of sites, each occupied by a single adult. Each mother can produce 

offspring that are either of the dispersing type or of the nondispersing type. The 

nondispersers stay in their natal sites but dispersers migrate out to a different site. 

Dispersal is accompanied by a considerable risk of mortality. Individuals settled in a 

site after a dispersal stage, both residents and migrants compete with each other, and 

only one per site wins and survives to maturation. The strategy of each mother is the 

fraction of dispersers among her offspring, which may change with the quality of the 

environment. The details of the assumptions may differ, concerning the number of 

adults remaining in each site, the mode of genetic inheritance (sexual or asexual), the 

cost of dispersal, and the fluctuation of environmental quality. A similar model is also 

applicable to terrestrial plants that produce two types of seeds differing in dispersal rate 

(e.g. seeds with or without pappus). 

In this paper we first show that the ESS fraction of dispersers among offspring is 

dependent on the total number of offspring produced by a mother. If the 

environmental quality fluctuates between sites and over the years, each mother should 

decide the fraction of dispersers among her offspring depending on the quality of the 

site. 

Evolutionary game models have been quite successful in providing tools for the 

· understanding of the diversity of life history patterns and animal behavior in nature 

(Maynard Smith, 1982), examples including the hatching schedule of herbivorou 

insects (Ezoe, 1995). However, traditional methods of obtaining the evolutionarily 

stable strategy often require us to specify an explicit mathematical expression including 

one or a few free parameters to choose. This procedure in effect gives a class of 

reaction norm, or how the organisms change their phenotypes depending on the 

environment. The validity of the ESS computation critically depends on the choice of 

the candidate functions, and sometimes a wrong choice of a class of functions results in 

qualitatively different conclusions (e.g. an example in sex change of fish, see Iwasa 

(1991)). More importantly, the need to specify the functional form makes it difficult 

to consider organisms' response to multiple environmental factors. To overcome these 

difficulties, we need a more flexible methodology to search for the ESS reaction norm 

without specifying much in advance what it is like. 

In the second half of this paper, we propose an alternative method of finding an 

ESS reaction norm -- we construct candidate reaction norms expressed in terms of a 

three-layer neural network, which is known to be flexible enough to simulate any 

complex functional form (Ishikawa, 1990). Then we can choose a number of 
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parameter , weights and biases, included in the network to realize a reaction norm that 

is clo e to the ESS. 

The usefulness of the neural network modelling of an organism's reaction to 

diverse stimuli is most clearly shown by the studies of the evolution of female mate 

preference for males of various shapes and patterns (Enquist and Arak, 1993, 1994; 

Johnstone 1994) or pollinator choice of flower shape (Arak and Enquist, 1993). A 

neural network was also adopted to express a reaction norm of each individual in group 

formation process of birds (Toquenaga et al., 1994). However, in these and other 

papers using neural network models, an explicit ESS solution is not available, hence we 

cannot confirm that the network is close to the valid ESS. In the present paper, we 

apply the neural network modelling to the case in which an explicit ESS solution is also 

available, and we examine carefully the conditions in which the new method converges 

to the valid ESS. 

In doing the random search for suitable parameter values, we face a common 

problem of being trapped in local peaks if we adopt the usual gradient methods for 

optnruzation. To overcome this difficulty, we here use a genetic algorithm (or GA) 

(Holland, 1985; Davis, 1990; Michalewicz, 1994). The parameters are stored as an 

array, and a population of these arrays with some variation is generated. Through an 

evolutionary operation including reproduction, survival, competition, dispersal, and 

crossing-over, the evolutionarily stable array of parameters are found. We may regard 

this procedure as a simplified simulation of genetic evolution. 

In this paper, we study the performance of the method for different choices of 

parameters in genetic algorithm procedures, such as mutation rates, variance of 

mutation, and crossing-over. 

1.2 Model 

We consider a population consisting of many sites (or local habitats), in each of 

which only a single adult survives, as is assumed in Hamilton and May ( 1977). The 

reproductive success in a site depends on the "quality" of the environment, which 

fluctuates among sites and over generations. Let m be the resource level at a site. 

We first study the case of uncorrelated environmental fluctuation, in which m is a 

stochastic variable, independent between sites and over generations following the 
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identical probability di tributionfim). Later we consider the ca e in which m may be 

correlated between sites in the arne generation. 

The adults produce two type of offspring: dispersers and nondispersers. We 

here assume that the costs of producing a dispersing offspring and a nondispersing 

off pring are the same. 

The fraction of dispersing offspring of a mother is denoted by v, which satisfies 

0� � 1. It may be affected by the genotype of the parent a well as by the quality of 

the environment m in general. In this paper we do not specify the mechanism for the 

control of wing dimorphism although simple genetic models have been proposed 

considering juvenile hormone (JH) level influencing the traits of migratory syndrome 

(e.g. Fairbairn, 1994). 

In this model one generation cycle consists of three stages: 

1. Reproduction: At the start of a season, an adult produces offspring which may be 

either of the dispersing type or of the nondispersing type. The number of eggs 

produced by an adult depends on the environmental condition fluctuating between years. 

Resource level of a patch m is equal to the number of offspring (eggs or seeds) 

produced in a patch. We call m the quality of the environment. The fraction of 

migrants is a function of both the mother's genotype and the quality of the patch. Let 

v(m) be the fraction of dispersing type as a function of the total number of offspring m, 

given for a particular genotype of the mother. Hence mv(m) is the number of 

dispersing type offspring and m(1-v(m)) be the number of offspring staying in the patch. 

2. Dispersal: Dispersing type daughters emigrate from the natal ite and settled into 

other patches chosen at random. Dispersal type offspring produced from all the sites 

are pooled and then redistributed randomly. Hence migrants from a site arrive at any 

of the other sites with equal probability. The survivorship during migration is p ( < 1). 

The loss due to migration appears not only as reduced survivorship but also 

reduced fecundity, which is the cost of migration capability (Roff and Fairbairn, 1991; 

Tanaka, 1994; Zera and Mole, 1994; Zera and Denno, 1997), but for simplicity of 

argument we here neglect this effect. 

3. Competition: After the dispersal stage, competition occur among individuals in 

each site. Only one individual wins and reproduces. The probability of being the 

winner is the same between migrants and residents. 

From the assumption of asexual reproduction, the interests of a mother and her 

daughter are the same. Environment in the next generation is unpredictable. The 

evolutionarily stable strategy (ESS) for the mother is simply to maximize the expected 

number of sites in which one of her offspring is the winner. We here assume that the 
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final population includes a single genotype that is evolutionarily stable although natural 

insect populations are often genetically polymorphic with respect to the propensity to 

produce winged and wingless types (Roff, 1994a, 1994b ). 

Evolutionary stable reaction norm: 
Consider a mother with a genotypic reaction norm of v, indicating that he 

produces dispersing type offspring with fraction v(m) in the patch of quality m, in the 

population where a single genotype denoted by v is common. Let ¢(m) be the 

expected number of surviving offspring produced by her if the resource level is m. 
Due to competition among individuals, the number of surviving offspring ¢(m) also 

depends on the common genotype v. Hence it should be expressed as a function of 

resource level m, the migration strategy of itself v(m ), and the migration strategy of 

competitors v(m). The fitness of the genotype in a population, denoted by W, is the 

average of ¢(m) with respect to the distribution of resource level m. Using the symbol 

E,J •] for the average with respect to the quality of a site m experienced by the mother, 

the fitness is written as: 

(la) 

The number of surviving offspring produced by a mother is the sum of two terms: 

v m ml v • =E +mv m E , E . 
_ [ m(1- v(m)) J [ [ 1 ]] ¢( ( 

), ( )) c m(1-v(m))+c ( )p m c 1+ m'(1-v(m'))+c 

(1b) 

The first term of the right hand side of Eq. ( 1 b) is the probability that one of her 

nondispersing offspring survives in the natal site, and the second term is the the 

expected number of the surviving offspring that disperse to other sites. The product 

m(1-v(m)) in the first term is the number of offspring remaining in the natal site. cis 

the number of competitors that invaded from other sites; it follows a Poisson 

distribution with average w = E,Jpm v(m)]. In Eq. (lb), EJ•] indicates the average 

with respect to c, the number of invading competitors. Because they have the same 

competitive ability, the probability of a mother's offspring winningthe site is simply the 

fraction of her offspring among all the individuals arriving there. 
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Dispersers are first pooled and then redistributed over all the sites. Because the 

whole system includes a large number of sites, we can neglect the probability that more 

than one of the dispersers produced by a mother settles on the same site. In the second 

term of Eq. ( 1 b), mv(m) is the number of offspring that disperse from the site and p is 

the survivorship of dispersers. The success rate of an individual arriving safely on a 

site is simply the inverse of the total number of individuals arriving there. It is the 

sum of the number of residents m "(1- v (m )), the number of migrants from the other 

patches c, and 1, indicating itself. Em{ •] indicates the average with respect to the quality 

of sites m'. 
The evolutionarily stable reaction norm of this model is given by a function 

v(m) that achieves the highest fitness in a population dominated by individuals of the 

same type. The maximum of the fitness W is achieved by choosing v given resource 

level m. This can be done simply by choosing the optimal v(m) that maximizes¢ for 

each given m. Noting that fraction vis constrained to be within an interval 0��1, we 

have the following relation at the ESS: 

d¢ 
= 0 

dv 

d¢ 
� 0 

dv 

d¢ 
'?. 0 

dv 

ifO<v<l (2a) 

ifv=O (2b) 

ifv=l (2c) 

because migration fraction v is chosen to be the optimal value in the population 

dominated by the same type. Equation (2a) implies that d¢ / dv = 0 if both dispersers 

and nondispersers are produced at the ESS. We calculate the partial derivative with 

respect to v with v(m") fixed, and then set v(m) = v(m): 

i = 
E{ (m(l-�:)) + c}

' ] + mpE
"'{ E, [ 1 + m'(l-1V(m'))+ c ]] 

= 
m{Ecl -c 2] + [a term independent from m and v ]} . (3) 

(m(l - v(m))+ c ) 

-10-



For 0<v<1, Eqs. (2) tells that Eq. (3) is zero. Hence m(l-v(m)) is independent of m. 

By considering other cases (v=O or 1), we have 

l 
k 

1--
V(m)� 

O
m , form� k 

(4) 
for 0 � m < k 

Equation ( 4) implies that no disperser should be produced if the total number of 

offspring is small (m � k) but some dispersers should be produced if the total number of 

offspring exceeds a critical level k. The optimal value of k which satisfies J¢ I Jk = 0 

depends on the distribution of patch quality f(m). The expected number of offspring ¢ 

given by Eq. (lb) is the sum of the two terms: indicating the fitness from nondispersing 

offspring, and the fitness from dispersing offspring. We compare their marginal 

increase when k increases by unit amount. The partial derivative of the first term of¢ 

with respect to k is, 

!!__(E [-k ]J -E [ k J dk c k + c 
-

c ( k + c) 2 

(Sa) 

which indicates the marginal increase of fitness through producing nondispersing 

offspring by using larger k. The partial derivative of the second term of Eq. (1 b) is, 

(5b) 

which indicates the decreasing rate of success from dispersing offspring when she uses 

larger k. For J¢ I Jk = 0 to hold, these two must be equal in magnitude. 

The optimal k can be obtained by iterative computation as follows: 

[1] First, set k to zero. 

[2] Then, calculate the average number of invaders in a patch w = Em[pmv(m)] 

using Eq. ( 4). 
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[3] We examine whether k satisfies the optimization condition J¢>/ Jk = 0. For 

small k, the sum ofEq. (Sa) and Eq. (Sb) is larger than zero. If the magnitude 

of Eq. (Sa) becomes smaller or equal to the one of Eq. (5b) from the first time, 

which means d¢>/dk � 0, k is regarded as an appropriate value. Otherwise we 

increase k and go back to step [2]. 

[4] Iterate step [2] and step [3] until Eq. (Sa) becomes small or equal to Eq. (Sb). 

A result similar to Eq. ( 4) has been obtained in several previous theoretical 

works on the evolution of dispersal rate (e.g. Crespi and Taylor, 1990; Ozaki, 199S). 

1.3 Neural network model of reaction norm and genetic 

algorithm 

In the model studied in the present paper, the evolutionarily stable reaction norm can be 

calculated explicitly. This is, however, not possible in general. For such cases we 

need to simulate the evolutionary replacement of genes that cause individuals to have a 

different reaction norm v(m). In a typical case, we first choose a class of candidate 

functions that include a few parameters determining the shape of the function, and then 

examine the "evolution" of these parameters. The choice of the class of candidate 

functions is very important for the success of this method, because we will not be able 

to reach a correct answer if the chosen class of functions does not include a function 

similar to the correct ESS solution. To avoid such a situation, we need to choose a 

class of candidate functions that are sufficiently flexible to imitate any complex form of 

functions. 

Neural network model of reaction norm 

To formulate the reaction norm, we use a neural network of feed forward type 

which is a method to generate an input-output relationship in a very flexible way. A 

neural network gives the fraction of migrant v (output) as a function of quantities that 

might affect the decision making of the organism, such as the environmental quality of 

the patch m. Figure 1 illustrates the structure of the neural network we used, which 

has been adopted in modelling the regulatory region of developmental genes (Takeda, 

1993; Takeda and Iwasa, 1997). 
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The neural network is composed of three layers (input, intermediate, and 

output layers). First and second layers contain multiple units (neuron), but the third is 

a single unit. Each unit receives input from the units in the previous layer and give 

output to some units in the next layer. Let xk be the input of the system, and yk be the 

output of the k-th neuron in the input (first) layer: 

1 yk=-------------
1 + exp( -xk + ak) 

(6a) 

which is a sigmoid function increasing from 0 to 1, and the transition is centered around 

ak. We call ak "bias" in this paper. Let zj be the state of the intermediate layer which 

lS 

1 
(6b) z - -----�-----------;:-j

-
l+exp(-f,wkjy, + bj) 

where wkj is the "weight" of neuron yk in affecting the state of intermediate layer Zr 

Parameter bj is the bias for the j-th neuron of the intermediate layer. The output of the 

system is: 

0 L w;zj:::; 0 
k 

v= Lw;zj 0 < L w;zj < 1 (6c) 
k k 

1 L w;zj � 1 
k 

where w � is the weight for the signal from the j-th neuron in the intermediate layer. 

Weights (wkp w') and biases (ak, b) may vary between individuals in the population. 

Equations (6a) and (6b) are of a sigmoidal function, while Eq. (6c) is linear. We 

found that the network cannot produce a good result if sigmoidal functions are assumed 

for the third layer as well. The function for the neurons in the output layer was chosen 

as Eq. (6c), in order to realize zero output. 

It has been proved that, with suitable choice of the weights, a three-layer neural 

network can imitate any complex input-output relationship if the number of neurons in 

the intermediate (hidden) layer is large (Ishikawa, 1990). However whether or not we 

can search for the set of parameters that gives a sufficiently accurate input-output 

relationship is a question that requires separate examinations. 
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To imitate a function of a single independent variable, i.e. k = 1, we used seven 

neurons in the intermediate layer, determined after trial and error and considering the 

limitation of available computational resources. As explained later, we used a larger 

network for the case of multiple input (k = 2). 

The neural network models are e pecially u eful if the number of input variables 

is large, and if we have no prior information on the shape of correct ESS. One the 

other hand in these cases, we cannot compare the neural network model with the exact 

ESS solution. To examine the degree of deviation of the network model and the 

condition in which it gives the correct answer, we here apply the neural network model 

to the simple case in which the explicit solution is separately obtained. 

Genetic algorithm 

We adopted a genetic algorithm to "evolve" the neural network and to obtain the 

evolutionarily stable reaction norm. Genetic algorithm is an engineering method to 

search for the optimal solution by the operations of mutation and selection in a 

hypothetical population of sequences, where each sequence codes for a method of 

designing or controlling the object to optimize. It has been used quite extensively in 

engineering when a mathematically tractable model of the object is difficult to construct 

(Holland, 1985), and has also been adopted in behavioral ecology (Sumida et al., 1990; 

Toquenaga et al., 1994; Johnstone, 1994; Kamo et al., 1997), in the evolution of 

signalling (Enquist and Arak, 1993; Johnstone, 1994), and in human sociobiology 

(Johnstone and Franklin, 1993). 

The method can be regarded simply as an efficient technique to search for the 

evolutionarily stable state, rather than a simulation of genetic dynamics, but it may also 

be regarded as a simplified computer simulation of evolutionary process, although we 

did not attempt to make biologically plausible assumptions on the genetic system 

coding for the networks. We call a set of parameters of a neural network (ak, wkj' bp 

and w') the "genotype" of an individual, which determines the strategy responding to 

the environment. 

In our simulations for the case of single input model, the "genotype" of an 

individual was a set of 22 parameters (weights and biases) of a neural network. These 

numbers were arranged on four series, { ak}, { w1j}, { b1}, and { w'), each of which is 

called "chromosome". The population was composed of N=100 individuals, which 

represent adults occupying 100 sites. In each time step, which we call a generation, 

there were the following operations (Fig. 2a): 
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1. Mutation: Each parameter experiences mutation with the probability of uw 

for weights, and with the probability of ub for bia e (ak, bj) in each generation. If 

mutation occurs for one of the weights or biase , then it is added by a random variable 

following a normal distribution with mean 0 and variance d (Fig. 2b). 

2. Crossing-over: Crossing-over is the procedure comparable to genetic 

recombination, as it allows the construction of a mixture of genomes of different 

individuals. However, unlike genetic recombination, crossing-over in the genetic 

algorithm used in our simulation occurs in a stage separate from the process of 

reproduction or multiplication. With probability of r, recombination rate, another 

individual is randomly chosen, two recombinants are made and replace the original two 

individuals. We adopted two different ways to produce recombinants from given two 

individuals. The first one is "separate-chromosome mode" in which we choose one of 

the two parents randomly and independently for each parameter sets, treated as if each 

parameter sets are coded in different chromosomes (Fig. 2c). The second is "bound­

chromosome mode" in which three chromosomes ({wk1}, {b1}, and {wj}) are bound 

with each other at the both ends so that there are linkage between parameters on the 

different chromosomes (Fig. 2d). This mode of crossing-over is more likely to 

preserve the local structure of the neural network than the first mode. 

3. Reproduction: 

4. Dispersal: 

Each individual reproduces according to the quality of the site m. 

The fraction of offspring that should di perse is computed ba ed 

on the reaction norm generated by the neural network with parameters for the individual. 

A nondispersing offspring would stay in the natal site where it was born. A disper ing 

individual is killed randomly with probability 1-p, and if it survive , it would land on 

one of the sites different from the parent. 

5. Selection: After the migration stage, all the individuals successfully land on 

a site, both migrants from other sites and residents, are equal in the chance of winning 

the sites. One of them is randomly chosen and contributes to the following generation. 

The initial condition was composed of 100 individuals whose weights and bias 

were randomly generated from a uniform distribution independently between 

individuals. After 100,000 generations, the system converged to the equilibrium and 

was then run additional 1000 generations during which mutation and recombination 

were suppressed. After this 1000 generations, the population becomes dominated by 

the type of the highest fitness. We then generate the fraction of dispersing offspring 

for different values of input factors using the network in the final population -- which is 

the reaction norm obtained by the method of neural network - genetic algorithm 

modelling. 

-15-



1.4 Reaction norm of learned network 

We assumed that the number of eggs laid by individuals followed an 

independent uniform distribution. After 100,000 generations, the reaction norm 

generated by the trained network reached an approximate asymptote. 

We evaluated the success of convergence of a neural network trained by the 

genetic-algorithm by comparing the reaction norm of the network and the one predicted 

analytically by Eq. ( 4 ). To quantify the failure of convergence, we use V, defined as 

the sum of squared difference of the number of migrants mv(m) between these two 

values over a range of m used in our computation (l�m�lOO). 

Examples of the reaction norm generated by the trained network are illustrated 

in Fig. 3a. Solid lines are true ESS computed by Eq. (4). Vertical axis indicates the 

fraction of dispersing offspring v(m) for different quality variable m. Circles are for 

the run in which the reaction norm generated by the trained network is fairly close to 

the analytical result. Figure 3b shows the arne data as Fig. 3a, except for indicating 

the number of dispersing offspring mv(m) 

When the neural network failed to converge to the ESS, the reaction norms often 

shows one of the several characteristic patterns. Figure 3a illustrates a few typical 

cases. Diamonds show a typical pattern of constant dispersal rate independent of the 

site quality experienced by the mother. In contrast, triangles show another typical case 

in which dispersal rate generated by the network is a step function -- no migration 

occurs for density below a threshold and dispersal rate is almost a constant for density 

above it. It is convenient to evaluate the goodness of the convergence V, the sum of 

squared difference of the migrant mv(m) between the one predicted by the network and 

the valid ESS given by Eq. (4). We evaluated V=215 for circle plots, but V=7134 and 

V=3174 for diamonds and triangles, respectively. 

To distinguish parameter sets for good convergence and for bad convergence, 

plotting the average values of V gave no clear result because the case in which the 

process failed to converge would show a very large V. Instead we counted the number 

of times in which the 5 replicates for each set of mutations for weights and biases V wa 

smaller than 1000, which are listed in Fig. 4a-h. 

The effect of mutation rates: 

Figure 4a illustrates cases of no recombination (r = 0). Each box is 

distingui hed by the number of runs among 5 replicates that resulted in V<1000. 
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Mutation rate for biase are examined for 5 level : u
h 

= 0.001, 0.0001, 0.00001, 

0.000001, and 0.0; mutation rate for weight are examined also for 5 levels: u
w 

= 0.05, 

0.01, 0.001, 0.0001, and 0.00001. Mutational variance was fixed d- =100. There are 

a range of optimal mutation rates for good convergence. With a very large mutation 

rate for the biases, and with both large and small mutation rates for the weights, no runs 

converge to the valid ESS. 

We have also examined the network with a larger mutational variance d- =400. 

The results are shown in Fig. 4b. The performance was not very different from the 

case with d- =100. 

The effect of crossing-over rate: 

Figure 4c-f show the results for positive crossing-over rate: r =0 (Fig. 4a), r 

=0.005 (Fig. 4c), r =0.01 (Fig. 4d), r =0.02 (Fig. 4e), and r =0.05 (Fig. 4f). The 

separate chromosome mode was adopted. 

From these results, we can conclude that the recombination in improves the 

fraction of good convergence, although too large rate of recombination prevents the 

network from convergence. However the effect is not very large. 

There were no difference detected between different modes of recombination 

and different rates of recombination. For example,. Fig. 4g shows the case with 

r=0.01 with bound-chromosome mode was also examined, but it was not more 

successful than the corresponding separate-chromosome mode (Fig. 4d). 

Although based on small number of replications, we conclude that 

recombination would not create a large improvement in convergence among the range 

of parameters we examined. 

1.5 Correlation of environment between sites 

Next we consider the case in which the environmental qualities in different sites 

are positively correlated as migth be caused by the global environmental change such as 

temperature, moisture etc.. In such a case, the organism can improve its fitness by 

knowing not only the quality of its own site but also the average quality over the 

population in the same generation, because a higher quality in other sites indicates more 
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competitors. To be specific, we assume that the environmental quality of the ith site in 

year tis: 

(7) 

where m, is the general quality of year t, and �i.r is the deviation of the environmental 

quality in site i from the average over all the sites of the same year. We assume 

E( �i.r ]=0. 
A mother should determine the fraction of dispersing offspring by knowing both 

mi.r the quality of the environment and m, the average quality of all the environment, 

indicating abundance of competitors invading the site. We assume that m, is known 

based on some additional information. Let v(mi.r' m,) be the fraction of dispersing 

offspring. The fitness W is the average of the expected number of offspring from a 

mother experiencing the quality of the site m in a generation with average quality of m,, 

and its genotype is v(mi.r' m, ): 

_ _ _ [ m(l- v(m,m)) -] 
¢(v(m, m ),m, m I v (•,•))=Ec 

( _ ) I m 
m 1 - v( m, m) + c 

+mv(m, m )pE m-[Ec [ '( _
1 , _ 

) 
I m] I m] l+ m 1-v (m ,m) +c 

where v is the genotype dominating the population. In Eq. (8), the number of 

competitors cis assumed to follow a Poisson distribution with the average of 

(8) 

w = Em[pmv(m, m) I m]. EJ•I m] and Em[•l m] are now the conditional averages 

when m, is given. 

For fixed m , the optimization of¢ with respect tom is the same as before and 

the optimum fraction of diserpers is given by Eq . (4). However the threshold k 

depends now on m . 

1
1_ 

k(m) 
, 

v(m, m) = 

o
m 

, for 0 5: m < k( m) 

for m � k(m) 
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where k( m) is determined numerically from Eq. (5). 

The evolutionarily stable reaction norm thus calculated hould depend both on 

the environmental quality of the ite m in which the parent experiences and the average 

environmental quality of the whole population m . Figure 5 illustrates that the 

predicted ESS number of dispersing offspring increases with the environmental quality 

of the generation m . 

We have also done genetic algorithm search for the ESS. The neural network 

indicating the reaction norm of the parent should have two input factors: the 

environmental quality of the patch mi.r and the average environmental quality in that 

year m, . The neural network needs to be larger to be able to "learn" the reaction 

norm for two input factors, than the case for one input. We used a neural network of 2 

neurons in the input layers and 11 neurons in the intermediate layer. Thus the total 

number of parameters included in a network is 46. Parameters of mutation rates are 

uh = 0.000001, uw = 0.001, mutation variance is cl = 100, and recombination rate is r = 

0.1 (separate-chromosome mode), which are the value for the fastest convergence in the 

last section. 

Results of the GA training are plotted in Fig. 5 by dotted lines. The network 

could learn to respond to both the quality of the current site and the average quality of 

the whole population. A genetic algorithm search for the ESS olution successfully 

converged to the ESS solution. 

1.6 Discussion 

Many aspects of life history evolution can be formulated as the condition­

dependent decision making of a phenotype, and then can be modelled as a mapping 

from input variables (e.g. density, temperature, food level, fat content etc.) to the 

phenotype (e.g. fraction of dispersal type, sex ratio, timing of reproduction, size of 

maturation, diapause). The mapping may give a probability for a certain life history 

event to occur under given conditions. 

In this paper we have been analyzing the condition-dependent dispersal in which 

each individual offspring is either a dispersing type or a nondi persing type. The 

dispersal dimorphism of insects has been considered as a condition dependent strategy 

adopted under unpredictable environments (Gatehouse, 1994; Roff, 1994a, 1994b ). 
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The present model is also applicable to those plants in which some seeds have pappi 

with large di per ing ability while other seeds have none (Geritz, 1995). The dispersal 

range of eed of most terrestrial plants are much maller than the whole range of the 

population, and we may need to consider the evolutionarily stable dispersal range rather 

than the dichotomy of disper ing and nondispersing seeds (Ezoe, unpublished 

manuscript). For terrestrial plants, the dispersal tendency is likely to change with 

successional status (Olivieri et al., 1995). 

The traditional approach of evolutionary game theory and optimization requires 

us to specify a set of feasible strategies within which the optimal strategy is sought. 

Specifying a feasible strategy set would require at least a rough picture of what the ESS 

solution should be. The limitation of mathematically tractable cases has restricted the 

range of questions we can answer and hence our scope on the evolutionary processes. 

One way to overcome this difficulty is to start with a flexible class of candidate 

functions, which is likely to include the one close to the true ESS. To model a 

potentially complex function from input to output, a neural network model is useful. 

Then we can use a random search method, such as the genetic algorithm to identify the 

evolutionarily stable type. 

Introducing neural network models sometimes allows us to handle complex 

biological traits that cannot be done by traditional modelling techniques. This is 

illustrated most clearly by the evolutionary theory of female mate preference for a male 

with an exaggerated ornament. Most models of sexual selection, both quantitative 

genetic and signalling game models, discuss the evolution of a single male trait (e.g. 

Lande, 1981, Iwasa et al., 1991; Pomiankowski et al., 1991; Grafen, 1990), and a few 

analyze the evolution of multiple Gust two) traits (Pomiankowski and Iwasa, 1993; 

Iwasa and Pomiankowski, 1994; Johnstone, 1995). Enquist and Arak (1993) 

introduced neural network modelling of female visual system in order to discus the 

preference evolution for the male's shape or pattern, and let them evolve to discriminate 

males of the correct species from those of the wrong species. A three-layered neural 

network was used to represent the female's mate preference, which consists of 6 by 6 

receptor cells arranged on a regular square lattice, 10 hidden cells, and one output cell. 

They reported that the trained networks were attracted by "supernormal stimuli" where 

there was a greater response to an exaggerated form than to the images used as the 

correct species for training. Arak and Enquist (1993) trained networks to discriminate 

flowers that had petals of different lengths, which again resulted in a bias in pollinators' 

preference. The evolution of symmetrical visual patterns was discussed in Enquist and 

Arak (1994) and Johnstone (1994). Thus a new set of que tions started to be asked 

once neural network modelling was introduced. Recently, Kamo et al. (1997) have 
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examined Enquist and Arak's ( 1993) model in detail and reported that the same network 

model often shows no supernormal stimuli, contrary to Enquist and Arak, which 

illustrates the need for careful examination of the training procedures in neural network 

modelling. 

An efficient way of searching for the evolutionarily stable network is the genetic 

algorithm, which imitates the population genetic dynamics and evolution in the 

computer. Genetic algorithms have been adopted in behavioral ecology to search for the 

optimal solution in a complicated situations, such as to dawn chorus of birds a the 

dynamic optimization of energy budget (Sumida et al., 1990). 

In this paper, we examined the fraction of cases with good convergence to the 

ESS for different mutation rate, mutation variance, recombination rate, and the mode of 

recombination. We found that there is a range of "optimal parameter sets" that allow 

the fastest convergence to the valid ESS with a high probability. A limited numerical 

study in this paper suggests the need for a more extensive study of the general rules: e.g. 

when the convergence to the ESS is fast, how much time is needed to reach the 

equilibrium, and how robust is the method? 

The neural network modelling may not be simply a way to calculate the ESS. 

For example, the use of neural network modelling in the sensory system has identified 

many nonadaptive natures of the evolved network, such as supernormality, peak shift, 

generalization, propensity for symmetric shape and simple coloration (Enquist and Arak, 

1993; 1994, Johnstone, 1994). These are unlikely to be explained by the optimization 

or evolutionary stability, and yet they are considered to be meaningful properties that 

may explain many features of the female sensory system and exaggerated male trait . 

The same kind of arguments may also be very useful for the evolution of life 

history decision making. In this paper, we observed that the neural network did not 

converge to the exact ESS but instead it converged often to the pattern showing a 

constant migration rate or a step function of quality (Fig. 3). Since the genetic 

algorithm can be regarded as a simplified simulation of evolutionary proce se , this 

result implies that the selective difference between the true ESS and these nonoptimal 

patterns was probably not very great. In such a situation, and in a finite population, it 

should not be surprising if the system has an inherent bias of evolution toward one of 

these patterns rather than the true ESS. If there is a propensity to evolve a reaction 

norm with some characteristic biases, as suggested by Fig. 3, this might explain some of 

the reaction norms shown by organisms in the field. In such a ca e, the systematic 

deviation of the reaction norm to evolve from the valid ESS is not an artefact of the 

method, but can suggest a particular propensity to a pattern that is easy to evolve. This 

pos ibility needs more careful examination. 
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The formalism of expressing the reaction norm as a neural network and 

adjusting the weights and biases by genetic algorithm may become a useful approach in 

the near future, because the speed of computers is rapidly increasing. Using neural 

network modelling of the reaction norm and training by genetic algorithm, we may 

construct a network having a variety of cues that are available to the organisms in their 

decision making. After training with the genetic algorithm, we will end up with the 

neural network that reacts only to one of a few essential cue(s), suggesting that 

organisms too might evolve to use only those few cues. 
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1.7 Figures 

Figure 1 Illustration of a three-layer neural network. Note the number of 

neurons in this figure is differ from the network we used to simulate the reaction norm. 

Figure 2 Scheme of a genetic algorithm:( a) the generation cycle, (b) mutation, (c) 

crossing-over (separete-chromosome mode), (d) crossing-over (bound-chromosome 

mode). During the last 1000 generations of each trial we used excluding mutation and 

crossing-over (the inner cycle in (a)). 

Figure 3 (a) Reaction norms (the fraction of dispersing offspring) v(m) obtained 

by the genetic algorithm training of the neural network. Solid lines are the true ESS 

computed by Eq. (4). Circles are for the reaction norm of a trained neural network 

with V=215 (successful convergence). Diamonds are for that of a network with 

V=7134 (not successful in convergence), in which the reaction norm is a constant 

fraction of dispersing offspring irrespective of the total number of offspring produce. 

Triangles are for another case of failure in convergence with V=3174. In this case no 

dispersal offspring is produced below a certain threshold level, and a high dispersal rate 

above it. 

(b) Plotting The same data as (a), except for the vertical axis indicating the number of 

dispersing offspring mv(m). 

Figure 4 The number of times in which the trained network converged 

successfully to the valid ESS. Cases with different mutation rates of threshold levels 

(a; and b;), and mutation rates of weights (w;) are shown. The brightness of each box 

indicates the numbers of replicates that ended up with good convergence (V<1000) 

among five replicates. (a) r = 0, d- = 100. (b) r = 0, d- = 400. (c)-(f) are positive 

recombination rate: (c) r =0.005, (d) r =0.01, (e) r =0.02, and (f) r =0.05, with 

separate-chromosome mode, and d- = 100. (g) r=0.01 with bound-chromosome mode, 

and d- = 100. 

Figure 5 Reaction norms for the case of two inputs signals, in the environment in 

which productivity in different habitats are correlated. The plots indicates the output 

of the the trained network and the lines indicates the optimal reaction norm obtained 

analytically. The average quality of sites is: (a) m = 65, (b) m =50, and (c) m = 

35. 
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Chapter 2 

Optimal Dispersal Range and Seed Size 

in a Stable Environment* 

2.1 Introduction 

Di persal plays a very important role in life histories of most organisms. 

Sedentary organisms like terrestrial plants have some dispersal stages as seeds, 

propagules, runners, or rhizomes. Dispersal affects the numerical and genetic 

dynamics of the population. On the other hand, dispersal traits evolve as an adaptation 

to the environment. 

Several aspects have been discussed on adaptive significance of seed dispersal. 

An important one of them is the avoidance from competition among close relatives such 

as sibs. Janzen ( 1970) and Cornell ( 1971) claimed that seeds landing near the parent 

suffer from extra mortality by species-specific predators and parasites so that seed 

dispersal evolved to escape from them. Some studies in the tropical rain fore t support 

this hypothesis, while other studies reject it (Clark and Clark, 1984 ). 

Hamilton and May ( 1977) demonstrated that dispersal can evolve in a stable 

environment to avoid the sib-competition. Their model is for an organism in patchy 

habitats, and only a single individual can reproduce in each patch. They calculated the 

evolutionarily stable fraction of migrant offsprings produced asexually by each mother. 

They show that in the ESS at least half of daughters are migrant even if the mortality 

cost of the dispersal is very high. Hamilton and May's ( 1977) models a umed that 

dispersing offsprings are uniformly distributed over the whole habitat regardless of the 

distance from the natal one. 

The assumption of a clear dichotomy of dispersing and nondispersing offsprings 

may not be accurate in most terrestrial plants, as the size of seeds are often relatively 

uniform within species (Harper, 1977), though there are species producing dimorphic 

seeds, such as making two types of seeds both above and under the ground (Zeide, 

1978) or seeds with and without puppus. On the other hand the spatial distribution of 

seeds from a parent is far from uniform. The density of wind dispersal seeds i the 

* The content in this chapter is now submitted to Journal of Theoretical Biology. 

-32-



highest near the parent and decreases with the di tance from the parent (e.g. Okubo and 

Levin, 1989· Portnoy and Willson, 1993). Seed which happen to land near the 

maternal plant suffer severe sibling competition, while in sites distant from the parent 

sibling competition is milder (Cheplink, 1993). 

In this paper, I develop a mathematical model on the evolution of dispersal 

distance of seeds when the dispersal ability of seeds are dependent on the seed size 

which also affects competitive ability and the cost of seed production. A negative 

correlation between seed size and seed dispersal range are often reported (e.g. Green 

and Johnson, 1993). I examine the effect of size-dependent seed dispersal on ESS 

seed size and dispersal range. 

The shape of the spatial distribution of seed dispersal is assumed to be a two­

dimensional normal distribution with dispersal variance small for large seeds and large 

for small seeds. Seed size also affects the probability of settlement and the number of 

seeds produced by an individual. Larger seeds are often more tolerant for severe 

environments, and likely to enjoy an advantage in competition among individuals 

landed on the same site (e.g. Geritz, 1995; Sakai et al., 1997). On the other hand, 

larger seeds require more resources to produce, reducing the number of seeds produced 

by a mother. Many arguments on the seed size has been developed considering the 

last two aspects, and the optimal seed size has been considered as the one that 

maximizes the product of seed survivability and seed number (e.g. Smith and Fretwell, 

1974). In the model studied in this paper considering the dependence of the dispersal 

range on seed size, the ESS seed size w* is always smaller than w, the optimal size 

neglecting size-dependent seed dispersal. The difference between the two seed sizes 

can be regarded as "the cost of dispersal" indicating the relative importance of seed 

dispersal. 

The ESS seed size can be calculated theoretically under the implification of 

neglecting the accumulated clumping of relatives. In the environment unfavorable for 

seed dispersal, the ESS seed size w* is much smaller than w, but there is a lower limit 

for the ESS dispersal range even in the extremely sticky environment. On the other 

hand, if the dependency of seed survivability on the seed size is so weak that the cost of 

seed dispersal is small, the ESS seed dispersal range cannot become very large. I also 

analyze the model by individual-based computer simulation in a more realistic situation 

considering the spatial clumping of non-sub relatives, and confirm the accuracy of 

theoretical results. 



2.2 Model 

( 
I 

I consider a population of annual plants which reproduces only by self-fertilized 

seeds or by parthenogenetic seeds in a homogeneous habitat. The population is 

assumed at the equilibrium with the density of the mature individuals, a constant D. 

At the end of seasons, each individual produces seeds of size w. Since the amount of 

resource for an adult to use for reproduction is limited, the number of seeds to be 

produced, denoted by n, is a decreasing function of seed size w. 

Seeds are dispersed with the density following the two-dimensional normal 

distribution with a peak at the place of the maternal plant. The standard deviation of 

this normal distribution, denoted by a(w), decreases with the seed size w. Let d(w, r) 

be the density of seeds landed in the distance r from the parent for a plant producing 

seeds of size w. It is a product of the number of seeds and a normal distribution: 

where 

d(w, r) = n(w) 8(w, r) 

1 ( r
2 J 8( w,r) 

= ncr(w) 
exp 

- cr(w? 

(1) 

(2) 

Variable r is the distance from the maternal plant and a(w) is the standard deviation of 

8(w). I assume that a single plant produces seeds of the same size w, and that the 

number of seeds n(w) is sufficiently large. I also assume that the standard deviation of 

dispersal is inversely proportional to the seed size: a(w)=l/(hw), where his the 

parameter indicating the difficulty of dispersal in the environment. It may depend on 

many factors including wind velocity, height of plants, soil conditions, topography, and 

so on. 

At the beginning of the next season, only seeds that successfully landed in 

vacant sites can germinate and start to grow. For simplicity I do not consider seed 

dormancy. As juveniles grow, they compete among themselves for the site and self-



thinning occurs. I assume that the final density of individuals D after the competition 

stage is not dependent on the initial density of seeds. The probability that one of seeds 

dispersed from a maternal plant wins a particular site is proportional to the product of 

the number of the seeds arrived at the site and the competitive advantage. Let a(w) be 

the competitive advantage, an increasing function of seed ize w, indicating that 

juveniles growing from larger seeds are likely to be more advantageous in competition. 

The probability with which a seed wins a particular site is: 

Dad 
Lad 

Dan8 
Lan8 

(3) 

In Eq. 3 the sum in the denominator is over all the maternal individuals dispersing seeds 

to the site. A similar formulation of competitive advantage has been adopted in 

previous studies (e.g. Sakai, 1997). 

In the following analysis the competitive advantage of seeds a(w) and the 

number n(w) appear only as the product a(w)n(w), then it is convenient to replace them 

by a single function with respect to seed size w. Since the monumental work by Smith 

and Fretwell (1974), there assumed to be a trade-off between the number of seeds that 

an individual produces and the seed size that increases the survivability of the 

offsprings. Now I assume that the product a(w)n(w) is a function of seed size having a 

single peak. I denote this product by p(w) and assume that it i of the following form: 

w 
p(w) = a(w) n(w) oc 

2 + k (4) 
m+w 

When k is small, p(w) depends sharply on the seed size w. Ask becomes larger, the 

dependence on w becomes weaker. The value of w attaining the maximum p(w), 

which I denote by w, is the optimal seed size without consideration of the seed 

dispersal ability depending on the size. Note that this optimal seed size is independent 

of k. Hence I call k as "flatness" of the fitness landscape. The parameter m indicates 

the location at which p(w) attains its maximum. In reality I solve dpjdw = 0 to find 

the optimal size w equal to the square root of m. 
It is assumed that individuals who win the competition are distributed uniformly 

over the habitat, and they di perse their descendant by seeds in the uccessive season. 



The problem to solve is the trategy ( the seed ize and the dispersal range) that they 

should evolve. 

2.3 Evolutionarily Stable Dispersal Strategy 

I examine the evolutionarily stable strategy (ESS) of seed dispersal range. 

Assume that a mutant with seed size w invades in a population dominated by the 

resident type of seed size w . In the end of a season adults of both mutant and 

wildtype disperse their seeds. The density of the mutant's seed is n(w) 8(w, r), as there 

are unlikely to exist other mutants that are rare. In contrast, the density of wild-type 

seeds is n( w )( D- 8( w, r)), because in the absence of mutant wild type's seed would 

distribute uniformly with density Dn( w). Following Eq. 3, the expected fitness of the 

mutant can be obtained by integrating the probability for her seeds to win vacant sites 

over the habitat Q: 

f(wJw) = J Dan8 
dQ = Joo Dp8 27rr dr 

n an8 + an( D- 8) 0 p8 + 15( D- 8) 
(5) 

where integration is over all of the sites in the habitat. In Eq. 5, a, n, p and 8 are 

abbreviated as a( w), n( w), p( w) and 8( w, r) respectively. The coefficient 2nr is 

required for integrating with respect to the radius r. Differentiating Eq. 5 with respect 

tow and then setting w equal tow, I have the ESS condition for w : 

dj I = � r (pS)
' 
( D- 8) 2n:r dr = 0 

dw w=w P 

(6) 

Applying Eqs. 2 and 4 to Eq. 6, I obtain 
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(7) 

When k equals to zero, Eq. 7 becomes very simple, and the ESS seed size w* is: 

* 

w = (8) 

When k is positive, Eq. 7 can also be solved algebraically using Mathematica, but the 

explicit solution of w* is much more complex than Eq. 8. 

I show the dependency of ESS seed size w* and dispersal range a(w*) on two 

parameters, hand k, in Figs. 1a, 1b, 2a and 2b. The solid lines are the theoretical 

result of w* and a(w*) and the broken ones are of w and a( w ), the latter two being 

for the optimal when the size-dependent dispersal is neglected. The dots are the 

results by computer simulations, which will be explained below (and in Appendix). 

First, I examine various cases with different environmental parameter h, which 

indicates the difficulty of seed dispersal. As shown in Fig. 1 a, the ESS seed size w* i 

always smaller than w , the optimal when the size-dependency of dispersal i 

neglected. However when his small seeds are easy to disperse so that the difference 

between w* and w is small. As h increases, w* gets much smaller than w because 

they must disperse to reduce sib competition at the expense of its survivability. In Fig. 

1b ash increases, a(w*) also decreases, but does not converge to zero. Instead, there 

is a lower limit of the ESS dispersal range even if the cost of dispersal is infinitely large. 

From Eq. 8 and the definition of a(w), it is equal to square root of nD, which is 

independent of m, a parameter controlling the ESS seed size when his small. This 

result that dispersal must evolve even when dispersal is highly costly can be thought to 

correspond to the result of Hamilton and May ( 1977), who show that in the ESS 

population at least a half of the offsprings are produced as migrant type, although the 

mathematically exact relationship between the both results is too complicated. 

Second, the dependency of seed survivability on the seed size k is examined. 

In Figs 2a and 2b it is found that as k becomes larger, the ESS seed size w* gets smaller 

and the dispersal range a(w*) larger, because the survival disadvantage against smaller 
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seed size become weaker for larger k. The magnitude of a(w*) when k is equal to 100 

is, however, le s than twice as large as when k is zero and at most several times as large 

as the square root of the area that a individual occupies ${i5. This result is 

reasonable because, if the co t of seed dispersal is very mall, the plant need not 

disperse their seeds very far. 

The theoretical analysis above assumes that the seed produced by different 

adult individuals are not related at all. However offsprings of a plant may produce 

clumped distribution, and genetically similar individuals may exist close to each other, 

forming clumps of relatives. This effect is especially important in clonal plants (see 

Harada and Iwasa, 1996). Although I neglected clonal reproduction in the present 

paper, limited seed dispersal may also produce clumping of relatives. Since I assumed 

the self-fertilization, the relatedness between parent and offspring are equal to unity, so 

all of the relatives are genetically identical. Then, it may be important to consider the 

effect of competition among non-sib relatives to the evolution of seed dispersal and 

seed size. If there is a tendency for neighbors to tend to be genetically related, then 

mutants would find other mutants in its neighborhood with a significant probability 

even if the overall frequency of mutants is very low. 

To confirm the accuracy of the theoretical results above, I also analyzed the 

model by an individual-based computer simulation (See Appendix). Five trials 

independent from each other were carried out for each value of parameters h and k. 

The results are plotted in Fig.1a, 1 b, 2a, and 2b. Each dot represents the mode (the 

most frequent type) of the population at the last generation in each trial of the 

simulation. The results of computer simulation are close to the prediction of 

theoretical analysis. 

2.4 Discussion 

In this paper, I studied the ESS seed size and the ESS dispersal range, taking 

into account a trade-off between the two as dispersal range is reduced for large seed 

size. First, I examined the effect of the environmental difficulty for seed dispersal and 

found that, as the environment becomes less favorable for seed dispersal, both the ESS 

seed size and the corresponding dispersal range decrease. However, there is a lower­

limit of the seed dispersal range to evolve even in an environment where a high 

dispersal is very costly in terms of seed survivability. This result is closely related to the 
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conclu ion of Hamilton and May (1977), who showed that in a stable patchy 

environment a high fraction of migrant offsprings are produced just to avoid the 

competition among ibs, and more than a half of off pring is migrant type if mortality 

cost is extremely high. Instead of the fraction of dispersing eeds, I expressed a similar 

idea in terms of dispersal range of seeds. 

Second I examined the dependency of seed survivability on the seed size and 

observed that the ESS seed dispersal range cannot become very large even when the 

trade-off is extremely weak. That result implies that in general the evolution of the 

long-range seed dispersal of plants cannot be only because of the relaxation of 

competition for sites among relatives, although the present model is simple so that I 

neglect some more realistic factors as I remark below. 

In analyzing the model, I assumed the unique ESS seed size. But it is not often 

the case in considering the evolutionary stable seed size with competition within species. 

Geritz et al. (1988) and Geritz (1995) showed that assuming the extreme asymmetric 

competition in favor of larger seeds, any unique seed size can be unstable and the ESS 

population becomes polymorphic with respect to the seed size, because the spatial 

variation of the density of larger and fewer seeds allows the invasion by the individual 

producing seeds of smaller size and larger number. Their models are similar to the 

present model in showing that it is more adaptive for individuals to disperse seeds more 

uniformly, while they assumed an extremely asymmetric competition among eedling 

within the same site in which an individual from the largest seeds in the site exclu ively 

dominate over others. 

In the analytical calculation, I neglected the likelihood that neighbors can be of 

the same type. Since the seed dispersal rage is limited, the patial correlation that 

neighbors of a individual are its close relatives should not be negligible. Enhancement 

of relatedness among neighbors is characteristic of models in which spatial structure is 

explicitly considered and the dispersal range is limited. The simplest modeling is 

lattice population dynamics (e.g. Matsuda et al., 1987; Durret and Levin, 1994; Harada 

and Iwasa, 1996; Kubo et al., 1996; Nakamaru et al., 1997), which was adopted in the 

computer simulation in the present paper. Harada and I was a ( 1996) examined lattice 

models of limited dispersal range for plants reproduce asexually as well as sexually. 

By calculating the "clone identity probability" defined as the probability for a randomly 

chosen pair of sites to belong to the same clone, for a spatial genetic patterns, and then 

calculating the rate at which clonal identity probability decreases with the distance of 

sampled plants, we can estimate the relative success of clonal and seed production in 

the population. 
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In the model studied in the present paper, I might think that the evolution of less 

competitive behavior, i.e. larger dispersal range, is automatically favored if neighbors 

are close relatives than if they are completely unrelated. However, many theoretical 

studies of lattice structured models suggest that such a casual conclu ion may not be 

correct, and the effect of relatedness between clo e neighbors should be carefully 

examined. 

There are theoretical studies of the evolution of social or ecological interaction 

on lattice populations, such as behavior modifying the mortality or fertility of 

neighboring individuals (Matsuda et al., 1987; Wilson et al., 1992; Taylor, 1992; 

Durrett and Levin, 1997; Nakamaru et al., 1997). The spatial structure causes that the 

interaction between neighbor individuals is more frequent than that between two 

random samples from the entire population. Contrary to what casual thinking might 

suggest, all of these studies conclude that it is not always the case that spatial structure 

favor the evolution of more altruistic and less spiteful behavior. The reason is that 

close relatives must compete for space among themselves that give the advantage of 

spiteful or more aggressive behavior toward neighbors. 

The observation that the computer simulation in the present paper was close to 

the prediction of analysis based on neglecting relatedness of neighbors suggests that the 

effect of spatial structure may not be very large in the evolution of dispersal range. 

However more careful and detailed analysis is required. 

For simplicity of argument, I neglected the anatomical tructures of seed uch 

as wings or feathers that enhance the seed dispersal ability. The essential as umption 

in the present paper is that there is some trade-off between the dispersal range and the 

survivability of seeds. When the amount of resources which maternal plants invest to 

seed production is limited, making larger structures and enjoying better dispersal 

efficiency results in allocating smaller resource to produce seed that suffers higher 

mortality. The present model can be modified easily to considering seed structures 

highly efficient for dispersal but reducing the viability of seeds. Sakai et al. ( 1997) 

developed a mathematical model of optimal resource allocation between seed embryo 

and structure for dispersal. 

For future studies I may consider several additional factors. First, soil or other 

physical condition is likely to be spatially heterogeneous, which leads the difference 

among the fecundity of individuals. Modifications of Hamilton and May's (1977) 

model to the cases in which the habitat quality varies have been examined (Crespi and 

Taylor, 1990; Ozaki, 1995). The results are that each individual produces a constant 

number of nondispersing offspring, while the number of dispersing offsprings is varied 

with the fecundity of individuals. In the present model I assume monomorphic adult 
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size. However in the case that the fecundity is different among reproductive individuals, 

those with high fecundity may well produce smaller seeds and disperse them in a wider 

spatial range than the ones with poor fecundity, otherwi e the seedlings emerging from 

their seeds suffer from stronger competition among the sibling. Second, spatial 

heterogeneity also affects the settling probability of individuals. The gap formation 

rate in the tropical seasonal forest was found to be proportional to the fraction of gaps in 

the nearest neighbors of the site (Kubo et al., 1996). These heterogeneity tends to 

cause the po itive spatial autocorrelation in the suitability of sites and favoring smaller 

seed dispersal range. Third, herbivores and seed predators specific to the host species 

suggests that the seedling emerging near their parents suffer higher mortality (Clark and 

Clark, 1984), which might work for genotypes within the same species as well. This 

would favor higher seed dispersal range. 

Although the present model is quite simplified, I think it is a new trial to deal 

with the effect of seed dispersal range explicitly. Considering the possible factors 

remarked above and constructing more realistic models, we will be able to estimate 

quantitatively their relative importance on the evolution of seed dispersal for a 

particular plant, which might be impossible without quantitative theoretical models. I 

hope this paper would serve as the first step toward the understanding of the evolution 

of plant seed dispersal. 

2.5 Appendix: Individual-Based Computer Simulation 

To examine how much deviation can be produced by simplifications adopted in 

the analysis in the text, I did a more realistic computer simulation of the model. In this 

simulation, I adopted the simplification concerning the competition procedure. Note 

that in competition between adults for producing offsprings that succeed in occupying 

sites, a number of seeds n(w) and competitive ability of each seeds a(w) always appear 

together as their product p(w), as shown by Eq. 4. Hence, instead of producing 

different number of seeds each with different competitive ability, I treat them in the 

computer simulation that all the parents produce the same number of eeds irrespective 

of seed size, then the whole number of seeds per generation is constant, but offspring's 

competitive ability is a function of seed size given by "combined competitive ability" 

p(w). This is a very efficient way of calculating the competition of seeds of vastly 

different sizes in individual based modeling, because small seeds requires to follow 
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numerous individual seeds, while the total number cannot be very small because the 

number of large seeds becomes then very small and stochasticity causes unreliable 

results in the computation of ESS (Geritz, 1995; Geritz et al. 1988). 

The procedures are as follows: 

(i) In the initial population, seeds with different sizes are put in the habitat of sixty 

by sixty squares. Each site contains one and only one seed. The coordinate of a seed 

in the square is randomly chosen. In the initial stage there is no competition, and all 

the seeds grow into adults. 

(ii) Each adult produces thirty seeds. The weight of each seed is the same as its 

parent. The seeds are dispersed around the parents, which the probability distribution 

is radially symmetric and is given by Eq. 2 with respect to the distance. 

(iii) Among the juveniles in the same site, only one individual is randomly chosen to 

win and to become adult. The probability that an individual is chosen is weighted by Eq. 

4. 

(iv) The procedure (ii) and (iii) are iterated for 20,000 generations. 

I executed five trials independent from each other for each value of parameters h 

and k. In each trial the distribution of seed size of the population at the final 

generation shows a single sharp peak, which indicates the ESS population is 

monomorphic. The result of simulation supports the prediction of the theoretical 

analysis in the former section very well (Fig. la, l b, 2a, and 2b). Each dot represents 

the mode of the population at the last generation in each trial. The result of the 

simulation implies that the neglect of the competition with non-sib relatives does not 

cause much error in predicting the ESS dispersal range and the ESS seed size. 

In the right side of Figs. 2a and 2b the results of simulation show fluctuation in 

the mean seed size. The population mean seed size converged quickly to a single ESS 

seed size and then fluctuated around it. The fluctuation was caused by the genetic drift 

caused by the finiteness of the lattice size. 
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2.6 Figures 

Figure 1 The ESS seed size (a) and the ESS eed dispersal range (b). Horizontal 

axis is for h, a parameter indicating difficulty of di persal in the environment. 

Parameter k, m, and D are fixed to 0, 0.1, and 1 respectively. Solid curves show the 

result of theoretical analysis. Dots are the result of the individual-based computer 

simulation, each of which represents the mode of the final population in each trial. 

The broken lines show the optimal seed size not considering the effect of seed dispersal 

range w. When the environment is favorable for seed dispersal (his small), the ESS 

seed size is close to w. As the environment becomes less favorable for dispersal (h 

increases), the ESS seed size decreases, but the ESS seed dispersal range a(w*
) 

converges to a lower limit greater than zero. 

Figure 2 The ESS seed size (a) and the ESS seed dispersal range (b). Horizontal 

axis is for the "flatness" parameter k of seed survivability on the size. Parameter h, m, 

and Dare fixed to 1, 0.1, and 1 respectively. Solid curves show the result of 

theoretical analysis, and dots are of the computer simulation. The broken lines show 

w, optimal seed size of the size-dependency of dispersal rage is neglected. When the 

seed survivability strongly depends on the size (k is small), the ESS seed size is close to 

w. As the survivability depends on the size less strongly (k is large), the ESS seed 

size is larger, but its dispersal range a(w*) remains at most several times as large as 

�1/ D (=1). 
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