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Chapter 3

Inferring a Graph from Partial

Walks

In this chapter we consid r the problem of inferring a graph from a finit number of
partial walks instead of a single walk. For a finite set S of strings and a graph &
we say that G realizes all partial walks for S il, for each string x in S, the graph ¢
realize a partial walk for . Let €' b a class of graphs. We defin  the problem for

as follows:
Graph Inference from Partial Walks for C
Instance: A finite set S of strings over a finite alphabet ¥ and a positive integer A'.

Question: Is there a graph G € C' with at most A" edg s such that G realize all

partial walks for S?7

Obviously, the graph inference from partial walk a natural extension of th

graph inference from a walk.

3.1 Tree inference from partial walks

In this section we consider the tree inference from walks that is to find the

small t undirected tree realizing all partial walks for given trings. Notice that wh n



the number of given strings is one, th problem is quivalent to the tr e inference from
a single walk.

The following is the main result in this section:

Theorem 3.1 The tree inference from partial walks is NP-compl t . Furthermore,

this problem remains NP-complete even if the following conditions hold simultaneously:
1. The alphabet size is restricted to three.
2. The maximum degree is bounded by three.

Proof. It is easy to see that the tree inference from partial walks is in NP. First w
give a reduction from VERTEX COVER [GJ79]. Second, we modify the reduction o
as to show th  NP-hardness of the problem with th constraint on the alphab t ize
and the maximum degree.

Recall that VERTEX COVER is to decide if, given a graph G = (V, ) and a
positive integer I\, there is a vertex cover of siz at most A for (7, that is a ub et
C C V with |C] < K such that for each edg {u,v} € E at least one of u and v belongs
to C. Let G = (V,F) be a graph with |V| = n and I\ be a positive integer. For (¢
and /', We define an alphabet © as ¥ = V U {ag,a1,... a2} U {b1, b2, ... bngr}.

In ord r to defin a set S of strings over ¥, we introduce th following notation for

strings:
[a] Afn/2] -+ Q1000 * U2
[[)] [)1 v [)7l+l .

Note that [a]" = [a]. n S consists of th following string :

base-string : ula][b] for u €

edge-string : u[ajv  for {u,v} € E.



Finally, let A" = 2n+2[n/2] 424 K. This transformation can b done in polynomial
time. We claim that (¢ has a vertex cover of size at most A if and only if there is a
tree with at most A’ edges which realizes all partial walks for S.

Suppose that (7 has a vert x cov r C' with |('] < K. Forasub t U = {vj....,t}}

of V', let T'(U/) be the tree in Fig. 3.1. It is obvious that T(C') realizes all partial walks

T(U)

Figure 3.1: V = {vy,...,v,} and U = {vy,..., v} T V.

for S. It can be easily checked that 7" contains at most h” edges since |C'] < K.
Conversely, uppose that ther isatr 7T with at most KA’ edges r alizing all partial
walks for S. Without loss of generality, we can assume that 7" is prop r by th following

fact:

Fact 3.1 Let S be a finite set of strings and 1" be a tree realizing all partial walk for

S. Then, for the —p-normal form of T', i.e., 13’(]), the following statements are true:
(1) F(T) is proper.
(2) F(T) is not larger than T.
(3) ﬁ(]) also realizes all partial walks for S.

This fact is trivial because, for trees Ty and Ty with T — Ty, if T realizes a partial

walk for a string x then so does Tj. e that if 7" is proper then any subgraph of



T is prop r. It is easy to see that for each string x in S, any tre realizing a walk for
x is isomorphic to a linear chain of label x. We first consider the base- trings, each of

which contains xactly on [a][b] as a substring.

Claim 3.1 Let Ty be the tree in Fig. 3.2. Any proper tree with at most  edge that

realizes all partial walks for the base-strings is isomorphic to the tree Ty.

Ty

Figure 3.2: 'V = {v,..., v, }.

Proof of Claim 3.1. It can be asily ch cked that if such a tr e is not isomorphic to

V] =3n+42[n/2] +3 edges. This contradi t

T, then it contains at least [[a][0]] +|[b]| +
the assumption that the number of edges in T is at most h”.

In a similar way, we can show the following:

Claim 3.2 A tree T’ is a proper tree with at most KN’ edges realizing all partial walk

for S if and only if T" is isomorphic to th tree T(C"), where C" C V.

Then we can assume that for some €’ C V', the tree T'1 isomorphic to T'(C"). 1t i
obvious that || is at most A" since T" has at most A’ edges. It should be lear that
("' gives a vertex cover of G whose siz has been shown at most .

Next, we modify the reduction into another one to show that the tree infer n - from
a walk remains even if the size of alphabet is three and simultaneously

trees are of bounded degree thr . Let © = {0,1,#}. For convenience, we assum
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that V" = {0,....,n — 1}. For a nonnegative integer 7, we denote by 7; the jth bit
of the binary representation of ¢ such that ¢ = 7g2% + 4,2 + -+ +7,, ;2™ ! for some
m > |loge] + 1. Let 2; = 1if 7; = 0 and 7; = 0 otherwi . a pair (h,7) of integ r

with 0 <7 <20 — 1, th strings by(h 2) by(h,i) and bsy(h,7) ar d fined as follow :

bl(h,i)

1)2(11, 1)

Let ¢ = [logn]. Using these strings, we make the strings [¢] for 0 <7 <27 — 1, [q]

and [b] as follows:

29—1

a H #0101b,(qg, 2).

291

(6] [] 0101010164(2¢, ¢)#.

1=0
Note that |[a]| = 29t (3¢ +5)+ 3 and |[]| = 29( ¢+9). Let S b the set of trings

as follows:

base-string : [2][2][a][b] forz e V.
branch-string : [2][a]] for 0 <2 <27 — .
edge-string = [1)[¢])[a)J)7 (5] for {i,)} € E.

Finally, let k' = 2¢(n+ K)+29(14¢g+27) —6. This transformation can b done in
polynomial time. We claim that (¢ has a vertex cover of size at most A" if and only if
ther isatr e with at most A’ edg s which realizes all partial walk for S (s ig.3.3).
This claim can be proved in a similar way of the case that any restriction is not put

on the size of alphabet. We leave it for the reader to verify the claim.



G

Figure 3.3: The tree T realizes all partial walks for the strings produc d by th econd
reduction from the graph G.

We can show that the number three of colors in Theorem 3.1 is optimal by th

following result:

Theorem 3.2 The tree inference from partial walks is solvable in linear time if th

size of alphabet is at most two.

Proof. Let ¥ be an alphabet of size at most two and x be a string over ¥. We say
that @ is alternate if the 2th bit of z, denoted by x, is different from z,;;. By Lemma
2.3, the smalle t realizing a walk for 21 th linear chain / uch that th label of [
is alternate. We denote th alternate string for z by a(z). For a finit set S of tring
over ¥, let a(S) = {a(y) | y € S}. It is obvious that a(S) can b produced by applying
the linear-time algorithm for th tr infer nc from a walk, provided in Section 2.3.
[t can be done in time linear in th total I ngth of th strings in

If the longest string of a(.5), denoted by [, is unique, then lis the label of the shortest

linear chain r alizing all partial walks for S. Oth rwise, ther exist two distinct, longest



strings with length 28 +1 for some k. In thi. case, th label of the shortest lin ar chain

is the alternate string with length 2£. 0

Next, we show that the tree inference from partial walks has no polynomial-time
approximation scheme unless P= P by proving that the problem is [AX

[ALNT92].
Theorem 3.3 The tree inference from partial walks is MAX SNP-hard.

Proof. Recall that COVER is denoted by A-DEGREE VERTEX COVER
when graphs are restricted to graphs of bounded degree & without any self-loop. As
mentioned in the proof of Theorem 2.9, it is known that 4-DEGREE VERTEX COV R
is MAX SNP-complete [PY91, Pap94]. Let [ be the reduction in th proof of Theorem
3.1 from 4-DEGREE VERTEX COVER. Then the first condition is satisfied with
a = 15sinc [n/5] < opt(G), where opt(() is the size of minimum cov r of .
Next, we define an algorithm ¢ as follows: We can assume that a feasible solution
of the tree inference from partial walks is a proper tree which realizes all partial walk
for given strings. If a feasible solution s, has at most 3n +2[n/2] 4+ 2 edges, then i
a tree isomorphic to T(C') for some " C V', which is defined in th proof of Theorem
3.1. In the ca e, the algorithm ¢ returns C'. Otherwise, g return V. Then it is trivial

that the second condition holds with g = 1. O

3.2 Linear chain inference from partial walks

We here consider the linear chain inference from partial walks, i.e., the problem of

finding th short st linear chain realizing all partial walks for a finite et of tring .

Example 3.1 Let S = {abbaabedeede, chedd edce, ebcece}. The graph in Fig. 3.4 is

the shortest linear chain which realizes partial walks for S.



Figure 3.4:

Since if a directed linear chain [ realizes a walk for a string x then the lab | of
the directed linear chain [ is x, the graph inference from partial walks for the cla's
of directed linear chains is essentially equivalent to the short t common superstring
problem, for which the NP-completeness result was given by Gallant et at. [GMS80].
Thus, the graph infer nce from partial walks for th class of direct d linear chain i
NP-complete.

Recall that th lin ar chain inference from a singl walk is hown to be solvabl in
polynomial time by Aslam and Rivest [AR90] and Raghavan [Rag94] (see Section 2.2).
Unfortunat ly, the lin ar chain inference from partial walks turns to be intractabl m

the sam way as inferring tr s.

Theorem 3.4 The linear chain inference from partial walks 1 NP-complete even if

the size of alphabet is restricted to three.

Proof. We give a reduction from the shortest common superstring problem [GMSS0]
where the shortest common superstring problem is to decide if. given a finite set S of
strings over a finite alphabet ¥ and a positive integer A', ther i a superstring for .S
with length at most A, that is, a string s € ¥* with |s| < N such that each string
x € Sis a substring of s. Tt is known that the problem i NP-complete even if || =2
[GMS80]. Let S be a finite set of strings over the alphabet = {0,1} and A be a
positive integer. We first define an alphabet ¥ as U {#}, where # is a new

symbol not in ¥. For a string b = byby--- by, with by, by, ... .0, € ¥ weer at a tring

m

W = TT(01#b:#)01.
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Let S" be the set of the strings ¥ for all b € S. Finally, let K’
transformation can be done in polynomial time.

Note that the label of a linear chain realizing a walk for a string @’ € 5" is only '
(see Theorem 5 of [AR90]). It is clear that there is a superstring  for .S with |s] < K
if and only if all partial walks for 8" are realized in a linear chain with A” edges or less.

O

The number three of colors in Theor m 3.4 is optimal b cau  of the following

result:

Corollary 3.1 The linear chain inference from partial walks is solvabl in linear tim

if the size of alphabet is at most two.

This is a trivial consequence from the proof of Theorem 3.2 mc , foranys t of
strings over at most two colors, the smallest tr  r alizing all partial walk for 1 m
the form of a linear chain.

By the fact that the shortest common sup r tring problem is MAX SNP-hard
[BJL*94] and the fact that th reduction in th proof of Theorem 3.41 an L-reduction,

the following holds:
Theorem 3.5 The linear chain inference from partial walks is MAX SNP-hard.

By this theorem and the result due to Arora et al. [ALM*92], th r isno polynomial-
time approximation algorithm for the lin ar chain inferenc from partial walks unl s

P=NP.
3.3 Polynomial-time approximation algorithms

In two previous sections, we have shown that both of th tree inference from partial

walks and the linear chain inference from partial walks are NI-complete and MAX
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SNP-hard, while the graph inference probl ms from a single walk for such graph hav
been shown solvable in polynomial time.

In this section, we construct polynomial-time approximation algorithms for both
NP-complete problems. We will show that an approximation algorithm for the problem
on trees can be constructed by employing an approximation algorithm for the minimum
common supertree problem [YM93]. The minimum common supertr  problem can be
shown NP-complete because the proof in Theorem 3.1 is also the proof of the NP-
hardness of the problem. For the minimum common supertree problem, a polynomial-
time approximation algorithm was given by Yamaguchi and Miyano [YM93].

On the other hand, we also show that an approximation algorithm on linear chain
can be developed by employing an approximation algorithm for the shortest common
superstring with flipping, for which polynomial-time approximation algorithms wer

given by Jiang et al. [JLDY2].

3.3.1 On trees

The tree inference from partial walks has th following approximation algorithm that
is analyzed in terms of the compression in the constructed tree T, that is, in terms of
k — 1, where k is the total length of given strings and [ is the number of edges of the

tree T.

Theorem 3.6 There is a polynomial-time approximation algorithm to find a tree T
realizing all partial walks for a set finite S of strings such that C' > C,/(|S| — 1),

where C' is the compression in T and C',, is the maximum compression for S.

In approximately solving the tree inference from partial walks, the observation in

the following lemma is a key to our approach.



Lemma 3.1 Let S be a finite set of strings and ' be the smallest tr e realizing all
partial walks for S. Then, for each string x € S, the smallest tree realizing a walk for

x is a subgraph of T".

This lemma is trivial from Fact 3.1. For a finite set R of trees a tree T is called
a supertree for IR if for each tr ¢ € R, the tree { is a subgraph of 7. Let [, be a
linear chain of label a string x. Recall that £(l,), i.e., the —p-normal form of I, is
isomorphic to the smallest tree realizing a walk for x (see Lemma 2.3). For a finite
set S of strings, we denote the set {F(lr) | x € S} by F(S). Given a finite set S of
strings, if we could find the smallest supertree for ﬁ(b), it would be the required tree
in the tree inference from partial walks by Lemma 3.1. Though the problem of finding
the smallest supertree is easily seen to be NP-complete from the proof of Theorem 3.1,
there 1s an approximation algorithm which, given a finite set R of trees, constructs a
supertree T for R satisfying C' > C,,/(|R| — 1), where C' is the compression in T and
C,, is the maximum compression for 2 [YM93]. Thus, by employing the algorithm,
the algorithm in Theorem 3.6 can be given. Notice that for each € S if the smallest
tree realizing a walk for  is isomorphic to a linear chain of label z, we cannot expect

any merit by constructing F'(S) in the algorithm of Theorem 3.6.

3.3.2 On linear chains

Fortunately, we can also construct polynomial-time approximation algorithms for the
linear chain inference from partial walks in the same way as the tree inference from

partial walks because we have a lemma corresponding to Lemma 3.1.

Lemma 3.2 Let [ be the shortest linear chain realizing all partial walks for a set S of
strings. Then, for each string x € S, the shortest linear chain realizing a walk for x is

a subgraph of (.



his can b asily shown by using binary relations on strings which was introduced
in [AR90]. A string s is call d a superstring with flipping for a of strings if for
each string € S, either v or 2™ is a substring of s. In a similar way, the compression in
a superstring with flipping can be defined. Sinc there is an approximation algorithm
which finds a superstring s with flipping for a given set S of strings such that ¢' >, /2
where C'is the compression in s and C, is the maximum compression for .S [JLDY.]

the following approximation algorithm for the linear chain inference from partial walk

can be given:

Theorem 3.7 There is a polynomial-time approximation algorithm to find a linear
chain [ realizing all partial walks for a set S of strings such that C' > C,/2, wh r C

is the compression in | and C,, is the maximum compression [or S.

Jiang et al. [JLDY2] also developed an approximation algorithm which construct
a superstring s with flipping with length at most three times opt, wh v opl is the

shortest length.

Theorem 3.8 There is a polynomial-time algorithm to find a linear chain with length
at most three times opt(S) which realizes all partial walks for a finit set S of string ,

where opt(S) is the length of the shortest linear chain realizing all partial walk for

3.4 Concluding remarks

We have shown that the tree inl r nce from partial walks is NP-complete. Furthermore,
we have proved that there is no polynomial-time approximation scheme unless P=P.
Fortunately, we have also obtained a polynomial-time approximation algorithm for the
problem. The approximation ratio is analyzed in terms ol th compression in the tre

produced by the algorithm. Since the ratio is not bounded by a constant, it is open if
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there is a polynomial-time approximation algorithm with ratio bound d by a on.tant.
The performance of approximation algorithms for the tr  inference from partial walks
should be also evaluated by the ratio of the number of edges in the produced tree
to the minimum number of edges because the problem is the minimization problem
of the number of edges in a tree realizing all partial walks for a given set of tring .
However, w have not given any result on the ratio in terms of the number of edge .
It also remains open if the tree inference from partial walks has a polynomial-time
approximation algorithm such that the number of edg in the produced tree is bounded
by a constant times the minimum.

We have also discussed the linear chain inference from partial walks and shown
the NP-compl t ness and the MAX SNP-hardness, which implies that there is no
polynomial-time approximation scheme unles. P=NP [ALM*192]. We have presented a
polynomial-time approximation algorithm that the length of th linear chain ed
is bounded by three times the minimum. Th algorithm employs polynomial-time ap-
proximation algorithms for the problem of the short t superstring with flipping given
by Jiang et al. [JL.D92]. Their approximation algorithms were developed b lightly
modifying polynomial-time approximation algorithms for the short t common super-
string problem [TU88, Tur89, BJL.794]. Especially, Blum et al. [BJL*94] devised a
polynomial-time approximation algorithm that the length of th sup r tring produced
is bounded by thr  times the minimum. B tt r ratios of polynomial-time approxima-
tion algorithms for the shortest common superstring problem have b n reported by
Teng and Yao [1TY93], Czumaj et al. [CGPR94], Kosaraju t al. [KPS94] and Armen
and Stein [ASY94]. The ratios are 26/9 ~ 2. 9, 17/6 ~ 2.833, 176/63 ~ 2.794 and
2.75, respectively. By exploiting such new approximation algorithms, we could de-

velop polynomial-time approximation algorithms with b tter ratio for the lin ar chain



inference from partial walks.



Chapter 4

Realizing a Walk on a Graph

In this chapter we discuss the walk realizability problem, in which we are given a
graph G in addition to a string z, and asked if ¢ realizes a walk for x. Obviously, this
problem is closely related to the graph inference from a walk. aim of con id ring
the walk realizability problem is to see the complexity of d ciding if ther is a walk for
a string x on a graph (i when the string @ and the graph (i are given imultancously.

Here, we shall see an xample of the problem.

Example 4.1 Let x = bbbabbbbababba and GG be the graph in Fig. 4.1. Does G r alize

il

a walk for x7 The answer is “yes.’

G

Figure 4.1:



4.1 Walk realizability problem

Let C' be a class of graphs. We recall th definition of the walk realizability problem

for C' below:

Walk Realizability Problem for '
Instance: A string z over a finit alphabet ¥ and a graph ¢ € C.

Question: Does (i realize a walk for 7

A partial walk on a graph (' is a path in (G, which is not required to include all
edges of (. In the same way as th walk realizability problem, we define the partial
walk realizability problem as the problem of deciding if a graph G realiz a partial
walk for a string . We can see that the partial walk realizability problem is complete
for  LOG by an easy reduction from th threadable maze problem [Sav70].

We first consider th walk r alizability probl m for graphs of bounded degr e two,

i.e., cycles and linear chains.

Lemma 4.1 (1) The walk realizability problem for cycles is in NLOG.

(2) The walk realizability problem for linear chains is in NLOG.



Proof. (1) Let (i = E,c) be a cycle and x = xyx5---x, b a string with »; € ©

for 1 <7< n. consider the following algorithm:

Let M; and Al, be markers on nodes.
Guess a node vy and put A, and M, on vy.
Let RET be a variable having “yes” or “no.”
RET:= “no.”
Execute the following for 1 <7 < n in order:
I. Gu s anod v; andch ckif {v,;,v;} € E and e({v;_y,v;}) is 2;.
If not, stop and return “no.”
2. Move M, (M,) to the leftmost (rightmost) node among the visited
nodes vg, vy, ..., 0;.

3. RET:=%yes” if the two markers M, and M, are put on th same node.

Return RET.

It is clear that G realizes a walk for 2 if and only if the algorithm returns ye '
Obviously, this algorithm uses only log-spac for ke ping the node on whi h th two
markers are put.

(2) By a similar argument to the walk realizability problem for cycle ; w can how

the result for lin ar chains.

In order to investigate the walk realizability for more complex graph , w d fin th
linear chain decomposition of a graph. Let G b an undirected connected graph. Th
linear chain decomposition of a graph G is simply defined by splitting every node v of
degree k& > 3 into k new nodes of degree one. Formally, th linear chain decomposition
of (i’ is obtained by repeating the following procedure until there is no nod  with degre
greater than or equal to three: Let v be a node with degree kb > 3 and let wy, ... uy

be its adjacent nodes. Then by replacing v with £ n nodes v,...,vg, we put new



edges {uy,vi}, ..., {ug v} instead of the dge {u, v}....,{ux, }, where th color of
{ui.v;} is the same as that of {u;,v} for 7 = 1,.... k. Obviously, the degree of v; is
one. After the above replacement, the resulting graph is a collection of linear chain. .
The ize of the linear chain d composition of i denoted b led((/). 1 the numb r of
components of the resulting graph.
that th following equality holds:
led(GV) = 5 Z deg(v)
“ weV with deg(v)>3

where deg(v) is the degr  of the node v.

Let C' be a class of graphs and f(m) be a function on the nonnegative integers.
The class C' is said to be O(f(m))-decomposable if there exists a constant ¢ > 0 such
that led(G) < e - f(m) for every graph ¢ = (V. F,¢) € C, where m is the number of

edges in (. Trivially, any cla . C' of graphs is O(m)-decomposable.

Theorem 4.1 The walk realizability problem for any O(1)-decomposable class of

undirected graphs is in NLOG.

Proof. Let (¢ = (V, I, ¢) be a connected graph in an O(1)-decomposable class. The
number of the linear chains produced by the linear chain decomposition of (i is O(1)
from the definition of the decomposition. In order to keep each of th linear chain ,
it is sufficient to store th leftmost and rightimost nodes of the linear which
requires only log-space. Thus, by applying an algorithm similar to that in Lemma 4.1

we can construct a nond t rministic algorithm in log-space.

In the same way, we can define the linear chain decomposition of a directed graph.
[t is easy to see that the walk realizability problem for any O(1)-decomposable clas

of directed graphs is also in NLOG.



4.2 Realizing walks on trees

In this section we consider the walk realizability for some kind. of undirected
The walk realizability problem for any class of dir cted treesi trivial. Hereafter a tre

m ans an undirected tree.

Theorem 4.2 The walk realizability problem for any O(log m)-decomposable cla s of

trees is solvable in polynomial tim .

Proof. Let T' = (V,[£,¢) b a tree in an O(logm)-decomposabl class of trees and
r = xx2 T, be astring of colors, wh r x;1 a color for I < < n. It is sufficient to
show that there is a polynomial time algorithm to decide if there is a partial walk for
x on T including all nodes of degre one in T. Let [, l,, ..., be the nodes of degree
one in T. Notice that m’ <lcd(T) < O(logm), wh r m is the number of edge in T.
We define a function ¢ : V x {1,2,..., |z} x V' x {0,1}™ — {0, 1} as follow :

if there is a partial walk w for z 25 -+ - 2; from
1 v to v such that for each 1 < & < ' w

é('l7,i,'l?l,11,lz, R lm’) =

includes I if [, =1
0 otherwise.

It 1s not so hard to see that there exists a polynomial time algorithm for producing
a table representing the function ¢. Clearly, there is a pair of nodes v and v of
T such that ¢(v,|z|,o',1,1,...,1) = 1 if and only if T realizes a partial walk for x
passing through all the nodes 1,1, ..., ;. Since such a pair of nodes can be found
in polynomial time by looking up the table, it can b decided in polynomial time if T

realizes a walk for z.

The walk realizability for any O(logn)-decomposable class of trees would not be
P-complete since we can show that the problem is solvable in O(log |2|) time on the

priority CRCW PRAM with polynomial-processors.



We next consider the class of trees, which is O(m)-decomposable. If a node v i

not proper, we say that v is non-proper.

Theorem 4.3 The walk realizability problem for the class of trees is te

even if the number of non-proper nodes in a tree is exactly one.

Proof. Obviously, the problem is in NP. We reduce the satisfiability problem ( AT)
to the problem. The problem SAT is to decide if, given a collection ' of clauses on a
finite set {/ of variables, th r is a truth assignm nt for [/ that satisfies all the clau es
in C. Let U = {ug,uy,...,u,_;} be a finite set of variables and C' = {cp, ¢y, ..., ¢n_1}
be a collection of clauses on U. From U and C, we must construct a finite alphab t
Yiatre T'=(V,E c),whr c¢:F — ¥ and a string over ¥ such that T realiz a
walk for z il and only if (" is satisfiabl .

Wes t ¥ ={#}UU UC, and define T" a the tree of the form in 1g. 4.2,

left side right side

IYigure 4.2: The node vy is a unique non-proper nod

Fora variable u € U, by C,(u) (C(u), resp.) we denote theset of clauses containing
positive (negative, resp.) literals of u. In order to construct the string z, we first define
strings uf»p) and ul(-n) for ach:=0,1,....,n— 1 and WEEP:

‘ng) #uu; H (crewn)#

CkECp(Ut)

in) Huu, H (ckex)#

CkECn(u.)



SWEEP = # [](cxex)#

k=1

The string z is defined by
n—1
e = [JPu™)SWEEP
i=0

The reduction can be done in polynomial time. We claimn that ' is satisfiable if and
only if T realizes a walk for x.

Let S = {uEP), ugn), SWEEP | ¢ =0,1,...,n —1}. Note that the strings of S cover
the string x completely without any overlaps between strings in S. The following i

obvious:

Fact 4.1 For each string s € S, the tree T realizes exactly two partial walks for s,
which are closed with vy; One is realized in the right side of T and another is in the

left side.

First, suppose that C' is satisfiable, i.e., there is a truth assignment f : U/ —
{true,false}. Let w b a partial walk for z, which will b hown a walk for x. uch

that for each 2 =0,1,...,n — 1, the following are satisfied:

()

1. The subwalk W, (p) of w for u;”’ is on the right side and the subwalk w, (n) of w

for uf—n) is on the left side if f(u;) =true. Otherwise, w (» is in the right sid

t

and w (p) is in the left side.
2. The subwalk of w for SWEEDP is on th left sid .

Such a partial walk w is unique. Obviously, all the edges labeled a variable in U/ are
traversed by w. W can see that all the dges labeled a clause in (" in the right sid of
T" are also traversed by w since

= U C"p(ui) U U C‘vn(ui)'

f(u,)=true f(u,)=false



Trivially, all th dges labeled a clause in (" in the left sid are travers d by the ubwalk
of w for SWEEP. Thus w i a walk for 2 on T.

Conversely, suppose that T realizes a walk w for x. The strings in .S including a

(p)

]

and 'u_gn).

variable u; € 7 are only u On the other hand, T has exactly two edges
lab 1 d u; where one is in the right of T and another is in the left side. Since u

traverses the two edges, one of the following (1) and (2) holds:

(1) The subwalk of w for ufp) is on the right side and that for ui-") of wison th left
sid .

(2) The subwalk of w for 'u,fn) is on th right side and that for uz(-p) of wi onth left
side.

Recall that the subwalk of w for SWEEP must be on either the right .ide or th
left side. Without loss of generality, we can assume that the subwalk of w for P
is on the left sid . Foreach 7 =0,...,n — 1 we define the string %; as follows:

(p)

if the subwalk of w for w;"’ is on the right sid of

oth rwis .
Then, we can see that the edges labeled a clause in ' in the right side of T are
traversed by the subwalks for u; for 0 < < n — 1. We her construct a function
f:U — {true, false} such that

flug) =

. true if a;, = uf»p),
false otherwise.

It is clear that [ is a truth assignment of C'; namely, C'is atisfiable.

When the number of non-proper nodes in a tree T is restricted to zero, the walk
r alizability problem is solvable in polynomial tim by applying th linear-tim algo-

rithm for the tree infer nc  from a walk, provid d in Se tion 2.3 ince the tree T'



1s proper. Thus, the restriction with respect to the number of non-proper nodes in

Theorem 4.3 is optimal.

Theorem 4.4 walk realizability problem for the class of trees is NP-complete

even if the following conditions hold simultaneously:
1. The number of non-proper nodes is exactly one.
2. The de is three.
3. The alphabet size is three.

Proof. We modify the reduction in the proof of Theorem 4.3. Let U = {ug, u;. . ... Un—-1}
be a finite set of variables and C' = {ce,c1,...,¢n_1} be a collection of clauses on .
Let ¥ = {0,1,#}. To construct a tree T, we create trees B(d) and B(d) for cach

integer d > 1. First, B(d) is defined recursively in the way of Iig. 4.3. Second. the

(a) B(1) (b) B(d)

Figure 4.3:

tree B(d) is defined as the smallest subgraph of B([log d]) that realizes all partial

walks for

[logd]

{ H (b, )#) [ i=0,1,...,d—1}.

Note that such a partial walk on B3([logd]) must start at the top node of B([logd])
and be unique. For example, 1~3(6) is isomorphic to the tree in Fig. The tree 1" 1

defined as the tr e of th form in Iig. 4.5.



For w € U7, let Cy(u) and C,(u) be the sets of clauses defined in the proof of
Theorem 4.3. a variable u; € U and a clause ¢, € ', by code(u;) and code(cg) w

denote the strings

[log n] [logm]
IT (b(i.)#) and [T (b(k,j)#),
j=1 7=1

respectively. We define the strings uz(-p) and 'uz(-n) foreach:=10,1,...,n—1 and SWEEP

as follows:

SWEEP = #I1# "ﬁ (code(cg)(code(cy)) ) #1#

k=0

The string « is defined as follows:
¢ = [[(uPu{")SWEEP
i=1

The reduction can be done in polynomial time. We claim that C' is satisfiabl if and

only if T realizes a walk for x. The proof is not hard and left to the reader. O

Figure 4.4: B(6).

This restriction is optimal with respect to the degr  bound. If the degree bound

of a tree i1s two then such a tree is of th form of a linear chain. R call that th walk



Iligure 4.5: T.

realizability problem for linear chains has been shown to be in NLOG (sce Lemma 4.1
(2)). The optimality with respect to the alphabet size in the walk realizability problem

for the class of trees is settled as follows:

Theorem 4.5 The walk realizability problem for the class of (1, 1)-caterpillars is NP-

complete even if the alphabet size is two.

Obviously, if the alphabet size is one, the walk realizability for any class of tree 1s
solvable in linear time. Thus, the number two of the alphabet size in Theorem 1.5 i
optimal. Notice that the class of (1, 1)-caterpillars is a class of tre  of bounded degree
three and also O(m)-decomposable.

Proof. We first give a reduction without any restriction on the alphabet size and
then modify it so that the alphabet size is two. A basic idea of the reduction is the
same as the reduction in the proof of Theorem 4.3. Let U = {up,uy,...,u,_1} be a
finite set of variables and C' = {¢q,¢1,...,¢n_1} b a collection of clauses on U. Let
Y ={#,a} UUUC. We define T" as the tree in Fig. 4.6. The strings ugp) and uf") for

1 =0,1,...,n — 1 are defined as follows:

usp) #(aa) ' uu;(aa) "D IT (ecxer(aa)™)(aa)"#
ck €ECp(uy)
uin) H#(aa) M wu(a)m T II (cxcr(aa)™)(aa)"#

ck€Cn(us)



Figure 1.6:

m—1
SWEEP = #(aa)" [] (aacker)(aa)™ "4,
k=0

where the definition of C)(u) (C'(w)) is as in the proof of Theorem 4.3. The string «x

is defined by

n—1

v = [[@Pu”)SWEEP.
1=0
The (1,1)-caterpillar T" and string & can be constructed in polynomial time. It
is not hard to show that (" is satisfiable if and only if T a walk for x.

We next give another reduction. Let ¥ = {0,1} and s,, 3 sy be the strings over

Y defined as follows:

2 01010
83 0101010
Sy 010101010
Let m be the smallest even int g r greater than or equal to [logm]. We define the
string x as follows:
[logn]

code(u;) = H (b(7,7)%0).

i=1

000 ﬁ(b(kr,j)'ZO)ll.

83 H ((52520™)™code(cx))(s28,0™) ™ s5(010871 2)" 84
ck€Cp(u,)

()



81 H ((828,0™)™code(cy))(528,0™ )™ s5(0M08 ™M 5, 5,)% s,
CkEC"n(ut]

SWEEP 54(525901°8™ )55 TT (sp55c0de(er)) (0™ s955) ™ s3(0M°8 ™ s555)" s,

cL€C
n—1 ,
v = [[Pu™)SWEEP.
=0

Let T" be the tree in Fig. 4.7. We define T as the tree obtained by identifying th

node vy of T" with the nod corresponding to v of a copy of T".

vo2101001010 _0 0 0 5v
) u, v
b(i, 1) b(i,2) b(i,[logn])
(a) (b) the abbreviation for (a)
vo2101001010 _0 0 0 0 5 ‘
1% ¢ Vv
0  b(k1) b(k,2) bk,m) 1
(c) (d) the abbreviation for (c)
u, u, & ¢
T
Figure 4.7:
This reduction can be also done in polynomial time. In the C' is satisfi-

able if and only if T realizes a walk for x. The verification of it is left to the reader.

d

Note that the walk realizability problem for any class of (1, 1)-caterpillar with at
most O(logm) hairs is solvable in polynomial time, where m is th number of edges
because of Theorem 4.2.

A ladderis an undirected graph i = i e)With VFr 20t |4 = 1, 257 = Liceai)

and E= Juwalde = 1325 =1, ..,n — 3} U Yoo msd g = 1,00l B



m h i an undirected graph (¢ = (V,E.¢) with V. = {v;; | | < 7,5 < n} and
E={vijvijp} |1 <oe<n l <j<n—1}U{{vij,vig1j} |1 < <n—1,1 <) <nj}.
Th following results can be easily shown by modifying the redu tion in the proof of

Theorem 4.5.

Corollary 4.1 1. The walk rcalizability problem for the class of ladders is NP-

complete even if the alphabet size is three.

2. Th walk realizability problem for the class of meshes is NP-complete even if the

alphabet size is three.

4.3 Concluding remarks

We have introduced a replacement method of graphs called the linear chain decompo-
sition and investigated the computational complexity of th walk realizability problem
for various graphs (G which are classified by th size of th linear chain decomposition
of (G and the underlying structure of (G. We have shown that the problem for any
O(1)-decomposable class is in NLOG, although the NLOG-compl t ness has not been
proved yet. We have also devised a polynomial-time algorithm to solve the problem
for any O(log m)-decomposable class of trees, where m is the number of edges. W
have also discussed the walk realizability problem for O(m)-d compo able cla of
trees. We have shown that the problem for trees is, in general, NP-compl t .

We can modify the walk realizability problem as a maximization problem. lLet C

be a class of graphs.
MAX WRP(C) Walk Realizability Problem)

Instance: A string z over a finite alphabet  and a graph .



Problem: Find a walk w for x on (i such that th number of edges traversed by w is

maximized.

It is clear that for a class (' of graphs, if the walk realizability problem for (" is
NP-complete then the decision version of MAX WRP(('), i.e., th problem of, given a
string z, a graph GG and a positive integer Iv', deciding if there is a walk w for  on
such that the number of edges traversed by w is at least A, is also NP-complete. It 1.
not hard to show that for any class (" of graphs, MAX WRP((') has a polynomial-time
approximation algorithm. But, th approximation ratio of the algorithm depends on
the input size, that is, the ratio is not bounded by a constant. Search for polynomial-

time approximation algorithm with bett r ratio is on of our future works.



Chapter 5

Conclusions

[n this thesis we have discussed the graph inference from a walk, that was first tudi d
by Aslam and Rivest [AR90]. They showed that the problem for graphs of bound d
degree two is solvable in polynomial time. Raghavan [Rag94] improved the tim -
complexity of the algorithm by Aslam and Rivest. Raghavan also showed that a variant
of th graph inference from a walk for graphs of bounded d gre A1 NP-compl t for
any k> 3.

Our results in this thesis on the graph inference from a walk have established a
deeper understanding of the problem. e have constructed a linear-time algorithm
for the tree inference from a walk by devising a tree rewriting system which satisfi
the Church-Rosser property. However, we have proved that the problem with th
constraint on degree, namely, the graph inference from a walk for trees of bounded
degree k, turns to be NP-complete for any & > 3. By these two results, we can say
that bounding th maximum degree is a stronger factor in solving the graph inf r nce
from a walk than the underlying structure of tre s.

Giving consideration to the above observation on trees, we have defined (1,1)-
cat rpillars, which are still trees of bounded degree three but have much s
structure because the form of a (1,1)-caterpillar is similar to that of a  ear chain.

Although the linear chain rence from a walk is known to b olvable in polynomial



time [ARY0, Rag94], surprisingly, the graph rence from a walk for (1.1)-caterpillar
has been shown to be NP-complete. Furthermore, we also seen that it till
hard to approximately solve the graph inference problem even for such simpl trees.
Thus, we conclude the graph inference from a walk by stating that th constraint of
bounding degree by a constant is strong enough to make the graph inference from a
walk intractabl .

In Chapter 3, we have discussed th tree inference from a finite number of partial
walks instead of a singl walk. We have seen that the tree inference problem turns to
be NP-complet in contrast with the case of a single walk. In addition, we can say that
the constraint of bounding degree by a constant is not a strong factor in computing th
problem because we have proved that the problem is NP-compl t r gardless of existing
such a constraint on degree. We have also discussed the linear chain r nce from
partial walks. In the same way as the case of trees, we have shown that the problem
from partial walks for linear chains turns to be NP-complete, while th linear chain
inference from a walk is known to be solvable in polynomial-tim [AR90, Rag91]. By
comparing the NP-completeness results on trees and linear chains with the tractability
of the graph inference from a single walk for tr s and linear chains, we can conclude
that allowing any finite number of partial walks mak the graph inference problem
computationally intractabl .

In Chapter 4, we have investigated the walk realizability problem in ord r to ¢
the difficulty of realizing a walk for a string = on a given graph (. For this problem
we have shown that complexity of various cases classified in terms of the linear
chain decomposition we have introduced. We recall that a node v is said to b proper
if the colors of th  dges incident to v arc mutually distinct. Obviously, if all nodes

of a graph GG ar prop r, the walk r alizability problem for such graphs is olvabl in



polynomial time. However, we have seen that, when one node of a graph is allowed
to be not proper, the problem to be intractable. lence, we conclude the walk
realizability problem by stating as follows: Allowing just on node being not proper

makes the problem intractable.
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