九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Appell’s F＿4 with Finite Irreducible Monodromy Group

加藤，満生

https：／／doi．org／10．11501／3120503

出版情報：九州大学，1996，博士（数理学），論文博士
バージョン：
権利関係：

Appell＇s F_{4} with Finite Irreducible Monodromy Group

加 藤 満 生

Appell's F_{4} with Finite Irreducible Monodromy Group

Mitsuo Kiato

1. Introduction

Appell's hypergeometric series

$$
F_{4}\left(a, b, c, c^{\prime} ; X, Y\right)=\sum \frac{(a, m+n)(b, m+n)}{(c, m)\left(c^{\prime}, n\right)(1, m)(1, n)} \mathbb{X}^{-m} Y^{-n}
$$

with $(a, n)=\Gamma(a+n) / \Gamma(a)$, satisfies the following system of differential equations of rank four ([1]):

$$
\left\{\begin{aligned}
\mathrm{Y}(1-X) z_{X X} & -Y^{2} z_{Y Y}-2 X Y z_{X Y}+c z_{X} \\
& -(a+b+1)\left(X z_{X}+Y z_{Y}\right)-a b z=0 \\
Y(1-Y) z_{Y Y} & -X^{2} z_{X X}-2 X Y z_{X Y}+c^{\prime} z_{Y} \\
& -(a+b+1)\left(X z_{X}+Y z_{Y}\right)-a b z=0
\end{aligned}\right.
$$

which we denote by $E_{4}\left(a, b, c, c^{\prime}\right)$.
This is an extension of Gauss' hypergeometric series

$$
F(a, b, c ; x)=\sum \frac{(a, n)(b, n)}{(c, n)(1, n)} x^{n}
$$

with hypergeometric differential equation (HGD for short)

$$
x(1-x) d^{2} z / d x^{2}+(c-(a+b+1) x) d z / d x-a b z=0
$$

which is of rank two and is denoted by $E(a, b, c)$.
Denote the monodromy group of $E(a, b, c)$ by

$$
M(a, b, c)
$$

and that of $E_{4}\left(a, b, c, c^{\prime}\right) b y$

$$
M_{4}\left(a, b, c, c^{\prime}\right)
$$

(see Section 2 for the definitions).

It is known that $M(a, b, c)$ is finite and irreducible if and only if ($1-c, c-a-b, b-a)$ belongs to the Schwarz' list (S-list) ([15],[5]).

As for Appell's F_{1} and Lauricella's F_{D}, Sasaki [12] and Cohen-Wolfart [3] obtained the finiteness conditions of the monodromy groups. (Recently professor Sasaki told the author that Theorem 2 in [13] asserting non-existence of Appell's F_{2} with finite irreducible monodromy group is false.)

The singular locus of $E_{4}\left(a, b, c, c^{\prime}\right)$ is $L_{X} \cup L_{Y} \cup L_{\infty} \cup C^{\prime}$, where $L_{X^{\prime}}=$ $\{\mathrm{X}=0\}, L_{Y}=\{Y=0\}, C=\left\{(X-Y)^{2}-2(X+Y)+1=0\right\}$ and L_{∞} is the line at infinity. The differential equation $E_{4}\left(a, b, c, c^{\prime}\right)$ has characteristic exponents $0,0,1-c, 1-c$ along L_{X}. This implies that, at any point $P \in L_{X}-L_{Y} \cup L_{\infty} \cup C, E_{4}\left(a, b, c, c^{\prime}\right)$ has a fundamental system $\left(h_{1}, h_{2}, X^{1-c} h_{3}, X^{-1-c} h_{4}\right)$ of solutions, where each h_{j} is holomorphic at P. Similarly $E_{4}\left(a, b, c, c^{\prime}\right)$ has exponents $0,0,1-c^{\prime}, 1-c^{\prime}$ along L_{Y}, a, a, b, b along $L_{\infty}, 0,0,0, \varepsilon+1 / 2$ along C, where

$$
\varepsilon=c+c^{\prime}-a-b-1
$$

(see [8]).
Since $F_{4}\left(a, b, c, c^{\prime} ; \mathrm{X}, 0\right)=F(a, b, c ; \mathrm{X})$ and $F_{4}\left(a, b, c, c^{\prime} ; 0, Y^{\prime}\right)$
$=F\left(a, b, c^{\prime}: Y^{\prime}\right)$, we can show that if $M_{4}\left(a, b, c, c^{\prime}\right)$ is finite and irreducible then so are $M(a, b, c)$ and $M\left(a, b, c^{\prime}\right)$ (see Section 3).

In this paper we will prove the following theorem.
Theorem 1. $M_{4}\left(a, b, c, c^{\prime}\right)$ is finite irreclucible if and only if the following two conditions hold.
(1) $M(a, b, c)$ and $M\left(a, b, c^{\prime}\right)$ are finite irreducible.
(2) The quantity ε is an integer, or at least two of $1-c, 1-c^{\prime}, b-a$ are equivalent to $1 / 2$ modulo \mathbf{Z}.

The structure of these finite irreducible monodromy groups are stated in Proposition 4.1, Theorem 7.1 and Theorem 7.2.

Let $\Psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$ be a system of fundamental solutions of $E_{4}\left(a, b, c, c^{\prime}\right)$. Then Ψ defines a (multi-valued) mapping of $U:=\mathbf{P}^{2}-$ $L_{X} \cup L_{Y} \cup L_{\infty} \cup C$ into \mathbf{P}^{3}. Sasaki-Yoshida [14] proved that if $\varepsilon=0$ then the image $\Psi(U)$ belongs to a smooth quadratic surface. In Section 8, we will verify, in the cases $c=c^{\prime}=1 / 2$ and $(c-a-b, b-a)=(1 / n, 1 / 2)$ or $(1 / 3,1 / 3)$ or $\{c-a-b, b-a\}=\{1 / 3,1 / 4\}$ or $\{1 / 3,1 / 5\}$, that the closure S_{Ψ} of $\Psi(U)$ is smooth hypersufaces in \mathbf{P}^{3} and the inverse of Ψ is single valued.

The author thanks to professors J. Kaneko, T. Sasaki and M. Yoshida for valuable advises.

2. Monodromy representations

2.1. $M(a, b, c)$

Assume that $c \notin \mathbf{Z}$ and that $M(a, b, c)$ is irreducible. Put

$$
\begin{gathered}
v_{1}=\frac{\Gamma(a) \Gamma(b)}{\Gamma(c)} F(a, b, c ; x), \\
v_{2}=\frac{\Gamma(1+a-c) \Gamma(1+b-c)}{\Gamma(2-c)} x^{1-c} F(1+a-c, 1+b-c, 2-c ; x) .
\end{gathered}
$$

Then v_{1} and v_{2} form a system of fundamental solutions of $E(a, b, c)$. Let L_{0}, L_{1} be the loops surrounding 0,1 positively with base point $x_{0}=$ $1 / 2$. We denote by $V\left(x_{0}\right)$ the set of germs of holomorphic solutions of $E(a, b, c)$. Then for any $L \in \pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)$ and $f \in V\left(x_{0}\right)$, the analytic continuation $f L_{*}$ of f along L is again belongs to $V\left(x_{0}\right)$. We write

$$
f\left(L L^{\prime}\right)_{*}=\left(f L_{*}\right) L_{*}^{\prime}=f L_{*} L_{*}^{\prime},
$$

if L^{\prime} is continued after L. This defines a monodromy representation

$$
\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right) \longrightarrow G L\left(V\left(x_{0}\right)\right) .
$$

For a subset $S \subset \pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)$, we denote

$$
S_{*}=\left\{L_{*} \mid L \in S\right\} .
$$

We call

$$
M(a, b, c)=M\left(a, b, c ; x_{0}\right)=\left(\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{0}\right)\right)_{*}
$$

the monodromy group of $E(a, b, c)$.
For $v={ }^{t}\left(v_{1}, v_{2}\right)$, we denote by $v L_{*}$ the analytic continuation ${ }^{t}\left(v_{1} L_{*}, v_{2} L_{*}\right)$ of v along L. Then by use of connection formulas for Gauss' HGD (see, for example, [4]), we have

$$
\begin{aligned}
& v L_{0 *}=G_{0} v, \\
& v L_{1 *}=G_{1} v
\end{aligned}
$$

where

$$
G_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & e(1-c)
\end{array}\right),
$$

$$
\begin{gathered}
G_{1}=I+\frac{2 \sqrt{-1} e((c-a-b) / 2)}{\sin \pi c} \\
\binom{1}{1}(-\sin \pi a \sin \pi b, \sin \pi(c-a) \sin \pi(c-b)) \\
\quad e(x)=\exp (2 \pi \sqrt{-1} x)
\end{gathered}
$$

Let $N_{1}\left(a, b, c ; x_{0}\right)=N_{1}(a, b, c)$ be the smallest normal subgroup) of $M(a, b, c)$ containing $L_{1 *}$. Then we have

$$
M(a, b, c)=N_{1}(a, b, c) \cdot<L_{0 *}>
$$

2.2. $M_{4}\left(a, b, c, c^{\prime}\right)$

The monodromy representations of $E_{4}\left(a, b, c, c^{\prime}\right)$ are first founded by Kaneko [6] and Takano [17]. Here for our convenience, we adopt the monodromy representation in [9].

We assume in this section that $E_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible and that $c, c^{\prime} \notin \mathbf{Z}$. Recall that $E_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible if and only if none of $a, b, c-a, c-b, c^{\prime}-a, c^{\prime}-b, c+c^{\prime}-a, c+c^{\prime}-b$ is an integer $([9],[10])$. Hence

$$
\begin{aligned}
\varphi_{1}:= & \frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)} F_{4}\left(a, b, c, c^{\prime} ; X, Y\right) \\
\varphi_{2}:= & \frac{\Gamma(1+a-c) \Gamma(1+b-c)}{\Gamma(2-c) \Gamma\left(c^{\prime}\right)} \\
\varphi_{3}:= & \frac{\Gamma\left(1+a-c^{\prime}\right) \Gamma\left(1+b-c^{\prime}\right)}{\Gamma(c) \Gamma\left(2-c^{\prime}\right)} \\
\varphi_{4}:= & \frac{\Gamma\left(2+a-c-c^{\prime}\right) \Gamma\left(2+b-c-c^{\prime}\right)}{\Gamma(2-c) \Gamma\left(2-c^{\prime}\right)} \\
& X^{-1-c c^{\prime}} F_{4}\left(1+a-c^{\prime}, 1+b-c^{\prime} F_{4}\left(2+a-c, 2-c^{\prime} ; X, Y\right)\right. \\
& \left.=c^{\prime}, 2+b-c-c^{\prime}, 2-c, 2-c^{\prime} ; \mathbb{X}, Y\right)
\end{aligned}
$$

form a system of fundamental solutions of $E_{4}\left(a, b, c, c^{\prime}\right)$.
Let δ be a sufficiently small positive number and put $P_{0}=(\delta, \delta)$. Recall that $U=\mathbf{P}^{2}-L_{X} \cup L_{Y} \cup L_{\infty} \cup C$. Then the fundamental group $\pi_{1}\left(U, P_{\mathbf{0}}\right)$ is generated by the following γ_{1}, γ_{2} and γ_{3} :

$$
\begin{aligned}
& \gamma_{1}=\{X=\delta e(t) \quad 0 \leq t \leq 1, Y=\delta\} \\
& \gamma_{2}=\{X=\delta, Y=\delta e(t) \quad 0 \leq t \leq 1\} \\
& \gamma_{3}=\{X=Y=1 / 4-(1 / 4-\delta) e(t) \quad 0 \leq t \leq 1\}
\end{aligned}
$$

We denote by $V\left(P_{0}\right)$ the set of germs of holomorphic solutions of $E_{4}\left(a, b, c, c^{\prime}\right)$ at P_{0}. Then for any $\gamma \in \pi_{1}\left(U, P_{0}\right), \gamma_{*}$ (the analytic continnation along γ) is an element of $G L\left(V\left(P_{0}\right)\right)$. This defines a monodromy representation

$$
\pi_{1}\left(U, P_{0}\right) \longrightarrow G L\left(V\left(P_{0}\right)\right)
$$

We denote the image by

$$
M_{4}\left(a, b, c, c^{\prime}: P_{0}\right)=M_{4}\left(a, b, c, c^{\prime}\right)
$$

and call it the monodromy group of $E_{4}\left(a, b, c, c^{\prime}\right)$.
Put $\varphi={ }^{t}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)$, then $\gamma_{j *} j=1,2,3$ are represented by matricies in the following way.

Theorem 2.2. Assume that $E_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible and that $c, c^{\prime} \notin$ \mathbf{Z} then we have

$$
\begin{aligned}
\varphi \gamma_{1 *} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & e(1-c) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e(1-c)
\end{array}\right) \varphi \\
\varphi \gamma_{2 *} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e\left(1-c^{\prime}\right) & 0 \\
0 & 0 & 0 & e\left(1-c^{\prime}\right)
\end{array}\right) \varphi \\
\varphi \gamma_{3 *} & =\left(I+\frac{e(\varepsilon / 2)}{\sin \pi c \sin \pi c^{\prime}}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}\right)\right) \varphi
\end{aligned}
$$

where
$\gamma_{31}=\sin \pi a \sin \pi b, \gamma_{32}=-\sin \pi(c-a) \sin \pi(c-b)$,
$\gamma_{33}=-\sin \pi\left(c^{\prime}-a\right) \sin \pi\left(c^{\prime}-b\right), \gamma_{34}=\sin \pi\left(c+c^{\prime}-a\right) \sin \pi\left(c+c^{\prime}-b\right)$.
Proof: By the base change of the monodromy representation in Theorem 7.1 in [9], we obtain the theorem.

Since γ_{3} is a loop surrounding C, we denote by

$$
N_{C}\left(a, b, c, c^{\prime} ; P_{0}\right)=N_{C}\left(a, b, c, c^{\prime}\right)
$$

the smallest normal subgroup of $M_{4}\left(a, b, c, c^{\prime} ; P_{0}\right)$ containing $\gamma_{3 *}$. Then we have

$$
M_{4}\left(a, b, c, c^{\prime}\right)=N_{C}\left(a, b, c, c^{\prime}\right) \cdot<\gamma_{1 *}, \gamma_{2 *}>
$$

The eigenvalues of $\gamma_{3 *}$ are $1,1,1, \epsilon(\varepsilon+1 / 2)$. Hence if $\varepsilon+1 / 2 \in \mathbf{Q}-\mathbf{Z}$ then $\gamma_{3 *}$ is a reflection. So we call $N_{C}\left(a, b, c, c^{\prime}\right)$ the reflection subgroup of $M_{4}\left(a, b . c, c^{\prime}\right)$. The terminology of "reflection subgroup" appeared in Beukers-Heckman [2] for the generalized hypergeometric function ${ }_{n} F_{n-1}$.

3. Restrictions of E_{4} to singularities

We assume in this section that $M_{4}\left(a, b, c, c^{\prime}\right)$ is finite and irreducible. Concerning to the characteristic exponents of $E_{4}\left(a, b, c, c^{\prime}\right)$ (see Section 1) we have

Lemma 3.1. All the parametors a, b, c, c^{\prime} are (real) rational numbers and none of $1-c, 1-c^{\prime}, b-a, \varepsilon+1 / 2$ is an integer.

Proof: Assume $c \in \mathbf{Z}$. Then $E_{4}\left(a, b, c, c^{\prime}\right)$ has a solution with logarithmic factor $\log \mathrm{X}$ (Section 2 of $[10]$). This contradicts to the finiteness of M_{4}. Hence we have $c \notin \mathbf{Z}$. Similarly we have $c^{\prime}, b-a \notin \mathbf{Z}$. Assume $\varepsilon+1 / 2 \in \mathbf{Z}$. Then since $\gamma_{3 *}$ is diagonizable, we have $\gamma_{3 *}=I$. Hence E_{4} is reducible. This contradiction proves that $\varepsilon+1 / 2 \notin \mathbf{Z}$.

Since $c \notin \mathbf{Z}$, at $L_{X}(=\{\mathrm{X}=0\}), E_{4}\left(a, b, c, c^{\prime}\right)$ has solutions h_{1}, h_{2}, $X^{-1-c} h_{3}, X^{1-c} h_{4}$ with h_{j} being holomorphic. Since $\left(X^{-1-c} h_{3}\right) \gamma_{1 *}^{n}=$ $X^{-1-c} h_{3}$ for some $n \in \mathbf{Z}$. we must have $1-c \in \mathbf{Q}$. Similarly, we have $1-c^{\prime}, \varepsilon+1 / 2, a, b \in \mathbf{Q}$.

Lemma 3.2. $M(a, b, c)$ is finite irreducible.
Proof: Let \mathcal{U} and \mathcal{V} be a small neighborhoods of X_{0} and 0 in \mathbf{C} respectively, where we assume $X_{0} \neq 0,1$. Then the map
$\left\{\right.$ holomorphic solutions of $E_{4}\left(a, b, c, c^{\prime}\right)$ in $\left.\mathcal{U} \times \mathcal{V}\right\}$
$\longrightarrow\{$ holomorphic solutions of $E(a, b, c)$ in $\mathcal{U}\}$
defined by the restriction $f(X, Y) \longmapsto f(X, 0)$ is one-to-one onto (Section 2.1 of [8]). Hence $M(a, b, c)$ must be finite.

Since none of $a, b, c-a, c-b$ is an integer by the assumption of irredicibility of $M_{4}, M(a, b, c)$ is irreducible.

By the same way we have the following lemma.
Lemma 3.3. $M\left(a, b, c^{\prime}\right)$ is finite irreducible.
Lemma 3.4. $M\left(1+a-c, 1+b-c, c^{\prime}\right)$, $M\left(1+a-c^{\prime}, 1+b-c^{\prime}, c\right)$, $M\left(a, 1+a-c^{\prime}, c\right), M\left(b, 1+b-c^{\prime}, c\right)$ are finite irreducible.
Proof: First we note that $1-c, b-a \notin \mathbf{Z}$ by Lemma 3.1.

Since $X^{1-c} f(X, Y)$ is a solution of $E_{4}\left(a, b, c, c^{\prime}\right)$ if and only if $f(X, Y)$ is a solution of $E_{4}\left(1+a-c, 1+b-c, 2-c, c^{\prime}\right)$, we know that $M_{4}(1+$ $\left.a-c, 1+b-c, 2-c, c^{\prime}\right)$ is finite irreducible. Then, by Lemma 3.3, $M\left(1+a-c, 1+b-c, c^{\prime}\right)$ is finite irreducible.

Since $Y^{-a} f(X / Y, 1 / Y)$ is a solution of $E_{4}\left(a, b, c, c^{\prime}\right)$ if and only if $f(X, Y)$ is a solution of $E_{4}\left(a, 1+a-c^{\prime}, c, 1+a-b\right)$, we know that $M_{4}\left(a, 1+a-c^{\prime}, c, 1+a-b\right)$ is finite irreducible. Then, by Lemma 3.2, $M\left(a, 1+a-c^{\prime}, c\right)$ is finite irreducible.
$M\left(1+a-c^{\prime}, 1+b-c^{\prime}, c\right)$ and $M\left(b, 1+b-c^{\prime}, c\right)$ are also finite irreducible by the same way.

4. Proof of "if" part of Theorem 1

Assume the conditions (1) and (2) in Theorem 1. In each case $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible. The problem is to show the finiteness of $M_{4}\left(a, b, c, c^{\prime}\right)$. We notice that $a, b, c, c^{\prime} \in \mathbf{Q}$ by the assertion (1). This implies that $\gamma_{j *}(j=1,2,3)$ are of finite order.

In Section 4.1, we deal with the case when $\varepsilon\left(=c+c^{\prime}-a-b-1\right)$ is an integer. In Section 4.2, we deal with the case when ε is not an integer.
4.1. Case of $\varepsilon \in \mathbb{Z}$

Assume that $\varepsilon \in \mathbf{Z}$. Let

$$
\phi:(x, y) \longrightarrow(X, Y) \quad X=x y, Y=(1-x)(1-y)
$$

be the branched double covering of \mathbf{C}^{2} onto \mathbf{C}^{2}. The covering ϕ is locally biholomorphic at any point (x, y) with $x \neq y$. We have $\phi(\{x=y\})$ $=C=\left\{(X-Y)^{2}-2(X+Y)+1=0\right\}$. Recall $P_{\mathbf{0}}=(\delta, \delta), U=$ $\mathrm{C}^{2}-L_{X} \cup L_{Y} \cup C^{\prime}$. Put $W=\phi^{-1}(U)$ and $P_{1}=\left(x_{1}, y_{1}\right)$ be a point such that $\phi\left(P_{1}\right)=P_{0}$. It is easily verified that $W=\{(x, y) \mid x y(1-x)(1-y)(x-y)=0\}$. We have one to one homomorphism

$$
\phi_{*}: \pi_{1}\left(W, P_{1}\right) \longrightarrow \pi_{1}\left(U, P_{0}\right)
$$

The image of ϕ_{*} is a normal subgroup of $\pi_{1}\left(U, P_{0}\right)$ with index 2. Precicely speaking, we have

$$
\pi_{1}\left(U, P_{0}\right)=\phi_{*}\left(\pi_{1}\left(W, P_{1}\right)\right) \cdot<\gamma_{3}>
$$

with $\gamma_{3}^{2} \in \phi_{*}\left(\pi_{1}\left(W, P_{1}\right)\right)$. Hence

$$
N:=\left(\phi_{*}\left(\pi_{1}\left(W, P_{1}\right)\right)\right)_{*}
$$

is a normal subgroup of M_{4} with

$$
M_{4}=N \cdot<\gamma_{3 *}>.
$$

This implies that M_{4} is finite if and only if N is finite. The finiteness of N is a direct consequence of the following proposition.

Proposition 4.1. Assume that $\varepsilon \in \mathbf{Z}$ and that $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible. Then

$$
N \simeq M(a, b, c) \otimes M(a, b, c):=\left\{g \otimes g^{\prime} \mid g, g^{\prime} \in M(a, b, c)\right\}
$$

with $M_{4}\left(a, b, c, c^{\prime}\right)=N \cdot\left\langle\gamma_{3 *}>, N \cap<\gamma_{3 *}>=\{1\}\right.$ and $<\gamma_{3 *}>\simeq \mathbf{Z}_{2}$.
Proof: Put $\varepsilon=n$. Since $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible, we have
$M_{4}\left(a, b, c, c^{\prime}\right) \simeq M_{4}\left(a, b, c, c^{\prime}-n\right)$ by Theorem 2.2. Hence it is enough to prove for the case of $\varepsilon=0$. So we assume $\varepsilon=0$.

Since $\varepsilon=0$, we have

$$
\phi^{*}\left(E_{4}\left(a, b, c, c^{\prime}\right)\right)=E(a, b, c ; x) \cdot E(a, b, c ; y)
$$

(Section 1 of [7$]$), and $\{x=y\}$ is an apparent singular locus of $\phi^{*}\left(E_{4}\left(a, b, c, c^{\prime}\right)\right)$.

Since ϕ is locally biholomorphic at $P_{1}, V\left(P_{0}\right)$ is isomorphic to the space of germs of holomorphic solutions of $\phi^{*}\left(E_{4}\right)$ at P_{1}, which is again isomorphic to $V\left(x_{1}\right) \otimes V\left(y_{1}\right)$ where $V\left(x_{1}\right)\left(\right.$ resp. $\left.V\left(y_{1}\right)\right)$ is the space of germs of solutions of $E(a, b, c)$ at x_{1} (resp. y_{1}). Hence the representation of $\phi_{*}\left(\pi_{1}\left(W, P_{1}\right)\right)$ in $G L\left(V\left(P_{0}\right)\right)$ is isomorphic to the representation of $\pi_{1}\left(W, P_{1}\right)$ in $V\left(x_{1}\right) \otimes V\left(y_{1}\right)$, which is again isomorphic to the representation of $\pi_{1}\left(\mathbf{C}-\{0,1\}, x_{1}\right) \times \pi_{1}\left(\mathbf{C}-\{0,1\}, y_{1}\right)$ in $V\left(x_{1}\right) \otimes V\left(y_{1}\right)$. This implies that $N \simeq M(a, b, c) \otimes M(a, b, c)$.

If g and $g^{\prime}(\in M(a, b, c))$ have eigenvalues (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right)$ then the eigenvalues of $g \otimes g^{\prime}$ are $\lambda \lambda^{\prime}, \lambda \mu^{\prime}, \mu \lambda^{\prime}, \mu \mu^{\prime}$. Because $E_{4}\left(a, b, c, c^{\prime}\right)$ has exponents $0,0,0, \varepsilon+1 / 2$ along C (see Section 1), the eigenvalues of $\gamma_{3 *}$ are $1,1,1,-1$. Hence $\gamma_{3 *}$ cannot be contained in $M(a, b, c) \otimes M(a, b, c)$. This implies that $N \cap<\gamma_{3 *}>=\{1\}$.

4.2. Case of $\varepsilon \notin \mathbf{Z}$

Assume that ε is not an integer. Recall that $M_{4}=N_{C}{ }^{\cdot}\left\langle\gamma_{1 *} \cdot \gamma_{2 *}\right\rangle$ (see Section 2.2). Since $\gamma_{1 *}$ and $\gamma_{2 *}$ are of finite order and satisfy $\gamma_{1 *} \gamma_{2 *}=\gamma_{2 *} \gamma_{1 *},<\gamma_{1 *}, \gamma_{2 *}>$ is also of finite order. Hence M_{4} is finite if and only if N_{C} is finite. The finiteness of N_{C} is a direct concequence of the following two lemmas.

LEMMA 4.2.1. Assume that $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible and that 1 $c, 1-c^{\prime} \equiv 1 / 2 \bmod \mathbf{Z}$ then

$$
N_{C}\left(a, b, c, c^{\prime}\right) \simeq N_{1}(a, b, c) \times N_{1}(a, b, c) \simeq N_{1}\left(a, b, c^{\prime}\right) \times N_{1}\left(a, b, c^{\prime}\right)
$$

and $M_{4}\left(a, b, c, c^{\prime}\right)$ is imprimitive.
Proof: In this case, generators of $\gamma_{j *}$ of M_{4} in Section 2.2 are as follows:

$$
\begin{gathered}
\varphi \gamma_{1 *}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
& 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \varphi, \quad \varphi \gamma_{2 *}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \varphi \\
\varphi \gamma_{3 *}=\left(I+e((-a-b) / 2)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}\right)\right) \varphi
\end{gathered}
$$

where $\gamma_{31}=\gamma_{34}=\sin \pi a \sin \pi b, \gamma_{32}=\gamma_{33}=-\cos \pi a \cos \pi b$.
Put

$$
\psi_{1}=\varphi_{1}+\varphi_{4}, \quad \psi_{2}=\varphi_{2}+\varphi_{3}, \quad \psi_{3}=\varphi_{1}-\varphi_{4}, \quad \psi_{4}=\varphi_{2}-\varphi_{3}
$$

and let

$$
V_{0}:=<\psi_{1}, \psi_{2}>, \quad V_{1}:=<\psi_{3}, \psi_{4}>
$$

be subspaces of $V=V\left(P_{0}\right)$. Then $\gamma_{1 *}, \gamma_{2 *}$ interchange V_{0} and V_{1}, and $\gamma_{3 *}$ fixes $V_{j} \quad(j=0,1)$ invariant. This means that $M_{4}\left(a, b, c, c^{\prime}\right)$ is imprimitive and that V_{0}, V_{1} are invariant under $\left(<\gamma_{3}, \gamma_{2} \gamma_{3} \gamma_{2}^{-1}, \gamma_{1} \gamma_{2}>\right)_{*}$.

Put

$$
g_{0}=\gamma_{1} \gamma_{2}, \quad g_{1}=\gamma_{3}, \quad g_{2}=\gamma_{2} \gamma_{3} \gamma_{2}^{-1}
$$

Then $g_{1 *}$ is identity on V_{1} and $g_{2 *}$ is identity on V_{0}. Hence we have

$$
\begin{aligned}
N_{C} & =\left(<g_{1}, g_{0} g_{1} g_{0}^{-1}, g_{2}, g_{0} g_{2} g_{0}^{-1}>\right)_{*} \\
& \simeq\left(<g_{1}, g_{0} g_{1} g_{0}^{-1}>\right)_{*} \times\left(<g_{2}, g_{0} g_{2} g_{0}^{-1}>\right)_{*}
\end{aligned}
$$

The operations of $g_{j *} \quad(j=0,1,2)$ on V_{0} and V_{1} are as follows:

$$
\begin{aligned}
& \binom{\psi_{1}}{\psi_{2}} g_{0 *}=G_{0}\binom{\psi_{1}}{\psi_{2}},\binom{\psi_{1}}{\psi_{2}} g_{1 *}=G_{1}\binom{\psi_{1}}{\psi_{2}},\binom{\psi_{1}}{\psi_{2}} g_{2 *}=\binom{\psi_{1}}{\psi_{2}} \\
& \binom{\psi_{3}}{\psi_{4}} g_{0 *}=G_{0}\binom{\psi_{3}}{\psi_{4}},\binom{\psi_{3}}{\psi_{4}} g_{2 *}=G_{1}\binom{\psi_{3}}{\psi_{4}},\binom{\psi_{3}}{\psi_{4}} g_{1 *}=\binom{\psi_{3}}{\psi_{4}^{\prime}}
\end{aligned}
$$

where

$$
G_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad G_{1}=I+2 e((-a-b) / 2)\binom{1}{1}\left(\gamma_{31}, \gamma_{32}\right)
$$

Hence

$$
\begin{aligned}
& \left(<g_{1}, g_{0} g_{1} g_{0}^{-1}>\right)_{*} \mid V_{0} \simeq N_{1}(a, b, c) \simeq N_{1}\left(a, b, c^{\prime}\right) \\
& \left(<g_{1}, g_{0} g_{1} g_{0}^{-1}>\right)_{*} \mid V_{1}=\{I\} . \\
& \left(<g_{2}, g_{0} g_{2} g_{0}^{-1}>\right)_{*} \mid V_{1} \simeq N_{1}(a, b, c) \simeq N_{1}\left(a, b, c^{\prime}\right) \\
& \left(<g_{2}, g_{0} g_{2} g_{0}^{-1}>\right)_{*} \mid V_{1}=\{I\} .
\end{aligned}
$$

This proves that

$$
N_{C}\left(a, b, c, c^{\prime}\right) \simeq N_{1}(a, b, c) \times N_{1}(a, b, c) \simeq N_{1}\left(a, b, c^{\prime}\right) \times N_{1}\left(a, b, c^{\prime}\right)
$$

Lemma 4.2.2. Assume that $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible.
If $1-c^{\prime}, b-a \equiv 1 / 2 \bmod \mathbf{Z}$ then

$$
N_{C}\left(a, b, c, c^{\prime}\right) \simeq N_{1}(a, b, c) \times N_{1}(a, b, c)
$$

If $1-c, b-a \equiv 1 / 2 \bmod \mathbf{Z}$ then

$$
N_{C}\left(a, b, c, c^{\prime}\right) \simeq N_{1}\left(a, b, c^{\prime}\right) \times N_{1}\left(a, b, c^{\prime}\right)
$$

In any case, $M_{4}\left(a, b, c, c^{\prime}\right)$ is imprimitive.
Proof: Assume that $1-c^{\prime}, b-a \equiv 1 / 2 \bmod \mathbf{Z}$. Another statement under the assumption of $1-c, b-a \equiv 1 / 2 \bmod \mathbf{Z}$ is proved in the same way. In this case we have

$$
\begin{aligned}
\varphi \gamma_{1 *} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \epsilon(1-c) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e(1-c)
\end{array}\right) \varphi, \\
\varphi \gamma_{2 *} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \varphi, \\
\varphi \gamma_{3 *} & =\left(I-\frac{e((c-2 a) / 2)}{2 \sin \pi c}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}\right)\right) \varphi
\end{aligned}
$$

where $\gamma_{31}=\gamma_{33}=\sin 2 \pi a, \gamma_{32}=\gamma_{34}=\sin 2 \pi(c-a)$.
Put

$$
\psi_{1}=\varphi_{1}+\varphi_{3}, \quad \psi_{2}=\varphi_{2}+\varphi_{4}, \quad \psi_{3}=\varphi_{1}-\varphi_{3}, \quad \psi_{4}=\varphi_{2}-\varphi_{4}
$$

and let

$$
V_{0}:=<\psi_{1}, \psi_{2}>, \quad V_{1}:=<\psi_{3}, \psi_{4}>
$$

be subspaces of $V=V\left(P_{0}\right)$.
Then $\gamma_{2 *}$ interchanges V_{0} and V_{1}, and $\gamma_{1 *}, \gamma_{3 *}$ fix $V_{j}(j=0,1)$ invariant. This means that $M_{4}\left(a, b, c, c^{\prime}\right)$ is imprimitive and that V_{0}, V_{1} are invariant under $\left(<\gamma_{1}, \gamma_{3}, \gamma_{2} \gamma_{3} \gamma_{2}^{-1}>\right)_{*}$.

Put

$$
g_{0}=\gamma_{1}, \quad g_{1}=\gamma_{3}, \quad g_{2}=\gamma_{2} \gamma_{3} \gamma_{2}^{-1}
$$

Then $g_{1 *}$ is identity on V_{1} and $g_{2 *}$ is identity on V_{0}. Hence we have

$$
\begin{aligned}
N_{C} & =\left(<\left\{g_{0}^{j} g_{1} g_{0}^{-j}, \quad g_{0}^{j} g_{2} g_{0}^{-j} \quad j \in \mathbf{Z}\right\}>\right)_{*} \\
& \simeq\left(<\left\{g_{0}^{j} g_{1} g_{0}^{-j} \quad j \in \mathbf{Z}\right\}>\right)_{*} \times\left(<\left\{g_{0}^{j} g_{2} g_{0}^{-j} \quad j \in \mathbf{Z}\right\}>\right)_{*}
\end{aligned}
$$

The operations of $g_{0 *}, g_{1 *}, g_{2 *}$ on V_{0} and V_{1} are as follows:

$$
\begin{aligned}
& \binom{\psi_{1}}{\psi_{2}} g_{0 *}=G_{0}\binom{\psi_{1}}{\psi_{2}},\binom{\psi_{1}}{\psi_{2}} g_{1 *}=G_{1}\binom{\psi_{1}}{\psi_{2}} \cdot\binom{\psi_{1}}{\psi_{2}} g_{2 *}=\binom{\psi_{1}}{\psi_{2}} \\
& \binom{\psi_{3}}{\psi_{4}} g_{0 *}=G_{0}\binom{\psi_{3}}{\psi_{4}},\binom{\psi_{3}}{\psi_{4}} g_{2 *}=G_{1}\binom{\psi_{3}}{\psi_{4}},\binom{\psi_{3}}{\psi_{4}} g_{1 *}=\binom{\psi_{3}}{\psi_{4}}
\end{aligned}
$$

where

$$
G_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & e(1-c)
\end{array}\right), \quad G_{1}=I-\frac{\epsilon((c-2 a) / 2)}{\sin \pi c}\binom{1}{1}\left(\gamma_{31}, \gamma_{32}\right)
$$

Hence Lemma 4.2.2 holds in the same way as the previous lemma.

5. Proof of "Only if" part of Theorem 1

It is sufficient to prove the following lemma.
Lemma 5. Assume that $M_{4}\left(a, b, c, c^{\prime}\right)$ is finite and irreducible and that $\varepsilon \notin \mathbf{Z}$. Then at least two of $1-c, 1-c^{\prime}, b-a$ are equivalent to $1 / 2 \mathrm{mod}$ Z.

Proof: From Lemma 3.2, 3.3 and 3.4 we have
(1) $(1-c, c-a-b, b-a)$ belongs to the S-list,
(2) $\left(1-c^{\prime}, c^{\prime}-a-b, b-a\right)$ belongs to the S-list,
(3) $\left(1-c^{\prime}, c^{\prime}-a-b-2(1-c), b-a\right)$ belongs to the S-list,
(4) $\left(1-c, c-a-b-2\left(1-c^{\prime}\right), b-a\right)$ belongs to the S-list,
(5) $\left(1-c,\left(c^{\prime}-a-b\right)+(b-a)-(1-c), 1-c^{\prime}\right)$ belongs to the S-list.

Suppose Lemma 5 does not hold. Then by the symmetry, we may assume that

$$
1-c=p / k, \quad 1-c^{\prime}=p^{\prime} / k^{\prime} \quad k, k^{\prime} \in\{3,4,5\} .
$$

Put

$$
c-a-b=q / m, \quad c^{\prime}-a-b=q^{\prime} / m^{\prime}, \quad b-a=r / n \quad m, m^{\prime}, n \in\{2,3,4,5\} .
$$

We will derive contradictions in any of the following cases.
(Case 1) $k=k^{\prime}=4, p, p^{\prime}$ are odd.
The property (4) implies that the denominator of $c-a-b-2\left(1-c^{\prime}\right)$ $=q / m-2 p^{\prime} / k^{\prime}$ is one of $2,3,4,5$. Hence m is eaven. If $m=4$ then $\varepsilon=q / m-p^{\prime} / k^{\prime} \equiv 0$ or $1 / 2 \bmod \mathbf{Z}$. Since $\varepsilon, \varepsilon+1 / 2 \notin \mathbf{Z}$. this is a contradiction. If $m=2$ then $c-a-b-2\left(1-c^{\prime}\right)=q / m-2 p^{\prime} / k^{\prime} \in \mathbf{Z}$ and hence (4) does not hold. This is a contradiction.
(Case 2) $k=4, k^{\prime}=3$ or $5, p$ is odd.
The property (5) implies that $k^{\prime}=3$. Then (4) implies that the denominator of $c-a-b-2\left(1-c^{\prime}\right)=q / m-2 p^{\prime} / k^{\prime}$ is 3 and hence $m=3$. By the same reason. (3) implies that $m^{\prime}=4$. Since ε is not an integer, the denominator of $\varepsilon=c-a-b-\left(1-c^{\prime}\right)=q / m-p^{\prime} / k^{\prime}$ is 3 . On the other hand $\varepsilon=c^{\prime}-a-b-(1-c)=q^{\prime} / m^{\prime}-p / k$ has even denominator. This is a contradiction.
(Case 3) k and k^{\prime} are odd ($=3$ or 5).
The properties (3) and (4) imply that $m^{\prime}=k$ and $m=k^{\prime}$ respectively. Since $\varepsilon=(c-a-b)-\left(1-c^{\prime}\right)=\left(c^{\prime}-a-b\right)-(1-c)$ is not an integer, we have $k=k^{\prime}$ which is the denominator of ε. Then (5) implies that the denominator of $\left(c^{\prime}-a-b\right)-(1-c)+(b-a)=\varepsilon+(b-a)$ is k. Hence $n=k$. This concludes that $k=k^{\prime}=m=m^{\prime}=n$.
(Case 3.1) $k=k^{\prime}=m=m^{\prime}=n=3$.
Since $\varepsilon=c^{\prime}-a-b-(1-c)=\left(q^{\prime}-p\right) / 3 \notin \mathbf{Z}$, we have $p \not \equiv q^{\prime} \bmod 3$. On the other hand (3) implies $c^{\prime}-a-b-2(1-c)=\left(q^{\prime}-2 p\right) / 3 \notin \mathbf{Z}$. Hence $p \equiv q^{\prime} \bmod 3$. This is a contradiction.
(Case 3.2) $k=k^{\prime}=m=m^{\prime}=n=5$.
In order that (1) and (2) hold, there are two cases, that is,

$$
p, q, p^{\prime}, q^{\prime}, r \equiv \pm 1 \text { or } p, q, p^{\prime}, q^{\prime}, r \equiv \pm 2 \bmod 5 .
$$

Since $\varepsilon=\left(q^{\prime}-p\right) / 5=\left(q-p^{\prime}\right) / 5$ is not an integer, we have $p \not \equiv q^{\prime}, p^{\prime} \not \equiv q$ mod 5.

If $p, q, p^{\prime}, q^{\prime}, r \equiv \pm 1\left(\right.$ and $\left.p \not \equiv q^{\prime}\right) \bmod 5$ then the numerator of $c^{\prime}-$ $a-b-2(1-c)=\left(q^{\prime}-2 p\right) / 5$ is congruent to ± 2 mod 5 .

If $p, q, p^{\prime}, q^{\prime}, r \equiv \pm 2\left(\right.$ and $\left.p \not \equiv q^{\prime}\right) \bmod 5$ then the numerator of $c^{\prime}-$ $a-b-2(1-c)=\left(q^{\prime}-2 p\right) / 5$ is congruent to $\pm 1 \bmod 5$.

In any case (3) does not hold. This is a contradiction.
This completes the proof of Lemma 5.

6. Lemmas on $M(a, b, c)$

In this section we denote

$$
\lambda=1-c, \quad \mu=c-a-b, \quad \nu=b-a
$$

and we assume that $M(a, b, c)$ is finite irreducible. Recall that $N_{1}(a, b, c)$ is the smallest normal subgroup) of of $M(a, b, c)$ containing $L_{1 *}$ (see Section 2.1). In this section we fix the base v_{1}, v_{2} of $V\left(x_{0}\right)$ and identify $L_{x *}$ and $G_{x} \quad x=0,1$.
Lemma 6.1. Assume that $\lambda \equiv \nu \equiv 1 / 2 \bmod \mathbf{Z}$. Then $L_{0 *} \notin N_{1}(a, b, c)$.
Proof: We have $G_{0}^{2}=I,\left(G_{0} G_{1}\right)^{2}=\alpha I$ for some root of unity α. Since $G_{0} G_{1} G_{0}^{-1}=\alpha G_{1}^{-1}, G_{1}$ and $G_{0} G_{1} G_{0}^{-1}$ have the common eigen vectors. This means that N_{1} is reducible hence we have $N_{1} \neq M(a, b, c)$. This implies $G_{0} \notin N_{1}$.

Lemma 6.2. Assume that $\lambda \equiv 1 / 2, \mu, \nu \not \equiv 1 / 2 \bmod \mathbf{Z}$. Then $L_{0 *} \notin N_{1}(a, b, c)$.

PROOF: If the denominator of μ is odd (i.e. 3 or 5) then the determinant of any $L_{*} \in N_{1}$ cannot be $-1=\operatorname{det}\left(G_{0}\right)$. Hence $G_{0} \notin N_{1}$. If the denominator of μ is 4 , then direct computations show that the orders of $M(a, b, c)$ and N_{1} are 192 and 96 (refer to Shephard-Todd [16]). Hence $G_{0} \notin N_{1}$.

Lemma 6.3. Assume that $\nu \equiv 1 / 2, \lambda, \mu \not \equiv 1 / 2 \bmod \mathbf{Z}$. If both of the denominators of λ and μ are 5 then $L_{0 *} \in N_{1}$. Otherwise
$<L_{0 *}>\cap N_{1}=\{I\}$.
Proof: In the first case, we may assume $\lambda=1 / 5, \mu=2 / 5$. Then by direct calculations we have $\left(G_{0} G_{1}\right)^{2}=\left(G_{0} G_{1}^{3}\right)^{3}=\alpha I, \alpha=e(1 / 10)$. The
equality $\left(G_{0} G_{1}\right)^{2}=\alpha I$ implies $\alpha G_{0}^{3}=\left(G_{0} G_{1} G_{0}^{-1}\right)\left(G_{0}^{2} G_{1} G_{0}^{-2}\right) \in N_{1}$. The equality $\left(G_{0} G_{1}^{3}\right)^{3}=\alpha I$ implies $\alpha G_{0}^{2}=\left(G_{0} G_{1}^{3} G_{0}^{-1}\right)\left(G_{0}^{22} G_{1}^{3} G_{0}^{-2}\right)$ $\left(G_{0}^{33} G_{1}^{3} G_{0}^{-3}\right) \in N_{1}$. Hence $G_{0} \in N_{1}$.

In the case of $(\lambda, \mu)=(1 / 3,1 / 3)$, by direct computations, we know that the orders of $M(a, b, c)$ and $N_{1}(a, b, c)$ are 72 and 24 (refer to Shephard-Todd [16]). Hence $<G_{0}>\cap N_{1}=\{I\}$.

In the case of $\{\lambda, \mu\}=\{1 / 3,1 / 4\},\{1 / 3,1 / 5\},\{2 / 5,1 / 3\}$, the denominators of λ and μ are relatively prime. Hence we have $<G_{0}>\cap N_{1}=$ $\{I\}$.

7. Structure of finite irreducible $M_{4}\left(a, b, c, c^{\prime}\right)$

The structure of M_{4} with $\varepsilon \in \mathbf{Z}$ is stated in Proposition 4.1. We will consider finite irreducible $M_{4}\left(a, b, c, c^{\prime}\right)$ with $\varepsilon \notin \mathbf{Z}$. Recall that $M_{4}\left(a, b, c, c^{\prime}\right)=N_{C^{\cdot}}<\gamma_{1 *}, \gamma_{2 *}>$ is imprimitive in this case (Lemma 4.2.1, 4.2.2).

Theorem 7.1. Assume that $M(a, b, c)$ is finite irreducible and that $\varepsilon \notin$ $\mathbf{Z}, c, c^{\prime} \equiv 1 / 2 \bmod \mathbf{Z}$. Then $M_{4}\left(a, b, c, c^{\prime}\right)=N_{C} \cdot\left\langle\gamma_{1 *}, \gamma_{2 *}\right\rangle$ with $\left.N_{C} \cap<\gamma_{1 *}, \gamma_{2 *}>=\{I\}, N_{C} \simeq N_{1}(a, b, c) \times N_{1}(a, b, c),<\gamma_{1 *}, \gamma_{2 *}\right\rangle \simeq$ $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ and $M(a, b, c) / N_{1} \simeq \mathbf{Z}_{2}$.

Proof: Since $c-a-b \equiv \varepsilon+1 / 2 \not \equiv 1 / 2$, Lemma 6.1 and Lemma 6.2 imply that $L_{0 *} \notin N_{1}$, whence $M(a, b, c) / N_{1}(a, b, c) \simeq \mathbf{Z}_{2}$. By Lemma 4.2.1, we have $N_{C} \simeq N_{1}(a, b, c) \times N_{1}(a, b, c)$ and $<\gamma_{1 *}, \gamma_{2 *}>\simeq \mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

Next we will prove $N_{C} \cap<\gamma_{1 *}, \gamma_{2 *}>=\{I\}$. As in the proof of Lemma 4.2.1, $V=V_{0}+V_{1}$. V_{0}, V_{1} are invariant under N_{C} while $\gamma_{1 *}, \gamma_{2 *}$ interchange V_{0} and V_{1}. Hence $\gamma_{1 *}, \gamma_{2 *} \notin N_{C}$. In the proof of Lemma 4.2.1, we have shown that the restrictions of $\left(\gamma_{1} \gamma_{2}\right)_{*}$ and N_{C} to V_{0} are $L_{0 *}$ and $N_{1}(a, b, c)$. Since $L_{0 *} \notin N_{1}(a, b, c)$ by Lemma 6.1, 6.2, we have $\left(\gamma_{1} \gamma_{2}\right)_{*} \notin N_{C}$. This proves that $N_{C} \cap<\gamma_{1 *}, \gamma_{2 *}>=\{I\}$.

Theorem 7.2. Assume that $M(a, b, c)$ is finite irreducible and that $\varepsilon \notin$ $\mathbf{Z}, c^{\prime}, b-a \equiv 1 / 2 \bmod \mathbf{Z}$. Put $c=p / k$ with $(p, k)=1$.
(7.2.1) If both of the denominators of $1-c$ and $c-a-b$ are 5 , then $\gamma_{1 *} \in$ N_{C}, hence we have $M_{4}\left(a, b, c, c^{\prime}\right)=N_{C} \cdot<\gamma_{2 *}>$ with $N_{C} \cap<\gamma_{2 *}>=$ $\{I\}$. And we have $N_{C} \simeq N_{1}(a, b, c) \times N_{1}(a, b, c)=M(a, b, c) \times M(a, b, c)$ and $\left\langle\gamma_{2 *}\right\rangle \simeq \mathbf{Z}_{2}$.
(7.2.2) If the condition of (T.2.1) does not hold, then $M_{4}\left(a, b, c, c^{\prime}\right)=$ $N_{C} \cdot<\gamma_{1 *}, \gamma_{2 *}>$ with $N_{C} \cap<\gamma_{1 *}, \gamma_{2 *}>=\{I\} . N_{C} \simeq N_{1}(a, b, c) \times$ $N_{1}(a, b, c), M(a, b, c) / N_{1} \simeq \mathbf{Z}_{k}$ and $<\gamma_{1 *}, \gamma_{2 *}>\simeq \mathbf{Z}_{k} \times \mathbf{Z}_{2}$.

Proof: As is shown in the proof of Lemma 4.2.2, $V=V_{0}+V_{1}$ and $\gamma_{2 *}$ interchanges V_{0} and V_{1} while $\gamma_{1 *}$ and $\gamma_{3 *}$ fix (set theoretically) $V_{j} j=$ 0,1 . Hence any element of N_{C} also fix V_{j}. Consequently we have $\gamma_{2 *} \notin$ N_{C}. By Lemma 4.2.2, the restrictions of $\gamma_{1 *}$ and N_{C} to V_{j} are $L_{0 *}$ and $N_{1}(a, b, c)$ for each $j=0,1$.

In case of ($T .2 .1$), by Lemma 6.3, $L_{0 *} \in N_{1}$. This implies $\gamma_{1 *} \in N_{C}$. Hence $M_{4}\left(a, b, c, c^{\prime}\right)=N_{C}<\gamma_{1 *}, \gamma_{2 *}>=N_{C}<\gamma_{2 *}>$ with $N_{C} \cap<$ $\gamma_{2 *}>=\{I\}$. By Lemma 4.2.2, we have $N_{C} \simeq N_{1}(a, b, c) \times N_{1}(a, b, c)=$ $M(a, b, c) \times M(a, b, c)$ and $<\gamma_{2 *}>\simeq \mathbf{Z}_{2}$.

In case of (T.2.2), by Lemma 6.3, $<L_{0 *}>\cap N_{1}=\{I\}$. Hence $<$ $\gamma_{1 *}, \gamma_{2 *}>\cap N_{C}=\{I\}$. By Lemma 4.2.2, we have $N_{C} \simeq N_{1}(a, b, c) \times$ $N_{1}(a, b, c)$ and $<\gamma_{1 *}, \gamma_{2 *}>\simeq \mathbf{Z}_{k} \times \mathbf{Z}_{2}$.

8. Examples

We assume in this section that $c=c^{\prime}=1 / 2$ and that $M_{4}\left(a, b, c, c^{\prime}\right)$ is irreducible. We fix the base v_{1}, v_{2} of $V\left(x_{0}\right)$ (see Section 2.1). Recall that

$$
V=V_{0}+V_{1}=\left\langle\psi_{1}, \psi_{2}\right\rangle+\left\langle\psi_{3}, \psi_{4}\right\rangle
$$

where V_{0} and V_{1} are invariant subspaces of $V=V\left(P_{0}\right)$ under $g_{0 *}, g_{1 *} ; g_{2 *}$ (see the proof of Lemma 4.2.1).

Put

$$
\Psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right) .
$$

Then Ψ defines a multi-valued locally biholomorphic mapping of \mathbf{P}^{2} $L_{X} \cup L_{Y} \cup L_{\infty} \cup C^{\prime}$ into \mathbf{P}^{3}. Let S_{Ψ} be the closure of its image in \mathbf{P}^{3}. In the following examples S_{Ψ} are smooth hypersurfaces and Ψ^{-1} are defined by meromorphic functions on S_{Ψ}. The defining functions of S_{Ψ} and the inverse mapping functions are composed of the invariant (homogeneous) polynomials $\in \mathbf{C}\left[v_{1}, v_{2}\right]$ under the actions of $M(a, b, c)$. First we prepare the following two lemmas.
Lemma 8.1. Assume that $c, c^{\prime} \equiv 1 / 2 \bmod \mathbf{Z}$.
(1) If $f\left(v_{1}, v_{2}\right)$ is an invariant polynomial under the action of $M(a, b, c)$ then $f\left(\psi_{1}, \psi_{2}\right)+f\left(\psi_{3}, \psi_{4}\right)$ and $f\left(\psi_{1}, \psi_{2}\right) f\left(\psi_{3}, \psi_{4}\right)$ are both invariant under $M_{4}\left(a, b, c, c^{\prime}\right)$.
(2) If $f\left(v_{1}, v_{2}\right) L_{1 *}=f\left(v_{1}, v_{2}\right)$ and $f\left(v_{1}, v_{2}\right) L_{0 *}=-f\left(v_{1}, v_{2}\right)$ then $f\left(\psi_{1}, \psi_{2}\right)^{2}+f\left(\psi_{3}, \psi_{4}\right)^{2}$ and $f\left(\psi_{1}, \psi_{2}\right) f\left(\psi_{3}, \psi_{4}\right)$ are both invariant under $M_{4}\left(a, b, c, c^{\prime}\right)$.

Proof:

Proof of (1). $f\left(\psi_{1}, \psi_{2}\right)$ and $f\left(\psi_{3}, \psi_{4}\right)$ are invariant under $g_{0 *}, g_{1 *}, g_{2 *}$ while $f\left(\psi_{1}, \psi_{2}\right) \gamma_{2 *}=f\left(\psi_{3}, \psi_{4}\right)$. Hence (1) holds.

Proof of (2). $f\left(\psi_{1}, \psi_{2}\right)^{2}+f\left(\psi_{3}, \psi_{4}\right)^{2}$ is invariant from (1). By the proof of Lemma 4.2.1, $f\left(\psi_{1}, \psi_{2}\right)$ and $f\left(\psi_{3}, \psi_{4}\right)$ are both invariant under N_{C}. Since $f\left(\psi_{1}, \psi_{2}\right) g_{0 *}=-f\left(\psi_{1}, \psi_{2}\right), f\left(\psi_{3}, \psi_{4}\right) g_{0 *}=-f\left(\psi_{3}, \psi_{4}\right)$ and $f\left(\psi_{1}, \psi_{2}\right) \gamma_{2 *}=f\left(\psi_{3}, \psi_{4}\right)$, we know that $f\left(\psi_{1}, \psi_{2}\right) f\left(\psi_{3}, \psi_{4}\right)$ is invariant under $<\gamma_{1 *}, \gamma_{2 *}>$. Hence (2) holds.

In Shephard-Todd [16], three invariants

$$
f_{n}\left(v_{1}, v_{2}\right), \quad h_{2 n-4}\left(v_{1}, v_{2}\right), t_{3 n-6}\left(v_{1}, v_{2}\right)
$$

are considered. Where n denotes the degree of $f_{n}, h_{2 n-4}$ is the Hessian of f_{n} of degree $2 n-4$ and $t_{3 n-6}$ is the Jacobian of f_{n} and $h_{2 n-4}$ of degree $3 n-6$. For the application to $M_{4}\left(a, b, c, c^{\prime}\right)$, we will calculate the definite formes of them.

We put

$$
\begin{aligned}
v_{1}^{\prime} & =\frac{\Gamma(a) \Gamma(b)}{\Gamma(1+a+b-c)} F(a, b, 1+a+b-c ; 1-x) \\
v_{2}^{\prime} & =\frac{\Gamma(c-a) \Gamma(c-b)}{\Gamma(1+c-a-b)}(1-x)^{c-a-b} F(c-a, c-b, 1+c-a-b ; 1-x)
\end{aligned}
$$

Lemma 8.2. By the analytic continuations along real segment $0<x<$ 1. we have

$$
\begin{aligned}
v_{1}^{\prime} & =\frac{\pi}{\Gamma(1+a-c) \Gamma(1+b-c)}\left(v_{1}-v_{2}\right) \\
v_{2}^{\prime} & =-\frac{\pi}{\Gamma(1+a-c) \Gamma(1+b-c)}\left(\beta v_{1}+v_{2}\right)
\end{aligned}
$$

where

$$
\beta=-\frac{\sin \pi a \sin \pi b}{\sin \pi(c-a) \sin \pi(c-b)}
$$

Proof: This follows from the comection formulas for $E(a, b, c)$, given in [4], for example.

In the following examples we put

$$
w_{1}=\beta^{1 / 4} v_{1}, \quad w_{2}=\beta^{-1 / 4} v_{2}
$$

Example 8.3. $c=c^{\prime}=b-a=1 / 2, \quad \varepsilon+1 / 2(=c-a-b)=1 / n$.

In this case, β (in the previous lemma) $=1$. Hence

$$
P_{n}\left(v_{1}, v_{2}\right):=\left(v_{1}-v_{2}\right)^{n}+\left(v_{3}+v_{4}\right)^{n}=\mathrm{constant} \cdot\left(v_{1}^{\prime n} \pm v_{2}^{\prime n}\right)
$$

is invariant under $M(a, b, c)$. Put

$$
Q_{n}\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}\right)^{n}-\left(v_{1}+v_{2}\right)^{n}
$$

Then Q_{n} is invariant under $L_{1 *}$ but $Q_{n} L_{0 *}=-Q_{n}$. From Lemma 8.1, we know that

$$
\begin{gathered}
P_{n}\left(\psi_{1}, \psi_{2}\right)+P_{n}\left(\psi_{3}, \psi_{4}\right), P_{n}\left(\psi_{1}, \psi_{2}\right) P_{n}\left(\psi_{3}, \psi_{4}\right) \\
Q_{n}\left(\psi_{1}, \psi_{2}\right)^{2}+Q_{n}\left(\psi_{3}, \psi_{4}\right)^{2}, \quad Q_{n}\left(\psi_{1}, \psi_{2}\right) Q_{n}\left(\psi_{3}, \psi_{4}\right)
\end{gathered}
$$

are invariant under $M_{4}\left(a, b, c, c^{\prime}\right)$. Since the exponents along L_{∞} are $-1 / 2 n,-1 / 2 n,(n-1) / 2 n,(n-1) / 2 n, P_{n}\left(\psi_{1}, \psi_{2}\right)+P_{n}\left(\psi_{3}, \psi_{4}\right)$ is constant while other three invariant functions are at most one degree polynomials in X, Y. Since $P_{n}\left(\psi_{1}, \psi_{2}\right)$ is invariant under $g_{1 *}=\gamma_{3 *}$, and $g_{0 *}=$ $\left(\gamma_{1} \gamma_{2}\right)_{*}, P_{n}\left(\psi_{1}, \psi_{2}\right)$ has the following form: $P_{n}\left(\psi_{1}, \psi_{2}\right)=A_{0}(X, Y)+$ $A_{1}(\mathrm{X}, Y)(\mathrm{XY})^{1 / 2}$. Then we have $P_{n}\left(\psi_{3}, \psi_{4}\right)=A_{0}(\mathrm{X}, Y)$ $-A_{1}(X, Y)(X Y)^{1 / 2}$. Hence we know that A_{0} is constant $\left(=2\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{2}\right)$ and $A_{1}=0$. By expanding at $\mathrm{X}=0 . \mathrm{Y}^{-}=0$, we have

$$
\begin{aligned}
Q_{n}\left(\psi_{1}, \psi_{2}\right)^{2}+Q_{n}\left(\psi_{3}, \psi_{4}\right)^{2} & =8\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{2}(\mathrm{X}+Y) \\
Q_{n}\left(\psi_{1}, \psi_{2}\right) Q_{n}\left(\psi_{3}, \psi_{4}\right) & =4\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{2}(\mathrm{X}-Y)
\end{aligned}
$$

Thus we have proved that

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid P_{n}\left(\psi_{1}, \psi_{2}\right)-P_{n}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree n, and that Ψ^{-1} is given by

$$
\begin{aligned}
& X=\frac{\left(Q_{n}\left(\psi_{1}, \psi_{2}\right)+Q_{n}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(P_{n}\left(\psi_{1}, \psi_{2}\right)+P_{n}\left(\psi_{3}, \psi_{4}\right)\right)^{2}} \\
& Y=\frac{\left(Q_{n}\left(\psi_{1}, \psi_{2}\right)-Q_{n}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(P_{n}\left(\psi_{1}, \psi_{2}\right)+P_{n}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}
\end{aligned}
$$

Recall that $M_{4}\left(a, b, c, c^{\prime}\right)$ is of order $4 n^{4}$ with center of order n.
Example 8.4. $c=c^{\prime}=1 / 2, \quad b-a=\varepsilon+1 / 2(=c-a-b)=1 / 3$.

In this case $\beta=(\sqrt{3}-1) /(\sqrt{3}+1) . M(a, b, c)$ is the group No. 6 in Shephard-Todd's list, the order of which is 48 and the center of which is $\{e(k / 4) I \mid 0 \leq k \leq 3\}$. There are invariant polynomials $f_{4}\left(v_{1}, v_{2}\right)$ and $t_{6}\left(v_{1}, v_{2}\right)^{2}$ of degree 4 and 12 (Shephard-Todd [16]). In order that f_{4} shoud be invariant under $L_{1 *}, f_{4}$ must be of the form $f_{4}=v_{1}^{\prime 4}+\alpha v_{1}^{\prime} v_{2}^{\prime 3}$. In order that f_{4} shoud be invariant under $L_{0 *}$, by direct computations, we have

$$
f_{4}\left(v_{1}, v_{2}\right)=w_{1}^{4}+2 \sqrt{3} w_{1}^{2} w_{2}^{2}-w_{2}^{4} .
$$

By a constant multiplication, we have

$$
t_{6}\left(v_{1}, v_{2}\right)=w_{1} w_{2}\left(w_{1}^{4}+w_{2}^{4}\right)
$$

which satisfies $t_{6} L_{1 *}=t_{6}$ and $t_{6} L_{0 *}=-t_{6}$. Then

$$
f_{4}\left(\psi_{1}, \psi_{2}\right)=f_{4}\left(\psi_{3}, \psi_{4}\right)=\beta\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{4} .
$$

We also have

$$
\begin{aligned}
t_{6}\left(\psi_{1}, \psi_{2}\right)^{2}+t_{6}\left(\psi_{3}, \psi_{4}\right)^{2} & =2 k(X+Y), \\
t_{6}\left(\psi_{1}, \psi_{2}\right) t_{6}\left(\psi_{3}, \psi_{4}\right) & =k(X-Y),
\end{aligned}
$$

where

$$
k=\beta^{2}\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{10}\left(\frac{\Gamma(1+a-c) \Gamma(1+b-c)}{\Gamma(2-c) \Gamma\left(c^{\prime}\right)}\right)^{2} .
$$

Thus we have proved that

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid f_{4}\left(\psi_{1}, \psi_{2}\right)-f_{4}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree 4 and that Ψ^{-1} is given by

$$
\begin{aligned}
& X=\alpha \frac{\left(t_{6}\left(\psi_{1}, \psi_{2}\right)+t_{6}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{4}\left(\psi_{1}, \psi_{2}\right)+f_{4}\left(\psi_{3}, \psi_{4}\right)\right)^{3}}, \\
& Y=\alpha \frac{\left(t_{6}\left(\psi_{1}, \psi_{2}\right)-t_{6}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{4}\left(\psi_{1}, \psi_{2}\right)+f_{4}\left(\psi_{3}, \psi_{4}\right)\right)^{3}}
\end{aligned}
$$

where

$$
\alpha=2 \beta\left(\frac{\Gamma(a) \Gamma(b) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(1+b-c) \Gamma(c)}\right)^{2}=24 \sqrt{3} .
$$

Example 8.5. $c=c^{\prime}=1 / 2, \quad \varepsilon+1 / 2 \quad(=c-a-b)=1 / 3, \quad b-a=1 / 4$. In this case $\beta=(\sqrt{3}-\sqrt{2}) /(\sqrt{3}+\sqrt{2}) . M(a, b, c)$ is the group No. 14 in

Shephard-Todd's list, the order of which is 144 and the center of which is $\{e(k / 6) I \mid 0 \leq k \leq 5\}$. There are invariant polynomials $f_{6}\left(v_{1}, v_{2}\right)$ and $t_{12}\left(v_{1}, v_{2}\right)^{2}$ of degree 6 and 24 (Shephard-Todd [16]).

By direct computations, we have

$$
\begin{aligned}
& f_{6}\left(v_{1}, v_{2}\right)=w_{1}^{6}+5 w_{1}^{4} w_{2}^{2}-5 w_{1}^{2} w_{2}^{4}-w_{2}^{6} \\
& t_{12}\left(v_{1}, v_{2}\right) \\
& \quad=w_{1} w_{2}\left(w_{1}^{10}-\frac{11}{9} w_{1}^{8} w_{2}^{2}+\frac{66}{9} w_{1}^{6} w_{2}^{4}+\frac{66}{9} w_{1}^{4} w_{2}^{6}-\frac{11}{9} w_{1}^{2} w_{2}^{8}+w_{2}^{10}\right)
\end{aligned}
$$

The polynomial t_{12} satisfies $t_{12} L_{1 *}=t_{12}$ and $t_{12} L_{0 *}=-t_{12}$. Then

$$
f_{6}\left(\psi_{1}, \psi_{2}\right)=f_{6}\left(\psi_{3}, \psi_{4}\right)=\beta^{3 / 2}\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{6}
$$

We also have

$$
\begin{aligned}
t_{12}\left(\psi_{1}, \psi_{2}\right)^{2}+t_{12}\left(\psi_{3}, \psi_{4}\right)^{2} & =2 k\left(\mathrm{X}+Y^{-}\right) \\
t_{12}\left(\psi_{1}, \psi_{2}\right) t_{12}\left(\psi_{3}, \psi_{4}\right) & =k(X-Y)
\end{aligned}
$$

where

$$
k=\beta^{5}\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{22}\left(\frac{\Gamma(1+a-c) \Gamma(1+b-c)}{\Gamma(2-c) \Gamma\left(c^{\prime}\right)}\right)^{2}
$$

Thus we have proved that

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid f_{6}\left(\psi_{1}, \psi_{2}\right)-f_{6}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree 6 and that Ψ^{-1} is given by

$$
\begin{aligned}
& X=\alpha \frac{\left(t_{12}\left(\psi_{1}, \psi_{2}\right)+t_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{6}\left(\psi_{1}, \psi_{2}\right)+f_{6}\left(\psi_{3}, \psi_{4}\right)\right)^{4}} \\
& Y=\alpha \frac{\left(t_{12}\left(\psi_{1}, \psi_{2}\right)-t_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{6}\left(\psi_{1}, \psi_{2}\right)+f_{6}\left(\psi_{3}, \psi_{4}\right)\right)^{4}}
\end{aligned}
$$

where

$$
\alpha=4 \beta\left(\frac{\Gamma(a) \Gamma(b) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(1+b-c) \Gamma(c)}\right)^{2}
$$

Example 8.6. $c=c^{\prime}=1 / 2, \quad \varepsilon+1 / 2(=c-a-b)=1 / 4, \quad b-a=1 / 3$. In this case $\beta=(\sqrt{2}-1) /(\sqrt{2}+1) . M(a, b, c)$ is the group No. 9 in

Shephard-Todd's list, the order of which is 192 and the center of which is $\{e(k / 8) I \mid 0 \leq k \leq 7\}$. The following polynomial

$$
f_{6}\left(v_{1}, v_{2}\right)=w_{1}^{6}-5 w_{1}^{4} w_{2}^{2}-5 w_{1}^{2} w_{2}^{4}+w_{2}^{6}
$$

satisfies $f_{6} L_{0 *}=f_{6}, f_{6} L_{1 *}=\sqrt{-1} f_{6}$. The polynomials h_{8} and t_{12}^{2} are invariant under $M(a, b, c)$. We have (up to constant multiplications)

$$
\begin{aligned}
& h_{8}\left(v_{1}, v_{2}\right)=w_{1}^{8}+\frac{28}{3} w_{1}^{6} w_{2}^{2}-\frac{14}{3} w_{1}^{4} w_{2}^{4}+\frac{28}{3} w_{1}^{2} w_{2}^{6}+w_{2}^{8} \\
& t_{12}\left(v_{1}, v_{2}\right) \\
& \quad=w_{1} w_{2}\left(w_{1}^{10}+\frac{11}{9} w_{1}^{8} w_{2}^{2}+\frac{66}{9} w_{1}^{6} w_{2}^{4}-\frac{66}{9} w_{1}^{4} w_{2}^{6}-\frac{11}{9} w_{1}^{2} w_{2}^{8}-w_{2}^{10}\right)
\end{aligned}
$$

The polynomial t_{12} satisfies $t_{12} L_{1 *}=t_{12}$ and $t_{12} L_{0 *}=-t_{12}$. Then

$$
h_{8}\left(\psi_{1}, \psi_{2}\right)=h_{8}\left(\psi_{3}, \psi_{4}\right)=\beta^{2}\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{8}
$$

We also have

$$
\begin{aligned}
t_{12}\left(\psi_{1}, \psi_{2}\right)^{2}+t_{12}\left(\psi_{3}, \psi_{4}\right)^{2} & =2 k(\mathrm{X}+\mathrm{Y}) \\
t_{12}\left(\psi_{1}, \psi_{2}\right) t_{12}\left(\psi_{3}, \psi_{4}\right) & =k(\mathrm{X}-Y)
\end{aligned}
$$

where

$$
k=\beta^{5}\left(\frac{\Gamma(a) \Gamma(b)}{\Gamma(c) \Gamma\left(c^{\prime}\right)}\right)^{22}\left(\frac{\Gamma(1+a-c) \Gamma(1+b-c)}{\Gamma(2-c) \Gamma\left(c^{\prime}\right)}\right)^{2}
$$

Thus we have proved that

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid h_{8}\left(\psi_{1}, \psi_{2}\right)-h_{8}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree 8 and that Ψ^{-1} is given by

$$
\begin{aligned}
& \boldsymbol{X}=\alpha \frac{\left(t_{12}\left(\psi_{1}, \psi_{2}\right)+t_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(h_{8}\left(\psi_{1}, \psi_{2}\right)+h_{8}\left(\psi_{3}, \psi_{4}\right)\right)^{3}} \\
& \boldsymbol{Y}=\alpha \frac{\left(t_{12}\left(\psi_{1}, \psi_{2}\right)-t_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(h_{8}\left(\psi_{1}, \psi_{2}\right)+h_{8}\left(\psi_{3}, \psi_{4}\right)\right)^{3}}
\end{aligned}
$$

where

$$
\alpha=2 \beta\left(\frac{\Gamma(a) \Gamma(b) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(1+b-c) \Gamma(c)}\right)^{2} .
$$

Example 8.7. $c=c^{\prime}=1 / 2, \quad \varepsilon+1 / 2(=c-a-b)=1 / 3, \quad b-a=1 / 5$. $M(a, b, c)$ is the group No. 21 in Shephard-Todd's list, the order of which is 720 and the center of which is $\{e(k / 12) I \mid 0 \leq k \leq 11\}$. The following polynomial

$$
\begin{aligned}
f_{12}\left(v_{1}, v_{2}\right)= & w_{1}^{12}+\frac{22}{\sqrt{5}} w_{1}^{10} w_{2}^{2} \\
& -33 w_{1}^{8} w_{2}^{4}-\frac{44}{\sqrt{5}} w_{1}^{6} w_{2}^{6}-33 w_{1}^{4} w_{2}^{8}+\frac{22}{\sqrt{5}} w_{1}^{2} w_{2}^{10}+w_{2}^{12}
\end{aligned}
$$

is invariant under $M(a, b, c)$. The polynomial t_{30} satisfies $t_{30} L_{1 *}=t_{30}$ and $t_{30} L_{0 *}=-t_{30}$.

By the same reason as previous examples, we have

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid f_{12}\left(\psi_{1}, \psi_{2}\right)-f_{12}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree 12 and that Ψ^{-1} is given by

$$
\begin{aligned}
X & =\alpha \frac{\left(t_{30}\left(\psi_{1}, \psi_{2}\right)+t_{30}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{12}\left(\psi_{1}, \psi_{2}\right)+f_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{5}} \\
Y & =\alpha \frac{\left(t_{30}\left(\psi_{1}, \psi_{2}\right)-t_{30}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(f_{12}\left(\psi_{1}, \psi_{2}\right)+f_{12}\left(\psi_{3}, \psi_{4}\right)\right)^{5}}
\end{aligned}
$$

where

$$
\alpha=8 \beta\left(\frac{\Gamma(a) \Gamma(b) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(1+b-c) \Gamma(c)}\right)^{2}
$$

Example 8.8. $c=c^{\prime}=1 / 2, \quad \varepsilon+1 / 2(=c-a-b)=1 / 5, \quad b-a=1 / 3$. $M(a, b, c)$ is the group No. 17 in Shephard-Todd's list, the order of which is 1200 and the center of which is $\{e(k / 20) I \mid 0 \leq k \leq 19\}$. The following polynomial

$$
\begin{aligned}
f_{12}\left(v_{1}, v_{2}\right)= & w_{1}^{12}-\frac{22}{\sqrt{5}} w_{1}^{10} w_{2}^{2} \\
& -33 w_{1}^{8} w_{2}^{4}+\frac{44}{\sqrt{5}} w_{1}^{6} w_{2}^{6}-33 w_{1}^{4} w_{2}^{8}-\frac{22}{\sqrt{5}} w_{1}^{2} w_{2}^{10}+w_{2}^{12}
\end{aligned}
$$

satisfies $f_{12} L_{0 *}=f_{12}, f_{12} L_{1 *}=e(1 / 5) f_{12}$. The polynomial h_{20} is invariant under $M(a, b, c)$ and the polynomial t_{30} satisfies $t_{30} L_{1 *}=t_{30}$ and $t_{30} L_{0 *}=-t_{30}$.

By the same reason as previous examples, we have

$$
S_{\Psi}=\left\{\left[\psi_{1}: \psi_{2}: \psi_{3}: \psi_{4}\right] \in \mathbf{P}^{3} \mid h_{20}\left(\psi_{1}, \psi_{2}\right)-h_{20}\left(\psi_{3}, \psi_{4}\right)=0\right\}
$$

which is a smooth hypersurface of degree 20 and that Ψ^{-1} is given by

$$
\begin{aligned}
& X=\alpha \frac{\left(t_{30}\left(\psi_{1}, \psi_{2}\right)+t_{30}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(h_{20}\left(\psi_{1}, \psi_{2}\right)+h_{20}\left(\psi_{3}, \psi_{4}\right)\right)^{3}} \\
& Y=\alpha \frac{\left(t_{30}\left(\psi_{1}, \psi_{2}\right)-t_{30}\left(\psi_{3}, \psi_{4}\right)\right)^{2}}{\left(h_{20}\left(\psi_{1}, \psi_{2}\right)+h_{20}\left(\psi_{3}, \psi_{4}\right)\right)^{3}}
\end{aligned}
$$

where

$$
\alpha=2 \beta\left(\frac{\Gamma(a) \Gamma(b) \Gamma(2-c)}{\Gamma(1+a-c) \Gamma(1+b-c) \Gamma(c)}\right)^{2}
$$

REFFERENCES

[1] P. Appell, J. Kampé de Fériet: Fonctions Hypergéométriques et Hypersphériques, Gauthier Villars, Paris, 1926.
[2] F. Beukers, G. Heckman: Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$, Invent. math. 95 (1989) 325-354.
[3] P. Cohen, J. Wolfart: Algebraic Appell-Lauricella Functions, Analysis 12 (1992) 359-376.
[4] A. Erdélyi (Editor): Higher transcendental functions, Vol I, MacGraw Hill, New York, 1953.
[5] M. Iwano: Schwarz Theory, Math. Seminar Notes, Tokyo Metropolitan Univ., 1989.
[6] J. Kaneko: Monodromy Group of Appell's System (F_{4}), Tokyo J. Math. 4 (1981) 35-54.
[7] M. Kato: A Pfaffian system of Appell's F_{4}, Bulletin of College of Education Univ. of the Ryukyus 33 (1988) 331-334.
[8] M. Kato: The Riemann Problem for Appell's F_{4}, Memoirs of the Faculty of Science, Kyushu Univ., Ser. A, Vol. 47 (1993) 227-243.
[9] M. Kato: Connection Formulas for Appell's System F_{4} and some Applications, Funkcialaj Ekvacioj 38 (1995) 243-266.
[10] M. Kato: The Irreducibilities of Appell's F_{4}, Ryukyu Math. J. 7 (1994) 25-34.
[11] T. Kimura: Hypergeometric Functions of two Variables, Tokyo Univ. (1973).
[12] T. Sasaki: On the finiteness of the monodromy group of the system of hypergeometric differential equations $\left(F_{D}\right)$, J. Fac. Sci. Univ. of Tokyo 24 (197T) 565-573.
[13] T. Sasaki: Picard-Vessiot group of Appell's system of hypergeometric differential equations and infiniteness of monodromy group, Kumamoto J. of Sci. Math. 14 (1980) 85-100).
[14] T. Sasaki, M. Yoshida: Linear Differential Equations in Two Variables of Rank Four. I, Math. Ann. 282 (1988) 69-93.
[15] H. A. Schwarz: Über diejenigen Fälle, in welchen die Gaußische hypergeometrische Reihe eine algebraische Function ihres vierten Elements darstellt. J. Reine Angew. Math. 75 (1873) 292-335.
[16] G. C. Shephard, J. A. Todd: Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.
[17] K. Takano: Monodromy Group of the System for Appell's F_{4}, Funkcialaj Ekvacioj 23 (1980) 97-122.

Mitsuo Kato
Department of Mathematics
College of Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-01
JAPAN

