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Appell's F4 with Finite Irreducible Monodromy Group 

MITSUO l(ATO 

1. INT RODUCTION 

Appell's hypergeometric series 

( 
' · r _ "' (a, m + n)(b, m + n) m n 

F4 a, b, c, c, X , Y) - � ( ) ( 1 )( )( ) X Y c,m c ,n l,m l,n 

with (a, n) = r( a+ n) jr( a), satisfies the following system of differential 

equations of rank four ([1]): 

X(l- X)zxx- Y2zyy- 2XYzxy + czx 

-(a+ b + l)(Xzx + Yzy)-abz = 0 

Y(l- Y)zyy- X2zxx- 2XYzxy + c'zy 

-(a+ b + l)()( zx + Y zy)- abz = 0 

which we denote by E4(a, b, c, c'). 
This i an extension of Gauss' hypergeon1etric series 

F(a b ex)= L (a,n)(b,n)
x

n 
' ' (c, n)(l, n ) 

with hypergeometric differential equation (HGD for short) 

x(l-x)d2zjdx2 + (c- (a+ b + l)x)d z/dx-abz = 0, 

which is of rank two and is denoted by E(a, b, c). 
Denote the monodromy group of E( a, b, c) by 

M(a,b,c), 

and that of E4( a, b, c, c') by 

M4( a, b, c, c') 

(see Section 2 for the definitions). 



It is known that M(a, b, c) is finite and irreducible if and only if 
(1- c, c-a-b, b-a ) belongs to th Schwarz' list (S-list) ([15].[5]). 

As for Appell's F1 and Lauricella's FD, Sasaki [12] and Cohen-Wolfart 
[3] obtained th finiteness conditions of the monodromy groups. (Re­
cf'ntly professor Sasaki told the author that Theorem 2 in [13] asserting 
non- xistenc of Appell's F2 with finite irreducible monodromy group is 
fals . ) 

The singular locus of E4(a, b, c, c
' ) is Lx U Ly U Lex:; U C, where Lx = 

{X = 0}, Ly = { Y = 0}, C = { (X - Y) 2 - 2( X + Y) + 1 = 0} and 
Lex:; is the lin at infinity. The cliff rential equation E4 (a, b, c, c

' ) has 

characteristic exponents 0, 0, 1- c, 1-c along Lx. This in1plies that, at 
any point P E L x- Ly U Lex:; U C, E4 (a, b, c, c') has a fundamental sy tern 
(h1, h2,X1-ch3,X1-ch4) of solutions, where each hj is holomorphic at 
P. Similarly E4(a,b,c,c') has exponents 0,0, 1- c', 1-c' along Ly, 
a, a, b, b along Lex:;, 0, 0, 0, c + 1/2 along C, where 

c = c + c
' -a - b - 1 

(see [8]). 
Since F4 ( a, b, c, c'; X, 0) = F(a, b, c X) and F4(a, b, c, c

'
; 0, Y) 

= F(a, b, c'; Y), w can how that if M4(a, b, c, c
' ) is finite and irr ducible 

th n so are T'vf(a, b c) and M(a, b, c') (s e Section 3). 
In this paper w will prove the following theorem. 

THEOREM 1. M4( a, b, c, c
' ) i finite irreducible if and only if the following 

two conditions hold. 

(1) M(a, b. c ) and M(a, b, c') are finite irreducible. 
(2) The quantity c is an integer, or at 1 ast two of 1 - c, 1 - c

'
, b-a 

are equivalent to 1/2 modulo Z. 

The structure of th finite irreducible monodromy groups ar stated 
in Proposition 4.1, Th orem 7.1 and Theorem 7.2. 

Let � = ( 'l/;1, 2, 3, 4) be a sy t n1 of fundamental solutions of 
E4( a, b, c, c

' ) . Then � defines a (multi-valued) mapping of U := P2 -
L xU Ly U Lex:; U C into P3. Sasaki- Yoshida [14] proved that if c = 0 then 
the image �(U) belong to a smooth quadratic surface. In S ction 8, we 

will verify, in the cases c = c' = 1/2 and (c - a-b, b- a ) = (1/n, 1/2) 
or (1/3, 1/3) or {c-a-b, b- a} = {1/3 1/4} or {1/3, 1/5}, that the 

closure SIJJ of �(U) is smooth hypersuface in P3 and the invers of � 
i single valued. 

The author thanks to professors J. Kan ko, T. Sasaki and l'v1. Yo hida 

for valuabl advises. 
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2. MONODROMY REPRES E TATIONS 

2 .1. 1VJ (a, b, c) 
As.ume that c rf_ Z and that M(a,b,c) is irreducible. Put 

f(a)f(b) 
VI = 

r(c) 
F(a, b, c; x), 

f(1+a-c)f(1+b-c) I-c v2 = 

f(2 _c) 
x F(1 +a- c, 1 + b- c, 2- c; x ). 

Then vi and v2 form a system of fundamental solutions of E( a, b, c). 
Let Lo, LI be the loops surrounding 0,1 positively with base point xo = 

1/2. We denote by V(x0) the s t of g rms of holomorphic solutions of 
E(a,b,c). Then for any L E 1ri(C - {0,1},xo) and f E V(xo), the 
analytic continuation f L* of f along L is again belongs to V ( x o). We 
write 

if L' is continu d after L. This define a monodromy repres ntation 

7ri(C- {0, 1} xo)-----+ GL(V(xo)). 

For a subset S C 7ri(C- {0, 1}, xo ) , we denote 

We call 

M(a,b,c) = M(a,b,c;x0) = (1ri(C- {0,1},xo))* 

th monodromy group of E( a, b, c). 
For v = t ( vi, v2 ), we denote by vL* the analytic continuation 

t ( v1L*. v2L*) of v along L. Then by use of connection formulas for Gauss' 
HGD (see, for example, [4]), we have 

where 
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G 
_

I 
2yi-Te((c-a-b)/2) 

1- + . 
Ill 7fC 

( � ) ( - sin 1r a sin 1r b, in 1r ( c -a) sin 1r ( c -b)), 

e(x) = exp(21ryi-Ix ). 

Let N1 (a, b, c; x0 ) = N1 (a, b, c) be the smallest normal subgroup of 
M(a, b, c) containing Lh. Then we have 

M(a,b,c) = N1(a,b,c)· <La* > . 

2.2. M4( a, b, c, c1) 
The monodromy representations of E4 (a, b, c, c1) ar first founded by 

Kaneko [6] and Takano [17]. Here for our convenience, we adopt the 
monodromy representation in [9]. 

We assume in this section that E4( a, b, c, c1) is irreducible and that 

c, c1 tf. Z. Recall that E4( a, b, c, c1) is irreducible if and only if none of 

a, b, c- a, c-b, c1 -a, c1 -b, c + c1 -a, c + c1 -b is an integer ([9],[10]). 
Hence 

r(a)f(b) 1 r cp1 := () ( )
F4(a,b,c,c ; X , Y ) , r c r c1 

f(1 +a-c)f(1 + b-c) 
cp2 := f(2- c)f(c1) 

X1-c F4(1 +a-c, 1 + b-c, 2-c, c1; _Y, Y), 

f(1 +a-c1)r(1 + b-c1) 
cp3 := r(c)r(2-c1) 

Y1-c' F4(1 +a-c1, 1 + b-C1, c, 2-C1; �Y, l''"), 

r(2 +a-c-c1)r(2 + b-c- c1) 
cp4 ·= . 

r(2-c)r(2-c1) 
1-C 1-c1 I _ _ I _ ') _ I, T ,-) X Y F4 ( 2 + a -c -c , 2 + b c c , 2 c, ..., c , _\: , } 

form a system of fundamental solutions of E4 (a, b, c, c1). 
Let 8 be a sufficiently small positive number and put Po = ( 8, 8). 

Recall that U = P2-Lx U Ly U Lex:; U C. Then th fundamental group 

1r1 ( U, P0) is generated by the following 'Y1, 'Y2 and 'Y3: 

-y1 ={X= 8e(t) 0 :s; t :s; 1,Y = 8}, 
'Y2 ={X= 8, Y = 8e(t) 0 :s; t :s; 1}, 
'Y3 ={X= Y = 1/4- (1/4-8)e(t) 0 :s; t :s; 1}. 
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Wed note by V(P0) the set of germs of holomorphic solutions of 

E4(a,b,c,c') at Po. Then for any r E 1r1(U,P0), '*(the analytic contin­

uation along r) is an element of GL(V(Po)). This defines a monodromy 
representation 

1r1(U,Po) -----7 GL(V(P0)). 

We denote the image by 

M4(a, b, c, c'; P0) = M4(a, b, c, c') 

and call it the monodromy group of E4( a, b, c, c'). 
Put cp = t(cp1,cp2,cp3,cp4), then r]* j = 1,2,3 are represented by 

matricies in the following way. 

THEOREM 2.2. Assume that E4( a, b, c, c') is irreducible and that c, c' rf_ 

Z then we have 

�
7

h = (! 
0 0 

e(1 -c) 0 

0 1 
0 0 

co 
0 

0 1 0 
cp[2* = 

0 0 e(1-c') 
0 0 0 

cp[3* = I+ . . ( e(c/2) 

Sln 7rC Sln 1rC1 

where 

0 ) 
0 

0 
cp, 

e(1 -c) 

0 

0 
) 

0 
cp, 

e(1- c') 

(D b3I 732,733,734)) 
�

, 

[31 = sin 1ra sin 1rb, r32 = -sin 1r( c-a) sin 1r( c-b), 
[33 =-sin 1r(c'-a) sin 1r(c'-b), r34 = sin1r(c + c'-a) sin1r(c + c'-b). 

PROOF: By the base change of the monodromy r presentation in Theo­

r m 7.1 in [9), we obtain the theorem. I 

Since r3 is a loop surrounding C, we denote by 

Nc(a, b, c, c'; P0) = Nc(a, b, c, c' ) 

the smallest normal subgroup of J\14( a, b, c, c'; Po) containing [3*. Then 

we have 

M4(a,b,c,c') 
= 

Nc(a,b,c,c')· < [
h

,[2* > .  
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The eigenvalues of [3* are 1, 1, 1, e ( c + 1/2). Hence if E + 1/2 E Q- Z 

then [3* is a reflection. So we call Nc(a,b,c,c') the reflection subgroup 

of M4(a, b, c, c'). The tern1inology of "reflection subgroup" appeared in 
Beukers-Heckman [2] for the generalized hypergeometric function nFn-I· 

3. R EST RIC TIO S OF £4 TO SINGULARITIES 

We assume in this section that M4 (a, b, c, c') is finite and irreducible. 

Concerning to the characteristic exponents of E4 (a, b, c, c') (see Section 
1) we have 

LEMMA 3.1. All the parametors a, b, c, c' are (real) rational numbers 
and none of 1 - c, 1 - c', b- a, E + 1/2 is an integer. 

PROOF: Assume c E Z. Then E4(a, b, c, c') has a solution with logarith­

rnic factor log X (Section 2 of [10]). This contradicts to the finiteness 

of M4. Hence we have c tJ_ Z. Similarly we have c', b- a tJ_ Z. Assume 

E + 1/2 E Z. Then since [3* is diagonizable, we have [3* =I. Hence E4 
is reducible. This contradiction proves that E + 1/2 tJ_ Z. 

Since c tJ_ Z, at L x (= {X= 0}), E4(a,b,c,c') has solutions h1,h2, 
X1-ch3, X 1 -ch4 with hj being holomorphic. Since (X1-ch3)rf* 
X1-ch3 for some n E Z, we must have 1 - c E Q. Similarly, we have 
1- c', E + 1/2, a, bE Q. I 

LEMMA 3.2. M(a, b,c) is finite irreducible. 

PROOF: Let U and V be a small neighborhoods of )(0 and 0 in C re­
spectively, where we assume X 0 -=/ 0, 1. Then the map 

{ holomorphic solutions of E4( a, b, c, c') in U x V} 

------+ {holomorphic solutions of E( a, b, c) in U} 

defined by the restriction f(X, Y) t--+ f(X, 0) is on -to-one onto (Sec­

tion 2.1 of [8]). Hence M (a, b, c) must be finite. 

Since none of a, b, c- a, c- b is an integer by the assumption of ir­
redicibility of 1\14, M( a, b, c ) is irreducible. I 

By the same way we have the following lemma. 

LEMMA 3.3. M( a, b, c') is finite irreducible. 

LEMMA 3.4. M(1 +a- c, 1 + b- c,c'), M(1 +a- c', 1 + b- c', c) , 
M(a, 1 +a- c',c), M(b, 1 + b- c',c) are finite irreducible. 

PROOF: First we note that 1 - c, b- a tJ_ Z by Lemn1a 3.1. 
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Since X1-c f(X, Y) i a solution of E4(a, b, c, c') if and only if j()C, Y) 
i a solution of E4(1 +a- c, 1 + b- c, 2- c, c' ) , we know that M4(1 + 
a - c, 1 + b - c, 2 - c, c') is finite irreducible. Then, by Len1.ma 3.3, 
A1(1 +a- c, 1 + b- c, c') is finite irreducible. 

Since y-a j(-)C /Y, 1/Y) is a solution of E4(a, b, c, c') if and only if 
!(�)( , Y) is a solution of E4( a, 1 + a - c', c, 1 + a - b), we know that 
M4 (a, 1 +a - c', c, 1 +a - b) is finite irreducible. Then, by Lemma 3.2 , 
M( a, 1 +a - c', c) is finit irreducible. 

M(1+a-c', 1+b-c',c) and M( b, 1+b-c' c) are also finite irreducible 
by the same way. I 

4. PROOF OF "IF" PART OF THEOREM 1 

Assume the conditions (1) and (2) in Theorem 1. In each case 
M4( a, b, c, c') is irreducible. The problem is to show the finiteness of 
M4 (a, b, c, c'). We notice that a, b, c, c' E Q by the assertion ( 1 ) . This 
implies that rj* (j = 1, 2, 3) are of finite order. 

In Section 4.1, we deal with the case when c:( = c + c'-a- b- 1) is an 
integer. In Section 4.2, we deal with th case when E is not an integer. 

4.1. Case of E E Z 
Assume that E E Z. Let 

cP: (x,y) � (�)(,Y) X= xy, Y = (1- x)(1- y) 

be the branched double covering of C2 onto C2. The covering cjJ is lo­
cally biholomorphic at any point (x,y) with x =/= y. W have cjJ({x = y}) 
= C = {(X- Y? - 2(X + Y) + 1 = 0}. R call Po = (5,5), U = 
C2- Lx U Ly U C. Put W = c/J-1(U) and P1 = (x1, yi) be a point such 
that c/J( P1) = P0. It is easily verified that 
W = {(x,y)ixy(1- x)(1- y)(x- y) = 0}. We have on to one homo­
morphism 

The image of c/J* is a normal subgroup of 1r1 ( U, Po) with index 2. Precicely 
speaking, we have 
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is a normal ubgroup of M4 with 

This impli s that M4 is finite if and only if N is finite. The finiteness of 
1V i a direct consequence of the following proposition. 

PROPOSITION 4.1. A sume that E E Z and that Jv14 (a, b, c, c') 1. lrre­

ducible. Then 

N � M(a,b,c)0M(a,b,c) := {g 0g'lg,g' E Jvi(a,b,c)} 

with Jlf4(a,b,c,c') = _v. < 13* >, Nn < 13* >= {1} and< /3* >� Z2. 

PROOF: Put E = n. Sine 1114( a, b, c, c') is irreducible. w have 
lvf4 (a, b, c, c') r--J M4 (a, b, c, c' - n ) by Theorem 2.2. H nee it is enough to 
prove for th case of E = 0. So w assume E = 0. 

Since E = 0, w have 

¢
*

(E4(a, b, c, c')) = E(a, b, c; x) · E(a, b, c: y) 

(Section 1 of [7]), and { x = y} is an apparent singular locus of 
¢*(E4(a, b, c, c')). 

Since ¢ is locally biholomorphic at P1• V ( P0) i isomorphic to the 
space of germs of holomorphic olution of ¢*(E4) at PJ, which is again 
isomorphic to V(x1) 0 V(y1) wher V(.ri) (resp. V(yi)) is the space of 
germs of olutions of E( a, b, c) at I 1 ( r p. y1) . Hence th repre enta­
tion of cp*(1r1(W,P1)) in GL(V(Po)) is isomorphic to the repr s ntation 
of 1r1(W,P1) in V(x1) 0 V(yi), which is again i omorphic to the r pr­
sentation of7ri(C-{0,1},x1)x7r1(C-{0,1} yi) in V(xi)0V(y1)· This 
implies that N � M( a, b, c) 0 M( a, b, c). 

If g and g' (E M(a,b.c)) hav eigenvalues (A,p) and (A',p/) then 
th eigenvalues of g 0 g' are AA1 ,Af-11 ,f-1 A1 J.-lf.11• B cau E4 (a, b c, c') ha 
exponents 0, 0, 0, E + 1/2 along C (se Section 1), the eig nvalues of r3* 
are 1, 1, 1, -1. Hence 13* cannot be contained in M(a, b, c) 0 .�1(a, b, c). 
This implie that Nn < 13* >= {1}. I 

4.2. Case of E tf_ Z 
Assum that c is not an integer. Recall that M4 = N c · < /h, r2* > 

(s e Section 2.2). Since /h and 12* ar of finit order and satisfy 
!hr2* = /2*/h, < /h,/2* >is also of finite order. H nee M4 is finit 
if and only if N c is finite. The fini t nes of N c i a direct concequ nee 

of the following two 1 mmas. 
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L E MMA 4.2.1. Assume that M4(a, b, c, c' ) is irreducible and that 1-
c, 1- c' = 1/2 mod Z then 

and M4( a, b, c, c' ) i imprimitive. 
PROOF: In this case, generators of TJ* of 1\1!4 in Section 2.2 are as follows: 

'Pr1* = (00 01 0 -1 0 0 
0 0 1 0 � ) <.p, -1 ( 1 0 0 1 

1Pr2* = o o 0 0 
0 0 

-1 0 

where {31 = r34 = sin Jra sin Jrb, {32 = {33 = -cos Jra cos Jrb. 

Put 

and let 

� ) 'P -1 

be sub spaces of V = V ( P0). Then r1 *, r2* int rchang Vo and V1, and 

r3* fixes Vj (j = 0, 1) invariant. This means that M4 (a, b, c, c') is im­

primitive and that V0, V1 are invariant under 

(<[3,[2{3r;- 1,[1{2 >)*. 
Put 

Then gh is identity on V1 and g2* i identity on V0. Hence we have 

N ( -1 -1 ) c = < g1, gog1go , g2, gog2go > * 

�(< g1,gog1go1 >)* x (< g2,gog2go1 >)*. 

The operations of gJ* (j = 0, 1, 2) on V0 and V1 are as follows: 

(�� ) go.= Go ( ��) , ( �� ) gh = Gr ( �� ) , ( �) g2. = ( �:�) , 

( �:) go. = Go ( �: ) , ( �:) g2. = Gr ( �: ) , ( �:) gh = ( �::) 
9 



where 

Hence 

( < 9I, 9o9I9oi > )*IVo � Nt(a, b, c)� NI(a, b, c' ) 
( < 9I 9o9I9oi > )*lVI = { I } . 

(< 92,9o929oi >)*lVI � NI(a,b,c) � N1(a,b,c') 

( < 92, 9o929oi > )* lVI = {I}. 

Thi proves that 

Nc(a,b,c,c') � NI(a,b,c) x NI(a,b,c) � NI(a,b,c') x JVI(a,b,c'). 

I 

L EMMA 4.2.2. Assume that M4(a, b, c, c') is irreducible. 
If 1 - c', b- a = 1/2 mod Z then 

Nc(a,b,c,c') � NI(a,b.c) x N1(a,b,c). 

If 1 - c, b - a = 1/2 mod Z then 

Nc(a,b,c,c') � NI(a,b,c') x NI(a,b,c'). 

In any case, M4( a, b, c, c') is imprimitive. 

PROOF: Assume that 1 - c' b- a = 1/2 mod Z. Another statement 

under the assumption of 1 -c, b - a = 1/2 mod Z i prov d in the sam 

way. In this cas w have 

��h 
= (! 

0 
e(l- c) 

0 
0 

c 
0 0 

0 1 0 
IP"'/2* = 0 0 -1 

0 0 0 

0 
0 
1 
0 

0 ) 
0 
0 rp, 

e(l- c) 

�) �' 
-1 

_ (I _ e( ( c - 2a) /2) 

( 
� ) 

( 

) 

) 
��3* -

2 sin 1rc 
� 

�31, �32, 133, 134 �, 
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wher 1'31 = r33 = sin 27Ta, r32 = 1'34 = sin 27T( c - a). 
Put 

and let 

be sub spaces of V = V ( P0). 

Then 1'2* interchanges Vo and V1, and rh ,[3* fix Vj (j = 0, 1) invari­
ant. This means that M4( a, b, c, c' ) is imprimitive and that V0, V1 are 
invariant under ( < [1' [3' r2r3r21 > )*. 

Put 

9o = 1'1, 91 = r3, 

Then 9h is identity on V1 and g2* is identity on V0. Hence we have 

g5g2g�j j E Z} >)* 
j E Z} >)*X(< {96929�1 

The operations of g0*, gh, g2* on V0 and V1 are as follows: 

( ��) go. = Go ( �� ) , ( �� ) gl• = G1 ( ,p�) , ( ��) gh = 
( ��) , 

( 
,p: ) go. =Go 

( �:) , ( ,p:) g2. = G1 ( �:) , ( ,p: ) gh = ( �:) 
where 

G -I 
e((c-2a)/2) (1)( ) 1 - - . 1 1'31' 1'32 . 

In 7TC 

Hence Lemma 4.2.2 holds in the same way as the previous le1nma. I 

5. PROOF OF "0 LY IF'' PART OF T H EOREM 1 

It is sufficient to prove the following 1 1nma. 

LEMMA 5. Assume that M4 (a, b, c, c' ) is finite and irreducible and that 
c tf_ Z. Then at least two of 1- c, 1- c', b- a are equivalent to 1/2 mod 
Z. 
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PROOF: From Lemma 3.2, 3. 3 and 3.4 w have 

(1) (1-c, c-a-b, b-a) b longs to the S-list, 

(2) (1 -c', c' -a-b b-a) belongs to the S-list, 

(3) (1-c', c'- a-b-2(1-c), b-a) belongs to the S-list, 

( 4) (1- c, c-a-b- 2(1-c'), b-a) belongs to the S-list, 

( 5) ( 1 -c, ( c' -a -b) + ( b -a) -( 1 -c), 1 -c') belongs to the S-list. 

Suppose Lem1na 5 does not hold. Then by the symmetry, we may assume 
that 

1-c=plk, 1-c'=p'lk' k,k'E{3.4,5}. 

Put 

c-a-b= qlm, c'-a-b = q'lrn', b-a = rln m,rn
'

,n E {2,3,4,5}. 

We will derive contradictions in any of the following cases. 

(Case 1) k = k' = 4, p,p' are odd. 
The property ( 4) implies that the denominator of c-a-b- 2(1-c') 
qlm- 2p' lk' is one of 2,3,4,5. Hence m is eaven. If 171 = 4 then 

E = qlm- p'lk' = 0 or 112 mod Z. Since c,c + 112 tf_ Z, this is a 
contradiction. If m = 2 then c-a-b-2(1 -c') = qlm- 2p' I k' E Z 
and hence ( 4) does not hold. This is a contradiction. 

(Case 2) k = 4, k' = 3 or 5, p is odd. 
The property ( 5) implies that k' = 3. Then ( 4) implies that the 

denominator of c-a-b- 2(1-c') = qlm- 2p' I k' is 3 and hence m = 3. 
By the same reason, ( 3) implies that 1711 = 4. Since E is not an integer, 
the denominator of c =c-a-b- (1- c') = qlm-p' lk' is 3. On the 
other hand E = c'-a-b-(1- c) = q' lm'- plk has even denominator. 
This is a contradiction. 

(Case 3) k and k' are odd ( =3 or 5). 
The properties ( 3) and ( 4) imply that Tn1 = k and rn = k' respectively. 

Since c =(c-a-b)-(1- c') = (c'-a- b)- (1-c ) is not an integer, 
we have k = k' which is the denominator of E. Then ( 5) i1nplies that the 
denominator of ( c' -a - b) - ( 1 -c) + ( b -a) = c + ( b -a) is k. Hence 
n = k. This concludes that k = k' = m = m' = n. 

(Case 3.1) k = k' = m = m' = n = 3. 

Since E = c'-a-b- (1- c)= (q'-p)l3 tf_ Z, we have p =f- q' mod 3. 
On the other hand ( 3) implies c'- a- b- 2(1-c) = (q'- 2p)l3 tf_ Z. 
Hence p = q' mod 3. This is a contradiction. 
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(Cas 3. 2) k = k1 = m = rn 1 = n = 5. 
In order that (1) and (2) hold, ther are two cases, that is, 

I I _ ±1 I I - ±2 d ,... p,q,p ,q ,r = or p,q,p ,q ,r = mo o. 

Since E; = ( q1- p )/5 = ( q- p1)/5 is not an integer, we have p 1=. q1, p1 1=. q 
ll10d 5. 

If p, q,p1, q1, r = ±1 (and p 1=. q1) mod 5 then the numerator of c1 -
a- b- 2(1- c) = (q1- 2p)/5 is congruent to ±2 mod 5. 

If p, q, p1, q1, r = ±2 (and p 1=. q1) mod 5 then the numerator of c1 -
a- b- 2(1- c) = (q1- 2p)/5 is congruent to ±1 mod 5. 

In any case (3) do s not hold. This is a contradiction. 

This con1pletes the proof of Lemma 5. I 

6. LEMMAS ON l\1( a, b, c) 

In this section we denote 

.\ = 1 - c, f.-l = c - a - b, v = b - a 

and we assume that M(a, b, c ) is finite irreducible. Recall that N1 (a, b, c) 
is the smallest normal ubgroup of of j;J( a, b, c) containing Lh ( s e Sec­
tion 2.1). In this section we fix the base v 1, v2 of V ( x 0) and identify 
L x * and G x x = 0 1. 

LEMMA 6.1. Assume that.\= v = 1/2 mod Z. Then L0* rf_ N1(a,b,c). 

PROOF: We hav G6 = I, (G0G1)2 = o:I for sorn root of unity o:. 

Since G0G1 G01 
= o:G;:-1, G1 and G0G1 G01 have th comrnon eigen 

vectors. This m ans that N1 i reducible h nee we have 1'11 #- M(a, b, c). 
This implies Go rf_ N1. I 

LEMMA 6.2. Assume that .\ = 1/2, p, v 1=. 1/2 mod Z. Then 

Lo* rf_ N1(a,b,c). 

PROOF: If the denominator of 11 is odd (i . . 3 or 5) then th detern1inant 
of any L* E N1 cannot be -1 = d t(G0). Rene G0 rf_ 1V1. If the 
denominator of p, is 4, then direct computations show that th ord r of 

M(a, b, c ) and N1 are 192 and 96 (refer to Shephard-Todd [16]). Hence 
Gorf.N1.1 

LEMMA 6.3. Assume that v = 1/2, .\, p, 1=. 1/2 mod Z. If both of the 

denominators of.\ and f.-l are 5 then Lo* E N1. Otherwi e 

< Lo* > nN1 ={I}. 

PROOF: In the first case, we may as ume .\ = 1/5, p, = 2/5. Then by 
direct calculations we have (G0G1)2 = (GoGf)3 = o:I, o: = e(1/10). Th 
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equality (GoGI)2 = o:I impli s o:G� = (G0G1G01)(G6G1G02) E Nr. 

The equality (GoGf)3 = o:I implies aG6 = (G0GfG01)(G6GfG02) 
(G�G1G03) E N1. H nee Go E N1. 

In the case of (A, p,) = (1/3, 1/3), by direct computations, we know 
that the orders of M(a,b,c) and N1(a,b,c) are 72 and 24 (refer to 
Shephard-Todd [16]). H nee< G0 > nN1 ={I}. 

In the case of {A,p} = {1/3, 1/4}, {1/3, 1/5}, {2/5, 1/3}, the denom­
inators of A and p are relatively prime. Herre we hav < G0 > nN1 = 
{I}. I 

7. STRU T R E OF FI ITE IRREDUCIBLE M4(a, b. c, c') 

The structure of M4 with E E Z is stated in Proposition 4.1. 'l-le 

will consider finite irreducible M4 (a, b. c, c') with E tf_ Z. Recall that 

Af4(a,b,c,c') = Nc· < !h,!2* >is irnprimitive in thi. case (Lernma 

4.2.1, 4.2.2). 

THEORE�\11 7.1. Assume that M(a,b,c) i finite irreducible and that E tf_ 
Z, c,c' = 1/2 mod Z. Then M4(a, b ,c,c') = IVc· < !h·r2* >with 
Ncn < !h,!2* >={I}, Nc � N1(a,b,c) x N1(a,b,c), < !h,!2* >� 
z2 X z2 and M(a, b, c)/N1 � Z2. 

PROOF: Since c-a-b= c + 1/2 "t. 1/2, Lemma 6.1 and Lernma 6.2 
imply that L0* tf_ _V1. whence M(a,b, c)/N1(a,b, c) � Z2. By Lemn1a 

4.2.1, we hav Nc � Nr(a,b,c) X N1(a,b,c) and < Jh,f2* >� z2 X z2· 
Next we will prove Ncn < /'h,f'2* >= {I}. As in the proof of 

L mma 4.2.1, V = Vo + V1. Vo, V1 are invariant und r J\ c whi le !h, 12* 
interchange V0 and V1. H nee !h, 2* tf_ ]\c. In th proof of LPmma 
4.2.1, we have shown that the restrictions of (1112)* and Nc to Vo are 

L0* and N1(a, b, c). Since L0* tf_ N1(a, b, c) by Lemma 6.1, 6.2, we hav 

(1112)* tf_ Nc. This proves that Ncn < [h, 2* >={I}. I 

THEOREM 7 .2. As ume that M( a, b, c) i. finite irreducible and that E tf_ 
Z, c

'
, b- a= 1/2 mod Z. Put c = pjk with (p, k) = 1. 

(7.2.1) If both of the denominators of1-c and c-a-b are 5, then !h E 
Nc, hence we have M4(a, b, c, c' ) = N · < 12* > with Ncn < 12* >= 
{I}. And we have Nc � N1 (a, b, c) x N1(a, b, c)= M(a, b, c) x M(a, b, c) 
and < 1'2* >� z2. 

(7.2.2) If the condition of (7.2.1) doe not hold, then l\I4(a, b, c, c') = 

Nc· < !h,!2* >with Ncn < !h,!2* >= {I}, iV � N r (a,b,c ) x 

N1(a, b, c), M(a, b, c)/N1 � zk and< !h, F2* >� zk X Z2 . 

14 



PROOF: A is hown in the proof of Lemma 4.2.2, V = V0 + V1 and 1'2* 
interchange V0 and V1 while rh and ,3 * fix (set theoretically) l j j = 

0, 1. Hence any elernent of Nc also fix Vj . Consequently we have 1'2* rf_ 
Nc. By Lemma 4.2.2, the restriction of rh and Nc to Vj are L0* and 
N1(a, b, c) for each j = 0, 1. 

In case of (7.2.1), by Lemma 6.3, L0* E N1. This implies rh E Nc. 
Hence M4(a, b, c, c

' ) = Nc· < [h, r2* >= Nc· < !2* > with Ncn < 
'Y2* >={I}. By Lemma 4.2.2, we have Nc � N1(a,b.c) x N1(a,b,c) = 
AI(a,b,c) X M(a,b,c) and< f2* >� z2· 

In case of (7.2.2), by Lemma 6.3, < L 0* > nN1 = {I}. Hence < 

[h, [2* > nNe = {I}. By Len1ma 4. 2.2, we have Nc � N1(a, b, c ) X 

N1(a,b,c) and< [h,[2* >� zk X z2. I 

8. EXAMPLES 

We assume in this ection that c = c
' 

= 1/2 and that M4( a, b, c, c
' ) 

is irreducible. We fix the bas v1, v2 of V(x0) (see Section 2.1). Recall 
that 

V= Vo+V1=<'l/J1, 2>+< 3, 4>, 

where Vo and V1 are invariant subspace of V = V(Po) under go*, 9h· g2* 
(s e the proof of Lemma 4.2.1). 

Put 

w = (�1, 'lfJ2, 1r 3, 'lfJ4)· 

Then W defines a multi-valued locally biholomorphic mapping of P 2 -
L x  u L y  u L u C into P3. Let S\II b th clo ure of it imag in P3. In 
the following example S\II are smooth hypersurfac s and W -1 

are d fined 
by meromorphic functions on S\If. The defining functions of S\II and th 
inverse mapping functions are compos d of the invariant ( hornogeneous) 
polynomials E C[v1, v2] under the actions of M(a, b, c). First we pr pare 
th following two lemmas. 

LEMMA 8.1. A. sume that c, c
' 

= 1/2 mod Z. 
(1) Iff( v1, v2) is an invariant polynomial under the action of M( a, b, c ) 

then J('l/J1,'l/J2) + j('ljJ3,'ljJ4) and f('ljJ1, 2)f('ljJ3,'ljJ4) ar both invariant 
under M4(a, b, c, c

' ) . 

(2) If j(v1,v2)Lh = j(v1,v2) and j(v1,v2)Lo* = -j(v1 12) then 
f( 1, 2? + f( 'ljJ3, 4)2 and f( 1, 2 )J( 3, 4) are both invariant under 
M4(a, b , c, c'). 

P ROOF: 
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Proof of ( 1 ). f( lf-11, 2) and f( 7/J3, 4) are invariant under go*, gh. 9h 
whilcf('1r'l, '2)r2* =f(7/J3 4). Rene (1)holds. 

Proof of (2). f( 1 2)2 + j(7/J3, 4)2 is invariant fro1n (1). By the 
proof of Lemma 4.2.1, f(7/J1, 2) and f('ljJ3, 4) are both invariant under 

Nc. Since f('tfJl, 2)9o* = -f( 1, 2), J('ljJ3,'1jJ4)go* = -j('l/;3, 4) and 
f( 'l/J1, 1/J2 )!2* = f( 7/J3, 4 ) , w know that f( 7/Jl, 7/J2 )J( 'l 3, 'l/;4) is invariant 
under < rh· r2* >. Hence (2) holds. I 

In Shephard-Todd [16] three invariants 

are considered. Wh re n denotes the degree of f n, h2n-4 is the Hessian 
of In of degree 2n - 4 and t3n-6 is the Jacobian of f n and h2n-4 of 
degree 3n- 6. For th application to J14 (a, b, c, c'), we will calculate the 
definite forme of them. 

We put 

' r(a)f(b) 
vl r( b ) F( a, b, 1 + a + b -c; 1 - X ) ' 1+a+ -c 

' r(c-a)f(c-b) ) c-a-b b ) v2 = r( b) ( 1 -X F( c -a, c -b, 1 + c -a - ; 1 -X . 
1+c-a-

L EMMA 8.2. By the analytic continuations along real segment 0 < x < 

1. we have 

where 

' 7T 

v1 =r(1+a-c)f(1+b-c)
(v1-v2)' 

' 7T 

v2 =- f(1+a-c)f(1 +b-c)(f3v1 +v2)' 

(3 = _ 

s1n 'iTa in 1rb 
sin n ( c-a ) in n( c -b)" 

PROOF: This follows from th conn ction fonnulas for E(a b,c), given 
in [4], for exa1nple. 1 

In the following examples we put 

Example 8.3. c = c' = b-a = 1/2, c + 1/2 ( = c-a-b) = 1/n. 
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In this caSE\ f3 (in th previous le1nma) = 1. Hence 

invariant under M (a, b, c). Put 

Then Qn i invariant under Lh but QnLo* = -Qn. From Lemma 8.1, 

we know that 

Pn(7/Jl,7/J2) +Pn(7/J3, 4), Pn(?/J1,7/J2)Pn(7/J3,7/J4), 

Qn(?/Jl, 2)2 + Qn(7/J3,7/J4)2. Qn(7/J1,?/J2)Qn(7/J3,7/J4) 
are invariant under M4( a, b, c, c'). Since the exponents along L are 

-1/2n, -1/2n, (n-1)/2n, (n-1)/2n, Pn(?/Jl, 2)+Pn(7/J3, 4) is constant 

while other three invariant functions are at most one degre polynomi­

als in _\:", Y. Since Pn( 7j;1, 2) is invariant under gh = r3*, and go* = 

(!1!2)*, Pn(?/Jl, 2) ha the following form: Pn(?/Jl· 2) = Ao(X, Y) + 
A1(X, Y)(XY)112. Then we have Pn(7/J3, 4) = Ao(X, Y) 
-A1(X, Y)(XY)112. Hence we know that A0 i constant 

( = 2( [((;/[(�)) )2) and A1 = 0. By expanding at X = 0, Y = 0, we have 

2 2 f(a)f(b) 2 Qn(?/Jl· 2) +Qn(7/J3, 4) =8(
f(c)f(c')

) (-X"+Y) 

Q (, ,, )Q ("' ' 4) =4( 
f(a)f(b) 

)2(X _ Y) n ¥-' l i 2 n ¥-'3, r(c)f(c') 

Thus w have proved that 

which is a smooth hypersurfac of degre n, and that w-1 i given by 

X=(Qn(?/Jl, 2) +Qn(7/J3, 4))2 

(Pn(?/Jl, ?/J2) + Pn(7/J3, 4))2' 

Y = (Qn(?/Jl, 2)- Qn(7/J3, 4))2 

(Pn(?/Jl, ?/J2) + Pn(7/J3, 4))2 . 

Recall that M4( a, b, c, c') is of ord r 4n4 with center of order n. 

Example 8.4. c = c' = 1/2, b-a =  c + 1/2 (=c-a-b) = 1/3. 
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In this ca e {3 = ( J3- 1)/( J3 + 1). M(a, b, c) is th group No. 6 in 
Sh phard-Todd 's li t, the order of which i 48 and the center of which 

is {e(k/4)110::; k::; 3}. Ther ar invariant polynomial· j4(v1,v2) and 
t6(v1,v2)2 of degre 4 and 12 ( Sh phard-Todd [16]). In order that f4 
shoud be invariant under Lh, f4 must be of th forn1 f4 = v �4 + av � v;3. 
In order that f4 shoud be invariant under L0*, by dir ct computations , 

we hav 

j4( v1, v2) = w{ + 2/3wiw� - wi. 

By a constant multiplication, we have 

We al o have 

where 

tG('l/;1, 2)2+ t6('l/;3, 4)2=2k(X+Y), 
t6('l/;1, 2)t5('lj;3, 4) =k(X -Y), 

k=/32 ( r(a)f(b) ) 10 ( f(1+a- c)f(1+ b-c)) 2 

f(c)f(c') f(2- c)f(c') 

Thus w hav proved that 

which i a smooth hypersurfac of degree 4 and that w-l i given by 

where 

2) +t6('l/;3, 4))2 

2) + !4('l/;3, 4))3) 
2) -t6('l/;3, 4))2 

2) + !4('l/;3, 4))3 

a=2(3 
r(a)f(b)f(2- c) 

= 24J3. ( ) 2 

f(1 +a- c)f(1 + b-c)f(c) 

Example 8.5. c = c' = 1/2, c:+1/2 (=c-a-b)= 1/3, b-a = 1/4. 
In this case {3 = (J3- V2)/( J3 + V2). M(a, b, c) is the group No.14 in 
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Shephard-Todd's li t, th ord r of which is 144 and th center of which 

is {e(k/6)110:::;; k:::;; 5}. Th r are invariant polynomials j5(vi,v2) and 

t1 2( VI, v2 )2 of degree 6 and 24 (Shephard- Todd [16]). 
By direct computation·, we have 

f ( ) 6 5 4  2 5 2  4 6 
J 6 VI, v2 = WI + WI w2 - WI W2 -w2 1 

i12 (VI 1 V2) 

W also hav 

where 

ti2( '¢I, 2 ) 2 + ti2( '¢3, 4)2 =2k(X + Y), 
ti2('¢1, 7jJ2)t12('¢3,Y-J4) =k(X- Y), 

) 22 ) 2 
k = {35 ( r(a)r(b) (r(l +a- c)r(l + b - c) 

r(c)r(c') r( 2 - c)r(c') 

Thus w have proved that 

which i a smooth hypersurface of degree 6 and that \]! -l is given by 

where 

X=a(t12('l/J1, 2) +t12('¢3, 4))
2 

(!6(7/Jl, 2) + f6('l/J3, 4 ) )4 ' 

Y=a(t12('¢1, 2)-t12('¢3, 4)? 
( !6 ( 7/Jl' 2) + !6 ( 'l/J3' 4) )4 

j3 ( r(a)r(b)r( 2 - c) )2 
a-4 -

r(1 +a- c)r(1 + b - c)r(c) 

Example 8.6. c = c' = 1/2, c +1/2 (=c-a- b)= 1/4, b-a = 1/3. 
In this case (3 = (-/2- 1)/(-/2 + 1). M(a,b,c) is the group No.9 in 
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Shephard- Todd's list, the order of which is 192 and the center of which 
is { e( k /8)110 :::; k :::; 7}. The following polynomial 

satisfi s f6Lo* = f6, f6Lh = Af6. The polynomials hs and ti2 are 
invariant under M( a, b, c). We have (up to constant multiplications) 

We also have 

where 

t12(1/h, 2)2 + t12(1/J3, 4)2 =2k(X + Y), 

t12(1/J1 1/J2)t12(1/J3,7/-'4) =k(X- Y), 

k=(35 (r(a)r(b))22 (r(l+a-c)r(l+b-c))2 

r (c) r ( c' ) r ( 2 -c) r ( c' ) 

Thus we have proved that 

which i a smooth hypersurfac of degree 8 and that 'l1 -l i given by 

where 

X =a 
(t12( 1/J1, 2) + t12( 'ljJ3, 
(hs('l/JI, 2) + hs(1/J3 

y =a (t12(1/J1, 2)-t12(1/J3, 
( hs ( 1/J1, 1/J2) + hs ( 'ljJ3, 

(3 r(a)r(b)r(2-c) 
a-2 - (

r(l +a- c)f(l + b-c)f(c) 
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Example 8.7. c = c' = 1/2, c+1/2 (=c-a-b)= 1/3, b-a = 1/5. 
JI(a. b, c) is th group No.21 in Shephard-Todd's list, the ord r of which 

is 720 and the center of which is {e(k/12)110 � k � 11}. The following 
polynomial 

i invariant under M( a, b, c). The polynomial t30 sati fies t3oLh = t3o 
and t30L0* = -t3o. 

By the same reason as previous examples, w have 

which i a smooth hyper urface of d gre 12 and that w-1 is given by 

where 

2) + t3o('¢3,'¢4))2 

2)+!12('¢3, 4))5' 
2)- t3o('¢3, 4))2 

2)+!12('¢3, 4))5 

( ) 2 
f3 

r(a)f(b)f(2- c) 
a-8 -

f(1 +a- c)f(1 + b- c)f(c) 

Example 8.8. c = c' = 1/2, c+1/2 (= c-a-b)= 1 /5, b-a = 1/3. 
M(a, b, c) is th group No.17 in Shephard-Todd's list, the ord r of which 
i 1200 and the center of which is {e(k/20)110 � k � 19}. Th following 
polynomial 

satisfies f12Lo* = f12, j12Lh = e(1/5)f12· The polynomial h2o is invari­
ant und r M( a, b, c) and the polynomial t3o satisfies 

t3oLh = t3o and t3oLo* = -t3o. 
By the sam reason as previous example we have 
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which i. a smooth hyper urfac of degree 20 and that w-1 is given by 

where 

_y =C\' (i3o('l/J1 )2 ) + t3o('l/J3, IP4))
2 

(h2o('l/JJ, 2)+h2o('l/J3,'ljJ4))
3
' 

y =C\' (t3o('l/JI, 2) -t3o('l/J3,'ljJ4))
2 

(h2o('l/JI, 2 ) + h2o('l/J3, 4))3 

( ) 2 
Q r(a)r(b)r(2- c) 

C\' - 2{-/ -
r(l +a- c)r(l + b- c)r(c) 
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