
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Graph Inference from Walks

丸山, 修
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

https://doi.org/10.11501/3084068

出版情報：九州大学, 1995, 博士（理学）, 課程博士
バージョン：
権利関係：



Chapter 3 

Inferring a Graph from Partial 

Walks 

In this chapter we consid r the problen1 of inferring a graph from a finit number of 

partial walks instead of a single walk. For a finit set S of strings and a graph G 

we say that G realizes all partial walks for S if, for each string x in ' , th graph G 

realize a partlal walk for x. Let C b a class of graphs. We defin the problcn1 for 

as follows: 

Graph Inference from Partial Walks for C 

Instance: A finite set S of strings over a finite alphabet L: and a positive int ger ]{. 

Question: Is there a graph G E C with at most f{ edg s such that G realize all 

partial walks for S? 

Obviously, th graph inferenc from partial walk a natural xt nsion of th 

graph inference from a walk. 

3.1 Tree inference from partial walks 

In this section we con sid r the tree inference from partial walk that is to find the 

small t undirected tree realizing all partial walks for given trings. Notice that wh n 
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the number of given strings is one, th problem is quivalcnt to the tr e inference from 

a single walk. 

The following is the main result in this section: 

Theorem 3.1 The tre in ference from partial walks is NP-compl t . Furthermor , 

this problem remains NP-complete even if the IoJJowing conditions hold simultaneou ly: 

1. The alphabet size is restricted to three. 

2. The maximum degree is bounded by three. 

Proof. It is easy to see that the tree inference from partial walks i in NP. First w 

give a r duction from VERTEX COVER [GJ79]. S cond, w modify the redu tion o 

as to show th NP-hardness of the problem with th constraint on the alphab t ize 

and the maximum degre . 

Recall that VERTEX COVER is to decide if, given a graph G = (V, ) and a 

positive integer f{, there is a vertex cover of siz at most f{ for G, th at is a ub et 

C � V with ICI � f{ such that for each edg { u, v} E E a.t 1 ast on of u and v belongs 

to C. Let G = (V, E) be a graph with lVI = n and J( be a positive integ r. For G 

and J{, We define an alphabet � as�= VU {ao,ai, ... ,aln/21} U {bi,b2,··· bn+l}· 

In ord r to defin a set S of strings over �' we introduce th following notation for 

strings: 

[a] arn/21 ... alaoal ... arn/21 

[b] b1 · · · bn+l · 

Note that [a]R = [a]. Th n S consists of th following string : 

base-string: u[a][b] for u E V , 

edge-string: u[a]v for { u, v} E E. 
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Finally, let 1\' = 2n + 21 n /2l + 2 +I\. This transfonnation can b done in polvnon1ial 

time. We clai1n that G has a vertex cover of size at most 1\ if and only if ther IS a 

tree with at most I<' edg s which realizes all partial walks for S. 

Suppose that G has a. vert x cov r C with ICI:::; ]{. For a. sub t U = {1'�· ... , t�} 

of V, let T(U) be the tr e in Fig. 3.1. It is obvious that T(C) realize all partial vvalks 

(:>----[��bf--� 
T(U) 

Figure 3.1: V = {v1, ... ,vn} and U = {v�, ... ,v�} � V. 

for S. It can be easily checked that T contains at mo t I{' dges ince I C I :::; I\. 

Conversely, uppose that ther is a. tr T with a.t most ]{' edges r a.lizing all partial 

walks for S. Without loss of gen ra.lity, we can assume that Tis prop r by th following 

fact: 

Fact 3.1 Let S be a finite set of strings and T be a tree realizing all paTtial walk for 

S. Then, for the ----+p-normal form ofT, i.e., F(T), the following statements ar true: 

(1) F(T) is proper. 

(2) F(T) is not larger than T. 

(3) F(T) also realizes all partial walks for S. 

This fact is trivial because, for trees T1 and T2 with T1 ----+ F T2, if T1 r a.lize a. partial 

walk for a. string x then so does T2. Notic that if T is proper th n any subgra.ph of 
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T is prop r. It is easy to see that for each string x in S, any trc realizing a walk for 

x is isomorphic to a linear chain of label x. We first consider the base- trings, each of 

which contains xactly on [a ][b] as a substring. 

Claim 3.1 Let 16 be the tree in Fig. 3.2. Any proper tree with at most J{' dge that 

realizes all partial walks for tl1e base-strings is isomorphic to the tre T6. 

Tb 

Figure 3.2: V = { v11 ... , vn }. 

Proof of Claim 3.1. It can be asily ch eked that if such a tr e is not ison1orphic to 

Tb then it contains at least l[a][b]l+l[b]I+IVI = 3n+2ln/2l +3 edges. This contradi t 

the assumption that the numb r of edges in T is at n1ost ]{'. 

In a sin1ilar way, we can show the following: 

Claim 3.2 A tree T' is a pioper tree with at most ](' edges realizing all partial walk 

for S if and only if T' is isomorphic to th tree T( C'), where C' � V. 

I 

Then w can assume that for sorne C' � V, the tr e T i isomorphic to T (  C'). It i 

obvious that IC'I is at most ]{ since T has at most ](' dges. It should be lear that 

C' gives a vertex cover of G whose siz has been shown at most ](. 

Next, we modify th reduction into another one to show that the tr e infer n fron1 

a walk remains N P-complete even if the size of alphabet is thre and imu]tan ou ly 

tr es are of bounded d gree thr . L t E = {0, 1, # }. For convenience, w a urn 
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that V = {0, ... , n- 1}. For a nonn gative integer i, we denote by ij th jth bit 

of th binary repre entation of i such that i = i02° + i 1 2 1 + · · · + im_ 1 2m- l for son1c 

m 2:: llog iJ + 1. Let ij = 1 if ij = 0 and ij = 0 otherwi . For a pair (h, i) of integ r 

with 0:::; i:::; 2h -1, th strings b1(h i) b2(h,i) and b3(h,i) ar d fined as follow: 

bl (h, i) 

b2 ( h' i) 

L t q = pog n l Using these strings, we make the strings [i] for 0 :::; i :::; 2q- 1, [a] 

and [b] as follows: 

2q-l 
a II #0101b2( q, i). 

i=O 

2q-l 
[bJ II o1o1o1o1b3(2q, i)#. 

i=O 

Note that l[a]l = 2q+1(3q + 5) + 3 and l[b]l = 2q( q + 9). LetS b the set of trings 

as follows: 

base-string: [i][i][a][b] for i E V. 

branch-string : [ i][ a][ i]R for 0 :::; i :::; 2q - 1. 

edge-string : [i][i][a ][j]R[j]R for { i, j} E E. 

Finally, let ]{' = 2q(n +I<)+ 2q(14q + 27)- 6. This transformation can b done in 

polynomial time. We claim that G has a v rt x cov r of ize at mo t ]{ if and only if 

ther is a tr e with at most ]{' edg s which realizes all partial walk for S (s ig.3.3). 

This claim can be proved in a similar way of the case that any restriction is not put 

on the size of alphabet. We leave it for the reader to v rify the claim. 
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G T 

Figure 3.3: The tree T realizes all partial walks for the strings produc d by th econd 

reduction from the graph G. 

0 

We can show that the number three of colors in Th oren1 3.1 is optirnal by th 

following result: 

Theorem 3.2 The tree inference from partial walks is solvabl in linear time if th 

size of alphabet is at most two. 

Proof. L t z= be an alphab t of size at most two and x be a string ov r z=. We say 

that xis alternate if the ith bit of x, denoted by Xi, is differ nt from Xi+I· By Len1n1a 

2.3, the smalle t tree realizing a walk for x i Lh linear chain l uch that th label of l 

is alternate. We denote th alternate string for x by a ( x) . For a finit set 5 of tring 

over z=, let a ( 5) = { a(y) I y E 5}. It is obvious that a ( 5) can b prod uc d by applying 

the linear-time algorithm for th tr infer nc from a walk, provided in Section 2.3. 

It can be done in time linear in Lh total l ngth of th strings in 

If the longest string of a ( 5), denot d by l, is unique, then l is the label of the hortest 

linear chain r alizing all partial walks for 5. Oth rwise, ther exist two distinct, longest 
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strings with length 2k + 1 for some k. In thi. case, th label of the shortest lin ar chain 

is the alt rnate string with l ngth 2k. D 

N xt, we show that the tree inference from partial walks has no polynomial-tirne 

approximation scheme unless P= P by proving that the problem is 1AX ' IP-harcl 

[ALM+92). 

Theoren1 3.3 The tTee infcTence !Tom pa.Ttia.l walks is MAX SNP-ha.rd. 

Proof. Recall that VERTEX COY R is denoted by k-DEGREE VERTEX COVER 

when graphs are restricted to graphs of bound d degree k without any self-loop. As 

mention d in the proof of Theorem 2.9, it is known that 4-DEGREE VERTEX COY R 

is MAX SNP-complete [PY91, Pap94 ) . L t f be the reduction in th proof of Th or n-1 

3.1 from 4-DEGREE VERTEX COVER. Th n the first condition is satisfied with 

a= 15 sine ln/5l :::; opt(G), where opt(G) is the size of minimum cov r of G'. 

Next, w define an algorithm g as follows: We can assum that a fea ibl solution 

of the tr e inference from partial walks is a proper tr e which r alizes all partial walk 

for given strings. If a feasible solution s2 has at most 3n + 2 1 n/2l + 2 edges, then 2 i 

a tree isomorphic to T( C) for some C � V, which is defined in th proof of Theor n1 

3.1. In the ca e, the algorithm g returns C. Otherwise, g return V. Then it is trivial 

that the second condition holds with (3 = 1. D 

3.2 Linear chain inference from partial walks 

We h re consicl r the linear chain inferenc from partial walks, i.e., the probl 1n of 

finding th short st linear chain realizing all partial walks for a fini Le ct of tring . 

Example 3.1 Let S = { abbaabcdeedc, cb dd edc, ebc ee}. The graph in Fig. 3.4 is 

the shortest linear chain which Tealizes partial walks for S. 
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Figure 3.4: 

Since if a directed linear chain l realiz s a walk for a string x then the lab 1 of 

the direct d linear chain l is x the graph infer nee from partial walks for the cla ·s 

of dir ct d linear chains is essentially equival nt to th short t ommon superstring 

problem, for which the NP-completeness result was given by Gallant et at. [G�1S 0]. 

Thus, the graph infer nee from partial walks for th class of direct d linear chain i 

NP-complete. 

Recall that th lin ar chain inference from a singl walk is hown to be solva bl in 

polynomial time by Asla.m and Rivest [AR90] and Ra.ghavan [Rag94] ( ee Section 2.2). 

Unfortunat ly, the lin ar chain inference frorn partial walks turns to be intractabl 1n 

the sam way as inferring tr s. 

Theorem 3.4 The linear chain inference from partial walk 1 NP-complete even if 

the size of alphabet is restTicted to thTee. 

Proof. We give a reduction from the shortest common superstring problem [GMS 0] 

where the shortest common sup rstring problem is to decide if, giv n a finite s t c; of 

strings over a finite alphabet E and a positiv integer ]{, ther i a up rstring for S 

with length at most ]{, that is a string s E E* with Is I � ]{ such that each tring 

xES is a substring of s. It is known that the problem i NP-complete ev n if ILJI = 2 

[GMS80]. L t S be a finite set of strings over th alphabet = { 0, 1} and ]{ be a 

positive integ r. W first define an alphab t E' as U { #}, w her # i a n w 

symbol not in E. For a string b = b1 b2 · · · bm with b1, b2, .. . , bm E � we cr at a tring 

m 
b' = II (Ol#bi# )01. 

i=l 
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Let S' b th s t of the strings b' for all b E S. Finally let I\' 

transformation can be don in polynomial tim . 

Note that the label of a linear chain realizing a walk for a string x
' E S' is only .r

' 

(see Theorem 5 of [AR90 ] ). It is clear that there is a superstring for S with I I :::; I\ 

if and only if all partial walks for S' are realized in a linear chain with ]{' edg s or l ss. 

0 

The number three of colors 1n Theor m 3.4 is optimal b cau of the following 

result: 

Corollary 3.1 The linear chain inference from partial walks is solva bl in linear tim 

if the size of alphabet is at most two. 

This is a trivial consequence from the proof of Theoren1 3.2 1nc , for any s t of 

strings over at most two colors, the sn1allest Lr r alizing all partial walk for 1 111 

the forn1 of a linear chain. 

By the fact that the shorte t comn1on sup r tring probl m is MAX S P-hard 

[BJL +94] and the fact that th reduction in th proof of Theorem 3.4 i an 1-reduction, 

the following holds: 

Theorem 3.5 The linear chain inference from partial walks is �1AX SNP-hard. 

By this theorem and the result due to Arora t al. [ALM+92],  th r is no polynomial

time approximation algorithm for the lin ar chain inferenc from partial walks unl s 

P=NP. 

3.3 Polynomial-time approximation algorithms 

In two pr vious s ctions we have shown that both of th tr e inference frorn partial 

walks and th linear chain inference from partial walk are NP-con1pl Le and MAX 
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SNP-hard, while the graph infer nee probl ms fron1 a single walk for such graph hav 

been shown solvable in polynomial tin1 . 

In this section, we construct polynon1ia.l-tim approximation algorithms for both 

NP-compl te problems. We will show that an approxin1ation algorithm for the problen1 

on trees can be constructed by e1nploying an approximation algorithm for the minimum 

con1mon supertree problem [YM93]. The minimum con1mon supertr· problem can be 

shown NP-compl te because the proof in Theorem 3.1 is also the proof of the NP

hardness of the problem. For the minimum common sup rtr e probl m, a polynomial

time approximation algorithm was given by Yamaguchi and Miyano [YM93]. 

On the other hand, we also show that an approximation algorithm on linear chain 

can be developed by employing an approximation algorithm for the shortest common 

superstring with flipping, for which polynoinial-bine approximation algorithm wer 

given by Jiang et al. [JLD92]. 

3.3.1 On trees 

The tree inference from partial walks has th following approximation algorithm that 

is analyzed in terms of the compression in the constructed tree T, that is, in terms of 

k - l, where k is the total length of given strings and l is the number of edges of the 

tree T. 

Theorem 3.6 There is a polynomial-time approximation algorithm to find a tree T 

realizing all partial walks for a set finite S of strings such that C 2:: Cm/(ISI - 1), 

where C is the compression in T and Cm is the maximum compression for S. 

In approximately solving the tree inference from partial walks, the observation in 

the following lem1na is a key to our approach. 
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Lemn1a 3.1 L t S be a. finite set of strings and T be the small st tr e realizing all 

partial walk for S. Then, for each string x E c;, the smallest tree r alizing a walk for 

x is a subgra.ph ofT. 

This lemma is trivial from Fact 3.1. For a finite set R of trees a tree T is call d 

a supertree for R if for each tr t E R, the tree l is a subgraph of T. Let lx b a 

linear chain of lab l a string x. Recall that F(lx), i.e., the -rF-normal form of lx 1s 

isomorphic to the smallest tre r alizing a walk for x (see Lemma 2.3). For a finite 

set S of strings, w d note the set {F(lx) I x E S} by F(S). Given a finite set S of 

strings, if we could find the smallest supertree for F( S) it would be the requir d tree 

in the tree inference from partial walks by Lemma 3.1. Though the problem of finding 

the smallest supertree is easily seen to be NP-complete from the proof of Theorem 3.1, 

there is an approximation algorithm which, given a finite s t R of tree , con tructs a 

supertree T for R satisfying C � Cm/(IRI- 1), where Cis the compression in 1 and 

Cm is the maximum compression for R [YM93]. Thus, by employing th algorithn1, 

the algorithn1 in Th orem 3.6 can be given. Notice that for each x E S if the smallest 

tree realizing a walk for x is isomorphic to a linear chain of label x, we cannot expect 

any merit by constructing F( S) in the algorithn1 of Theorem 3.6. 

3.3.2 On linear chains 

Fortunately, we can also construct polynon1ial-time approximation algorithms for the 

linear chain inference from partial walks in the sam way as the tree infer nc from 

partial walks because we have a lemma corresponding to L mma 3.1. 

Lemma 3.2 Let l be the shortest lineaT chain realizing all partial walks for a. set S of 

stTings. Then, foT each stTing x E S, the shortest linear chain rea.lizing a walk for x is 

a subgraph of l. 
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his can b asily shown 1 y using binary relations on strings which was introduc d 

1n [AR90]. A string s is call d a uperstring with .flipping for a of stri ng. if for 

each string x E S, either x or xR is a substring of s. In a similar wa.y, the compres ion in 

a superstring with flipping can be clefin d. Sine th re is an approximation algorithn1 

which find a superstring s with flipping for a giv n set S of strings uch that C � m/2 

where C is the compr ssion in s and Cm is the rnaximu1n compres ion for S [JLD9�] 

the following approximation algorithm for the linear chain inference from partial walk 

can be giv n: 

Theoren1 3. 7 There is a polynomial-time approximation algorithm to find a linear 

chain l realizing all partial walks for a set S of strings such that C � Cm/2, wh T C 

is the compression in l and Cm is the maximum compression for S. 

Jiang t al. [JLD92] also developed an approximation algorithn1 which con truct 

a superstring s with flipping with length at most three times opt, wh r opt i the 

shorte t length. 

Theorem 3.8 There is a polynomial-time algorithm to find a linear ha.in with 1 ngth 

at most three times opt(S) which realiz s all partial walks for a finit s t S of string , 

wheTe opt( S) is the length of the shoTtest lin eaT chain realizing all paTti a] walk for 

3.4 Concluding remarks 

We have shown that the tree inf r nee from partial walks is NP-con1pl te. Furth rmorc, 

we have prov d that there is no polynomial-bn1 approximation che1n unle s P= P. 

Fortunately, we have also obtained a polynomial-time approximation algorithn1 for the 

problem. The approximation ratio is analyzed in t rms of th con1prc sion in the tre 

produced by the algorithm. Since the ratio is not bounded by a constant, it i op n if 
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there is a polynmnial-Limc approxin1abon algorith1n vvith ratio bound d by a on. tant . 

The perforrnanc of approxin1aLion algorithms for the tr inf renee fron1 partial walks 

should b also valuated by the ratio of the nun1bcr of edg s in the produced tree 

to the n1inimum numb r of dge because the problem is the minin1iza.tion problen1 

of the number of dges in a tree reabzing all partial walks for a given s t of ·tring . 

However, w have not given any result on the ratio in t rm of the number of edge . 

It also remains open if the tr e inference from partial walks ha a polynon1ial- ime 

approximation algorithm su h that th number of edg in the produced tree i bound d 

by a constant times the minimum. 

We have also discuss d th linear chain inference from partial walk and hown 

the NP-compl t ness and th MAX S P-hardn ss, which implies that th re i no 

polynomial-time approximation scheme unles. P=NP [ALM+92]. We have pre ented a 

polynon1ial-tirne approxi1nation algorithm that the length of th lin ar chain produc d 

is bounded by three times the minimum. Th algorithm employ polynon1ial-Limc ap

proximation algorithms for th problem of the hort t sup rstring with flipping given 

by Jiang et al. [JLD92]. Th ir approximation algorithms were develop d b lightly 

modifying polynomial-time approxirnation algorithms for the short t con1mon up r

string problem [TU88 , Tur89, BJL +94]. Esp cially, Blum et al . [BJL +94] devi ed a 

polynomial-time approximation algorithm that the length of th sup r tring produc d 

is bounded by thr times the minimum. B tt r ratios of polynomial-time approxin1a

tion algorithrns for the shortest common superstring problem have b n reported by 

Teng and Yao [TY93], Czumaj et al. [CGPR94], Kosaraju t al. [KPS94] and Annen 

and Stein [AS94]. The ratios are 26/9 � 2. 9, 17/6 � 2. 33 176/63 � 2.794 and 

2.75, resp ctively. By exploiting such n w approxin1ation algorithn1s, we could de

velop polynomial-time approximation algorithms with b tter ratio for the lin ar chain 
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inf renee fron1 partial walks. 



Chapter 4 

Realizing a Walk on a Graph 

In this chapter we discuss the walk realizabihty problem, in which we ar g1ven a 

graph Gin addition to a string x, and asked if G realizes a walk for x. Obviou ly this 

problem is closely related to the graph inference from a walk. The airn of con id ring 

the walk realizability problem is to see the complexity of d ciding if ther i a walk for 

a string x on a graph G when thf' string x a.nd the graph G are given irnultancous]). 

Here, we shall see an xample of the problem. 

Example 4.1 Let x = bbbabbbbababba and G be the graph in Fig. 4.1. Does G r alize 

a walk for x? The answer is "yes." 

G 

Figure 4.1: 

72 
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4.1 Walk realizability problem 

Let C be a class of graphs. We recall th definition of the walk realizability problen1 

for C below: 

Walk Realizability Problem for C 

Instance: A string x over a finit alphabet � and a graph G E C. 

Question: Do s G realiz a walk for x? 

A partial walk on a graph G is a path in G, which is not required to in lude all 

edges of G. In the same way as th walk realizability problem, we define th partial 

walk realizability problem as the problem of deciding if a graph G r aliz a partial 

walk for a string x. We can see that the partial walk realizability problem is con1plctc 

for LOG by an easy reduction from th threadable maze problem [Sav70 ] . 

We first consider th walk r alizability probl m for graphs of bounded degr e two, 

i.e., cycles and linear chains. 

Lemma 4.1 (1) Th walk realizability problem for cycle is in NLOG. 

(2) The walk realizability problem for linear chains is in NLOG. 
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Proof. (1) Let G = ( V E, c ) be a cycle and x = x1x2 · · ·l'n b a string with .Ti E � 

for 1 � i � n. We consider the following algorithm: 

Let Mt and MT b markers on nodes. 

Guess a node v0 and put Mt and MT on v0. 

Let RET be a variable having "y s" or "no." 

RET:= "no." 

Execute the following for 1 � i � n in ord r: 

1 .  Gu s a  nod vi and ch ck if {vi_1, vi} E E and c ( {vi-I, vi}) is xi· 

If not, stop and return "no." 

2. Move Mt (Mr) to the l ftmost (rightmost) node among th visited 

nodes vo, v1, ... , vi. 

3. RET:="yes" if the two markers Mt and Mr are put on th same node. 

Return RET. 

It is clear that G realizes a walk for x if and only if the algorithm returns ye ' . 

Obviously, this algorithm uses only log-spac for ke ping the node on whi h th two 

n1arkers are put. 

(2) By a similar argument to the walk realizability problem for cycle , w can how 

the result for lin ar chains. 0 

In order to investigate the walk realizability for more complex graph , w d fin th 

linear chain decomposition of a graph. Let G b an undirect d connected graph. Th 

linear chain decomposition of a graph G is simply defined by plitting every node v of 

degree k � 3 into k new nodes of degree one. Formally th lin ar chain decompo ition 

of G is obtained by repeating the following procedure unti l  there i no nod with degrc 

gr at r than or qual to three: Let v b a nod with d gr k � 3 and l t u1, ... , uk 

be its adjacent nodes. Then by r placing v with k n -w node v1,. . . vk, w put new 
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edges { 1£1, v1 } , . . . , { llk, vk } instead of the dge { u1 v}, ... , { ukl } , where th color of 

{ Ui, vi } is the am as that of { lli v } for i = 1, . .. , k. Obviously, the degree of 1'i is 

one. After the above replacem nt the resulting graph is a collection of linear chain . . 

The i:;e of the linear chain d composition of G denoted b led( G). i the numb r of 

compon nts of th r sulting graph. 

Not that th following equality holds: 

1 
lcd(G) = - · L deg(v) 

2 vEV with deg(v)2:3 

where deg( v ) is the degr of the node v. 

L t C be a class of graphs and J( rn) b a function on the nonnegative integers. 

The class Cis said to b O(f(m))-decomposable if there exists a constant c > 0 such 

that lcd(G) � c · f(rn) for every graph G == (V,E,c) E C, where 1n i th number of 

edges in G. Trivially any cla . C of graphs is 0( rn,)-decoinposable. 

Theoren1 4.1 The walk realizability problem for any 0(1 )-decompo able cia s of 

undirected graphs is in NLOG. 

Proof. Let G = (V, E, c ) b a connected graph in an 0(1)-decompo abl cla . The 

number of the linear chains produced by the linear chain decomposition of G is 0( 1) 

from the definition of the decomposition. In order to keep ach of th linear chain , 

it is sufficient to store th leftmost and right1nost nodes of the linear chain, which 

requires only log-space. Thus, by applying an algorithm similar to that in Le1nma 4.1 

we can construct a nond t rministic algorithm in log-space. 0 

In the same way, we can d fine the linear chain decomposition of a directed graph. 

It is easy to s e that the walk realizability probl In for any 0(1)-decompo abl clas 

of direct d graphs is a] so in NLOG. 
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In this section we consider th walk realizability for orne kind. of undirect d treE\. 

The walk realiza.bihty problem for any class of dir cted trees i trivial. Hereafter a tre 

m ans an undirected tree. 

Theorem 4.2 The wa.lk realizability problem for any O(log m )-decomposable cla s of 

trees is solvable in polynomial tim . 

Proof. Let T = (V, E, c) b a tree in an O(log m)-decomposabl class of trees and 

x = x1x2 · · · Xn be a string of colors, wh r xi i a color for 1 :::; i :::; n. It is sufficient to 

show that there is a polynomial time algorithm to d cide if there is a partial walk for 

x on T including all nodes of degre one in T. Let l1, l2, • . .  , lm' be the nodes of degree 

one in T. Notice that m':::; lc cl(T) :::; O(logm) wh r m is the number of edge in T. 

We define a function¢: V x {1, 2, ... , lxl} x V x {0 1}m'
--+ {0 1} as follow : 

- - -

!
1 

<f;(v,i,v',l,,/2, ···,/m') = 

O 

if there is a partial walk w for x1x2 · · ·Xi from 

v to v' such that for each 1 < k < n1,' w 

includes lk if lk = 1 
otherwise. 

It is not so hard to see that there exists a polynomial tim algorithm for produ ing 

a table repres nting the function ¢. Clearly, there is a pair of noel s v and v
' of 

T such that ¢( v, lx I, v', 1, 1, .. . , 1) = 1 if and only if T realizes a partial walk for x 

passing through all the nodes l1, l2, ... , lm'· Since such a pair of node can be found 

in polynomial time by looking up the tabl , it can b decicl d in polynomial tim if T 

realizes a walk for x. D 

The walk r alizability for any O(log n )-d compo abl class of tree would not be 

P-complete since we can show that the problem is olvable in O(log l�r I) ti1n on the 

priority CRCW PRAM with polynorrUal-processors. 
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vVe next consider the class of trees, which i O(n1)-dccomposable. If a node v i 

not proper, we say that v is non-proper. 

Theore1n 4.3 The walk realizability problem for the clas of trees is NP-con1pl te 

even if the number of non-proper nodes in a tree is exactly one. 

Proof. Obviously, the problem is in NP. We reduce the satisfiability problcn1 ( AT) 

to the proble1n. he problem SAT is to d cide if, given a collection C of clau e on a 

finite set U of variables, th r is a truth assignm nt for U that satisfies all the clau es 

in C. Let U = { u0, ul? ... , Un-l} be a finite set of variables and C = { co, cl? . . . Cm-1} 

be a collection of clauses on U. From U and C, w must construct a finite alphab t 

�' a tre T = (V, E, c) , wh r c : E ----+ �' and a string over � such that T realiz a 

walk for x if and only jf C is satisfiabl . 

We s t � = { #} U U U C, and define T a the tree of the form in 1g. 4.2. 

left side right side 

Figure 4.2: Th e node v0 is a unique non-proper nod 

For a variable u E U, by CP(u) (Cn(u), resp.) we d note the set of clauses containing 

positive (n gative, resp.) literals of u. In order to construct the tring x we fir t d fine 

. (p) d (n) 
f 1 . - 0 1 1 d WEEP stnngs ui an ui or ac 1 z - , , . . .  , n - an : 

u(P) 
t 

(n) 
U· t 

#u·u· t t 

#uiui 

II ( ckck )# 
ckECp(ut) 

II ( CkCk )# 
Ck ECn (ut) 
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m 

S\iVEEP = # IJ(ckck)# 
k=l 

The string x is defined by 

n-1 
x - IJ (u�P)u�n))SWEEP 

i=O 

The reduction can be done in poly nomial tin1 . W clain1 that C is satisfiabl if and 

only if T realizes a walk for x. 

Let S = { u;P), u�n), SWEEP I i = 0, 1, ... , n - 1}. ote that th strings of S cov r 

the string x completely without any overlaps b twe n strings in S. The following i 

obvious: 

Fact 4.1 For each string s E S, the tree T realizes exactly two paTtia.l walks for s, 

which aTe closed with v0; One is realized in the right sid ofT and another is in the 

left side. 

First, suppose that C is satisfiable , i.e., there is a truth assignm nt f : U ----+ 

{true,false}. Let w b a partial walk for x, which will b hown a walk for x. uch 

that for each i = 0, 1, . . .  , n - 1, the following are satisfied: 

1. The subwalk w (p) of w for u�P) is on the right side and the subwalk w (n) of w 
U

i 
U, 

for u�n) is on the left side if f( ui) =true. Otherwise, w (n) is in the right id 
u, 

and w (p) is in th left side. 
u, 

2. The subwalk of w for SWEEP is on th left sid . 

Such a partial walk w is unique. Obviously, all the dges labeled a variable in U are 

traversed by w. W can see that all the dges labeled a clause in C in the right sid of 

T ar also traver ed by w since 

C = U CP(
ui) U U Cn(ui)· 

f(u,)=true f(u, )=false 
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Trivially, all th dges labeled a clause in C in the left sid arc travers d by the u bwalk 

of w for SWEEP. Thus w i a walk for x on T. 

Conver ely, uppos that T r alizes a walk w for x. Th strings in S including a 

variabl 'Lli E U are only 'Ll�P) and u�n). On thr other hand, T ha exactly tvvo edges 

lab 1 d 'Ui where one is in the right side of T and anoth r is in the ] ft ide. Sine u 

traverses the two edges, one of the following (1) and (2) holds: 

(1) The subwalk of w for u�P) is on the right side and that for u�n) of w is on th left 

sid . 

(2) The subwalk of w for u�n) is on th right side and that for u�P) of w i on th left 

side. 

Recall that the subwalk of w for SWEEP must be on either the right . ide or th 

left side. Without loss of generality, we can assun1e that the subwalk of w for SvVE P 

is on the left sid . For each i = 0, . . . , n - 1 we define the string Ui as follows: 

if the su bwalk of w for u�P) is on the right sid of T, 
oth rwis . 

Then, we can see that the edges labeled a clause in C in th right ide of T are 

traversed by the subwalks for ui for 0 < < n - 1. vVe her construct a function 

j : U ---+ {true, false} such that 

]( ui ) = 

2 2 , 
{ true if u· = 'U(p) 

false otherwise. 

It is clear that j is a truth assignment of C, namely, C is . atis:fiable. 0 

Wh n the number of non-proper node in a tr e T is restricted to zero, the walk 

r alizability problem is solvable in polynomial tim by applying th linear-tirn algo-

rithm for the tree infer nc fron1 a walk, provid d in Se tion 2.3 ince the tree T 
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IS prop r. Thus, the restriction with r spcct to the ntunher of non-proper nodes in 

Th orem 4.3 is optimal. 

Theorem 4.4 The wa.lk rea.liza.bility probl m for the class of trees is NP-complctc 

even if the following conditions hold simulta.neously: 

1. The number of non-proper nodes is exa.ctl y one. 

2. The d gTee-bound is three. 

3. The a.lpha.bet siz is three. 

Proof. We modify the reduction in the proof of Theor m 4.3. Let U = { ua, u1, . . .  , Un-l} 

be a finite set of variables and C = { c0, c1, ... , Cm-l} be a collection of clau es on U. 

Let � = {0, 1, # }. To construct a tree T, w create tre s B(d) and B(d) for each 

integer d 2:: 1. First, B( d) is defin d recursively in the way of Fig. 4.3. Second, the 

0� 

JiL 
(a) B(1) (b) B(d) 

Figure 4.3: 

tree B( d) is den ned as the mallest sub graph of B( jlog dl) that realizes all partial 

walks for 

flog dl 
{ II ( b( i, j) #) 1 i = o, 1, ... , d - 1}. 

j=l 

Note that such a partial walk on B( jlog dl) must start at the top node of B( pog dl) 

and be unique. For example, B(6) is isomorphic to th tree in Fig. 4.4. Th tree T i 

defined as the tr e of th form in Fig. 4.5. 
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For u E U, 1 t C
P(u) and Cn(u) b the ets of clauses defined in the proof of 

Theorem 4.3. For a variable Ui E U and a claus ck E C, by codc{ui) and code( ck) w 

denote the strings 

�ognl IJog m l 
IT ( b( i, j) #) and IT (b(k,j)#), 
j=l j=l 

resp ctively. We define the strings u�P) and u�n) for each i = 0, 1, . . .  , n -1 and S\VEEP 

as follows: 

m-1 

SWEEP = #1# IT (code(ck)(code(ck))R)#1# 
k=O 

The string x is defined as follows: 

n 
X = IT(u�P)u�n))SWEEP 

i=l 

The reduction can be done in poly nomial time. We claim that C is satisfiabl if and 

only if T realiz s a walk for x. The proof is not hard and left to th reader. 0 

Figure 4.4: B(6). 

This restriction is optimal with respect to th degr bound. If th degree bound 

of a tree is two then such a tree is of th form of a linear chain. R call that th walk 
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Figure 4.5: T. 

realizability problem for linear chains has b en shown to be in NLOG ( ee Lemn1a 4.1 

(2) ) . The optimality with respect to the alphabet size in the walk realizability proble1n 

for the class of trees is settled as follows: 

Theorem 4.5 The walk realizability problem for the class of (1, 1 )-caterpillars is NP-

complete even if the alphabet size is two. 

Obviously, if the alphabet size is one, the walk realizability for any class of tree 1s 

solvable in linear time. Thus, the number two of the alphabet size in Theorem 4.5 i 

optimal. Notice that the class of (1, I )-caterpillars is a class of tre of bounded degree 

three and also 0( m )-decomposable. 

Proof. We first give a reduction without any restriction on the alphabet size and 

then modify it so that th alphabet ize is two. A basic idea of the reduction is the 

same as the reduction in the proof of Theorem 4.3. Let U = { u0, u1, ... , Un-l} b a 

finite set of variables and C = { c0, c1, ... , Cm_1} b a coll ction of clauses on U. Let 

� = {#,a} U U U C. We define T as the tree in Fig. 4.6. The strings u;P) and u;n) for 

i = 0, 1, . . .  , n - 1 are defined as follows: 

u(P) 
l 

(n) u l 

# (a a )i+l uiui (a a) (n-i-l)+m 

#( aa r+luiui( aa )(n-i-l)+m 

IT (ckck(aa)m)(aa)n# 
ckECp(u,) 

IT ( Ckck( aa )m)( aa )n# 
qECn(ui) 



Figure 4.6: 

m-1 
SWEEP = #(aat II (aackck)(aa)m+n#, 

k=O 

where the definition of CP(u) (Cn(u) ) is as in the proof of Theorem 4.3. The string x 

is defined by 

n-1 
X = II (u�P)u�n))SWEEP. 

i=O 

The ( 1,1 )-caterpillar T and the string x can be constructed in polynomial time. It 

is not hard to show that C is satisfiable if and only if T realizes a walk for x. 

We next give another reduction. Let �' = {0, 1} and 2, 3 54 be the string O\ r 

�' defined as follows: 
52 01010 

53 0101010 

54 010101010 

Let m be the smallest even int g r greater than or equal to pog rnl. We define the 

string x as follows: 

flog n l 
cod (ui) = II (b(i,j)20). 

(n) U· 
2 

j=1 

m 
000 II(b(k,j)20)11. 

]=1 

53 II ((52520m)mcode(ck))(52520m)m 3(ollognl 2 2t 4· 

ckECp(u,) 



SWEEP 

S3 II ((s2s20m)mcode(ck))(s2c;20m)ms3(0flognls2 2t 4. 

ckECn(u,) 

s4(s2s20flognl)ns3 II (s2 2cod (ck))(Oms2 2)m 3(oflognls2 2t 4· 

CkEC 

n-1 
x = II (u�P)u�n))SWEEP. 

i=O 

84 

Let T' b the tree in Fig. 4. 7. We define T as the tree obtained by id ntifying th 

node v0 ofT' with the nod corresponding to v of a copy ofT'. 

vd!lQlQQlQlQ _o ___ o_ -------· � v' 

I I I 
b(i,1) b(i,2) b(iJiognl) 

U; , v o�------;:::.o v 

(a) (b) the abbreviation for (a) 

0101001010 0 0 0 0 , vcr---------

�
-

�
-

�
- --------

�
� v 

o b( k, 1 ) b( k, 2) b( k, n'l) 1 
c 

.. v o�-----·-;:::.o v' 

(c) (d) the abbreviation for (c) 

vod!lQlQQlQl� ul >o uz >o--------�lQlQl� cl >o c2 >o--------� 
T' 

Figure 4.7: 

This reduction can be also done in polynomial tin1e. In the reduction, C is satisfi-

able if and only if T realizes a walk for x. The verification of it is left to the read r. 

D 

Note that the walk realizability problem for any class of ( 1, 1 )-caterpillar with at 

most O(log m ) hairs is solvable in polynomial ti1ne, where m is th nun1ber of edges 

because of Th orem 4.2. 

A ladder is an undirected graph G = (V, E, c ) with V = { Vi,j I i = 1, 2,j = 1, ... , n} 

and E = { { vi,j, vi,j+l } I i = 1, 2 j = 1, ... , n - 1} U { { v1,j, v2,j} I j = 1, . . . , n } . A 



m, h i an undirected graph G = (V, E, c) with V = { vi,j I 1 :s; i j :s; n} aud 

E = { {vi,j, Vi,j+I} jl :s; i :s; n, 1 :s; j :s; n-l}U{ {vi,j vi+I,j} Jl :s; i :s; n-1, 1 :s; j :s; n}. 

Th following results can be easily shown by modifying the redu tion in the proof of 

Theorem 4.5. 

Corollary 4.1 1. The walk realizability problem for the class of ladd rs i NP-

complete even if the alphabet size is three. 

2. Th walk r alizability problem for the class of meshes is NP-complete even if ihe 

alphabet size is three. 

4.3 Concluding remarks 

We have introduced a replac ment method of graphs called the linear chain cl conlpo

sition and investigated the con1putational complexity of th walk realizability probl 111 

for various graphs G which ar classified by th size of th linear chain decon1position 

of G and the underlying structur of G. W hav shown that the problem for any 

0(1 )-decomposable class is in LOG although the NLOG-compl t ness has not been 

proved yet. We have also devised a polynomial-time algorithm to olv the probl 111 

for any O(log m )-d composable class of tre s, where m is the numb r of dge . W 

have also discussed the walk realizability problem for 0( m )-d compo able cla of 

trees. W hav shown that the problem for tr es is, in general, NP-compl t . 

We can modify th walk r alizability probl n1 a a maximization problen1. Let C 

be a class of graphs. 

MAX WRP(C) ( MAX Walk Realizability Problern) 

Instance: A str·ing x over a finite alphabet and a graph G. 



Problem: Find a walk w for x on G such that th number of edges traversC'cl by u is 

maxin1ized. 

It is clear that for a class C of graphs, if the walk realizability problem for C is 

NP-complete then the decision version of MAX WRP(C), i.e., th problem of, given a 

string x, a graph G and a positive integer J( deciding if there is a walk w for x on G 

such that the number of edges trav rsed by w is at 1 ast f{, is also NP-complete. IL i. 

not hard to show that for any class C of graphs, MAX WRP( C) has a polynomial-tin1e 

approximation algorithm. But, th approximation ratio of the algorithm dep nd on 

the input size, that is, the ratio is not bounded by a constant. S arch for polynomial

time approximation algorithm with bett r ratio is on of our future works. 



Chapter 5 

Conclusions 

In this thesis we have discussed the graph inf renee from a walk that was first tudi d 

by Aslam and Rivest [AR90]. They showed that the problem for graph of bound d 

degree two is solvable in polynomial time. Raghavan [Rag94] improved th tin1 -

complexity of the algorithm by Aslam and Rivest. Raghavan also showed that a variant 

of th graph inference from a walk for graphs of bounded d gre k i NP-c01npl t for 

any k � 3. 

Our results in this thesis on th graph inference from a walk have stabli hed a 

deeper understanding of the probl m. W have constructed a linear-time algorith1n 

for the tree inference from a walk by devising a tree rewriting syste1n which satisfi 

the Church-Rosser property. However, we have proved that the problem with th 

constraint on degree, namely, th graph inference from a walk for tr s of bounded 

degree k, turns to be NP-compl te for any k � 3. By th se two r ult , w can ay 

that bounding th maximum degree is a stronger factor in solving th graph inf r nee 

from a walk than the underlying structure of tre s. 

Giving consideration to the above obs rvation on tre s, we hav defined ( 1 1 )

cat rpillars, which are still trees of bounded degree three but have 1nuch in1pl-r 

structur b cause the form of a ( 1,1 )-caterpillar is similar to that of a lin ar chain. 

Although the linear chain inf renee fron1 a walk is known to b olvable in polynomial 

7 



time [AR90 Rag94 ] , surprisingly, the graph inf renee fron1 a walk for ( 1.1 )-caterpillar 

has been shown to be NP-complet . Furth nnor , we have also seen that it till 

hard to approximately solve the graph inference proble1n even for such si1npl trc s. 

Thus, we conclude the graph inference from a walk by tating that th constraint of 

bounding degr e by a constant is strong enough to make the graph inf renee fro1n a 

walk in tractabl . 

In Chapt r 3, w have discuss d th tree infer nee from a finite nun1ber of partial 

walks instead of a sing] walk. We have seen that the tree inferenc problem turns to 

be NP-complet in contrast with the case of a single walk. In addition, we can ay that 

the constraint of bounding degree by a constant is not a strong factor in computing th 

problem b cause we have proved that the problem is NP-compl t r gardlcss of exi ting 

such a constraint on degree. We have also discus ed the linear chain inf r nc fron1 

partial walk . In the same way as the case of tree , we have hown that the problem 

from partial walks for linear chains turns to be NP-complete, whil th lin ar chain 

infer nee from a walk is known to be solvable in polynomial-tim [AR90 Rag94] . By 

comparing the NP-completen ss results on trees and linear chains with the tractability 

of the graph inference from a single walk for tr s and linear chains, we can conclude 

that allowing any finit number of partial walks 1nak the graph infer nee problem 

computationally intractabl . 

In Chapter 4, we have investigated the walk realizability problem in ord r to e 

the difficulty of r alizing a walk for a. tring x on a giv n graph G. For thi probl 1n 

we have shown that the co1nplexity of various case classifi d in term of th lin a.r 

chain decomposition we have introduced. We recall that a node v i said to b prop r 

if th colors of th dges incident to v are n1utually distinct. Obviously if all nod s 

of a graph G ar prop r, the walk r a.lizability problem for such graphs is olvabl in 
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polynomial bm . However, we have een that, when one node of a graph is allowed 

to be not proper, the probl m turns to be intractable. Hence, we conclude the walk 

realizability probl m by stating as follows: Allowing just on node b ing not proper 

makes the problem intractabl . 
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