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Preface 

To extract useful information from the real world, to manage it, and to utilize it in 

decision making are, I believe, the prime ends of the information science. Statistics, in 

this sense, is the most developed and established one among a wide variety of branches 

in the research field of information. 

The modern statistics was founded in early twentieth century by K. Pearson, R.A. 

Fisher, J. Neyman, E.S. Pearson and many other applied scientists. The role of models 

in statistical and scientific work has attracted its importance even in those days and 

has now become generally recognized. The choice of model is, however, aesthetic and 

arbitrary, although based on knowledge and experience of the field of application. The 

beauty is just skin deep; we must not judge only by outward appearances, say, sim­

plicity, lucidity and the case in representing with mathematical formulas, in obtaining 

the results of analysis and in interpreting them. The most essential feature of a model 

may be its helpfulness; by means of models, we clarify our thoughts and intentions 

towards the data or phenomena we are facing; through models, we strain the data 

and get the soupy essence of information we need; and, I am willing to admit that 

beautifulness strongly correlates helpfulness. 

The normal distribution is, without doubt, one of the most beautiful entities in 

the world of statistics. In fact a great many statistical models together with the 

associate procedures have been established on this distribution since the days of our 

great pioneers mentioned before. Such procedures perform well under ideal conditions 

of normality but even under slight departures from the ideal they may lose their 

helpfulness. Experience with data has suggested that a proper degree of robustness is 

commonly desired. 

There are two main approaches towards the robustness. One is to avoid restrictive 

assumptions about secondary aspects of a problem; which may be the practical mo­

tivation for consideration of non-parametric and semi-parametric models. The other 



is to manage outliers in broad sense in order to get the results less affected by them; 

such as the use of trimmed means instead of the sample mean and outlier-rejection 

procedures. This article gives a detailed review of my own contributions to robust 

inference from both approaches. 

I wish to express my sincere gratitude to Professor Chooichiro Asano for his constant 

instruction, extremely valuable suggestions and kind encouragement, throughout the 

period of my study at Kyushu University. 

I am very grateful to Dr. N aoto Niki for his valuable comments and advice. I am 

greatly indebted to Dr. Michiko Watanabe as the coauthor of the papers concerning 

Sections 3 and 5. Thanks are also due to all my friends who participated in discussions 

; among these, Dr. Zhi Geng and Mr. Atsuhiro Hayashi. 

Finally, I would like to express my appreciation to the staff of the Interdisciplinary 

Graduate School of Engineering Sciences and the Research Institute of Fundamental 

Information Science for their support during my study at Kyushu University. 
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1 Introduction 

Much of the classical statistical methodology in multivariate analysis is concerned with 

models in which the underlying observation vectors are assumed to independently 

follow multivariate normal distributions. We, however, are often faced to the cases 

that the normality assumption is not appropriate for the data. There are some typical 

cases the normal model dose not appear to fit. One is the case all of observations 

follow the same distribution but it is not normal and the other important case is that 

most of observations follow the normal distribution but that a few observations are 

generated by a different mechanism. 

Observations of failure time in survival analysis can be regarded as positive random 

variables with asymmetric distribution. If some suitable transformations for normality 

can be formed, eg. the Box-Cox transformation ( Box and Cox 1964 ) , we would 

apply the methods for the normal model. Otherwise, it is much more difficult to 

derive an inference method for obtaining optimal parameter values and to examine its 

properties under such distribution than under the normal distribution. In this case, 

non-parametric or semi-parametric methods are often applied to survival data, for 

the sake of robustness. Among these, Cox ( 1972 ) 's proportional hazard model may 

be one of the most useful semi-parametric model for survival data. As extension of 

Cox's to multivariate case, Yamaguchi ( 1986) considered several models for association 

in bivariate data with the proportional hazards assumption. Because of being semi­

parametric, these models include some unspecified parts treated as nuisance functions 

or nuisance parameters and which forces us to construct conditional inferences for 

objective parameters ( see Kalbfleisch and Sprott 1970 ; Kalbfleisch and Prentice 1973 

; Cox 1975 ) . 

Another non-normal case may happen when the data include some outliers. An 

intuitive definition of outliers would be "observations which deviate so much from 

another observations as to arouse suspicions that they are generated by a different 
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mechanism". In the context of the presence of outliers two main problems arise. One 

is the detection of outliers and the other is the construction of procedures which are 

not heavily affected by outliers, that is, robust procedures. 

Many workers empirically have pointed out that the distribution of really observed 

error terms often have heavier-tail than that of the normal distribution. In particular, 

Jeffreys ( 1961) claimed that most error distributions could be approximated by the t 

distribution with 5, 6 or 7 degrees of freedom. 

Difference in the tail parts, is so influential to the results of estimation that when the 

normality assumption is not appropriate for given data, the t model or mixture model 

is often applied instead of the normal error model. ( see Kariya and Shinha 1989, for 

the robustness of statistical tests. ) The scale mixtures of normal distributions are 

one of the most popular easily handled families of symmetric distributions with heavy­

tails relative to the normal distribution, which are suitable as error distributions used 

instead of the normal when the data may include outliers. We might be faced to the 

problem of model selection, in deciding which distribution would be most appropriate. 

Then we shall use AIC, the remarkably useful tool for this problem. 

Many statistical significant tests for detection of outliers were proposed. Barnett 

and Lewis (1978) listed 44 tests concerned with normal distribution. In this article, 

however, we do not use any tests to detect outliers. The detection of outliers shall be 

also treated as the problems concerned with model building and model selection. 

The EM algorithm is introduced by Dempster et al. (1977) for computing maximum 

likelihood estimates from incomplete data. This EM algorithm is also available for 

pseudo incomplete data. W hen the error are assumed to follow a scale mixture of 

normals, we consider unobservable random variables in place of the unknown mixing 

parameters and treat the additional variables as missing values. One remarkable merit 

of use the EM algorithm is that we can handle ordinary missing values contained in 

the data simultaneously. Knowledge, or absence of knowledge, of the mechanisms that 

led to certain values being missing is a key element in choosing an appropriate analysis 
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method and in interpreting the results. In many cases, however, the mechanism leading 

to missing data does not enter explicitly; then, an assumption is being made that the 

mechanism is ignorable. We do not discuss the mechanism leading to missing data 

in detail and the missing values are assumed to be missing at random ( Rubin 1976 ; 

Little and Rubin 1987 ) through this article. 

This article includes five Sections. Section 2 gives a detailed review of work done in 

Yamaguchi (1988a). We consider several semi-parametric models in survival analysis 

with the proportional hazards assumption. Those models include some nuisance parts 

which force us to estimate objective parameters by means of partial likelihood ( Cox, 

1985; Wong, 1986 ). A test for the proportional hazards hypothesis is also proposed. 

Section 3 deals with linear model with symmetric and heavy-tailed error distribu­

tions ( Yamaguchi 1989 ). The scale mixtures of normals are used there as the error 

distributions, presenting a new method of maximum likelihood estimation through the 

contaminated normal error model (Yamaguchi 1990c ) . Model selection and detection 

of outliers are also considered. 

In Section 4, the analysis of repeated measures data is studied in the situation we 

have some suspicious observations as outliers (Yamaguchi 1989a, Yamaguchi 1990b ) . 

For these data, we utilize the model given by Jennrich and Schluchter ( 1986) and the 

results derived in Section 3. Two numerical examples of real data are illustrated. 

Section 5 gives a new robust method in factor analysis ( Watanabe and Yamaguchi 

1989, Yamaguchi and Watanabe 1990a ) and demonstrates the robustness of these 

methods in comparison with usual normal factor analysis by a Monte Carlo simulation 

( Yamaguchi and Watanabe 1990b ) . Finally, model selection and detection of outliers 

in factor analysis are discussed with the data due to Mardia et al. (1979) as numerical 

example. 
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2 Model for Association in Bivariate Survival Data 

The construction of bivariate or multivariate distribution has interested many statisti­

cians from the early days. One approach is to extend a univariate distribution remain­

ing its properties. The multivariate normal distribution is one of the most popular 

example. In survival analysis, we know the multivariate shock model introduced by 

Marshall and Olkin (1967), which is a generalization of the lack of memory property 

of the exponential distribution. In particular, in the bivariate case, Plackett (1965) 

considered to make a class of bivariate distributions with a parameter which was a 

measure of association, when two marginal distributions were given. 

In survival analysis, especially, analysis of the survival times of fatal patients, its 

main purpose is to evaluate variation of risk with respect to time and real-time control 

rather than prediction of survival time. From this point of view, modeling on the 

hazard function stands on actual meanings and needs. We also construct a model for 

association in bivariate survival data on the hazard function. 

When we observe pairs of failure times, one of our main interests is whether one 

failure affects the other failure time. This question can be answered by hazard regres­

sion model analysis (Cox, 1972, 1975), regarding one failure times as time-dependent 

covariates which possibly influence the hazard for the other failures. For another ap­

proach, Clayton (1978) introduced a model for association in bivariate survival data 

with a parameter which has a simple interpretation. Let s and t be two survival times 

and f(s, t) be its joint probability density function. Then Clayton's model satisfies 

f(s, t) [" [" f(u, v)dudv = (} {' f(u, t)du {" f(s, v)dv. 

Representing by the hazard function, for any s0, t0 (> 0), 

hJ(so It= to) 
hJ(so It> to) 

= ht(to Is= so)ht(to Is> so)= e, 

where h(. I . ) denotes the conditional hazard function. Clayton applied this model 

to familial studies of disease incidence. Parametric and semi-parametric estimation 
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within this model is discussed by Clayton (1978) and Oakes (1982), although a fully 

satisfactory non-parametric procedure has not yet been found (Cox and Oakes, 1984). 

Now we consider the following case. A pair of individuals are exposed to risk at the 

same time and they always affect one another. In this case, a failure of the partner may 

change the hazard function of the remainder, without delay. Reflecting such situation, 

we construct models with parameters which are interpreted as same concept of odds 

ratio of contingency tables. 

2.1 Bivariate survivor function 

In the case of univariate, if one of the probability density function, cumulative dis­

tribution function, survivor function, and hazard function is uniquely determined the 

other three functions are automatically determined. Now such relationship in bivariate 

case is shown. 

Let T(l), T(2) be two positive random variable. We define the following four hazard 

functions. 

where 

h(i)(t) = lim 2_ Pr(T(i) < t + � I r<l) > t T(2) > t) 
A-+0 � - ' - ' 

h*<')(t I t') = J!-To � Pr(T(') < t + f:l I r<•l � t, r<i) = t'), 

t � t', i = 1, 2, i + j = 3. 

These four functions determine the joint distribution of T(l), T(2), if these are con­

tinuous. The joint probability density function is, for t(l) ::; tC2), 
t(l) t(2) 

f(tCI), t<2)) = exp{- f [h(1)(t) + h(2)(t)]dt- f h*(2)(t I tCI))dt} (1) 
lo lt(l) 

for t<1) > t<2) - ' 

X h(l)( t<l))h*(2)( t<2) I t<1))' 

(2) 
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Clearly, T(1) is statistical independent of T(2), if and only if, for any t, t' > 0, 

h*c1)(t 1 t') 

h*c2)(t 1 t') 

Let S( tC1), tC2)) denote the joint survivor function, then 

. 1 8S(tCl), tC2)) hc')(t) = - I (1) (2) S(t, t) otCi) t =t,t =t' 

2.2 Model for association 

The purpose of analysis of two dimensional contingency table is to know the rela-

tionship between two qualitative variables. Measures of association are numerical 

assessments of the strength of the statistical dependence of two qualitative variables. 

While we consider a model for association in bivariate failure times, at first we start 

from the standpoint of contingency tables. Divide a interval [0, oo ) into q subintervals 

such that 

where 

0 = t 1 < t2 < ... < t q+ 1 = 00. 

We get a q x q contingency table if we collect data in each subinterval Ij. Clayton 

(1974) gave a method for analysis of two ordered categorical variables. The method 

assumes that for each of the ( q - 1) x ( q - 1) possible ways of collapsing the table 

into a 2 x 2 table the odds ratio is constant. Under this assumption, the inference 

about the constant odds ratio is performed. When the odds ratio is unit, this model 

is independent model. The unconditional maximum likelihood, conditional (partial) 

likelihood and Mantel- Haenszel estimators have been studied as estimator of common 
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odds ratio of several 2 x 2 tables. Breslow ( 1981) gave the properties of these estimators 

under a large sample scheme in which the number of tables increases but the possible 

marginal configurations remain fixed. In this situation, the unconditional maximum 

likelihood estimator is not consistent. The asymptotic relative efficiency of the Mantel­

Haenszel and conditional likelihood estimators was given by Hauck (1988). Hauck et al. 

(1982) examined small sample properties of these estimators and, Yamaguchi (1988) 

derived a extended Mantel-Haenszel estimator and demonstrated the properties of 

these estimators. 

We are analyzing continuous variables. The above method, of course, can be applied 

by dividing the interval [0, oo) into some subintervals, but there is loss of information 

and the results depend on the way of construction of subintervals. We consider the 

limitation of the above model such that all lengths of subintervals tend to 0, as a model 

for continuous variables. Let 

Puv = Pr(T(l) E lu, T(2) E Iv), u, v = 1, 2, ... , q. 

Define ( q - 1) odds ratios for each of T(l) and T<2), respectively, as follows, 

i=l,2, . . . , q - 1. 

When all lengths of subintervals tend to zero, the limits of these odds ratios are the 

ratios of hazard functions. Let 
' 

Qui= L Piv, 
v=l 

q i 
Ql2i = L L Puv' 

u=i+l v=l 
q 

Q2li = L Piv, 
v=i+l 
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and 

then 

and 

q q 

Q22i = 2::: 2::: Puv' 
u=i+l v=i+l 

Now for fixed ti, when �i = ti+l - ti tends to zero, 

and 

For the odds ratio, 

Furthernnore, let 

h**(')(t I TJl < t) = g� � Pr(T(i) < t +!:;,. I y(i) � t, y(J) < t), 

then 

i = 1, 2, i + j = 3, 

h*•(l)(t I T(2) < t) = 
-&fwS(t, 0) + &fwS(t, t) 

S(t, 0) - S(t, t) 
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Therefore 

Similarly, 

QuiQ22i 
Q12iQ21i 
h**(l) ( ti I T(2) < ti) 

h(l)(ti) 

As e;j) is constant for any i, we obtain the model for continuous variables such that 

However, as it may be more convenient that a bivariate distribution is represented by 

h(i) and h*(i) than by h(i) and h**(i), we would like to use h(i) and h*(i) for our model. 

lim _!_ Pr(T(i) < t + � I T(i) > t T(j) < t) 
.6.-+0 � - ' 

= 

lim.6.-o X f� Pr(t � T(i) < t + �' TCJ) = t')dt' 

J� Pr( t � T(i), T(j) = t')dt' 
f� lim.6.-o t Pr( t � T(i) < t + �' T(j) = t')dt' 

J� Pr( t � T(i), T(j) = t')dt' 
f� h*(i)(t I t')Pr(t � T(i), T(j) = t')dt' 

J� Pr(t � T(i), T(j) = t')dt' 

These equations yield that if we set for any t and t' > 0 

then 

h**(i)(t 1 r<j) < t) = e<i)h(i)(t), i = 1, 2, i + j = 3. 

Thus we consider (3) as basic model for association. Clearly 

e(l) = e<2) = 1 

14 
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if and only if T(I) and T(2) are mutually statistically independent. W hen both of (1(1) 

and (1(2) are greater than one, there exists positive association, and when both of them 

are less than one, there exists negative association. 

We add some restrictions about to the model (3) in order to give simple interpreta­

tions. At first we consider the case that the bivariate distribution is sy mmetric. That 

is, for any t > 0 

Model 1: 

I 
h<1>(t) == h(t) 
h ·< 1) ( t 1 t ') == e h ( t) 
h(2)(t) == h(t) 
h*<2)(t 1 t') == eh(t), 

where e is any positive constant and h(t) is any integrable positive function. 

In this case, from the equations (1), (2), the joint probability function f(t<l), tC2)) is 

for tCI) � tC2) 

for tCl) > t<2) 

where 

Let 

t(l) t(2) 

exp{- r 2h(u)du- r eh(u)du}eh(t<l))h(t<2)) lo lt(l) 

es(tCI))l-e S(t<2))8-l f(t<l))f(t<2)), 

t(2) t(l) 

exp{- r 2h(u)du- r eh(u)du}eh(t<l))h(t<2)) lo lt(2) 

e S( t(I))e-1 S(t(2))1-e J( tCI)) J( t(2)), 

lat 
dS(t) 

S(t) == h(u)du and f(t) == ---. 

0 & 

and f x,Y, f x and Jy be the joint probability density function of X and Y, the marginal 

density function of X and that of Y, respectively, then 

fx,y(x,y) == 2{1S(x)1-8S(y)8-1f(x)f(y), 
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fx(x) = 2()S(x)f(x), (4) 

and 
2() 

jy(y) = 2 _ (){S(y)9-1- S(y)}f(y). 

Next in the case of asymmetric case, we assume the proportionality of two marginal 

hazard functions, that is 

Model 2: 

h(1)(t) = h(t), 

h(2)(t) = cxh(t). 

l h(1)(t) = h(t) 
h*<l)(t 1 t') = 

ec1) h( t) 
h(2)(t) = cxh(t) 
h*(2)(t It')= cx()(2)h(t), 

In this case, the equations (1) and (2) y ield the joint probability function f(t(l), tC2)), 
for t(l) ::; tC2) 

for t(l) > tC2) 

Similarly, 

t(l) t<2) 
exp{- f (1 + cx)h(u)du - f cx()C2)h(u)du} lo lt(l) 
x cx()(2) h( tCl))h( t<2)) 

cxe<2) S( t(l))'�-ae<2) S( t(2))ae<2)_1 f ( t<l)) f( t(2))' 

t(2) t< 1) 

exp{- f (1 + cx)h(u)du- f cx()(1)h(u)du} lo ltP) 
X a()(l) h( t(l))h( t(2)) 

cxe(1) S( t(l))e(l)_1 S( t(2))a-e(I) !( t(l)) !( t(2)). 

fx,Y(x, y) - (1 + cx)f(x)f(y) 

X { e<l) S( X )a-e(l) S(y )e(1)_1 }1-6 

x{a()(2)S(x)a-ae<2) S(y)aeC2)_1}<5 
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where 

fx(x) (1 + a)S(x)a f(x), 

Jy(y) (1 + a)f(y) 
f)(1) 

X [ { S(y )e(l)_1 - S(y )a} ]1-6 
1 +a- f)(1) 

X [ 
afJC2) 

{S( )aeC2) -1 _ S( )a }]6 
1 + a - afJC2) 

y y ' 

8= { 0 if TCl) > TC2) 
1 if rCl) < TC2) 

2.3 Estimation of parameters 

As there is a nuisance function h(t) in our models, the method for estimation is 

based on the partial likelihood (Cox, 1975), which is generalization of conditional and 

marginal likelihood. Let the data { ( tP), t�2)), i = 1, 2, ... , n} be arranged in ascending 

order of failure time as follows, 

and Vj and wj be the following events, 

�· : The individual (j) fails at time t j. 

Wj : There is no failure in an interval [tj_1, tj) and an individual fails at 

time tj. 

The probability of the event {(Vj, �·), j = 1, 2, ... , 2n} is 

2n 
II Pr(Wj 1 wCj-1), vCj-1))Pr(Vj 1 wCj), vU-1)), 
j=1 

where 

W(j) - {W W · · · W·} - 1, 2, ' J ' 

V(j) = {V,1 V2 · · · V·} ' ' ' J ' 

17 



and the partial likelihood LP is 

2n 
Lp = II Pr (Vj I wCi), vei-l)) 

j=l 

Data can be also represented as Table 1 at the failure times. 

2.3.1 Model 1 

Table 1 : Data at the failure time t(j) 
Partner Died Survival Total 

Type (1) Survival 

Died 

Type (2) Survival 

Died 

Total 

By (5), the partial likelihood Lp based on Model 1 is 

Then the log partial likelihood fP is 

fP log L 
n 
L:[(ctJld) + rf;2d)) loge -log{r)l.s) 

+ r)2.s) + e(r?d) + r)2d))}J. 
j=l 

The solution of 8fP/8() = 0, ()P satisfies the following equation, 

18 
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When the observations {(x.:, y.:), i = 1, 2, ... , n} are given, the full likelihood Lis, 

n 
L = IT {2BS(x.:)1-8 S(y.:)8-1 f(xi)f(y.:)}. 

i=1 

Here let 

Pi = H(x.:) and q.: = H(y.:), 

where H(t) is the cumulative hazard function, that is 

H(t) = Ia' h(u)du. 

Then the log likelihood f is 

This yields 

and 

f logL 
n 

l::{log2 +loge-(1- B)p.:-(e -1)q.:}. 
i=1 

ff- n 
- 2::?=1 ( q.: -p.:)" 

For the estimation of H(t), we can use the fact that {x.:, i = 1, 2, ... , n} is a sample 

with size n from the distribution with the hazard function 2h(x ) , that is, we use the 

sample cumulative hazard function as the estimate of H(x ), 

1 
Hn(t) = � 2{n + 1-i)' 

where L(t) denotes sum over i, X(i) :::; t, and {xc.:)} is the ordere d statistics of {x.:}. 

Theorem 1 

...... n Be =

-----------------
2::?=1 {Hn(Y.:)-Hn(x.:)} 

is a consistent estimate of e. 
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Proof 

where 

1 L:?=l{Hn(Yi)- Hn(xi)} 
Be 

n 
= J Hn(t)d{Fn(t)- Gn(t)} 

____. j H(t)d{F(t)- G(t)}, 

Fn(t) = #{i;xi > t}jn, 

Gn(t) = #{i; Yi > t}jn, 

and F, G are the survivor functions of X, Y, respectively. 

By ( 4), 

j H(t)d{F(t)- G(t)} - j H(t)�{S(t)9-1- S(t)} j(t)dt- j H(t)2BS(t)j(t)dt 2-B 
2 + e 1 
--- -

1 
28 2 

e· 

As we derived a consistent estimator B
e 

of B, we would like to derive a two-step 

estimator e2 from the equation (6), which is asymptotically equivalent to the maximum 

partial likelihood estimator. 

2.3.2 Model 2 

In the case of Model 2, by (5), the partial likelihood LP is 

20 



and 

logLp 
2n 
L { �ld) log eCl) + cf;2:J) log a+ c/j2d) log( aeC2)) 

j=1 
I ( (1&) + 8c1) (1d) + c2:J) + 8c2) (2d))} - og rj rj arj a rj . 

From this 

where 

8£ 2n Jld) r(ld) 
8()(1) = 2::::{ �(1) - Q

J . }, 
J=1 J 

80 2n '.2&) + l2d) (2d) + ()(2) (2d) 
_{. = L{a; a; 

_ 

r1 r1 }, 
oa j=1 a Qj 

(7) 

The maximum partial likelihood estimates are obtained as the solutions that the above 

three equations simultaneously equal to zero. 

Now we would like to derive consistent estimators in the same way of Model 1. 
When the observations {(xi, Yi, b'i), i = 1, 2, . . . , n} are given, the full likelihood L is, 

Here let 

n 
L = II [( 1 + a)!( Xi )f(Yi){ eCl) S( Xi)a-&(l) S(yi)8(l)_1 }1-b; 

i=1 

then the log likelihood f is 

n 
f = 2::::[(1 - b'i){log a+ log 8(1) - (a- f)Cl))Pi - ( f)Cl) - 1 )qi} i=1 
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and, the ML estimates are 

_ C1) ""'n . 
f)C2) = 

n L....i=1 p, , nCO) ""'n (q· _ p·) L....i=1 ;6=1 t t 

nCo) 
a = _""'_ n __ . L....i=1 Pi 

In this case, for the estimation of H(t), we can use the fact that {xi; 8 = 1} is a sample 

with size n(l) from the distribution with the hazard function h( x ), that is, we use the 

sample cumulative hazard function as the estimate of H(x ). 

H�(t) = L (n(l) : 1- i)' 
c t) 

where LC t) denotes sum over i, x(i) � t, and { x(i)} is the ordered statistics of {xi; 8 = 

1}. Using this sample cumulative hazard function, we obtain consistent estimators, 

--

(i)- nCo) 
Be - L:i=1;6=o{H�(Yi)- H�(xi)}' 

- C1) ""'n H*( · ) 
f)�2) 

= 

n L....i=1 n x, 
nCo) Ei=1;6=1 { H�(yi) - H� (xi)}' 

nCo) 
�= -----Ei=1 H�(xi)" 

Theorem 2 B�l), B�2), � are consistent estimators of t)(1), t)(2) and a, respectively. 

Proof 

At first, for j = 1, 2 let 

and pCj) and G(j) be survivor functions of x and y given 8 = j, respectively. 
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( 1) 8�1) : 

1 
= 

e0 

L:i=I;a=o{H�(Yi)-H�(xi)} 
n(o) 

= J H�(t)d{F�0)(t)-G�0)(t)} 
J H(t)d{F(o)(t)-G0)(t)} 

= j H(t) (1 + a)8C
(
1)

){S(t)9(1)_1-S(t)0}f(t)dt-j H(t)(1 + a)S(t)o f(t)dt 1+a-81 
1 +a+ 8(1) 1 

= -----:---:--- - --( 1 + a) 8( 1) 1 + a 
1 

= 8(1). 

(2) 8�2) : 

While 

1 

80 
-

n(o) f H�(t)d{ F�1)( t) -G�l)( t)} 
-n J H�(t)dFn(t) 

n(o) a 
- ---+ Pr(8 = 0) = --, n 1+a 

j H�(t)d{F�1)(t)-G�l)(t)} 
---+ j H(t)d{F(1)(t)- G1)(t)} 

J a8(2) 2) j - H(t) 1 +a_ a8(2) {S(i)09( -1-S(i)0} f(t)dt- H(t)(1 + a)S(t)0 J(t)dt 
= 

= 

1 +a+ a8C2) 1 ---

(1 + a)a8(2) 1 +a 
1 

a8(2) • 

-j H�(t)dFn(t) ---+ -j H(t)DF(t) 
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J H(t)(1 + a)S(t)0 f(t)dt 
1 

1+a 

By the above equations, 

(3) �: 

1 1 
- ----+ -

� 
(j(2). 

1 l:i=l H�( Xi ) 
ac n(o) 

- n�o) ! H�(t)dFn(t) 

-+ 

1: a j H(t)dF(t) 
1: a j H (t)(1 + a)S(t)a f(t)dt 
1+a 1 

a 1 +a 
1 

Also in this case, we can easily obtain the two-step estimators using these consistent 

estimators. 

By ( 7 ) , the maximum partial likelihood estimators satisfy the equations 

""'� n Jld) 
e(l) - L,J=l J 

p - (1d) 

L2n r. 

j=l (1 •)+8(1) (1d)+ ...... (2•)+ ...... 8(2) (2d) r j 
P 

r j apr j a p 
P 

r j 

_ ""'2n 12d) 
e(2) - L,J=l a; 

P -
r(2d) 

L2n 
j=l (1•)+8(1) (1d)+ ...... (2•)+ ...... 8(2) (2d) r j 

P 
r j apr j ap 

P 
r j 

L2n 
j=l (1 •)+8(1) (1d)+ ...... (2•)+ ...... ()(2) (2d) r j 

P 
r j apT j a p 

P 
r j 
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A single iteration from a consistent estimators produces the two-step estimators 

which are asymptotically equivalent to the maximum partial likelihood estimators, 

2.4 Test of the proportional hazards assumption 

The proportional hazard model is popular and widely available to survival analysis 

with censored data. The model for association in bivariate survival data is also based 

on the proportional hazards assumption. An important problem arising in applying 

these models is to assess the proportionality of the hazards. However, the analytical 

results are mostly discussed on the existence of the proportionality. In fact, Andersen 

( 1982) has mentioned "a number of worked examples of analyses of survival data using 

this model have been published, but surprisingly little attention has been paid to the 

problem of model checking." In view of such a necessity of model checking, we propose 

a test of the proportionality of the hazards. 

The observations from sample i ( i = 1, 2) are (Xij, dij) j = 1, ... , ni where X··-' t) 
-

min( X0·, Uij), dij = I(Xij =X�), I(·) is the indicator function, Xi� is the true survival 

time of j-individual of i-sample with a continuous distribution function Fi , and Uij is 

the corresponding censoring variable. We assume that Ui1 are independent identically 

distributed random variable with distribution function Li , and that the variables Uij 

are independent of the variables Xij. 
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Furthermore, we assume that n; jn ----+ r;, 0 < r; < 1, as n ----+ oo, where n == 

n1 + n2• Let the cumulative hazard function ofF; be denoted by H;(t), that is Hi (t) == 

-log{1 -Fi(t)}. Also let 

N;(t) == #{j; Xij � t and dij == 1}, 

)'i(t) == #j; Xij 2:: t, 

y; ( t) == { 1 -F; ( t)} { 1 - L; ( t-)}. 

We assume that the supports of y;(t) are [0, oo] . 

We intend to test the null hypothesis that H1(t) == ()H2(t), fort > 0 and some 

unknown constant (). 

Now we can write the logarithm of the Cox's partial likelihood as follows, 

and let 

The estimator e is defined as the solution to the likelihood equation 

The asymptotic properties of this estimator have been studied by many workers, for 

example Tsiatis (1981) and Wong {1986). 

Furthermore let Bn((); t) be the product of the parameter () and the derivative of 

Cn(e; t) with respect to e. Then, 

This can be interpreted as the residual at the time t. The first term of left hand side 

is the observed number of deaths from sample 1 until time t. The second term is the 

corresponding expected number under the null hypothesis. 
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Because the parameter f) is unknown, we replace fJ by ff in Bn and let, 

It is clear by definition that Wn(O) = Wn( oo ) = 0. 

In the next section, we propose a test by u sing Wn(t). 

2.4.1 Newly proposed test 

At first we give two lemmas. 

Lemma 1 Under H 1 ( t) = fJ0H 2( t) for any t � 0 and some fJ0 , the estimator ff is 

strongly consistent. 

Proof 

Bn(B; t) is clearly a non-increasing function of e. For fixed e, as n � oo, 

where 

1 
-Bn(B; t) ----+ B(fJ; t), a.s., 
n 

B(fJ;t) = 

r r1Yt(s)r2Y2(s) d{Ht(s)- fJH2(s)}. lo fJr1y1(s) + r2y2(s) 

If H1(t) = fJ0H2(t) for any t � 0, then B(fJ0; oo ) = 0. B(fJ; t) is also a strictly decreasing 

function on a neighborhood of fJ0 • Therefore, 

Pr( lim 1J = fJ0) = 1. n-+oo 

Let 
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and 

G(t) = Q(t)/Q( oo ). 

Lemma 2 Under H1 (t) = 80H2(t) for any t > 0 and some Bo, the process {Vn(t); 0 :s; 

t :s; oo} converges in law to the process {W0(G(t));O :s; t :s; oo} , where W0(·) is the 

tied-down Brownian motion process. 

Proof 

See Theorem 1 of Wei (1984). 

Let 

This is our proposed test statistic with the properties which are represented by follow-

ing two theorems. 

The above two lemmas yield the following theorem. 

Theorem 3 Under the null hypothesis, the asymptotic distribution of Tn is same to 

the distribution of 

The consistent property of this test is obtained by the next theorem. 

Theorem 4 When the null hypothesis is not hold, for any c > 0, 

lim Pr(Tn > c) = 1. 
n-+oo 

Proof 

From the proof of lemma 1, the estimator e converges to a constant e A ' even if the 

assumption of proportionality of hazards is violated. On the other hand, for fixed t, 
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Clearly there exists some t* > 0 such that 

Therefore, Wn(t*) -----+ oo in probability, for some t* and Tn ----+ oo in probability. 

2.4.2 Remarks 

The tables of the critical points of the distribution of f01 W
0(t)2dt were given in some 

papers, for example, Schumacher (1984). 

A general form of the integral-type test statistics of this problem can be represented 

as follows, 

where '1/J is a weight function. We can obtain various test statistics by selection of 

the weight function '1/J. For example, when the estimated variance function of Vn(t) 

is selected as '1/J(t)-I, the test statistic Tn,t/J is an Anderson-Darling type test statistic. 

The asymptotic distributions of these statistics were studied in Durbin (1973). 
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3 Linear Model with Heavy-tailed Error Distri­

butions 

Error terms in most statistical models are assumed to be the random variables fol­

lowing the normal distribution, and under this assumption, the maximum likelihood 

estimation is carried out. In this case, the theoretical validity of the results is guar­

anteed only when data satisfy the assumption of the normality. In the general case of 

applying such a method to actual data, its robustness becomes a problem. 

As a model of error distribution other than the normal distribution, a scale mixture 

of normals might be used, which has a relatively heavier tail than that of the nor­

mal and is unimodal and symmetrical distribution. The family of scale mixtures of 

the normal distribution includes, in particular, the t-distribution, double exponential 

distribution and logistic distribution. 

The assumption of a heavier-tailed distribution reflects interest in estimates which 

are relatively unaffected by outliers. In particular, the t-distribution has been fre­

quently used in analysis of real data (Zellner 1976, Sutradhar and Ali 1986 and so 

on.), when they considered that data included some outliers. Aitkin and W ilson (1980) 

treated several types of mixture models of two normals. In this section, we do not 

confine the t family or contaminated normal family, but instead employ the family of 

scale mixtures of the normals and give a general method for parameter estimation. At 

that time two problems would arise. One is the identification of error distribution in 

the family and the other is the detection of outliers. As mentioned in Chapter 1, we 

treat both problems as the model selection with the help of the AIC. 

3.1 Linear model and iteratively reweighted least squares 

We begin with the linear model and iteratively reweighted least squares (IRLS). The 

data consist of an n x 1 response vector Y and an n x m design matrix X. It is 
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assumed that 

Y = Xf3 + e, 

where f3 is a vector of parameters and e is a vector such that the components si 

of a-1e are independently and identically distributed with known density f( si ) on 

-oo < Si < oo. In the context of ordinary least squares we do not use the assumption 

of error distribution. The weigthed least squares estimate of {3 is chosen to minimize 

(Y- Xf3)'W(Y- X/3), (8) 

for a particular given W, where W is a positive definite diagonal matrix. We assume 

that X'W X is full rank, so that the unique solution which attains the minimum of (8) 

exists, and it can be written 

b(W) = (X'WX)-1(X'WY). 

As the weighted least squares estimate depends on the weight matrix W, we have to 

select proper weight matrix. When the weight matrix is not fixed, IRLS is used. IRLS 

is a process of obtaining the sequence b(o), b(l>, ... , and b(l+l) for l > 0 is a weighted 

least squares estimate corresponding to a weight matrix wCl), where wO+l) depends 

on b(l). To define a specific version of IRLS, we need to define a sequence of the weight 

matrices. 

A general statistical justification for IRLS arises from the fact that it can be viewed 

as a ML estimation. 

The log likelihood is 

where 

Let 

n 

£({3, a) = -nloga + I: logf(si), 

w (s ) = { 
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for s -=/= 0 

for s = 0. 

(9) 

(10) 



We assume in (10) that f(s) > 0 for all s, that df(s)lds exists for z =/= 0 and that w(s) 

has a finite limit as z--. 0. Also, since w(s) is selected as the weight function we must 

assume that df Ids � 0 for s > 0 and df Ids � 0 for s < 0, hence f ( s) is unimodal with 

a mode at s = 0. Furthermore, to simplify the theory we assume df(O)Ids = 0. 

Dempster et al.(1980) gave the following Lemma and Theorem concerned with the 

connection between IRLS process and the log likelihood function ( 9). 

Lemma 3 For ({3, cr) such that cr > 0 and w( zi ) is finite for all i, the equations derived 

from the log likelihood {9) are given by 

X'WY - X'W X{3 = 0, (11) 

and 

- (Y- X{3)'W(Y- X{3) + ncr2 
= 0, (12) 

where W is a di agonal matrix with elements w(s1), w(s2), ... , w(sn)· 

Lemma 3 suggests an IRLS procedure. Since W depends on {3 and cr, we cannot 

immediately solve the equations (11), (12). Thus we might derive an iterative proce­

dure: at each iteration substitute the temporary values of {3 and cr into the expression 

for W; then, holding W fixed, solve (11) and (12) to obtain the next values of {3 and 

a, that is, we take 

(13) 

and 

(14) 

Theorem 5 If an instance of an IRLS algorithm defined by {13) and {14) converged 

to ({3*, cr*) where the weight are all finite and cr* > 0, then ({3*, cr*) is a stationary 

point of £({3, a) . 
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3.2 Scale mixtures of normal distributions 

If u is a standard normal random variable with density 

and q is a positive random variable distributed independently of u with distribution 

function M( q), then the random variable z = uq-112 is called to have a scale mixture 

of normal distributions. Andrew et al. (1972) said it had a normal/independent 

distribution. 

The scale mixtures of normal distributions are a convenient family of symmetric dis­

tributions for components of error terms. The following examples show some familiar 

examples of these. 

Example 1 : Contaminated normal distribution 

If { 1-0 
M(q) = � 

if q = 1 
if q = ,\ 

otherwise 

then the distribution of z is the contaminated normal distribution with contaminated 

fraction o and variance inflation factor ,\, that is, 

z f'J (1- o) x N(o, E)+ o x N(o, E/ -\). 

Example 2 : t distribution 

Let v be a constant. If the distribution of v x q is x2 distribution with v degrees 

of freedom, then the distribution of z is the t distribution with v degree of freedom. 

When v = 1, it is also called the Cauchy distribution. 

Example 3 : Double exponential distribution 
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If 
1 2 ( 

1 
) M(q) = 2q- exp -

2q 
, 

z has the double exponential distribution with the probability density function 

1 
f ( z) = - exp(- I z I). 2 

Example 4 : Logistic distribution 

If 
00 k 

M(q) = L( -1)k-lk2q-2exp( --), 
k=l 2q 

z has the logistic distribution with the distribution function 

F(z) = [1 + exp( -x )]-1. 

Dempster et al. (1980) pointed out a close connection with IRLS. Knowledge of the 

scale factors qi112 in each component ei = �uiqi112 would lead to the use of weighted 

least squares with weight matrix W whose diagonal elements are q1, q2, . • •  , qn, and 

treating these weights as missing data might lead to a statisticall y  natural derivation 

of IRLS. 

The density function of z, f(z) is 

(15) 

Proposition 1 Suppose that z is a scale mixture random variable of normal distribu­

tion with the density function ( 15) Then for 0 <I z I< oo; 

(i) the conditional distribution of q given z exists, 

(ii) E(qk I z) < oo, fork > -1/2, 

(iii) w ( z) = E ( q I z)' 

(iv) dw(z)/dz = -zvar(q I z ) , 
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( v ) w( z) = w(-z) is finite, positive, and nonincreasing for z > 0. 

For z = 0: 

(vi) the conditional distribution of q given z exists if and only if E(q112) < oo, 

(vii) w( 0) � w( z) for z =f. 0 and w( 0) is finite if and only if E( q312) < oo, 

(viii) dw(O)/dz is finite if and only if E(q512) < oo. 

Proposition 2 Suppose that u rv N(O, 1) and that q is a positive random variable 

distributed independently of u with distribution function M(q). Then 

z = uq-1/2 

is equivalent to that the conditional distribution of z given q = qo is N(O, 1/qo). 

Proposition 3 The kurtosis of z is never less than that of u. 

Proof 

E( u4q-2) 
E( u2q-1 )2 
E( u4) E( q-2) 

E( u2)2E( q-1 )2 
E(u4) 

> E(u2)2. 

The family of scale mixtures of the normal is heavier-tailed than the normal distri­

bution in the meaning of the kurtosis. We note that the condition of the normality of 

u is not necessary in the above lemma, that is, even when u is not limited to a normal 

random variable, the tail b ecomes heavier than that of the distribution of the original 

random variable. 
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3.3 Multivariate model 

We now consider an extension of the above results to the multivariate case. 

3.3.1 Basic statistics 

Let U be a p-component random vector distributed as N ( o, :11) and q be a positive 

random variable distributed independently of U with distribution function M(q). Then 

the random vector Z = U q-112 has a scale mixture distribution of multivariate normal. 

Proposition 4 The density function of Z, f ( Z) is 

The mean vector and covariance matrix of Z are reprensented by the following 

lemma. 

Proposition 5 

E(Z) = 0, 

The next lemma gives the same result in the multivariate case of lemma 3. The 

multivariate kurtosis K2,p is defined by Mardia (1970) as follows: 

Let X be a arbitrary p-dimensional random vector, p. be its p x 1 mean 

vector, and :11 be its p x p covariance matrix. Then 
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Proposition 6 The multivariate J(urtosis of Z is not less than that of U. 

Proof 

Z' 1 ')}_1 Z )2] = E[(�12{E(-ZZ 172 q q q 

E[( �Z'{E( �)E(ZZ')}-1 Z)2] q q 
1 1 

= E[Z'{E(ZZ')}-1Z]2E(-){E(-)}-2 
q2 q 

> E[Z'{E(ZZ')}-1ZY 

Proposition 7 

and if Z' :E-1 Z = Z�:E-1 Zo then E(q I Z) = E(q I Zo). 

Let s2 = s2(Z) = Z' :E-1 Z and w(s2) = E(q I Z), because w has the same value if 

s2 is same. 

Proposition 8 w( s2) is finite, positive, and nonincreasing for s2 =f 0. 

Proof 

dw 1 fooo q2(21f)-1/2q1/2 I :E �-1/2 exp( -tqs2)dM(q) 
ds2 2 fooo(21f)-1/2q1/2 I :E 1-1/2 exp( -tqs2)dM(q) 

1 fooo q(21f)-1/2q1/2 I :E �-1/2 exp( -tqs2)dM(q) 2 
+2{ fooo(21f)-1/2q1/21 :E 1-1/2 exp(-tqs2)dM(q) } 

< 0 

We now consider the multivariate regression to give the relation between the 

conditional expectation of q given Z and IRLS. 
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Suppose Y 1, Y 2, ... , Y n are a set of n observations, Yi following the model, 

(17) 

where {3 is a p x m matrix of parameters, Xi is a known design matrix and ei / CJ is a 

vector with the density function f( ei) and �' = CJ21P for the sake of simplicity. Then 

the log likelihood function is 

Let 

and 

np n 

f(/3) = --logCJ2 + L:logf(ei). 
2 i=l 

* W··= l) 

1 df( ei) 
e· ·J(e·) de· l) l ' 

W* d' { * * * } i = 1ag will wi2' . . .  

, wip' 

(18) 

where eij is the j-th component of ei. Then the likelihood equations from (18) are 

n 

L:w:eiX� = o, 

i=l 

and 
n 

npCJ2- L:e�w:ei = o. 

i=l 

Proposition 9 If ei has the density function {1 0}, then 

While wi1 is a weight of the j-th component of the i-th individual, E( qi I ei) might 

be regarded as a weight of the i-th individual which is regarded as a weighted average 
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3.4 ML estimation and EM algorithm 

We now establish a concrete procedure of ML estimation using the EM algorithm. It 

is assumed that Y i = {3X i + ei ( i = 1, .. , n), and ei is independently identically dis­

tributed from a scale mixture of multivariate normal. Namely, there exist n mutually 

independent positive random variables qi, which follow the distribution function M( qi), 

and conditional on qi, ei follows N( o, � / qi)· According to the method of description 

of the EM algorithm by Dempster et al. ( 1977), {Yi} represent the directly observed 

data, called incomplete data because there is assumed to exist further potential data 

{ qi} which are not observed, and we denote by { 0 i} = {Y i, qi} a representation of the 

complete data, including both observed and unobserved. The log likelihood of { 0 i} 

IS, 

£({3, �)=Canst.-� log I � I -� t qi(Yi-{3Xi)' �-1(Yi- {3Xi). (19) 
2 2 i=l 

The evaluation of the conditional expectation of £({3, �) (19) is realized in E-step, and 

the maximization of E(£ I Yi) with respect to the objective parameters is realized in 

M-step, respectively. 

E-step: W ith the observed data Yi and the temporary values of parameters {3(l), �(l), 

the conditional expectation of £ is evaluated. In this case it is none other than 

determining the conditional expectation of qi, which would be determined if M(.) 

is specified. 

M-step: Assuming that q?+l) determined in the E-step was given, the estimated 

values of the parameters are renewed such that these values maximizes the tern-

porary log likelihood. In this case, 

�(l+l) = t q?+1)(Yi-{j(l+l) Xi)(Yi-{j(l+l) Xi)'fn. 
i=l 
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The above E-step and M-step are repeatedly carried out, taking the proper initial 

values, and the ML estimation are obtained. The E-step is materialized by specifying 

the distribution of q. Hereinafter, its several examples are shown. 

Example 5 : Contaminated multivariate normal distribution 

where ,\ < 0 and 0 < 8 < 1. 

{ 1- 8 if q = 1 
M( q) = 8 if q = ,\ 

0 otherwise 

When M( q) is specified as described above, it is to assume the distribution of the 

mixture of N ( o, .E) and N ( o, -'1 /,\) in the ratio of 1 - 8 to 8. 

Hereupon, the conditional distribution of q when Y, X and the temporary values 
----(1) --(l) 

of the parameters f3 , -'1 are given is concretely evaluated, and 

is obtained, where 

E(q I e ) 
1- 8 + 8).1+PI2 exp{(1- ,\) cP /2} 

1- 8 + 8,\P/2 exp{(1- ,\)d2/2} 

Example 6 : Multivariate t distribution 

(20) 

If q x v has the chi-squared distribution with v degrees of freedom, the marginal 

distribution is the multivariate t distribution (Cornish, 1954). At this time, 

w(l+l) = E(q I e ) 

= (v + p)j(v + �). 

(21) 

Both models down weight observations with large cP. However, the curve of the 

weights is quite different for the two models, the multivariate t model producing rel­

atively smoothly declining weights with increasing cP, and the contaminated normal 

model tending to concentrate the low weights in a few outlying observations. 
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3.4.1 Estimation of mixing parameters 

If the model of the distribution function of q includes some unknown parameters, for 

example the degrees of freedom v for the multivariate t model, the contamination 

fraction o and variance inflation factor ). for the contaminated normal model and so 

on, we have to estimate such parameters. 

The distribution of p-variate random vector Y is assumed such that the conditional 

distribution of Y given positive random variable q is N(J.', :E jq). Let f(q; 8) be the 

probability density function of q with unknown parameter vector IJ (mixing parame­

ters), and g(Y; J.', :E) denote the normal density function with mean vector I' and co­

variance matrix :E. Then the joint density function of Y and q is f( q; B)g(Y; J.', :E / q). 

As 8 is not included in g(·) but in/(·), the log likelihood concerned with 8, based on 

complete data { (Y i, qi), i = 1, 2, .. , n} is 

n 

Const. + L log f(qi; 8). (22) 
i=l 

ML estimation of IJ is performed via the EM algorithm: the evaluation of the con­

ditional expectation of (22) given ovservation {Yi, i = 1, ... , n} and temporary values 

of parameters, is realized in Estep. The maximization of the expected log likelihood 

obtained in E-step, with respect to 8 is realized in M-step. 

We now illustrate concrete algorithm for t model. (see Lange et al., 1989). Given 

l-th estimates 1-'(l), :E(l), v(l), in the E-step we compute w;l) using (21) with v = v(l), 
and 

Vi = E(log qi I ei) 

'lj;(v(l) /2 + p/2) -log(v(l) /2 + J2 /2), 

where 'lj;(x) = fx log{f(x )}, the digamma function (psi function). In the M-step we 

compute 1-'(l+l) and Jfl+l) and find v(l+l) that maximizes 

n n 

£1(v) = nv log(v/2)- n log{f(v/2)} + (�- 1) L v�l)- � L w�l) . 

2 i=l 2 i=l 
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It is easy to find the value of v that maximizes £1 using a one dimensional search, for 

example Newton's method. 

For t model, another method are considered. We calculate the maximized log like­

lihood for a fixed v, which is 

We can regard the maximized log likelihood as a function of the degrees of freedom 

v, and select the value of v as the estimate, which attain the maximum over a grid of 

values of v. 

The case of the contaminated normal model is more complicated, because the model 

includes two parameters (Little, 1988). When the variance inflation factor ). is fixed 

in advance, it is easy to estimate ). simultaneously with p, and L; by general method 

described in the top of this section, that is, we have only to add the calculation of 

E{I(qi = ,\) I ei} to the E-step and 

o(l+l) = _!_ t E{I(qi = ).) I e�l)} 
n i=l 

to the M-step, where I(.) is a index function and 

. _ . (l) (l) o).P/2 exp{(1- ,\)d2 /2} E{I(q, - ).) I Y,, � 'JJ } 1- 0 + o,\P/2 exp{(1- ).)d2 /2}. 

When ). is treated as a parameter, the simultaneous estimation of ). , o with f3 and 

L; can not be directly derived. Because it is meaningless to estimate ). when qi (or wi) 

are given. Thus the estimation of ). is performed based on the log likelihood £3 from 

the marginal distribution of }i, which is 

1 n n 

£3 = Const.-:: log I JJ I -- L d: + L log[l- 0 + o).P/2 exp{(l- ).)� /2}]. 
2 2 i=l i=l 

Then 



and ).Cl+l) is obtained as a solution of equation 

P Ln E{J(q· = ). (l+l)) I Y. uCl+l) lJ(l+l)} >,(l+l) = ,=1 ' " ,.- ' (24) 
I:i=l d7(l+l)E{I(qi = ).(l+l)) I Yi, pCl+l), li(l+l)}. 

Note that the equation (24) for ).(l+l) depends on oCl+l), pCl+l) and lJCl+l) not oCl), 

p.(l) and 1J(l). 

3.4.2 On the convergence property 

Before demonstrating property of the above method, we briefly rewrite outline of GEM 
algorithm. Instead of the "complete data" .e, we observe the "incomplete data" y = 

y(.e). Let the density functions of .e, y be J(.e; </>), g(y; </>),respectively. Furthermore, 

let k(.e I y; </>) = J(.e; 4>)/g(y; </>) be the conditional density of .e given y. Then the 

log likelihood can be written in the following form 

where 

L(bphi') = logg(y;</J') = Q(<P' I</>)- H(<P' I</>), 

Q( </>' I </>) = E{log f ( te; </>') I y, </>}, 

H(<P' I</>)= E{logk(.e I y; </>')I y, </>}, 

and these are assumed to exist for any ( </>, </>'). 

In general, Q(<P' I</>)- Q(<P I</>)� 0 implies L(</>')- L(</>) � 0. Therefore, for any 

sequence { <fJ(P )} generated by GEM algorithm, 

(25) 

This is essential to the convergence property of GEM algorithm, and hy brid GEM 
algorithm must keep this property. 

Let us show that the above method can generate sequences such that L( <P(p+l)) � 

L(<fJ(P)). Let t/J be unknown parameters except >.. Given ,pCP),).(P), from the step of 

GEM algorithm for p and li, and (23), we obtain 1/J(p+l). Then clearly, 
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which yields 

L ( 1/7 (p+ 1) , � (p)) � L ( 1/7 (p), � (p)) . 

� (p+l) determined by the equation (24) satisfies 

and therefore (25). 

3.5 Model selection and detection of outliers 

In the above section, we derive the method for calculating ML estimates under the 

given model. Next we have to select the best model among models under consideration. 

Now one of the most important purpose of the statistical analysis is the representation 

of stochastic phenomena by statistical models based on a set of observations. When we 

have a set of observations, we consider several models for the data. Thus we have to 

evaluate each model or compare models. The AIC is a leading criterion and it enables 

us to evaluate the validity of statistical models. 

The model selection is performed with the help of the AIC, which is given by 

AIC == -2 x (log likelihood)+ 2 x (the number of parameters). 

The model with the least AIC among the models under consideration is selected. 

When the non-normal model, in particular, the multivariate t model with small 

degrees of freedom or the contaminated normal model with large variance inflation 

factor, is selected for the given data set, it is of interest to detect which observations 

would be considered outliers in the context of the normal assumption. Because better 

fit of non-normal model may suggest that the data set includes some values deviating 

from the majority of data, which are consider as outliers. Wi can give us the informa­

tion on the detection of outliers. From a Baysian point of view, Wi can be regarded 

as the posterior mean of qi given the data and parameter values when qi has a prior 
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distribution M( qi). If the value of Wi is close to one then the observation is compatible 

with the normal assumption, however, if this value is close to zero then the observation 

can be classified as an outlier. However it may be difficult to set the threshold value 

in the case of the multivariate t model, because the multivariate t model produces 

relatively smoothly declining weights with increasing cP. To the contrary, the contam­

inated model specifies clearly some extreme observations. T he concrete performances 

are shown in numerical examples in Section 3 and Section 4 with the aid of real data. 

45 



4 Analysis of Repeated Measures Data with Out­

liers 

A broad range of statistical investigations can be regarded as repeated measurements 

studies. Their essential feature is that each subject is observed at several different 

times or under different experimental conditions. The subjects are primary sampling 

units randomly selected to represent various strata or randomly assigned to levels of 

a grouping factor. The responses measured under the respective conditions constitute 

the observational units; because within each subject such responses constitute a profile 

of inherently multivariate data, their covariance structure plays an important role in 

the formulation of statistical methods for their analysis. 

In many case, some observations are missing or the design is unbalanced for some 

other reason - for example, the presence of time-varying covariates. A systematic 

approach to the analysis of incomplete and unbalanced data is to specify a model and 

to estimate parameters of the model using maximum likelihood method. The original 

focus of much of the work on ML estimation with incomplete data was centered around 

the mixed model and the multivariate normal model with unstructured covariance 

matrix. More recent work has extended both models to allow arbitrary linear models 

to describe the mean structure and intermediate types of covariance structure. Laird 

and Ware (1982) studied on ML estimation procedures under general random-effects 

models for incomplete data and Ware (1985) discussed ML estimation under a similar 

model with three types of covariance structures: multivariate, random-effects, and 

autoregressive time series. Jennrich and Schluchter (1986) gave a general model where 

the expected values of the responses are described as arbitrary linear functions of 

unknown regression parameters, and the within-subject covariances are modeled as 

arbitrary functions of a set of unknown covariance parameters. The assumption of 

error distributions is the normal distribution in all models. In this Chapter, in order 

to reduce the influence of outliers we replace the normal distributions by the scale 

46 



mixtures of normals in Jennrich and Schluchter's model and give a method for ML 

estimation of parameters. 

4.1 Model for data with outliers 

We consider the situation where a fixed number T of measurements, corresponding to 

different times or experimental conditions, are to be collected on each of n subjects, 

but not all of the subjects' responses are observed, where we assume that missing is at 

random. Furthermore it is possible that data might include some extreme observations. 

We now assume the scale mixtures of multivariate normal distributions instead of the 

normality assumption in order to reduce the influence of extreme observations. 

Let Y: be aT x 1 complete data vector for subject i, where i = 1, . .. , n. TheY are 

assumed to follow the model 

y� = x��-� + e� 
l , f-J ' (26) 

where x: is a known matrix, f3 is a p x 1 vector of unknown regression parameters, 

and the ei are mutually independent. We assume that conditional on unobserved qi, 

ei is normally distributed with mean vector 0 and covariance matrix :E / qi, where qi 

is a positive random variable with known probability (density) function M( qi)· 

But not all of the subjects' responses are not observed, then let Yi be a ti x 1 vector 

containing the observed responses for subject i. According to (26), the Yi follows 

the model Yi = Xi/3 + ei, where Xi and ei are a submatrix of x: and a subvector 

of ei, corresponding to the observed responses, respectively. Conditional on qi, ei is 

distributed as N(O, :Ei/qi), where :Ei is a submatrix of :E. We consider the estimation 

in both cases unstructured :E and structured :E. In the structured case, we assume the 

elements of :E are known functions of m unknown parameters contained in the vector 

9. The regression parameters f3 vary independently of the covariance parameters 9. 

W hen we wish to emphasize that :E depends on 9, we shall write :E as :E(9). 
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4.2 Maximum likelihood estimates 

We now discuss the algorithm for the maximum likelihood estimators, and, throughout 

this section, apply the EM algorithm to get ML estimators, treating qi as missing data 

in addition to ordinary missing values. 

4.2.1 Unstructured E 

If all elements of Y: and x:, and qi were observed, the likelihood is shown by 

and the log-likelihood ). is 

log£ 

Canst. - � log I :E I - � t {tr(q;:E-1e;e:')}. 
z=l 

(27) 

Let e: be partitioned into two subvectors for each subject, 

e; = ( :;:; ) i = 1, . .. , n, 

where we assume e�2) is unobserved and e�l) is observed, then e�1) = Yi - Xif3, and 

also 

:E i 
= ( :E 11 i :E 12i ) 

:E21i :E22i 

is similarly into submatrices. Then ). is 

where 
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By (27), we get an estimate of E, 

(29) 

For the regression parameter vector /3, differentiating (28) with respect to /3, we have 

8).. 
8{3 

Then, the ML estimator of f3 is obtained as 8)../ 8{3 = 0. 

Since qi and e�2) are not observed, we have to calculate the conditional expectations 

of the sufficient statistics given e�1). First we let 

(30) 

where the specific form of Wi depends on the distribution of qi, that is M(.) (see 

examples). 

where 

Then 

therefore 

E{ qiE( e�2) I qi, e�1)) I e�l)} 
... (2) wiei ' 

E{ qiE( e�2) e�2)' I qi, e�l)) I e�1)} 
"(2) "(2)1 i-t wiei ei + .6J22i ' 

n n 

/3 = (2: wix�E!l�xi)-1 2: wiX�ll!1�Yi, 
i=l i=l 

and from (29) and (32), 
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where 

e;= (:j::). 
We can summarize the EM algorithm as follows; 

E-step: to calculate the conditional expectations (30) , (31) and (32). 

M-step: to renew the estimates by (33) and (34). 

Example 7 : Contaminated multivariate normal case 

Let { 1- 8 if qi = 1 
M( qi) = 8 if qi = ! , 

0 otherwise 

then the marginal distribution of ei is the contaminated multivariate normal distribu-

tion and 

where 

Wi= 
1- 8 + 8rl+t•f2 exp{(1- f')df /2} 

1- 8 + 8T'taf2 exp{(1- r)ct: /2} ' 

Example 8 : Multivariate t case 

When qi x v has the chi-squared distribution with v degrees of freedom, the marginal 

distribution of ei is the multivariate t distribution and 

Wi = (v + ti)/(v + df). 

4.2.2 Structured � 

Jennrich and Schluchter( 1986) discussed unbalanced repeated measures models with 

structured covariance matrices. We consider Jennrich and Schluchter's models in the 

case including some outliers. Instead of the normality assumption, we use the scale 
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mixtures of multivariate normal distributions as the assumption of the error distri­

butions . The model is Yi = Xi{3 + ei, where conditional on qi, ei is distributed as 

Based on Jennrich and Schluchter's hybrid EM scoring algorithm, the algorithm 

for computing maximum likelihood estimators is easily obtained. The steps of the 

algorithm are in the following way. 

(i) Compute some conditional expectations (30), (31) and (32) 

(ii) Compute updated estimates {3 of {3, using equation (33) and 

S 
1 �{ � * � *' i-t } == 
- L-t wiei ei + """ 22i . 
n i=l 

(iii) Compute the update e by Jennrich and Schluchter's scoring step: 

The update 8 is 8 + .4, where .4 == H-1G, 

1 1 . 1 . 
[H] · · == -tr :E- :E · :E- :E · lJ 2 I J l 

4.2.3 Random-effects model 

The random-effects model is Yi == Xif3 + Zibi + ei, where {3 is a p x 1 vector of 

unknown population parameters, b, is a k x 1 vector of unknown individual effects and 

Xi and Zi are a known ti X p design matrix linking {3 to Yi and a ti X k one linking bi 

to Yi, respectively. Conditional on qi, ei rv N(O, CJ2 /qi ltJ and bi rv N(O, D jqi), that 

IS, 

(35) 

This model is a special case of the structured :E such that :Ei = ZiD Z� + CJ21t;· But 

in this case treating bi and qi as missing data, we give the method based on the EM 

algorithm in order to obtain the maximum likelihood estimators. 
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If bi and qi were observed, 

and 

1 n 
" " 

(J" - - '""' q · (Y·- X·,q- Z·b·)'(Y·- X·,q- Z·b·) - "'""' t . � ' ' 'JJ ' ' ' ,JJ ' ' 
L...., ' ,=1 

(36) 

(37) 

(38) 

In this case, we have to calculate the following conditional expectations given Yi; 

w· 
' 

and 

" " ' -

= Wibibi + D, 

E{tr(qieieD I Yi} 

tr[E{qiE(eie� I qi, Yi) I Yi}] 

where 

The EM algorithm can be summarized in the following way. 

E-step: to calculate (39),( 40),( 41) and ( 42). 

M-step: to renew the estimates by (36), (37) and (38). 
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4.2.4 Asymptotic variance 

We give the asymptotic variance of {3, which is used in the test for the regression 

parameters f3 and which is also used when computing the confidence intervals of some 

specific means. Louis(l982) devised a procedure to extract the observed information 

matrix when using the EM algorithm. Following Louis, we can obtain the observed 

information for the observed data. Let 

where 

>., = -� log I X I -
�tr(q; X-1eiei

'
). 

Then the asymptotic variance of {3 is given by A.Var({3) = z-1. Now 

and 

where wi = E(q? I eP)). Thus 

and 

E( a ).• )' 1 �1)) = ·X� �-1. �1) 
8{3 e, w, ,.6.11he, 

Therefore 

n 

�{ X' �-1 x *X' �-1 (1) (1)t �-1 X } � X' �-1 (1) (1)t �-1 X z=6 Wi i.6.lui •-wi i.6./uiei ei .6./11i i -6WiWj i.6./lliei ej .6.1111 1· i=1 i�j 
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4.3 Numerical examples 

The study of growth is an important topic in many biological sciences, and in statistic s 

the term growth curve has a special meaning ( see Ware, 1983 ) . Growth curve analysis 

is one of the most popular example of analysis of repeated measures data. 

We analyzed two real growth data sets. One is Potthoff and Roy(1964 ) 's data, 

also analyzed by Jennrich and Schluchter ( l986) under the normality assumption and 

another is Elston and Grizzle ( 1962) 's data. 

4.3.1 Potthoff and Roy's data 

Potthoff and Roy gave a set of growth data for 11 girls and 16 boys, listed in Table 2. 

None of the data are missing. Jennrich and Schluchter fitted eight different models, 

but our discussion was confined to the following models which appeared to fit the data 

in Jennrich and Schluchter's analysis. 

54 



Table 2 : Potthoff and Roy's data 

Age in years Age in years 

Sex Girls Boys 

Subjects 8 10 12 14 8 10 12 14 
1 21.0 20.0 21.5 23.0 26.0 25.0 29.0 31.0 
2 21.0 21.5 24.0 25.5 21.5 (22.5) 23.0 26.5 
3 20.5 (24.0) 24.5 26.0 23.0 22.5 24.0 27.5 
4 23.5 24.5 25.0 26.5 25.5 27.5 26.5 27.0 
5 21.5 23.0 22.5 23.5 20.0 (23.5) 22.5 26.0 
6 20.0 (21.0) 21.0 22.5 24.5 25.5 27.0 28.5 
7 21.5 22.5 23.0 25.0 22.0 22.0 24.5 26.5 
8 23.0 23.0 23.5 24.0 24.0 21.5 24.5 25.5 
9 20.0 (21.0) 22.0 21.5 23.0 20.5 31.0 26.0 
10 16.5 (19.0) 19.0 19.5 27.5 28.0 31.0 31.5 
11 24.5 25.0 28.0 28.0 23.0 23.0 23.5 25.0 
12 21.5 (23.5) 24.0 28.0 
13 17.0 (24.5) 26.0 29.5 
14 22.5 25.5 25.5 26.0 
15 23.0 24.5 26.0 30.0 
16 22.0 (21.5) 23.5 25.0 

The values in parentheses are treated as missing values in Little and Rubin ( 1987). 



Table 3 : Summary of models fit 

Model Distribution � The number of -2x AIC 
parametres log likelihood 

( 1) MN JJg = (o-ij) 14 419.48 447.48 

(2) MN �g = (()gij) 24 395.02 443.02 

(3) MN �g =a-ill'+ o-�I 6 428.64 430.64 

(4) MN � g = o-fgll' + O"�gi 8 408.81 424.81 

(5) MT �g = (()ij) 15 407.52 437.52 

( 6) MT JJ g = ( 0" gij) 25 395.5* 

(7) MT JJ9 = o-r11' +a-� I 7 414.43 428.43 

(8) MT JJg = ()igll' + ()�gi 9 405.75 423.75 

(9) CN JJg = (o-ij) 16 399.30 431.30 

(10) CN � g = ( () gij) 26 387.47 439.47 

(11 ) CN JJ 9 = a-ill'+ ()�I 8 409.00 425.00 

(12) CN � 9 = o-f 11' + a-� I 10 402.97 422.97 

M N: Multivariate Normal, MT: Maltivariate t, CN : Contaminated multivariate 

normal. 

* The degrees of freedom is 20. The MLE of it is more than 20. 



Table 4 : Maximum Likelihood Estimates 

Model Sex Age Means(S.E.) Covariance matrix 
8 21.21(.62) 4.470 3.880 3.880 3.880 

Girls 10 22.17(.61) 3.880 4.470 3.880 3.880 
(4) 12 23.13(.61) 3.880 3.880 4.470 3.880 

14 24.09(.62) 3.880 3.880 3.880 4.470 

8 22.62(.52) 5.204 2.446 2.446 2.446 
Boys 10 24.18( .45) 2.446 5.204 2.446 2.446 

12 25. 75( .45) 2.446 2.446 5.204 2.446 
14 27.32(.52) 2.446 2.446 2.446 5.204 
8 21.21(.63) 4.315 3.743 3.743 3.743 

Girls 10 22.16(.61) 3.743 4.315 3.743 3.743 
(12) 12 23.12(.61) 3.743 3.743 4.315 3.743 

14 24.07(.63) 3.743 3.743 3.743 4.315 

8 = 0.094 8 22.87( .51) 4.012 2.667 2.667 2.667 
� = 0.158 Boys 10 24.28(.47) 2.667 4.012 2.667 2.667 

12 25.69( .4 7) 2.667 2.667 4.012 2.667 
14 27.10(.51) 2.667 2.667 2.667 4.012 

Let Y9.,t denote the response for the s-th subject in sex group g, at time t, and 

Xt denote the t-th time (g = 1, 2, t = 1, 2, 3, 4). We applied the model for means as 

follows; 

and the unstructured model and the compound symmetry model as a model for �. In 

calculations, we considered a method to have converged when all parameters differed 

by less than 0.01% between successive iterations. 

Table 3 shows the -2xlog-likelihoods under several assumptions and the numbers of 

parameters involved in the models, and the results of estimation are shown in Table 
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4. The standard errors were obtained from the results in Section 4.2.4. The value of 

degrees of freedom v for the multivariate t-distribution models, or, 8 and "/ for the 

contaminated normal model were estimated simultaneously with parameters for mean 

vector and covariance matrix, using the method mentioned in Section 3.4. We perform 

a model selection using AIC, that is, we choose the model with the AIC less than AIC's 

of the others. In this case, the contaminated normal model with compound symmetry 

L; was selected through AIC. 

Table 5 : Conditional Expectations ; Wi 

Contaminated Multivariate Normal Distribution 

(L:; : Compound Symmetry) 
Girls .988 .983 .933 .996 .994 .996 .997 .991 .992 .961 

.947 

Boys .961 .994 .992 .971 .985 .997 .996 .969 .158 .947 
.992 .992 .160 .995 .987 .993 

The conditional expectation of qi, Wi gives us the information of the degree of suspi­

cion of outliers. Table 5 shows the values of Wi under the selected model. We wonder 

if the 9th and the 13th boys data are outliers based on this. Table 6 shows the result 

for the data without the 9th and the 13th boys data. This result is more similar to 

that under the selected model than to those under the other models. 

Pendergast and Broffitt (1985) applied a semi-parametric method for robust esti­

mation to this data and pointed out that the above two subjects were considered as 

outliers. They used the model with common unstructured covariance matrix. When 

we have some models to be fit ted, we have to perform model selections. When we 

have to select one model from many models, it is more convenient that models are 

fully parametric than that those are semi- or non-parametric. 
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Table 6 

Result after omitting the 9-th and the 13-th boys data 

Model Sex Age Means(SE) Covariance Matrix 

8 
Girls 10 

12 
(3) 14 

-2x 8 
Log-likelihood Boys 10 

=348.4 12 
14 

8 
Girls 10 

12 
(4) 14 

-2x 8 
Log-likelihood Boys 10 

=343.4 12 
14 

4.3.2 Elston and Grizzle's data 

21.21(.62) 
22.17(.59) 
23.13(.59) 
24.09(.62) 

22.95(.53) 
24.32( .52) 
25.70(.52) 
27.07(.53) 

21.21(.62) 
22.17(.61) 
23.13( .61) 
24.09(.62) 

22.92(.54) 
24.32(.51) 
25.70(.51) 
27.07(.54) 

4.476 3.517 3.517 3.517 
3.517 4.476 3.517 3.517 
3.517 3.517 4.476 3.517 
3.517 3.517 3.517 4.476 

4.470 3.880 3.880 3.880 
3.880 4.470 3.880 3.880 
3.880 3.880 4.470 3.880 
3.880 3.880 3.880 4.470 

4.480 3.231 3.231 3.231 
3.231 4.480 3.231 3.231 
3.231 3.231 4.480 3.231 
3.231 3.231 3.231 4.480 

Elston and Grizzle gave a simple example in which the ramus height of 20 boys was 

measured at 8, 8.5, 9, and 9.5 years. Table 7 lists the data used here. 

The data show a steady growth with age, and we would like to fit a straight line. 

Let the 4 x 1 vector Yi be the observations from the i-th subject and 

To fit a linear growth model to the data on ramus height, the matrix X is 4 x 2 and 

can be written 

X
'
= 

( 
8
1 1 1 1 ) 

8.5 9 9.5 ' 
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and f3 is the 2 x 1 vector of regression parameters. As the model of the error distribu-

tion, the multivariate normal, multivariate t, and contaminated multivariate normal 

distributions are used. 

Table 7 : Elston and Grizzle data ( Ramus height of 20 boys ) 

Age in years 

Subjects 8 8.5 9 9.5 

1 47.8 48.8 49.0 49.7 

2 46.4 47.3 47.7 48.4 

3 46.3 46.8 47.8 48.5 

4 45.1 45.3 46.1 47.2 

5 47.6 48.5 48.9 49.3 

6 52.5 53.2 53.3 53.7 

7 51.2 53.0 54.3 54.5 

8 49.8 50.0 50.3 52.7 

9 48.1 50.8 52.3 54.4 

10 45.0 47.0 47.3 48.3 

11 51.2 51.4 51.6 51.9 

12 48.5 49.2 53.0 55.5 

13 52.1 52.8 53.7 55.0 

14 48.2 48.9 49.3 49.8 

15 49.6 50.4 51.2 51.8 

16 50.7 51.7 52.7 53.3 

17 47.2 47.7 48.4 49.5 

18 53.3 54.6 55.1 55.3 

19 46.2 47.5 48.1 48.4 

20 46.3 47.6 51.3 51.8 

Table 8 and Table 9 summarize the results. The contaminated model is considered 

the best model among our models. 
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Table 8 : Summary of models fit 

Error distribution Model for L; Number of -2 x log-likelihood 

parameters 

Normal Unstructured 12 224.46 
t distr. (v == 12) Unstructured 13 223.13 

Contam.6 = 0.272,). = 0.076 Unstructured 14 205.93 

Table 9 : Maximum Likelihood Estimates 

Estimated age Estimated covariance matrix 

Model specific means (SE) 
Distribution Model for L; Age 

8 48.65(.30) 6.014 5.880 
Normal Unstructured 8.5 49.58(.29) 5.880 6.129 

9 50.52(.30) 5.488 5.848 
9.5 51.45( .34) 5.271 5.627 
8 48.66(.33) 5.985 5.916 

t-distr. Unstructured 8.5 49.52(.32) 5.916 6.163 
v = 18 9 50.39(.33) 5.656 5.988 

9.5 51.26(.36) 5.439 5.750 
8 48.70(.30) 4.870 5.065 

Con tam. Unstructured 8.5 49.43(.30) 5.065 5.405 
[; == 0.272 9 50.16(.30) 4.983 5.351 
,\ = 0.076 9.5 50.89(.32) 4.762 5.078 

Table 10 : Conditional Expectations; wi 

Contaminated Multivariate Normal Distribution 

(L; : Unstructured) 
.987 .992 .993 .988 .995 .980 .830 .076 .076 .076 
.953 .076 .940 .997 .998 .996 .996 .970 .971 .076 

5.488 5.271 
5.848 5.627 
6.575 6.599 
6.599 7.092 
5.656 5.439 
5.988 5.750 
6.547 6.497 
6.497 6.818 
4.983 4.762 
5.351 5.078 
5.458 5.234 
5.234 5.128 

This model suggests us that 20 boys might be classsified into two groups such that 
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one group consists of five subjects 8, 9, 10, 12, and 20 and another consists of the 

remainders. One of the most distinctive feature of these five subjects is the rapid 

growth, in particular, 7.0 of the 12th subject and 6.3 of the 9th subject, and at least, 

more than 3.1. 

4.3.3 Incomplete data 

Little and Rubin (1987) fitted Jennrich and Schluchter's model to the data obtained 

by deleting the nine values in parentheses in Table 2. Their deletion mechanism is 

designed to be missing at random (MAR) but not missing completely at random 

(MCAR). Specifically, for each gender, values at age 10 are deleted for cases with low 

values at age 8. 

We used two methods for treating missing observaions : (i) the methods for in­

complete data given in Section 3.2 ; (ii) ML methods using only the 18 complete 

observations, assuming the following three distributions as the error distribuions: the 

multivariate normal (MN), multivariate t with unknown degrees of freedom (MT ) 

and contaminated multivariate normal distribution with two unknown parameters 

(MC). In this example, we only use common covariance matrices model such that 

� = arll' + a�I . Table 11 shows the results from the data with incomplete ob­

servations and Table 12 shows those from the data without incomplete observations. 

As the deletion mechanism is not MCAR, results from the data without incomplete 

observations are seriously biased such that means are overestimated. 
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Table 11 : Results with i ncomplete observations 

Distribution Mean(SE) Covariance Matrix 

8 21.13(.65) 5.113 3.095 3.095 3.095 
Girls 10 22.11( .59) 3.095 5.113 3.095 3.095 

MN 12 23.09(.58) 3.095 3.095 5.113 3.095 
14 24.07(.64) 3.095 3.095 3.095 5.113 
8 22.60(.54) 

-2x Boys 10 24.17( .49) 
log likelihood 12 25.74(.48) 

=401.31 14 27.32(.53) 
8 21.25(.59) 3.833 2.739 2.739 2.739 

Girls 10 22.18( .56) 2.739 3.833 2.739 2.739 
MT 12 23.12( .57) 2.739 2.739 3.833 2.739 

14 24.06(.61) 2.739 2.739 2.739 3.833 
f)= 5.02 8 22.71(.56) 

-2x Boys 10 24.12(.52) 
log likelihood 12 25.54(.52) 

=388.57 14 26.96(.56) 
8 21.12(.61) 4.286 3.260 3.260 3.260 

Girls 10 22.10( .58) 3.260 4.286 3.260 3.260 
CN 12 23.09(.58) 3.260 3.260 4.286 3.260 

8 = 0.0854 14 24.07(.61) 3.260 3.260 3.260 4.286 
� = 0.099 8 22.91(.54) 

-2x Boys 10 24.31(.51) 
log likelihood 12 25.70(.51) 

=383.15 14 27.10(.54) 



Table 12 : Results without incomplete observations 

Distribution Mean(SE) Covariance Matrix 
8 22.09(. 72) 4.114 2.361 2.361 2.361 

Girls 10 23.04(.64) 2.361 4.114 2.361 2.361 
MN 12 23.99(.64) 2.361 2.361 4.114 2.361 

14 24.94(. 72) 2.361 2.361 2.361 4.114 
8 23.58(.57) 

-2x Boys 10 24.92(.51) 
log likelihood 12 26.28(.51) 

=278.13 14 27.63(.57) 
8 22.07(.62) 3.066 2.117 2.117 2.117 

Girls 10 22.99(.58) 2.117 3.066 2.117 2.117 
MT 12 23.91(.59) 2.117 2.117 3.066 2.117 

14 24.82(.65) 2.117 2.117 2.117 3.066 
f)= 5.11 8 23.57(.60) 

-2x Boys 10 24.86(.57) 
log likelihood 12 26.16( .58) 

=268.28 14 27.45(.64) 
8 22.09(.68) 3.515 2.507 2.507 2.507 

Girls 10 23.04(.64) 2.507 3.515 2.507 2.507 
CN 12 23.99(.64) 2.507 2.507 3.515 2.507 

b = 0.063 14 24.94(.68) 2.507 2.507 2.507 3.515 

� = 0.100 8 23.70(.57) 
-2x Boys 10 24.99(.53) 

log likelihood 12 26.29(.53) 
=265.37 14 27.59(.57) 



5 Robust Factor Analysis 

Factor analysis is a branch of multivariate analysis that is concerned with the internal 

relationships of a set of variables when these relationships can be taken to be linear, 

or approximately so. Initially, factor analysis was developed by psychometricians and 

in the early days approximate methods of estimation only were available, of which the 

most celebrated was the centroid or simple summation method. T he principal factor 

and minres methods are more recent approximate methods. ( see Harman, 1967 and 

his references ) Efficient estimation procedures were based on the method of maximum 

likelihood ( Lawley and Maxwell, 1963 ) . Difficulties of a computational nature were 

experienced, however, and it was not until the advent of electronic computers and 

a new approach to the solution of the basic equations by Joreskog( 1967) that the 

maximum likelihood approach became a feasible proposition. 

An alternative approach to calculating ML estimates was suggested by Dempster 

et al. ( 1977) and has been examined further by Rubin and Thayer ( 1982, 1983) and 

Bentler and Tanaka ( 1983 ). Its use depends on the fact that if we could observe the 

factor scores we could estimate the parameters by regression methods. 

Bentler and Tanaka pointed out some problems on Rubin and Thayer's example 

and the EM algorithm for ML factor analysis. As concerns slowness of convergence 

of the EM algorithm, it does not seem to be so important in recent highly developed 

circumstance of computers. On the other hand, the problem of example of Rubin 

and Thayer seems to be due to insufficient implement of the algorithm. In particular 

it is important what kind of criterion for convergence is selected. Applying the EM 

algorithm we have to use strict criterion for convergence, which was also noted by 

Bentler and Tanaka, because small renewal of parameters is performed by one step of 

iteration when the model includes a large number of parameters. 

The ordinary ML factor analysis is based on the assumption that the observations 

follow the multivariate normal distribution. It is well-known that the analysis under 
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the normality assumption is sensitive to outliers. In fact, in practical applications of 

factor analysis, we often meet the cases that the normality assumption is inappropriate 

because the data include some extreme observations. Rubin and Thayer (1982) men­

tioned that, after deriving the ML method for factor analysis under the multivariate 

normal assumption, " the entire issue of the sensitivity of results to the assumption 

of multivariate normality is important for the wise application of the technique in 

practice". 

Also in this case we replace the multivariate normal distribution by scale mixtures of 

multivariate normal distributions in order to reduce the influence of outliers and then 

derive a robust method in ML factor analysis. Rubin and Thayer ( 1982) presented 

equations to implement ML factor analysis via the EM algorithm treating factor scores 

as missing data. In this case, besides the factor scores, we cannot observe the mixing 

variables. Therefore we have to construct new algorithm for the estimation by applying 

the EM algorithm. 

5.1 Robust model 

Suppose Yi = a+ f3Zi + ei (i = 1, ... , n ) , where Yi is an observed p-component 

vector, Z i is an unobserved m-component vector of factor-scores and ei is a vector of 

errors (or errors plus specific factors) . a is a vector of means and the p x m matrix f3 

consists of factor loadings. 

In this paper, we use scale mixtures of multivariate normal distributions instead 

of the normality assumption, considering following two typical backgrounds. In em­

ploying such heavier-tailed symmetric distributions as underlying distributions, we 

consider two practical possibilities as follows; 

1: Case that a group is not homogeneous from the beginning, and the existence of 

partial subjects that have abnormal capability is supposed. Namely, both of Y 

and Z are assumed to follow scale mixtures of normal distributions. 
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2: Case that the latent ability itself of a group is homogeneous, but at the point 

of time when manifest response Y is observed, outliers mix. Originally, since 

specific factors are the result of the mixture of many factors including errors, as 

the assumption for the distribution of specific factors, to apply scale mixtures of 

normal distributions is more realistic rather than normal distributions. 

Concrete statistical mo dels based on the above two cases are as follows: 

Model 1: 

We assume that conditional on unobserved q,, e, is normally distributed with mean 

0 and covariance matrix F jq, and z, is also normally distributed with mean 0 and 

covariance matrix Ijq,, and that e, and z, are mutually independent, where F is a 

diagonal matrix and I is the unit matrix. q, is a positive random variable with the 

probability (density ) function M( q,). 

Then conditional on q, , 

where 

Model 2: 

�(1) - ( ��� ��1 ) 
..l'J - (1) �(1) 

�zy ..t:J zz 

( (3(3' + q; 

{3 
) 

(3' I . 

z, is, independently of q,, normally distributed with mean 0 and covariance matrix 

I. Conditional on q,, e, is normally distributed with mean 0 and covariance matrix 

F / q,. Thus conditional on qi, 

where 
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5.2 Estimation of the parameters 

In this section, assuming the number of factors is known, we give the estimates of 

parameters by applying the EM-algorithm , treating q and Z as missing data, that 

iteratively maximizes the likelihood supposing q and Z were observed. First we con­

sider the estimation under Model 1. The following lemma enables us to easily handle 

the log likelihood. 

Lemma 4 

I JJCl) I= I 'P L 

If Z's and q's are observed in addition Y, the log likelihood f is 

n 

f = Const. - 2 log I 'P I 

-�I: ntr (q;{iP-1 ((Y;- a)(Y; -a)'- 2(Y;- a)Z:f3' + {3Z;Z:f3 ')}] 
t=l 

and the sufficient statistics are 

Let 

( Syy Syz ) 
S ZY S ZZ 

( Cyy Cyz ) 
Czy Czz = 
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where 

then 

A 

-1 {3 = CyzCzz, ( 43) 

We, however, cannot observe q's and Z's. Thus we must calculate the conditional 

expectations of above sufficient statistics given Y's. 

[ E-step ] 

We give the conditional expectations of the sufficient statistics given Y's as follow­

ing; Frist we let 

where the specific form of wi depends on the model for the distribution of qi (i.e. M(. ) , 

and see examples. ) 

We note that in this case we could regard Wi as the weight of Yi in following 

procedure. Therefore, we could easily find the extreme observations by checking Wi ( 

see the result of Mardi a et a/. (1979) 's data in Section 5.4 ) . 

since the conditional expectation of Z given q and Y does not depend on q. 
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where 

[ M-step] 

Zi E�?E��-1(Yi- a ) , 

""* ""(1) - ""(1) ""(1)-1 ""(1) 
�zz �zz � ZY�YY �YZ· 

We compute the update estimates with the equations ( 43) replaced by their condi­

tional expectations from E-step. 

We would get the ML estimates applying repeatedly E-step and M -step until con-

vergence. 

Example 9 

To consider the contaminated multivariate normal case, let 

then 

Wi= 

where 

Example 10 

{ 1- 0 if qi = 1 
M ( qi) = o if qi = ). , 

0 otherwise 

1- 0 + o).1+P/2 exp{( 1- ,X)cif /2} 
1- o + o).P/2 exp{( 1- ,\)elf /2} ' 

If qi x v has the chi-squared distribution with v degrees of freedom, the marginal 

distribution is the multivariate t distribution and 

v+p 
wi = 

v + ar ' 

( see Andrews et al. (1972) and Andrews and Mallows (1974) for another examples. ) 
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We note that Wi is decreasing for di in above two examples. 

For model 2, we also get the estimates in the same way. But the calculation of the 

conditional expectations in E-step is more complicated, because E(Zi I qi, Yi) depends 

on qi in this case. In the following example, we show the expectations which would be 

needed in E-step, in the contaminated multivariate normal case. 

Example 11 

M( qi) is the same to that in example 1, that is, this example is the contaminated 

multivariate normal case. 

where 

(1- 5) I :11 1-1/2 +5). I;,]* 1-1/2 D2 
E(qi I Yi) = (1-8) I :11 1-1/2 +8 I;,]* 1-1/2 Df = 

w, 

E(qiZi I Yi) = f3'(hli:E-1 + ).h�i:E*-1)(Yi- o:), 

Wilp +f3'[h1i.E-1{Ip + (Yi- o:)(Yi- o:)':E-1} 

+,\h�i.E*-1{1P + (Yi- o:)(Yi- o:)' :E*-1 }]/3, 

(1-8) I.E l-112 2 h1i 
= (1 -8) I .E 1-1/2 +8 I .E* 1-1/2 Di' 

8 I .E* 1-1/2 2 h�i = 1-h1i = (1 -8) I .E 1-1/2 +8 I .E* 1-1/2 
Di' 

1 
Dt = exp{2(Yi- o:)'(.E-1- .E*-1)(Yi- o:)}, 

:11 
= 

/3'/3 + !P, 

If the model of the distribution function of qi includes some unknown or unspecified 

parameters, additional calculations given in Section 3.4 are needed. 
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5.3 Simulation study 

This section compares the efficiency of each maximum likelihood estimators from the 

multivariate normal distribution model, multivariate t distribution model, and con­

taminated multivariate normal distribution model as response data Yi and random 

vector of factor scores Zi. we conducted simulations to numerically compare robust-

ness, including the influence of misspecification of underlying distributions. 

When misspecification of underlying distributions in a family of scale mixtures of 

multivariate normal distributions happens, the sample variance covariance matrix is 

not a consistent estimator of variance covariance matrix, but sample correlation coeffi-

cient matrix is consistent estimator of correlation coefficient matrix. This fact suggests 

us that we had better distinguish between estimation based on covariance matrix and 

that based on correlation matrix. 

5.3.1 Simulation plan 

Our numerical model is based on a two factor model for the open/ closed book data in 

Mardia et a/. (1979). Here, we set the order p of response data as 5 and the number m 

of common factors as 2 and made the following settings for the factor loading matrix 

and the specific variance matrix: 

a== 0, 

{3' == [ 0.63 0. 70 0.89 0. 78 0. 73 ] 
' 0.37 0.31 0.05 -0.20 -0.20 

'I 
== diag(0.46, 0.42, 0.20, 0.35, 0.43). 

This numerical model is based on the maximum likelihood estimates made by Mardia 

et al .. During the generation of artificial data, we used the following four distributions 

for the factor scores Z i and the error terms ei. 

1) Multivariate normal distribution (MN) 
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2) Multivariate t distribution with 10 degrees of freedom (T10) 

3) Multivariate t distribution with 4 degrees of freedom (T4) 

4) Contaminated multivariate normal distribution (CN ) 

0. 9 X N ( ( : ) ' .ll) + 0.1 X N ( ( : ) ' .ll /0.0767) 

For the four sets of artificial data based on different assumptions of underlying 

distribution generated from the above models, we calculated the following four MLEs. 

a) MLE on the assumption of multivariate normal distribution 

(normal MLE) 

b) MLE on the assumption of multivariate t distribution with 10 degrees of freedom 

(tlO-type MLE) 

c) MLE on the assumption of multivariate t distribution with 4 degrees of freedom 

(t4-type MLE) 

d) MLE on the assumption of contaminated multivariate normal distribution 

(contaminated MLE) 

Thus, one experiment is enough to calculate a total of 16 estimates with regard to 

factor loadings {3 and specific variances 'P. For each of these estimates, we calculated 

the following estimation criteria. 

The square root of the root mean squared error with regard to factor 

loadings: 

i=l j=l 
....... ....... I ,.._ ,.._ 

where {3 is rotated to satisfy that {3 '1{3 is diagonal. 

The square root of the root mean squared error with regard to specific 

vanances: 
p 

{L::(wi- '1/Ji? !P }112. 
i=l 
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We made a simulation with different sample sizes 200 and 400. The simulation size 

was 200. 

5.3 .2 Result and discussion 

Tables 14 and 15 show RMSEs, summarizing all tables related to multivariate normal 

distribution, contaminated-type multivariate normal distribution and multivariate t 

distribution. These four distribution patterns are arranged in the order of small to large 

kurtosis. Table 13 shows multivariate kurtosis (Mardia, 1970) of these four distribution 

patterns and these distributions can be arranged in order of the multivariate kurtosis 

as follows; 

M N < T10 < CN < T4. 

Table 13 : Multi variate kurtosis 

Distribution Normal T( df 10) Contam. T (df 4) 
Multi variate kurtosis 99 128 383 00 

In the direction of the line in Table 14 and Table 15, we provided distribution forms 

of random values used in the generation of artificial data. In the direction of the 

row, we provided distribution forms assumed in the creation of the maximum likeli-

hood method. The diagonal cell in the tables, therefore, shows the efficiency of each 

maximum likelihood method under the right assumption of underlying distribution 

patterns. The non-diagonal cell, on the other hand, shows the efficiency of each max­

imum likelihood method under wrong assumptions of underlying distributions. The 

figures in parentheses show the relative ratios for each line on the basis that the figure 

for the diagonal cell is 100. The figure in parentheses for the final line (Mean) indicates 

the averages of all these relative rations from all rows. The smaller the relative ratio is, 

the more robust a specific distribution pattern is with regard to erroneous regulations. 
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First we discuss about the RMSEs of estimates of factor loadings in a comparison of 

multivariate normal distribution with contaminated multivariate normal distribution 

in Table 15. With regard to artificial data that follows the multivariate normal model, 

the efficiency of contaminated-type MLE almost corresponds to that of normal-type 

MLE. On the other hand, with regard to artificial data that follows the contaminated­

type multivariate normal model, the efficiency of the same contaminated-type MLE 

far exceeds that of normal-type MLE. That is, when underlying distribution shifts 

from normal to contaminated-type distributions, normal MLE loses its efficiency. 

Contaminated-type MLE, on the other hand, proves robust with regard to the dis­

tribution slippage. This tendency is similar in estimating specific variances. But an 

increasing difference in robustness between the two MLEs in response to a rise in 

sample size is even larger than that when estimating factor loadings. 

Next we compare RMSEs of estimates of factor loadings with regard to multivariate 

normal distribution and multivariate t distribution. With regard to artificial data that 

follows the multivariate normal distribution model, we can say that the efficiency of 

normal MLE differs little from that of multivariate t-type MLE with 4 and 10 degrees of 

freedom. But, when the sample size is large as 200, the efficiency of multivariate t-type 

MLE with 4 degrees of freedom is slightly lower than of the other two multivariate t 

distribution model with 10 degrees of freedom, the efficiency of the multivariate t-type 

MLE with 10 and 4 degrees of freedom is fairly high, but the efficiency of normal MLE 

is comparatively lower. With regard to artificial data that follows the multivariate t 

distribution mo del with 4 degrees of freedom, the efficiency of the multivariate t-type 

MLE with 10 degrees of freedom is lower, but the efficiency of normal MLE is even 

lower. On the average, MLE robustness with regard to the slippage of assumptions of 

underlying distribution is the highest in the case of multivariate t-type MLE with 4 

degrees of freedom, followed by multivariate t-type MLE with 10 degrees of freedom, 

and then by multivariate normal MLE. Normal MLE is thus least robust. That is, the 

robustness of the resulting maximum likelihood estimator increases in direct proportion 

75 



to the multivariate kurtosis of the distribution pattern assumed in the creation of the 

maximum likelihood method. This tendency increases as the sample size rises. The 

same tendency is seen in the estimation of specific variances. The increase in difference 

of MLE robustness accorcling to an increase in sample size is larger than that in the 

estimation of factor loadings. 

Result of comparison of the contaminated multivariate normal clistribution with 

multivariate t distributions is different from the cases inclucling the multivariate nor­

mal distribution. As in the earlier case, the RMSE value corresponding to the upper 

triangular cell is smaller than the RMSE of the lower triangular cell with the diago­

nal cell as the borderline. That is, we can say that the maximum likelihood method 

assuming a longer tailed than generated data clistribution affects the robustness stem­

ming from erroneous regulations of underlying distribution in the maximum likelihood 

method, less than the maximum likelihood method assuming a distribution pattern 

with a shorter tailed. But, unlike the earlier example including multivariate normal 

distribution, the gap between contaminated-type distribution and multivariate t clis­

tribution is not so wide. 

Generally speaking, MLE under normal distribution is less robust than MLE that 

assumes a heavier-tailed distribution. 
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Table 14 : Root Mean Squared Error ( x 1000) 

Standardized Data 

Data 

Normal 

T ( df 10) 
Con tam. 

T ( df 4) 
Mean 

Data 

Normal 

T ( df 10) 
Con tam. 

T(df 4) 
Mean 

Factor loadings 

n = 200 
Assumption of distribution 

Normal T (df 10) Contam. T (df 4) 
64(100) 65(102) 66(103) 70(109) 
73(106) 69(100) 75(109) 71(103) 

116(178) 66(102) 65(100) 66(102) 
99(152) 65(101) 74(113) 65(100) 

(134) (101) (106) (103) 

n = 400 
Assumption of distribution 

Normal T (df 10) Contam. T(df 4) 
46(100) 49(106) 48(102) 51(109) 
56(119) 52(100) 54(103) 52(100) 
88(248) 50(110) 46(100) 49(107) 
76(206) 53(108) 59(120) 49(100) 

(139) (106) (106) (104) 
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Data 

Normal 

T( df 10) 
Con tam. 

T (df 4) 
Mean 

Data 

Normal 

T ( df 10) 
Con tam. 

T (df 4) 
Mean 

Table 14 : ( Continued ) 

Specific variances 

n = 200 
Assumption of distribution 

Normal T(df 10) Contam. T (df 4) 
72(100) 74(103) 72(101) 78(108) 

79(107) 74(100) 81(109) 76(103) 

115(153) 75(101) 75(100) 76(101) 
108(142) 78(103) 87(114) 76(100) 

(126) (102) (106) (103) 

n = 400 
Assumption of distribution 

Normal T (df 10) Contam. T (df 4) 
52(100) 55(107) 54(102) 57(109) 
62(106) 58(100) 60(104) 58(100) 
93(176) 57(109) 52(100) 54(103) 

79(150) 57(109) 64(122) 53(100) 

(133) (106) (107) (103) 
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Table 15 : Root Mean Squared Error ( x 1000) 

Data 

Normal 

T(df 10) 
Con tam. 

T(df 4) 
Mean 

Data 

Normal 

T( df 10) 
Con tam. 

T (df 4) 
Mean 

Factor loadings 

n = 200 
Assumption of distribution 

Normal T(df 10) Contam. T (df 4) 
74(100) 80(108) 75(101) 92(124) 

118(155) 76(100) 87(114) 79(104) 
333(444) 95(127) 75(100) 80(106) 
263(346) 105(139) 100(131) 76(100) 

( 261) ( 119) ( 111) ( 1 09) 

n = 400 
Assumption of distribution 

Normal T(df 10) Contam. T(df 4) 
54(100) 63(117) 54(100) 78(144) 
97(170) 57(100) 65(114) 64(112) 

447(843) 72(136) 53(100) 55(104) 
256(419) 93(152) 87(143) 61(100) 

(383) (126) (114) (115) 

79 



Data 

Normal 

T( df 10) 
Con tam. 

T(df 4) 
Mean 

Data 

Normal 

T (df 10) 
Con tam. 

T ( df 4) 
Mean 

Table 15 : ( Continued ) 

Specific variances 

n = 200 
Assumption of distribution 

Normal T(df 10) Contam. T(df 4) 
69{100) 84{122) 70{101) 106{154) 

123{171) 72{100) 81{113) 88{122) 
450{643) 94{134) 70(100) 76{109) 
342{489) 112{160) 106{151) 70(100) 

{351) {129) {116) {121) 

n = 400 
Assumption of distribution 

Normal T(df 10) Contam. T(df 4) 
51{100) 71{139) 53{104) 74(145) 

111{206) 54{100) 65{120) 73{135) 
447{843) 77(145) 53{100) 60{113) 
361{592) 107(175) 91{149) 61{100) 

{435) {140) (118) {123) 
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Table 16 : Variances and MSE of estimates of each parameters ( x 100) 

Standardized Data 
Multivariate Normal Distribution 

Variances of estimates 
Factor loadings Specific variances 

20 76 68 
14 

6 
12 
13 

83 
54 
38 
47 

51 
8 

24 
22 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

21( 97) 77( 99) 72( 95) 
14( 99) 84( 99) 54( 95) 
7( 97) 56( 97) 8( 99) 

12( 98) 41( 94) 24( 99) 
23( 99) 50( 94) 22( 99) 

Multivariate t Distribution ( df 10) 
Variances of estimates 

Factor loadings Specific variances 
31 128 96 
23 134 76 
13 93 12 
23 
22 

61 
70 

30 
30 

MSE of estimates ( 100xVariance/MSE ) 
Factor loadings Specific variances 

32( 96) 129( 99) 103( 93) 
23( 97) 137( 99) 83( 92) 
13( 96) 99( 95) 12( 99) 
23( 98) 66( 93) 31( 98) 
22( 99) 74( 94) 30( 99) 
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Table 16 : ( Continue d ) 

Contaminate d Normal Distribution 

Variances of estimates 

Factor loadings Specific variances 

94 525 192 
51 
31 
55 
58 

500 
247. 
217 
212 

125 
29 
81 
81 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

96( 98) 553( 95) 217( 88) 
51 ( 99) 531( 94) 135( 92) 
33( 95) 262( 93) 30( 98) 
56( 98) 227( 96) 87( 93) 
59( 97) 215( 99) 82( 99) 

Multivariate t Distribution ( df 4) 
Variances of estimates 

Factor loadings Specific variances 

73 393 164 
51 
26 
50 
58 

357 
218 
191 
190 

115 
23 

661 
725 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

75( 97) 417( 94) 177( 93) 
52( 99) 369( 98) 129( 89) 
28( 93) 229( 95) 23( 99) 
51( 99) 194( 99) 687( 96) 
59( 99) 197( 97) 740( 98) 

82 



Table 17 : Variances and MSE of estimates of each parameters ( x 100) 
Multivariate Normal Distribution 

Variances of estimates 

Factor loadings Specific variances 

30 82 62 
27 
18 
25 
24 

74 
43 
37 
44 

49 
7 

21 
19 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

31( 99) 82( 99) 64( 96) 
27( 99) 74( 99) 51( 96) 
18( 97) 44( 98) 8( 99) 
25( 98) 39( 96) 21( 99) 
25( 99) 45( 96) 19( 97) 

Multivariate t Distribution ( df 10) 
Variances of estimates 

Factor loadings Specific variances 

61 180 158 
52 
40 
56 
48 

195 
114 

87 
89 

106 
16 
49 
46 

MSE of estimates ( 100 xVariance/MSE ) 
Factor loadings Specific variances 

131( 46) 187( 96) 219( 72) 
127( 41) 197( 99) 163( 65) 
131( 30) 122( 94) 364( 43) 
124( 46) 109( 80) 105( 47) 
105( 46) 108( 83) 140( 33) 

83 



Table 17 : ( Continued ) 

Contaminated Normal Distribution 

Variances of estimates 

Factor loadings Specific variances 

324 575 522 
188 
176 
251 
257 

855 
350 
379 
310 

243 
858 
292 
155 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

1372( 23) 760( 76) 1334( 39) 
1166( 16) 894( 95) 1591( 15) 

1576( 11) 375( 93) 459( 19) 
1371( 18) 616( 61) 1183( 25) 
1085( 24) 589( 53) 1615( 10) 

Multivariate t Distribution( df 4) 
Variances of estimates 

Factor loadings Specific variances 
197 508 264 
132 422 210 
149 166 79 
140 207 175 
161 240 184 

MSE of estimates ( 100 x Variance/MSE ) 
Factor loadings Specific variances 

917( 21) 691( 73) 1200( 22) 

855( 15) 480( 88) 1331( 16) 

1263( 12) 173( 96) 401( 20) 
1032( 14) 302( 69) 910( 19) 
909( 18) 343( 70) 1285( 14) 
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The influence of misspecification of underlying distributions in the non-standardized 

data cases is much more than that in the standardized data cases. The most impor­

tant factor of decrease of efficiency is bias caused by misspecifications of underlying 

distributions. Table 16 and Table 17 show variances and MSEs of estimates of each 

parameters under the assumption of multivariate normal distributions, based on stan­

dardized data, and based on non-standardized data, respectively. The estimates in the 

latter case include serious bias. 

5.4 Application to real data 

This section applies the factor analysis method (which we propose in this paper) to 

the open/closed book data (Mardia et al., 1979, Table 1.2.1) which has been used 

frequently as an example of multivariate analysis, and describes the advantages of the 

method in analysis of actual data. 
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Table 18 : Open/closed Book Data 

Mechanics( C) Vectors( C) Algebra(O) Analysis( 0) Statistics( 0) 
77 82 67 67 81 

63 78 80 70 81 

75 73 71 66 81 

55 72 63 70 68 

63 63 65 70 63 

53 61 72 64 73 

51 67 65 65 68 

59 70 68 62 56 

62 60 58 62 70 

64 72 60 62 45 

52 64 60 63 54 

55 67 59 62 44 

50 50 64 55 63 

65 63 58 56 37 

31 55 60 57 73 

60 64 56 54 40 

44 69 53 53 53 

42 69 61 55 45 

62 46 61 57 45 

31 49 62 63 62 

44 61 52 62 46 

49 41 61 49 64 

12 58 61 63 67 

49 53 49 62 47 

54 49 56 47 53 

54 53 46 59 44 

44 56 55 61 36 

18 44 50 57 81 



Table 18 : ( Continued ) 

Mechanics( C) Vectors( C) Algebra(O) Analysis( 0) Statistics( 0) 
46 52 65 50 35 

32 45 49 57 64 

30 69 50 52 45 

46 49 53 59 37 

40 27 54 61 61 

31 42 48 54 68 

36 59 51 45 51 

56 40 56 54 35 

46 56 57 49 32 

45 42 55 56 40 

42 60 54 49 33 

40 63 53 54 25 

23 55 59 53 44 

48 48 49 51 37 

41 63 49 46 34 

46 52 53 41 40 

46 61 46 38 41 

40 57 51 52 31 

49 49 45 48 39 

22 58 53 56 41 

35 60 47 54 33 

48 56 49 42 32 

31 57 50 54 34 

17 53 57 43 51 

49 57 47 39 26 

59 50 47 15 46 

37 56 49 28 45 

40 43 48 21 61 

35 35 41 51 50 

38 44 54 47 24 



Table 18 : ( Continued ) 

Mechanics( C) Vectors( C) Algebra(O) Analysis( 0) Statistics( 0) 

43 43 38 34 49 

39 46 46 32 43 

62 44 36 22 42 

48 38 41 44 33 

34 42 50 47 29 

18 51 40 56 30 

35 36 46 48 29 

59 53 37 22 19 

41 41 43 30 33 

31 52 37 27 40 

17 51 52 35 31 

34 30 50 47 36 

46 40 47 29 17 

10 46 36 47 39 

46 37 45 15 30 

30 34 43 46 18 

13 51 50 25 31 

49 50 38 23 9 

18 32 31 45 40 

8 42 48 26 40 

23 38 36 48 15 

30 24 43 33 25 

3 9 51 47 40 

7 51 43 17 22 

15 40 43 23 18 

15 38 39 28 17 

5 30 44 36 18 

12 30 32 35 21 

5 26 15 20 20 

0 40 21 9 14 

Table 18 lists the open/closed book data used here. This is a set of data obtained 

from five tests ( Mechanics, Vectors, Algebra, Analysis and Statistics) made on 88 

subjects. In algebraic, Analytic and Statistical tests, the subjects were allowed to 
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refer to their textbooks (open book examination). In Mechanical and Vectors tests, 

the subjects kept their textbooks closed (closed book examination). Mardia et al. 

(1979) calculated maximum likelihood estimates under the assumption of multivariate 

normality while using the algorithm derived by Joreskog (1967). Mardia et al. con­

cluded that, as far as factors were concerned, two-factor model fits the data well and 

interprets the two factors as the first factor that shows general capabilities and the 

second factor that emphasizes the capabilities of closed book examinations in compar­

ison to those of open book examinations. They also calculated maximum likelihood 

estimates under one-factor model. Table 19 shows the maximum likelihood estimates 

under both one-factor and two-factor models and the results of tests of goodness of 

fit. We can not reject both normal factor analysis models, but two-factor model is 

selected through AIC. 

Table 19 : Maximum likelihood estimates 

One-Factor Model Two-Factor Model 
Factor loadings Specific variances Factor loadings Specific variances 

.599 .641 .628 .373 .466 

.667 .555 .695 .312 .419 

.917 .159 .899 -.050 .189 

.772 .403 .780 -.201 .352 

.724 .476 .727 -.200 .431 
Chi-Square(DF=5) 8.651 Chi-Square(DF=1) 0.075 

In order to describe the advantages of the newly proposed robust factor analysis 

method, we add two quasi-outliers to the original open/closed book data, and analyze 

the data using proposed method. Two quasi-outliers are as follows: 

No.89: 
No.90: 

{ 0, 82, 15, 
{77, 9, 80, 

70, 
9, 

9} 
81}. 

These data are generated by combination of maximum and minimum values of each 

test. 
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5.4.1 Model selection 

Table 20 shows summary of model fits when we fitted the ML factor analysis model 

using the multivariate normal, multivariate t and contaminated multivariate normal 

distributions with unknown mixing parameters. Such parameters were estimated by 

the method given in Section 3.4 simultaneously with regression and variance-covariance 

parameters. According to AIC, one factor model with the contaminated multivariate 

normal distribution is selected. 

T he results of ML estimation undel each model are given in Table 21. We have an 

improper solution in two factor model with the multivariate normal distribution, but 

the other two factor models have proper solutions. This robust method is available for 

protection of improper solutions due to outliers. 

Table 20 : Summary of model fits 

Distribution Number of Factors -2 x log likelihood Number of Parameters AIC 

MN 1 3580.7 15 3610.7 

MT 1 3532.5 16 3564.5 

MT 2 3528.8 21 3570.8 

CN 1 3520.7 17 3554.7 

CN 2 3514.5 22 3558.5 
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Table 21 : Maximum likelihood estimates 

Multivariate Normal Distribution 

One-factor Model Two-factor Model 

Factor loadings Specific variances Factor loadings Specific variances 

.628 

.695 

.899 

.780 

.727 

.466 

.419 

.189 

.352 

.431 

* 

Multivariate t Distribution 

One-factor Model Two-factor Model 

v = 7.21 v = 7.43 

.628 .606 .629 .237 .548 

.649 

.896 

.744 

.730 

.579 

.197 

.447 

.467 

.665 

.882 

.746 

.748 

.314 

-.030 

-.030 

-.272 

Contaminated Multivariate Normal Distribution 

.459 

.221 

.442 

.366 

One-factor Model Two-factor Model 

0 = 0.034, ,\ = 0.085 0 = 0.025, ,\ = 0.065 

.609 .630 .642 .418 .413 

.673 .547 .678 .240 .483 

.916 .162 .896 -.055 .195 

.757 .428 .766 -.191 .377 

.726 .473 .730 -.202 .427 

* : Improper Solutions 
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5.4.2 Outliers 

The preceding section indicated that, from the viewpoint of AIC, the factor analysis 

model with contaminated normal distributions or multivariate t distributions better 

fits the data than the factor analysis model with conventional multivariate normal 

distributions. This fact, however, dose not justify the idea that contaminated mul­

tivariate normal or multivariate t distributions are more desirable than multivariate 

normal distribution as a population distribution model for latent factor scores and 

error terms. A more justifiable idea would be that this fact indicates that this set of 

data includes some values deviating from the majority of data, that is, outliers. This 

requires a method for detecting these outliers from the set of data: the convergent 

value of w;, obtained in E-step can be used as effective statistics to detect outliers. 
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Table 22 : Factor scores ( multivariate normal model ) 

Factor scores Factor scores Factor scores 

No. 1st 2nd No. 1st 2nd No. 1st 2nd 

1 2.18 .27 31 .27 .15 61 -.64 1.32 

2 2.46 -.55 32 .24 -.14 62 -.58 .30 

3 2.13 -.10 33 -.05 -1.41 63 -.33 -.13 

4 1.49 -.30 34 -.14 -1.00 64 -.67 -.26 

5 1.47 -.33 35 .17 .05 65 -.58 -.21 

6 1.58 -.81 36 .26 -.08 66 -.60 1.88 

7 1.37 -.46 37 .41 .29 67 -.67 .52 

8 1.55 .02 38 .16 -.39 68 -.82 .69 

9 1.08 -.20 39 .32 .36 69 -.40 -.06 

10 1.27 .57 40 .31 .44 70 -.51 -.60 

11 1.02 -.12 41 .28 -.63 71 -.57 .81 

12 1.01 .25 42 .01 .16 72 -1.06 -.43 

13 .87 -.62 43 .14 .60 73 -.76 .90 

14 .93 .67 44 .14 .33 74 -.89 -.08 

15 .63 -1.06 45 .01 .81 75 -.63 .13 

16 .80 .62 46 .13 .26 76 -.80 1.67 

17 .63 .25 47 -.12 .35 77 -1.44 -.50 

18 .90 .11 48 .09 -.45 78 -.88 -.38 

19 .74 -.12 49 -.00 .24 79 -1.18 .03 

20 .59 -1.24 50 .05 .70 80 -1.16 -.17 

21 .48 -.05 51 .01 -.02 81 -1.26 -2.04 

22 .51 -.71 52 .03 -.66 82 -1.11 .50 

23 .50 -1.50 53 -.06 .98 83 -1.19 .29 

24 .28 -.11 54 -.17 1.27 84 -1.34 .22 

25 .44 -.00 55 -.14 .56 85 -1.35 -.57 

26 .18 .20 56 -.36 .18 86 -1.72 -.15 

27 .44 -.07 57 -.64 -.56 87 -2.72 .35 

28 -.09 -1.59 58 -.11 .01 88 -2.42 .87 

29 .68 -.08 59 -.67 .37 

30 -.03 -.91 60 -.40 .32 



Wi is the conditional expectation E( qi I }i). If the qi follows the one-point distribu­

tion which constantly takes 1, the estimation method described in Section 5.2 serves 

to produce the maximum likelihood estimate under multivariate normal distribution. 

That is, the nearer the value w is to 1, the better that data fits the factor analysis 

model in multivariate normality. On the contrary, the nearer the value Wi is to 0, 

the more that data is likely to be out of the multivariate normal-type factor analysis 

model. This is easily understandable from the fact that the estimation algorithm pro­

posed in this paper is equivalent to the iteratively reweighted least square algorithm 

at the moment the factor score of each data is observed and that w acts as a weight 

imposed on each data. 

Table 23 : Conditional Expectations of q ( One-factor CN model ) 

1 2 3 4 5 6 7 8 9 0 
0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.95 1.00 1.00 
30 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
50 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 
60 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 
70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
80 0.23 1.00 1.00 1.00 1.00 1.00 0.97 0.99 0.09 0.09 

Table 23 shows convergent values of Wi obtained under the one-factor contaminated 

normal model. The values Wi of a total of 90 subjects of data are arranged. The tables 

indicates that the 89st and 90th subject have values Wi of 0.1 or less, and that the 81st 

subject also has relatively small w. A close look at the original data of the 81st subject 

indicates that the scores in closed-book-type mechanical and vector examinations are 

very low (the total of the scores of these two subjects is the lowest of all 88 subjects), 
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while the open book examination of the other three subjects indicated approximate 

the average scores. This is evident from the factor score related to the two extracted 

factors ( Table 22 ). The factor score of the second factor of the 81st subject is as low 

as -2.27. 

Comparing Table 19 and Table 21, we can conclude that the results under non­

normal distribution assumptions are less influenced by two additional quasi-outliers 

than those under normal assumptions. In particular, the two-factor normal model is 

a Heywood case, namely, some unique factor has negative variance. 

5.5 Discussion and conclusion 

We conducted a simulation to prove that the ML factor analysis method under the 

assumption of multivariate t distribution or multivariate contaminated distribution is 

more robust with regard to erroneous regulations of these underlying distribution pat­

terns than the conventional ML factor methods under the assumption of multivariate 

normal distribution for factor scores and error terms. According to this simulation, 

we found that the ML factor analysis method under the assumption of large kurtosis 

dose not lose much of its efficiency of estimation if its kurtosis is smaller than that of 

assumed distribution, even though the true distribution of the data is different from 

what is assumed. On the other hand, if the kurtosis of the true distribution followed 

by the data is higher than that of the assumed distribution of the ML factor analysis 

method, (that is, in the case of the ingress of extreme values or outliers), much of 

efficiency of the maximum likelihood estimation is lost. T his indicates that the ML 

factor analysis method under multivariate normal distribution with small kurtosis is 

less robust with regard to the decay of distribution assumptions than multivariate t 

distribution and multivariate contaminated normal distribution. On the other hand, 

the ML factor analysis method under the assumption of distribution with the largest 

possible kurtosis is robust in the sense that its efficiency of estimation remains constant 
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regardless of the misspecification of distribution assumptions. 

When we apply the normal ML factor analysis, we are sometimes faced to general 

problems, for example nonconvergence, improper solutions ( Heywood case ) , factor 

rotations and identifiability. In our method we can avoid the problem concerned with 

improper solution ( because we use the EM algorithm to obtain the ML estimates ), 

but in such case the EM algorithm can not stop (see Dempster et al. 1977 ). The rest 

problems are essential issues for the ML factor analysis. We also have to pay attention 

to these problems when applying robust factor analysis. 
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