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Appell’s F; with Finite Irreducible Monodromy Group

Mirsuo KATO

1. INTRODUCTION

Appell’s hypergeometric series

(a,m+n)(bm+n) _ my-n

by e ‘
Fy(a, b, ¢, X, Y) Z (e,m)(c",n)(1,m)(1,n)

with (a,n) = I'(a + n)/T'(a), satisfies the following system of differential
equations of rank four ([1]):

X(1-X)zxx =Y 2yy —2XY2xy +czx
—(a+b+1)(Xzxy +Yzy)—abz=0

Y(1-Y)zyy — X2y —2XYzyvy + 2y
—(a+b+1)(Xzx +Yzy)—abz=0

which we denote by E4(a,b,c,c').
This 1s an extension of Gauss’ hypergeometric series

(a,n)(b,n) ,
Efayb, & il = Z mr

with hypergeometric differential equation (HGD for short)
(1 — x)d*z/dz® + (c — (a + b+ 1)x)dz/dr — abz = 0,

which is of rank two and is denoted by E(a,b,c).
Denote the monodromy group of E(a,b,c) by

M(a,b,c),
and that of E4(a,b.c,c') by

My(a,b,e,c')

(see Section 2 for the definitions).




It is known that M(a,b, ¢) is finite and irreducible if and only if
(1—c,c—a—b.b—a) belongs to the Schwarz’ list (S-list) ([15],[3]).

As for Appell's F} and Lauricella’s Fy, Sasaki [12] and Cohen-Wolfart
[3] obtained the finiteness conditions of the monodromy groups. (Re-
cently professor Sasaki told the author that Theorem 2 in [13] asserting
non-existence of Appell’s F, with finite irreducible monodromy group is
false.)

The singular locus of Ey(a,b.c,c')is Ly ULy UL, UC, where Ly =
(X =0}, Ly ={Y =0}, C={(X-V)2-2(X +Y)+1 =0} and
L is the line at infinity. The differential equation FE4(a,b,c,¢’) has
characteristic exponents 0,0,1 — ¢,1 — ¢ along L x. This imiplies that, at
any point P € Lx—LyUL_UC, E4(a,b,c,c') has a fundamental system
(hy,hy. X'=Chy, X17%h,) of solutions, where each h; is holomorphic at
P. Similarly Ej(a,b,c,¢') has exponents 0,0.1 — ¢, 1 — ¢ along Ly,
a,a,b,balong L., 0,0,0,¢ 4+ 1/2 along C', where

2= i =@ == 1

(see [8]).

Since Fy(a,b.c,c'; X,0) = F(a,b,c; X) and Fy(a,b,c,c’:0,Y)
= F(a,b,c':Y), we can show that if My(a,b,c,c')is finite and irreducible
then so are M(a.b, c) and M(a,b,c’) (see Section 3).

In this paper we will prove the following theorem.

THEOREM 1. My(a,b, c,c') is finite irreducible if and only if the following
two conditions hold.

(1) M(a,b.c) and M(a,b, ') are finite irreducible.

(2) The quantity ¢ is an integer, or at least two of 1 —c,1 — ', b—a
are equivalent to 1/2 modulo Z.

The structure of these finite irreducible monodromy groups are stated
in Proposition 4.1, Theorem 7.1 and Theorem 7.2.

Let U = (91,12,13,1%4) be a system of fundamental solutions of
Ei(a,b,c,c'). Then ¥ defines a (multi-valued) mapping of U := P? —
LxULy UL, UC into P3. Sasaki-Yoshida [14] proved that if ¢ = 0 then
the image ¥(U) belongs to a smooth quadratic surface. In Section 8, we
will verify, in the cases ¢ = ¢’ = 1/2 and (c —a —b.b—a) = (1/n,1/2)
or (1/3,1/3) or {¢ —a — b,b—a} = {1/3,1/4} or {1/3,1/5}. that the
closure Sy of ¥(U') is smooth hypersufaces in P? and the inverse of ¥
15 single valued.

The author thanks to professors J. Kaneko, T. Sasaki and M. Yoshida
for valuable advises.
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2. MONODROMY REPRESENTATIONS

2.1. M(a.b,c)

Assume that ¢ € Z and that M(a, b, c) is irreducible. Put

['(a)l'(b) _
_—F(c) JE (@ Dk @ )

’Ul =

I'(1 —c)(1l+b—c
) — ( +(1F(;)—(c)+ ().Tl_CF(1+(L—(Z,1—+—])7C.2—C:1‘).

Then v; and v, form a system of fundamental solutions of E(a,b,c).
Let Lo, L1 be the loops surrounding 0,1 positively with base point r¢ =
1/2. We denote by V(xg) the set of germs of holomorphic solutions of
E(a,b,c). Then for any L € 7;(C — {0,1},z¢) and f € V(x¢), the
analytic continuation fL, of f along L is again belongs to V(xg). We
write

F(LL"), = (fL.)L,, = fL.L,,
if L' is continued after L. This defines a monodromy representation
1 (C —{0,1},20) — GL(V(x0)).
For a subset S C 7;(C — {0,1},2), we denote
8¢ = Ya|LEST.
We call
M(a,b,c) = M(a,b,c;zq) = (m1(C — {0,1}, x9))«
the monodromy group of E(a,b,c).
For v = Y(v;.v2), we denote by vL, the analytic continuation

Y(vy L. vo L) of v along L. Then by use of connection formulas for Gauss’
HGD (see, for example, [4]), we have

vLox = Gov,
vLie = Gyv
where b
A N
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2 I+2\/—_1c((c— a—b)/2)

sinwe

(1 > (—sinmasinwb,sinm(c —a)sina(c — b)),

e(x) = exp(2ryv/—1z).

Let Ny(a,b,c;x0) = Ni(a,b, c) be the smallest normal subgroup of
M(a,b,c) containing L;.. Then we have

M(a,b,c) = Ny(a,b,c)- < Lgy > .

2.2. My(a,b,c,c')

The monodromy representations of Ey(a,b,c,c') are first founded by
Kaneko [6] and Takano [17]. Here for our convenience, we adopt the
monodromy representation in [9].

We assume in this section that E4(a, b, c,c') is irreducible and that
¢, ¢ Z. Recall that E4(a,b,c,c") is irreducible if and ounly if none of

a,b,c—a.c—b,c' —a,d’ —b,c+c —a,c+c —bisaninteger ([9],[10]).
Hence

P1 ::%H(a,b,c,&-‘fa Y),
[(1+a—c)T(1+b—c)
Y2 = [(2 —e)(c)
XI_CF4(1+(L—C,1 +b-¢2-eciX,Y),
Frl4+a—-c)T(1+b-¢")
8 S T(c)[(2 — )
Y'"Fil+ta—-¢,14b-Cc,¢,2-;X,Y),
o2+ a-c=I(2+b—c-c)
Y4 1=

I'2—-col(2-¢)

X' Y'"UF(24+a—c—d,2+b—c—c,2—¢c2- X, Y)

form a system of fundamental solutions of F4(a,b,c,c').
Let 6 be a sufficiently small positive number and put Py = (6,0).

Recall that U = P2 — Ly ULy ULy UC. Then the fundamental group
m1(U, Py) is generated by the following v,y and ~vs:

T EalE = ve(h- Ol £ 1T s

g ={X S0.Y = ddit) 0t < 1),
1 E{XX=Y=1/4-{@/e=blil) 08t< 1)
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We denote by V(Py) the set of germs of holomorphic solutions of
E4(a,b,c,c') at Py. Then for any v € (U, P), 7+ (the analytic contin-

uation along v) i1s an element of GL(V(FP)). This defines a monodromy
representation

m(U,Py) — GL(V(F)).

We denote the image by
My(a,b,c,c'; Py) = My(a,b,c,c)

and call it the monodromy group of Ejs(a,b.c,c).
Put » = Yp1,92,93,%4), then Y¥j« J = 1,2,3 are represented by
matricies in the following way.

THEOREM 2.2. Assume that E4(a,b.c,c') is irreducible and that c.c' ¢
Z then we have

1 0 0 0
o ea=c) 0 0 |
PV = 0 0 1 0 ¥
0 0 Dy efll == c)
1 0 0 0
o1 0 0 |
whens luaed @(1— &) 0 g
0 0 0 e(1—¢)
1
Py = [ 1+ —6(6/2—), i (73157325733, 734) | 5
sin Tcsin we
il
where
v31 = sinrasin b, y3p = —sinn(c — a) sinw(c— b),
Y33 = —sin7(c’ —a)sinnw(c' —b), v34 =sinn(c+ —a)sinw(c+ —b).

PRrOOF: By the base change of the monodromy representation in Theo-
rem 7.1 in [9], we obtain the theorem. I

Since 3 1s a loop surrounding C', we denote by
i e N !
Nc(a, b, c,c'; Py) = Nce(a, b, c,c')
the smallest normal subgroup of My(a,b, c,c'; Py) containing v3,. Then

we have
]\:[4(613 b3(lvcl) = ]VC'(CL,I). ¢, Cl)' < Vs Y2k > -
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The eigenvalues of 43, are 1,1.1,¢e(e + 1/2). Hence if e +1/2 € Q-7
then ~3, is a reflection. So we call N¢(a,b.c,c’) the reflection subgroup
of My(a,b.c,c"). The terminology of "reflection subgroup™ appeared in
Beukers-Heckman [2] for the generalized hypergeometric function ,, £, .

3. RESTRICTIONS OF E4 TO SINGULARITIES

We assume in this section that My (a,b.c,c’) is finite and irreducible.
Concerning to the characteristic exponents of Ey(a,b, c,c’) (see Section
1) we have

LEMMA 3.1. All the parametors a,b,c.c¢' are (real) rational numbers
and none of 1 —c¢.1—c,b—a,e+1/2 is an integer.

PROOF: Assume ¢ € Z. Then E4(a,b.c,c’) has a solution with logarith-
mic factor log X' (Section 2 of [10]). This contradicts to the finiteness
of M,. Hence we have ¢ ¢ Z. Similarly we have ¢'. b — a € Z. Assume
e+ 1/2 € Z. Then since 73, is diagonizable, we have 73, = I. Hence E;
is reducible. This contradiction proves that ¢ +1/2 ¢ Z.

Since ¢ ¢ Z, at Lx(= {X =0}), E4(a,b.c,c') has solutions hy,h,.
Xy X0 h, with h; being holomorphic.  Since (X1 Chg ), =
X1=¢hy for some n € Z. we must have 1 — ¢ € Q. Similarly, we have
1—c,e+1/2,a,6€Q. 1

LEMMA 3.2. M(a,b,c) is finite irreducible.

ProOOF: Let U and V be a small neighborhoods of Xy and 0 in C re-
spectively, where we assume Xy # 0,1. Then the map

{holomorphic solutions of Ey4(a,b.c,c') in U x V}

— {holomorphic solutions of E(a,b,c) in U}

defined by the restriction f(X.,Y) —— f(X,0) is one-to-one onto (Sec-
tion 2.1 of [8]). Hence M(a.b. ¢) must be finite.

Since none of a,b,c — &, c — b is an integer by the assumption of ir-
redicibility of My, M(a,b,c) is irreducible. |

By the same way we have the following lemma.

LEMMA 3.3. M(a,b,c'") is finite irreducible.

LEMMA 3.4 M(14+a—c,1+b—c), M1 +a—-.14+b-".c).
M(a,14a—¢,¢), M(b,14+b— c'.c) are finite irreducible.

PRrROOF: First we note that 1 — ¢, b — a € Z by Lemma 3.1.
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Since X'~ f(X.Y) is a solution of E,(a, b, c,c') if and only if f(X,Y)
1s a solution of E4y(1 +a —c,1 +b—c,2—c,c'), we know that My(1 +
a—c,1+b—¢2—c.c) is finite irreducible. Then. by Lemma 3.3,
M(1+a—ec,1+b—c ) is finite irreducible.

Since Y *f(X/Y,1/Y) is a solution of E4(a,b,c,c') if and only if
f(X.Y) is a solution of F4(a,1 +a — c',e,1 + a — b), we know that
Miy(a,1+a—c',c,1 + a—b) is finite irreducible. Then, by Lemma 3.2,
M(a,1 4+ a— ', ¢) is finite irreducible.

M(14a—=c',14b—c',¢)and M(b,1+b—c',c) are also finite irreducible
by the same way. [

4. PROOF OF ”1¥"” PART OF THEOREM 1

Assume the conditions (1) and (2) in Theorem 1. In each case
My(a,b,c,c’) is irreducible. The problem is to show the finiteness of
My(a,b,c,c'). We notice that a,b,c,c’ € Q by the assertion (1). This
implies that v;, (j = 1,2,3) are of finite order.

In Section 4.1, we deal with the case when s(=c+cd —a—b—1) is an
mteger. In Section 4.2, we deal with the case when e is not an integer.

4.1. Case of e € Z
Assume that € € Z. Let

o:(xr,y) — (X.Y) X=xy.Y =(1—-2)1-y)

be the branched double covering of C? onto C?. The covering ¢ is lo-
cally biholomorphic at any point (v, y) with z # y. We have ¢({x = y})
=C={(X=YP=2X+¥)y+1 = 0} Recall"'By ='(6,0), U =
Cl—LyULyUC. Put W=¢ Y (U)and P, = (r1,y;) be a point such
that ¢(P;) = Py. It is easily verified that

W = {(x,y)|ley(l —x)(1 —y)(x —y) = 0}. We have one to one homo-
morphism

Cb* : 7Tl(v‘/va}—)l) _+7T1(U7P0)'

The image of ¢, 1s a normal subgroup of 7 (U, Fy) with index 2. Precicely
speaking, we have

(U, Py) = ¢u(m(W,P1)) < y3 >
with 75 € ¢u(m (W, Py)). Hence

N = (¢u(m1 (W, P1)))s

T




1s a normal subgroup of M, with
My =N« Noge B,

This implies that 1, is finite if and only if N is finite. The finiteness of
2N 1s a direct consequence of the following proposition.

PROPOSITION 4.1. Assume that ¢ € Z and that AMy(a,b,c,c') is irre-
ducible. Then

N~ M(a,b.¢) @ M(a,b,c) :={9®¢'lg,¢g" € M(a.b,¢)}

with My(a,b.c,c') = N- <53, >, NN < 73, >= {1} and < 13, >~ Z5.

PRrROOF: Put ¢ = n. Since My(a, b, c,c") is irreducible. we have
My(a,b,e,c") ~ My(a,b,c,c’ —n) by Theorem 2.2. Hence it is enough to
prove for the case of ¢ = 0. So we assume ¢ = 0.

Since € = 0, we have

O*(Eg(a,b,c,c")) = E(a,b.c;x) - E(a,b.ciy)

(Section 1 of [7]), and {& = y} is an apparent singular locus of
¢*(Ey4(a,b.c,c")).

Since ¢ is locally biholomorphic at P;, V(FPp) 1s isomorphic to the
space of germs of holomorphic solutions of ¢*(Ey) at Py, which is again
isomorphic to V(z,) ® V(y;) where V' (2;) (resp. V(y;)) is the space of
germs of solutions of E(a,b.c) at r; (resp. y;). Hence the representa-
tion of o, (7 (W, Py)) in GL(V(Fy)) is isomorphic to the representation
of m(W,P) in V(zy)® V(yy), which 1s again isomorphic to the repre-
sentation of 71 (C—{0,1}.2;)x 7 (C—{0,1},y1)in V(z; )@V (y1). This
implies that N ~ M(a,b,c) ® M(a,b,c).

If g and ¢' (€ M(a,b.c)) have eigenvalues (A, ) and (N, ') then
the eigenvalues of ¢ ® ¢’ are AN A’ . u)\ up'. Because Ey(a,b,c,c’) has
expounents 0,0,0,z + 1/2 along C' (see Section 1), the eigenvalues of 73,
are 1,1.1,—1. Hence 73, cannot be contained in M(a, b, ¢) @ M(a.b,c).
This implies that NN < y3, >= {1}. B

4.2. Case of c ¢ Z

Assume that € is not an integer. Recall that My, = Nc- < vi4.724 >
(see Section 2.2). Since 71« and 7, are of finite order and satisfy
V1xT2x = Y2xY1xs < Yis, Y2+ > 18 also of finite order. Hence M, is finite
if and only if N¢ is finite. The finiteness of N¢ is a direct concequence
of the following two lemmas.




LEMMA 4.2.1. Assume that My(a,b,c,c") is irreducible and that 1 —
¢,1—¢" =1/2 modZ then

Ne(a,b,e,c') ~ Ni(a,b,¢) x Ny(a,b,c) ~ Ny(a,b, ') x Ni(a,b, )

and My(a,b,c,c") is imprimitive.

PRrooOF: In this case, generators of v+ of My in Section 2.2 are as follows:

1.0 0 @ 1 0 O 0
0O -1 0 O 0 1 0 0
0O 0 0 =1 O 0 © =l
1
1
ey =, Bl a- gl 6 —H12) 1 (Y31,732,733,734) |
1
where v3; = v34 = sinwasin b, v32 = 33 = — cos Ta cos h.

Put

V1 = @1+ Y4, Y2 =92+ @3, W3=@1— P4, Pg4=p2—@3
and let
Vi i=<< 10, >, Vi =< 3,94 >

be subspaces of V' = V(Py). Then 7,,. 2. interchange 13 and Vi, and
Y3+ fixes V(7 = 0,1) invariant. This means that M (a,b.c,c') is im-
primitive and that V. V] are invariant under
=)
(<Y s>k
Put
=4
gorl=="a" 2% 0 = 85 W= N2 iRi N

Then ¢;. is identity on V; and ¢, is identity on V. Hence we have

Ne =(< 1.900190 '+ 92+ 909290 > )+
~(< 91.900195 " >)e X (< 92, 909290 " > )

The operations of ¢;, (7 =0,1,2) on 1 and V; are as follows:

1 _a (¥ (¥ _ o (¥ 1> L <'z/~1>
<¢2>g0*_G0<¢2>”<¢2>gl*_61<¢2>’<Cf’2 o v2 )’
V3 R i 8 1 Y3 b 3 3 s
() o= () () o= (3) (00 ) o= ()
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where

Gg = (é _01) , Gi=1+42e((—a—0)/2) (1) (731,732)-
Hence

Vo ~ Ni(a,b,c) ~ Ny(a,b, c')
.”1

(I}

(< 915909195 " >)«
(< g1,909195 " >)«1

(< 92,909295 " >)«|Vi ~ Ni(a,b,¢) ~ Ny(a,b. &)

(< 92, 909295 ' >)«
This proves that
Ne(a,b.e,c') ~ Ni(a,b,c) x Ni(a,b,c) ~ Ny(a,b.c') x Ni(a,b,c').
|

LEMMA 4.2.2. Assume that My(a,b,c,c") is irreducible.
If 1—-d.b—a=1/2modZ then

Ne(a,b,e,c') ~ Ni(a,b,c) x Ny(a,b.c).
If 1—-¢,b—a=1/2modZ then
Nela,b,e,c’) ~ Ni(a,b,c’) x Ni(a,b,c).

In any case, My(a,b,c,c') is imprimitive.

PROOF: Assume that 1 — ;b — a = 1/2 mod Z. Another statement
under the assumption of 1 —c.b —a = 1/2 mod Z is proved in the same
way. In this case we have

1 0 0 0
{0 el-=¢) O 0
Pr1x = 0 0 1 0 ¥
0 0 0 e(l—c)
1 0 0 0
, S N 0
Lol ol o B
0O 0 0 -1
/ 1
i 92
PY3x = I—E((i.—ga)/d—) } (¥31,732-733-134) | ¥
2sm we
1
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where v3; = v33 = sin27a, v32 = v34 = sin2w(c¢ — a).
Put

V1 =@1 T @3, P2 =92+ @4, P3 =1 —P3, Y4 =@ — Py
and let
0 =<y, g > Vi =< 13,94 >

be subspaces of V' = V(Fy).

Then vz, interchanges Vy and Vi, and 714,73« fix Vj (7 = 0, 1) invari-
ant. This means that M4(a,b,c,c") is imprimitive and that V5, 1] are
invariant under (< vy, 73.727372_1 =l

Put

Jor=Y1s 91 = V3, 92 =23 Ys

Then ¢4 1s identity on V] and ¢, is identity on V. Hence we have

Ne =(< {93190’ 95929’ J €L} >),
~(<{gda19,” JEZ}>) x(< {98929y  JEZL}>)..

The operations of go«, g1«, g2+« on Vy and V] are as follows:

Y, [ Yy g O] 1\ _ (¥
(i )om=ao (1) () =an () - (30) = ()
Y3 (g Y3 Y3 V3 I E
<w4)go*‘c’°<w4>’<v4>”*‘6‘<w4>’<m>-‘“*‘<w4>

where

T A 2
GOZ(l : ), Glzf—w—w’<1>(731»732)-

0 e(l—c) sin e I
Hence Lemma 4.2.2 holds in the same way as the previous lemma. i
5. PROOF OF "ONLY IF” PART OF THEOREM 1

It 1s sufficient to prove the following lemma.

LEMMA 5. Assume that My(a,b,c,c’) is finite and irreducible and that
e € Z. Then at least two of 1 —¢,1 — ', b— a are equivalent to 1/2 mod

Z.
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PROOF: From Lemma 3.2, 3.3 and 3.4 we have

(1) (1=—c.c—a—b,b—a) belongs to the S-list,

(2) (1 —=c',d" —a—b,b— a) belongs to the S-list,

(3) (1—c',d —a—b—-2(1—-c),b— a) belongs to the S-list,

(4) (1—c,e—a—b—2(1—-c"),b—a) belongs to the S-list,

(5) (1 —¢, (' —a—=b)+(b—a)—(1—--c),1—c") belongs to the S-list.

Suppose Lemua 5 does not hold. Then by the symmetry, we may assume
that
l—c=p/k, 1=(¢ =p'/k kI €{3,4.5}.

Fuat
c—a—b=gq/m, d—a-b=¢q¢'/m', b—a=r/n m,m' . n€{23,4,5}.

We will derive contradictions in any of the following cases.

(Case 1) k = k' =4, p,p' are odd.

The property (4) implies that the denominator of c —a —b —2(1 — )
= q/m — 2p'/k" is one of 2.3.4,5. Hence m is eaven. If m = 4 then
e = ¢q/m—p'/k" =0or 1/2 mod Z. Since e,6 +1/2 ¢ Z. this is a
contradiction. If m =2 thenc—a —b—2(1—-¢') = ¢/m—2p'/k' € Z
and hence (4) does not hold. This is a contradiction.

(Case 2) k=4, k' =3 or 5, pisodd.

The property (5) implies that &' = 3. Then (4) implies that the
denominator of c—a—b—2(1—¢') = ¢/m —2p'/k" is 3 and hence m = 3.
By the same reason. (3) implies that m' = 4. Since ¢ is not an integer,
the denominator of e =c —a —b—(1—¢') = ¢/m — p'/k' is 3. Ou the
other hand e = ¢’ —a—b—(1—-c¢) = ¢'/m’' — p/k has even denominator.
This is a contradiction.

(Case 3) k and k' are odd (=3 or 5).

The properties (3) and (4) imply that m’ = k and m = k' respectively.
Sincee = (c—a—b)—(1—=c) = (" —a—>0)—(1—¢)isnot an integer,
we have & = &' which is the denominator of e. Then (5) implies that the
denominator of (¢’ —a—b) —(1—¢)+(b—a) =e+ (b— a)is k. Hence
a="1n Ths conicludes tlhat k = ¥1= m=m' =n.

(Cage 3.1 & =1k, = w= ! = n.= 8,

Sincee =c —a—b—(1—-¢c)=(q' —p)/3 & Z, we have p # ¢’ mod 3.
On the other hand (3) implies ¢’ —a—b—2(1 —¢) = (¢' —2p)/3 & Z.
Hence p = ¢' mod 3. This is a contradiction.
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(Gase 3.2) & =A = =t = H =5

In order that (1) and (2) hold, there are two cases, that is,
p.¢.p ¢ r=xl1 0t p,qg.p,¢,r =+2 mod 5.

Since € = (¢' —p)/5 = (¢ —p')/5 is not an integer, we have p Z ¢'. p' £ ¢
mod 5.

If p,¢,p'.¢',r = £1 (and p £ ¢') mod 5 then the numerator of ¢ —
a—b—-2(1-r¢)=(¢" —2p)/5 is congruent to £2 mod 5.
If p¢,p',¢'. v = £2 (and p £ ¢') mod 5 then the numerator of ¢’ —

a—b—2(1—-c)=(¢ —2p)/5 is congruent to 1 mod 5.
In any case (3) does not hold. This 1s a contradiction.
This completes the proof of Lemma 5. |

6. LEMMAS ON M(a,b,c)

In this section we denote
XEl— ¢ pgha=g=d-b, =006

and we assume that M (a,b, ¢) 1s finite irreducible. Recall that Ny(a,b. c)
1s the smallest normal subgroup of of M(a. b. ¢) containing L, (see Sec-
tion 2.1). In this section we fix the base v{. vy of V(o) and identify
JE g G ari= (051

LEMMA 6.1. Assume that A = v =1/2 mod Z. Then Ly, & Ni(a,b.c).

PROOF: We have G2 = I, (GyG,)? = al for some root of unity a.
0 1 W

Since GyG1Gg' = aGT!, Gy and GyG;G; ! have the common eigen
] 1 0 g

vectors. This means that N is reducible hence we have N| # M(a.b,c).

This implies Gy € Ny. 1

LEMMA 6.2. Assume that A =1/2, pu,v # 1/2 mod Z. Then
Los & Ny(a,b,c).

PRrOOF: If the denominator of ¢ is odd (z.e. 3 or 5) then the determinant
of any L, € N; cannot be —1 = det(Gy). Hence Gy € N;. If the
denominator of u is 4, then direct computations show that the orders of
M(a.b,c) and N; are 192 and 96 (refer to Shephard-Todd [16]). Hence
Go € Ni. 1

LEMMA 6.3. Assume that v = 1/2, Ayt # 1/2 mod Z. If both of the
denominators of A and y are 5 then Ly, € Ny. Otherwise
&y NN =T}

PRoOOF: In the first case, we may assume A\ = 1/5, 4 = 2/5. Then by
direct calculations we have (GyG1)? = (GoG?3)? = al, o = ¢(1/10). The
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equality (GoG1)? = ol implies oG} = (GoG,Gy ' )(GEGGy?) € Ny.
The equality (GoG?)? = ol implies aG§ = (GoGIGy NGIGIGL?)
(GEG3Gy?) € N,. Hence Gy € Ny.

In the case of (A, ) = (1/3,1/3). by direct computations, we know
that the orders of M(a,b,c) and N(a,b,c) are 72 and 24 (refer to
Shephard-Todd [16]). Hence < Gy > NNy = {I}.

In the case of {\,u} = {1/3,1/4},{1/3,1/5}, {2/5,1/3}. the denom-
inators of A and p are relatively prime. Hence we have < Gy > NN} =

{I}. 1

7. STRUCTURE OF FINITE IRREDUCIBLE Mjy(a,b.c,c")

The structure of M, with ¢ € Z is stated in Proposition 4.1. We
will consider finite irreducible My(a,b.c,c¢') with ¢ € Z. Recall that
My(a,b,c,c’) = Ne¢+ < 414,72+« > is imprimitive in this case (Lemma
421, 4.2.2).

THEOREM 7.1. Assume that M (a,b,c) is finite irreducible and that ¢ &
Z.c,c’ =1/2 mod Z. Then My(a,b,c,c') = No+ < i, Y2« > with
NeN < Yieay26 >= {1}, N =~ Ni(a,b.c) X Ni(a,b.c), < Y1u, Y24 >
Z, x7Z, and M(a,b,c)/N, ~Z,.

PROOF: Since ¢ —a—b=¢+1/2 # 1/2, Lemma 6.1 and Lemma 6.2
imply that Lg. € N, whence M(a,b.c)/Ny(a,b,c) ~ Z,. By Lemma
4.2.1, we have No ~ Ny(a,b,c) X Ni(a,b,c) and < y1.. 72+ > 2y X Z>.

Next we will prove NeN < 414,72« >= {I}. As in the proof of
Lemma 4.2.1, V = 1 + V. V4. 1] are invariant under N¢ while .. 72,
interchange 1y and V). Hence v1.,72« ¢ N¢. In the proof of Lemma
4.2.1, we have shown that the restrictions of (7;72). and N¢ to V are
Ly. and Ny(a,b,c). Since Ly € Ni(a,b.c) by Lemma 6.1, 6.2, we have
(v1¥2)s« € Nc. This proves that NeN < y1., 72« >= {I}. |

THEOREM 7.2. Assume that M(a,b,c) is finite irreducible and that ¢ ¢
Z,c,b—a=1/21modZ. Putc=p/k with (p,k) = 1.

(7.2.1) If both of the denominators of 1 —c¢ and ¢—a—>b are 5. then v, €
Nc¢, hence we have My(a,b,c,c') = No- < 7ax > with NeN < 4o, >=
{I}. And we have N¢ ~ Ny(a,b,c)x Ny(a,b,c) = M(a,b,c)x M(a,b,c)
gnd < yob > s

(7.2.2) If the condition of (7.2.1) does not hold. then M(a,b.c,c') =
Not < Yier¥2+ > with NeN < 414,72« >= {I}. N¢ ~ Ni(a,b.c) X
Ny(a,b,c), M(a,b,¢)/Ny ~Zy and < Y14, 72+« >~ Ly X Z5.
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PROOF: As is shown in the proof of Lemma 4.2.2, V =V 4+ V; and ~,,
interchanges V; and V; while 4, and 73, fix (set theoretically) V; 3=
0,1. Hence any element of N¢ also fix V;. Consequently we have v,, ¢
Ne. By Lemma 4.2.2, the restrictions of 4, and N¢ to V; are L, and
Ni(a,b,c) for each j =0, 1.

In case of (7.2.1), by Lemma 6.3, Ly, € N,. This implies ;. € N¢-.
Hence My(a,b,c,c') = N+ < Y1x, 72+ >= New < 72+ > with Nen <
Y2+« >= {I}. By Lemma 4.2.2, we have N¢ ~ Ni(a, b, ¢) x Ni(a,b.c) =
M(a,b,c) x M(a,b,c) and < v9, >~ Z,.

In case of (7.2.2), by Lemma 6.3, < Lo, > NN = {I}. Hence <
Yixs Y2« > NN = {I}. By Lemma 4.2.2, we have N¢- ~ N(a,b,c) x
Ni(a,b,c) and < Y14, 72+« > 2y X Z2. 1

8. EXAMPLES

We assume in this section that ¢ = ¢’ = 1/2 and that My(a,b.c,c")
is irreducible. We fix the base vy, vy of V(xg) (see Section 2.1). Recall
that

V = ‘70 + "71 =< 1,[)1, ‘L“/"z SRS T/)Ba Yy >,

where Vi and Vj are invariant subspaces of V7 = V() under ¢ox. g1x- 92«
(see the proof of Lemma 4.2.1).
Put

U = (1.9, %3,%y).

Then ¥ defines a multi-valued locally biholomorphic mapping of P? —
Lx ULy UL, UC into P3. Let Sy be the closure of its image in P?. In
the following examples Sy are smooth hypersurfaces and ¥ ~! are defined
by meromorphic functions on Sy. The defining functions of Sy and the
iverse mapping functions are composed of the invariant (homogeneous)
polynomials € C[vy. v,] under the actions of M(a,b,c). First we prepare
the following two lemmas.

LEMMA 8.1. Assume that ¢,¢’ =1/2 mod Z.
(1) If f(vy,vy) 1s an invariant polynomial under the action of M(a, b, ¢)

then f(i1,%2) + f(3,4) and f(y,102)f(3,4) are both invariant
under My(a,b,c,c").

(2) If f(vy,v2)L1x = f(vi,v2) and f(vi,v2)Lox = —f(v1,v2) then
F(by,02)% + F(33,¥4)? and f(2hy, ) f()g,%4) are both invariant under
M,(a,b,c,c).

PROOF:




Proof of (1). f(y1.%¢2) and f(33,4) are invariant under gou, ¢14. 92+
while f(t1,%2)72+« = f(%3,14). Hence (1) holds.

Proof of (2). f(¥1,%2)% + f(¥3,%4)?% is invariant from (1). By the
proof of Lemuna 4.2.1, f(,%,) and f(13.14) are both invariant under
Nc. Since f(w1,%2)g0x = —f(¥1,%2), f(3.%4)g0x = —f(3,%4) and
F(h1 ) vax = f(33,104), we know that f(1)y,2)f(3,%4) is invariant
under < vy4, 72+ >. Hence (2) holds. I

In Shephard-Todd [16], three invariants

fn(l’lal’zﬁ }2271—4(1’1-"2)’ t3n—6(v1,v2)

are considered. Where n denotes the degree of f,, hy,—4 1s the Hessian
of f, of degree 2n — 4 and t3,,_¢ is the Jacobian of f, and hy,—4 of
degree 3n — 6. For the application to My(a,b, c,c’), we will calculate the
definite formes of them.

We put

[(a)'(b)
V] :r(l+a+b_C)F((L,b,1+a+b—c:1—:1:),
[(c—a)l(c—1b)

INl1+c¢c—a—0b)

Ug (1-— .zT)C_“_bF(C —a,c—bl4+c—a—b1-2z).

LEMMA 8.2. By the analytic continuations along real segment 0 < x <
1. we have

us

Y1 :F(l +a—c)(1+ b—(’)(v1 ~ v2),
i m ol
Y2 T Nl+a—-c)l'(14+b— c)(’BUl +v2),

where 1 )
sl wa sin b

sinm(c — a)sinw(c—b)

PRrOOF: This follows from the connection formulas for E(a,b,c), given
in [4]. for example. Ji

In the following examples we put

~1/4
wy = B4y, wy = 740,

Example 83. c=d =b—a=1/2, e4+1/2 (=c—a—-b)=1/n.
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In this case.  (in the previous lemma) = 1. Hence
Pp(vy,v9) := (v; — v2)" + (v3 + v4)™ = constant - (v™ £+ v3")
1s invariant under M (a. b, ¢). Put
Qn(v1,v2) = (v1 —v2)" — (v1 +v2)".

Then @, is invariant under L, but Q, Le. = —Q,. From Lemma 8.1,
we know that

Pn(d)hd"z) + Pn(¢3v¢4)7 Pn(d)l-,d)‘Z)Pn(d)& ¢’4)
Qu(¥1,92)" + Qu(t3,¥4)’, Qu(¥1.92)Qul(W3, ¥4)

are invariant under My(a, b, c,c’). Since the exponents along L. are
—1/2n,—1/2n,(n—1)/2n,(n—1)/2n, P,(1.1¥2)+ Pa(t3. 1) is constant
while other three invariant functions are at most one degree polynomi-
als in X. Y Since P, (1;,%5) i1s invariant under ¢, = Y34, and ¢g. =
(7172) s Pn(%1,%9) has the following form: P, (¢, ¢,) = A¢(X,Y) +
A(X)Y )(‘X} )1/2. Then we have P, (13,14) = Ap(X,Y)

—A(X,Y)(XY)!/2 Hence we know that Ay is constant

(: 2( I'a)l'(b)

T )2) and A, = 0. By expanding at X = 0.} = 0, we have

)2 ) 20 : ) 2/ v =

Qn(¥1,¥2)" + Qu(s, ¥4) _8(——F(C)F(c’)) (X+7Y)
) /)¢ 2/ W f— w 2 —

Qn(@zl-bl)(zn(d.}-»4)—4(T(C)F(C,)) (—\ })

Thus we have proved that
Sy = {[th1 : 2 : s : 4] € P?|Pp(th1,%2) — Palths, ¥4) = 0}
which is a smooth hypersurface of degree n, and that ¥=! is given by

(Qn (%1, Lz)+Q (3,14))?

X = ( .
(Pn(v1,%2) + Pu(3,94))?

Y :((Qn(d)lvu ) Qn 1/)3794))
(Pr(1,%2) + Pa(¥3,%4))?

Recall that My(a,b,c, ') is of order 4n? with center of order n.

Example 84. c=¢ =1/2, b—a=¢+1/2 (=c—a—b) =1/3.
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In this case § = (V3 - 1)/(vV/3 +1). (a,b,c) is the group No.6 in
Shephard-Todd’s hst, the order of Wln(.h 1s 48 and the center of which
is {e L/4 I10 < k < 3}. There are invariant polynomials fy(vy,v,y) and

te(vi.vy)? of degree 4 and 12 (Shephard-Todd [16]). In order that fy

shoud be invariant under L,,, fy must be of the form f; = vt + av) v

In order that fy shoud be invariant under Lg,, by direct computations,
we have

fi(vy,vy) = wf + 2\/§urfuf.§ = wé.

By a constant multiplication, we have
4 4
ts(v1,v2) = wiwa(w; + wy)

which satisfies tg L1, = t¢ and t¢Lg. = —t¢. Then
Fa(r,t2) = falahs,tha) = B (—”—

We also have

¢lv¢2 +t6 1/)3’&7 2 _2];(‘\'+)')’
te (1, V2)t6 (Y3, %4) =k(X = 1),

where

k= g (F(a)F(b) )10 Fl4+a—c)'(14+0b- c)>2
B T(c)D(c") ( I'(2 - ¢)T(c) '

Thus we have proved that
Sy = {[t1 : 2 1 Y3 1 ¥4] € PP fa(th1,%2) — fa(hs, ¥s) = 0}

which is a smooth hypersurface of degree 4 and that ¥~! is given by

X — (te(d’lad’ ) + te(th3,104))

§ (f4(¢’1 a) + fa(3, ) )3.

b a (te(th1,¥2) — te(ths, ¥y))?
(fa(h1,2) + fa(th3.94))?

where

- (a)T(b)I(2 — ¢) &3
=R <F(1 L N c)F(C)> = 24V3.

Example 8.5. c ="' =1/2, e+1/2 (=c—a—b)=1/3, b—a =1/4.
In this case 3 = (V3 —V2) )/( f+ V2). M(a,b,c) is the group No.14 in
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Shephard-Todd’s list, the order of which is 144 and the center of which
is {e(k/6)I|0 < k < 5}. There are invariant polynomials fs(v;, vy) and
t12(v1.v2)? of degree 6 and 24 (Shephard-Todd [16]).

By direct computations, we have

fe(vi,v2) = w? -+ Sw‘}wﬁ — 5w]2w‘21 — wg,

ti2(vy,v2)

, 11 66 . 66 11
= wywy(w}® — guv?uvg + ?‘w?uvg + gur?wg S 2ws + wi?).
The polynomial t,, satisfies t;5L, = t12 and t12Lg« = —t12. Then
: T(a)L(b)\°
s(Y1,%2) = gty == GUAY Sacc s SN
fe(¥1,%2) = fe(¥3,%4) (F(C)F(c’

We also have

t12(%y, ?J)z + ti2(tps. g )2 =2R(X + 1),
tia(hr. 2 )tia(ts, g ) =k(X = Y7),

where

b g <r(a)r(b) >22 (F(l + a —C)F(1+b—c)>2
7 \T(e)T(c) T(2 - o)[(¢)

Thus we have proved that
Sy = {[11 : 2 : Y3 : 4] € P?|fs(31,%2) — fo(th3,24) = 0}

which is a smooth hypersurface of degree 6 and that ¥~! is given by

¥ t12(¢’1w5‘2) + t12(th3, ¥4))°
fs(ll)la ) + fo(¥3,4))?
Y — ( 12(1,¥2) — ti2(th3. hg))?
(fo(hy,2) + folthg. 2by))?

where §

o T(a)T(H)T(2 - c) )
T 5<F(1+(L—C)F(1+]’_C)F(C) |

Example 8.6. c=¢' =1/2, e4+1/2 (=c—a—-b)=1/4, b—a=1/3.
In this case # = (V2 —1)/(V2 +1). M(a,b,c) is the group No.9 in
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Shephard-Todd’s list, the order of which is 192 and the center of which
is {e(k/8)I]0 < k < 7}. The following polynomial

f(vl,zz)—uv —5w1112 5w]w +u7

satisfies foLox = fo, foLix« = V/—1fs. The polynomials hg and #{, are

invariant under M(a,b, ¢). We have (up to constant multiplications)

28 14 2B 5o a
g, & g . EoL B 8
hg(v1,v2) = w{ + — 3 —wsw? — 3 wiwy + 5 +wo,

t12(vy,v2)

1 66 66 i1
= wlwz(wio r ?w? % S Ew?u'% = gwfwg — ?u'fu? w;O).
The polynomial ¢, satisfies t19L14 = t12 and t12 Lo« = —t12. Then
(a)T(b) "
he(th1,109) = hg(ths,by) = B2 | —2——+=
(Y1, V2) = hg(ths, y) (F(C)F(c’)

We also have

tra(th1, 92)% + tia(¥a. by )2 =2k(X 4+ 1),
t12(1, 2 )12 (3, ¢0s) =R(X = Y),

where

A—/35< )F(b)) (F(1—|~(1~C)F(1+b—c))2
I'(e)I(c') I(2—c)(c) '

Thus we have proved that
Sy = {[¥1 : ¥ : hy] € PP |hg(1,t2) — ha(ths, ¥b4) = 0}

which is a smooth hypersurface of degree 8 and that ¥~! is given by

¥ :a(hz(?ﬁ]#z) + t12(%3, L/"’4))2.
(ha(thi, b)) + (s, 104))?

= :a(tlz(lbl,wz) — t12(3,%04))?
(ha(®1,¥2) + ha(23,4))?

where




Example 8.7. c = =1/2, e4+1/2 (=¢c—a—b)=1/3, b—a=1/5.
M(a. b, c) 1s the group No.21 in Shephard-Todd’s list, the order of which
1s 720 and the center of which is {e(k/12)I]0 < k < 11}. The following
polynomial

22
fia(vi,v2) =wi? + —=wi w;

V5

A 99
8 4 o6 e 4 8
— 33wy wy — w{wy — 33w;w, + —=

b
V5 V5

1s invariant under M (a, b, c). The polynomial t3, satisfies t30L;, = t3q

w? u2 + w

and f30LO* = —t30.
By the same reason as previous examples, we have

Su = {[1 : Y2 : Y3 : 4] € P3| f12(vh1,¥2) — fi2(tb3,v4) = 0}

which is a smooth hypersurface of degree 12 and that ¥~! is given by

Y — (tso(l/)l ¥2) + ta0(¥3,¥4))?
‘ f12(1/’1 ha) + fra(w3,¢4))°
v — t30(¢1 Uy) — t30(th3.104))?

f12(1/11 ) + fr2(3.%4))?

where

_3 P(a)L(H)T(2 —c) 2
g ﬁ(F(1+(1—C)F(1+[’_C)F(C)> |

Example 8.8. c = =1/2, ¢e+1/2 (=c—a-b)=1/5, b—a=1/3.
M(a, b, ¢) is the group No.17 in Shephard-Todd’s list, the order of which
is 1200 and the center of which is {e(¥/20)I|0 < k < 19}. The following
polynomial

Fr2(v1,02) =wi? — 75101 w3

44 29
— 33w1 u12 e —wl u' 33w w - u*zu o wu

V5 VB

satisfies fiyLox = fi2, fiaL1« = €(1/5) fi2. The polynomial hyg is invari-
ant under M (a, b, c) and the polynomial t3 satisfies
t30L1x = t30 and t30Lo. = —t30.

By the same reason as previous examples, we have

Sy = {[th1 192 : Y3 : L'4]€P |hao(t01,¥2) — hao(¥3.4) ) = @}
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which is a smooth hypersurface of degree 20 and that ¥~ ! is given by

Y = (t30(%1,92) + t30(2P3, 9 4))
(hao(1,%2) + hao(ths,¥y)

¥ —a (t30(tP1,%2) — t30(¥3, ¥4 ))
(hao(%1,%2) + hao(3.%4))?

where

a =283 L(a)T(H)(2 - ) 2
T\l 4+ae—cPQ+b—c)l(e)/)
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