Appell's F_4 with Finite Irreducible Monodromy Group

加藤, 満生

https://doi.org/10.11501/3120503

出版情報:九州大学, 1996, 博士(数理学), 論文博士 バージョン: 権利関係: Appell's F_4 with Finite Irreducible Monodromy Group

0

WORKS ALLOND

Appell's F₄ with Finite Irreducible Monodromy Group

Mitsuo Kato

1. INTRODUCTION

Appell's hypergeometric series

$$F_4(a, b, c, c'; \bar{X}, Y) = \sum \frac{(a, m+n)(b, m+n)}{(c, m)(c', n)(1, m)(1, n)} X^m Y^n$$

with $(a, n) = \Gamma(a+n)/\Gamma(a)$, satisfies the following system of differential equations of rank four ([1]):

$$\begin{cases} X(1-X)z_{XX} - Y^2 z_{YY} - 2XY z_{XY} + cz_X \\ -(a+b+1)(Xz_X + Yz_Y) - abz = 0 \\ Y(1-Y)z_{YY} - X^2 z_{XX} - 2XY z_{XY} + c'z_Y \\ -(a+b+1)(Xz_X + Yz_Y) - abz = 0 \end{cases}$$

which we denote by $E_4(a, b, c, c')$.

This is an extension of Gauss' hypergeometric series

$$F(a,b,c;x) = \sum \frac{(a,n)(b,n)}{(c,n)(1,n)} x^n$$

with hypergeometric differential equation (HGD for short)

$$x(1-x)d^{2}z/dx^{2} + (c - (a+b+1)x)dz/dx - abz = 0,$$

which is of rank two and is denoted by E(a, b, c). Denote the monodromy group of E(a, b, c) by

and that of $E_4(a, b, c, c')$ by

$$M_4(a, b, c, c')$$

(see Section 2 for the definitions).

It is known that M(a, b, c) is finite and irreducible if and only if (1-c, c-a-b, b-a) belongs to the Schwarz' list (S-list) ([15],[5]).

As for Appell's F_1 and Lauricella's F_D , Sasaki [12] and Cohen-Wolfart [3] obtained the finiteness conditions of the monodromy groups. (Recently professor Sasaki told the author that Theorem 2 in [13] asserting non-existence of Appell's F_2 with finite irreducible monodromy group is false.)

The singular locus of $E_4(a, b, c, c')$ is $L_X \cup L_Y \cup L_\infty \cup C$, where $L_X = \{X = 0\}, L_Y = \{Y = 0\}, C = \{(X - Y)^2 - 2(X + Y) + 1 = 0\}$ and L_∞ is the line at infinity. The differential equation $E_4(a, b, c, c')$ has characteristic exponents 0, 0, 1 - c, 1 - c along L_X . This implies that, at any point $P \in L_X - L_Y \cup L_\infty \cup C$, $E_4(a, b, c, c')$ has a fundamental system $(h_1, h_2, X^{1-c}h_3, X^{1-c}h_4)$ of solutions, where each h_j is holomorphic at P. Similarly $E_4(a, b, c, c')$ has exponents 0, 0, 1 - c', 1 - c' along L_Y , a, a, b, b along L_∞ , $0, 0, 0, \varepsilon + 1/2$ along C, where

$$= c + c' - a - b - 1$$

(see [8]).

Since $F_4(a, b, c, c'; X, 0) = F(a, b, c; X)$ and $F_4(a, b, c, c'; 0, Y)$ = F(a, b, c'; Y), we can show that if $M_4(a, b, c, c')$ is finite and irreducible then so are M(a, b, c) and M(a, b, c') (see Section 3).

In this paper we will prove the following theorem.

ε

THEOREM 1. $M_4(a, b, c, c')$ is finite irreducible if and only if the following two conditions hold.

(1) M(a, b, c) and M(a, b, c') are finite irreducible.

(2) The quantity ε is an integer, or at least two of 1 - c, 1 - c', b - a are equivalent to 1/2 modulo **Z**.

The structure of these finite irreducible monodromy groups are stated in Proposition 4.1, Theorem 7.1 and Theorem 7.2.

Let $\Psi = (\psi_1, \psi_2, \psi_3, \psi_4)$ be a system of fundamental solutions of $E_4(a, b, c, c')$. Then Ψ defines a (multi-valued) mapping of $U := \mathbf{P}^2 - L_X \cup L_Y \cup L_\infty \cup C$ into \mathbf{P}^3 . Sasaki-Yoshida [14] proved that if $\varepsilon = 0$ then the image $\Psi(U)$ belongs to a smooth quadratic surface. In Section 8, we will verify, in the cases c = c' = 1/2 and (c - a - b, b - a) = (1/n, 1/2) or (1/3, 1/3) or $\{c - a - b, b - a\} = \{1/3, 1/4\}$ or $\{1/3, 1/5\}$, that the closure S_{Ψ} of $\Psi(U)$ is smooth hypersufaces in \mathbf{P}^3 and the inverse of Ψ is single valued.

The author thanks to professors J. Kaneko, T. Sasaki and M. Yoshida for valuable advises.

2. MONODROMY REPRESENTATIONS

2.1. M(a, b, c)

Assume that $c \notin \mathbb{Z}$ and that M(a, b, c) is irreducible. Put

$$v_1 = \frac{\Gamma(a)\Gamma(b)}{\Gamma(c)}F(a, b, c; x),$$

$$v_2 = \frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(2-c)} x^{1-c} F(1+a-c, 1+b-c, 2-c; x).$$

Then v_1 and v_2 form a system of fundamental solutions of E(a, b, c). Let L_0, L_1 be the loops surrounding 0,1 positively with base point $x_0 = 1/2$. We denote by $V(x_0)$ the set of germs of holomorphic solutions of E(a, b, c). Then for any $L \in \pi_1(\mathbb{C} - \{0, 1\}, x_0)$ and $f \in V(x_0)$, the analytic continuation fL_* of f along L is again belongs to $V(x_0)$. We write

$$f(LL')_* = (fL_*)L'_* = fL_*L'_*,$$

if L' is continued after L. This defines a monodromy representation

$$\pi_1(\mathbf{C} - \{0, 1\}, x_0) \longrightarrow GL(V(x_0)).$$

For a subset $S \subset \pi_1(\mathbf{C} - \{0, 1\}, x_0)$, we denote

$$S_* = \{ L_* | L \in S \}.$$

We call

$$M(a, b, c) = M(a, b, c; x_0) = (\pi_1(\mathbb{C} - \{0, 1\}, x_0))_*$$

the monodromy group of E(a, b, c).

For $v = {}^{t}(v_1, v_2)$, we denote by vL_* the analytic continuation ${}^{t}(v_1L_*, v_2L_*)$ of v along L. Then by use of connection formulas for Gauss' HGD (see, for example, [4]), we have

$$vL_{0*} = G_0 v,$$
$$vL_{1*} = G_1 v$$

where

$$G_0 = \begin{pmatrix} 1 & 0 \\ 0 & e(1-c) \end{pmatrix},$$

$$G_1 = I + \frac{2\sqrt{-1}e((c-a-b)/2)}{\sin \pi c}$$
$$\binom{1}{1} (-\sin \pi a \sin \pi b, \sin \pi (c-a) \sin \pi (c-b)),$$
$$e(x) = exp(2\pi\sqrt{-1}x).$$

Let $N_1(a, b, c; x_0) = N_1(a, b, c)$ be the smallest normal subgroup of M(a, b, c) containing L_{1*} . Then we have

$$M(a, b, c) = N_1(a, b, c) \cdot \langle L_{\bullet *} \rangle.$$

2.2. $M_4(a, b, c, c')$

The monodromy representations of $E_4(a, b, c, c')$ are first founded by Kaneko [6] and Takano [17]. Here for our convenience, we adopt the monodromy representation in [9].

We assume in this section that $E_4(a, b, c, c')$ is irreducible and that $c, c' \notin \mathbb{Z}$. Recall that $E_4(a, b, c, c')$ is irreducible if and only if none of a, b, c - a, c - b, c' - a, c' - b, c + c' - a, c + c' - b is an integer ([9],[10]). Hence

$$\begin{split} \varphi_{1} &:= \frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')}F_{4}(a,b,c,c';X,Y), \\ \varphi_{2} &:= \frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(2-c)\Gamma(c')} \\ X^{1-c}F_{4}(1+a-c,1+b-c,2-c,c';X,Y), \\ \varphi_{3} &:= \frac{\Gamma(1+a-c')\Gamma(1+b-c')}{\Gamma(c)\Gamma(2-c')} \\ Y^{1-c'}F_{4}(1+a-c',1+b-c',c,2-c';X,Y), \\ \varphi_{4} &:= \frac{\Gamma(2+a-c-c')\Gamma(2+b-c-c')}{\Gamma(2-c)\Gamma(2-c')} \\ X^{1-c}Y^{1-c'}F_{4}(2+a-c-c',2+b-c-c',2-c,2-c';X,Y) \end{split}$$

form a system of fundamental solutions of $E_4(a, b, c, c')$.

Let δ be a sufficiently small positive number and put $P_0 = (\delta, \delta)$. Recall that $U = \mathbf{P}^2 - L_X \cup L_Y \cup L_\infty \cup C$. Then the fundamental group $\pi_1(U, P_{\bullet})$ is generated by the following γ_1, γ_2 and γ_3 :

$$\begin{aligned} \gamma_1 &= \{ X = \delta e(t) \quad 0 \le t \le 1, Y = \delta \}, \\ \gamma_2 &= \{ X = \delta, Y = \delta e(t) \quad 0 \le t \le 1 \}, \\ \gamma_3 &= \{ X = Y = 1/4 - (1/4 - \delta)e(t) \quad 0 \le t \le 1 \}. \end{aligned}$$

We denote by $V(P_0)$ the set of germs of holomorphic solutions of $E_4(a, b, c, c')$ at P_0 . Then for any $\gamma \in \pi_1(U, P_0)$, γ_* (the analytic continuation along γ) is an element of $GL(V(P_0))$. This defines a monodromy representation

$$\pi_1(U, P_0) \longrightarrow GL(V(P_0)).$$

We denote the image by

$$M_4(a, b, c, c'; P_0) = M_4(a, b, c, c')$$

and call it the monodromy group of $E_4(a, b, c, c')$.

Put $\varphi = {}^{t}(\varphi_1, \varphi_2, \varphi_3, \varphi_4)$, then $\gamma_{j*} \quad j = 1, 2, 3$ are represented by matricies in the following way.

THEOREM 2.2. Assume that $E_4(a, b, c, c')$ is irreducible and that $c, c' \notin \mathbb{Z}$ then we have

$$\varphi \gamma_{1*} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e(1-c) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e(1-c) \end{pmatrix} \varphi,$$

$$\varphi \gamma_{2*} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e(1-c') & 0 \\ 0 & 0 & 0 & e(1-c') \end{pmatrix} \varphi,$$

$$\varphi \gamma_{3*} = \begin{pmatrix} I + \frac{e(\varepsilon/2)}{\sin \pi c \sin \pi c'} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}) \end{pmatrix} \varphi$$

where

 $\begin{aligned} \gamma_{31} &= \sin \pi a \sin \pi b, \ \gamma_{32} &= -\sin \pi (c-a) \sin \pi (c-b), \\ \gamma_{33} &= -\sin \pi (c'-a) \sin \pi (c'-b), \ \gamma_{34} &= \sin \pi (c+c'-a) \sin \pi (c+c'-b). \end{aligned}$

PROOF: By the base change of the monodromy representation in Theorem 7.1 in [9], we obtain the theorem. \blacksquare

Since γ_3 is a loop surrounding C, we denote by

$$N_C(a, b, c, c'; P_0) = N_C(a, b, c, c')$$

the smallest normal subgroup of $M_4(a, b, c, c'; P_0)$ containing γ_{3*} . Then we have

$$M_4(a, b, c, c') = N_C(a, b, c, c') < \gamma_{1*}, \gamma_{2*} > .$$

The eigenvalues of γ_{3*} are 1, 1, 1, $e(\varepsilon + 1/2)$. Hence if $\varepsilon + 1/2 \in \mathbf{Q} - \mathbf{Z}$ then γ_{3*} is a reflection. So we call $N_C(a, b, c, c')$ the reflection subgroup of $M_4(a, b, c, c')$. The terminology of "reflection subgroup" appeared in Beukers-Heckman [2] for the generalized hypergeometric function ${}_nF_{n-1}$.

3. Restrictions of E_4 to singularities

We assume in this section that $M_4(a, b, c, c')$ is finite and irreducible. Concerning to the characteristic exponents of $E_4(a, b, c, c')$ (see Section 1) we have

LEMMA 3.1. All the parameters a, b, c, c' are (real) rational numbers and none of $1 - c, 1 - c', b - a, \varepsilon + 1/2$ is an integer.

PROOF: Assume $c \in \mathbb{Z}$. Then $E_4(a, b, c, c')$ has a solution with logarithmic factor log X (Section 2 of [10]). This contradicts to the finiteness of M_4 . Hence we have $c \notin \mathbb{Z}$. Similarly we have $c', b - a \notin \mathbb{Z}$. Assume $\varepsilon + 1/2 \in \mathbb{Z}$. Then since γ_{3*} is diagonizable, we have $\gamma_{3*} = I$. Hence E_4 is reducible. This contradiction proves that $\varepsilon + 1/2 \notin \mathbb{Z}$.

Since $c \notin \mathbf{Z}$, at $L_X(=\{X=0\})$, $E_4(a, b, c, c')$ has solutions h_1, h_2 , $X^{1-c}h_3$, $X^{1-c}h_4$ with h_j being holomorphic. Since $(X^{1-c}h_3)\gamma_{1*}^n = X^{1-c}h_3$ for some $n \in \mathbf{Z}$, we must have $1 - c \in \mathbf{Q}$. Similarly, we have $1 - c', \varepsilon + 1/2, a, b \in \mathbf{Q}$.

LEMMA 3.2. M(a, b, c) is finite irreducible.

PROOF: Let \mathcal{U} and \mathcal{V} be a small neighborhoods of X_0 and 0 in C respectively, where we assume $X_0 \neq 0, 1$. Then the map

{holomorphic solutions of $E_4(a, b, c, c')$ in $\mathcal{U} \times \mathcal{V}$ } \longrightarrow {holomorphic solutions of E(a, b, c) in \mathcal{U} }

defined by the restriction $f(X, Y) \mapsto f(X, 0)$ is one-to-one onto (Section 2.1 of [8]). Hence M(a, b, c) must be finite.

Since none of a, b, c - a, c - b is an integer by the assumption of irredicibility of M_4 , M(a, b, c) is irreducible.

By the same way we have the following lemma.

LEMMA 3.3. M(a, b, c') is finite irreducible.

LEMMA 3.4. M(1 + a - c, 1 + b - c, c'), M(1 + a - c', 1 + b - c', c), M(a, 1 + a - c', c), M(b, 1 + b - c', c) are finite irreducible.

PROOF: First we note that 1 - c, $b - a \notin \mathbb{Z}$ by Lemma 3.1.

Since $X^{1-c} f(X, Y)$ is a solution of $E_4(a, b, c, c')$ if and only if f(X, Y) is a solution of $E_4(1 + a - c, 1 + b - c, 2 - c, c')$, we know that $M_4(1 + a - c, 1 + b - c, 2 - c, c')$ is finite irreducible. Then, by Lemma 3.3, M(1 + a - c, 1 + b - c, c') is finite irreducible.

Since $Y^{-a}f(X/Y,1/Y)$ is a solution of $E_4(a, b, c, c')$ if and only if f(X,Y) is a solution of $E_4(a, 1 + a - c', c, 1 + a - b)$, we know that $M_4(a, 1 + a - c', c, 1 + a - b)$ is finite irreducible. Then, by Lemma 3.2, M(a, 1 + a - c', c) is finite irreducible.

M(1+a-c',1+b-c',c) and M(b,1+b-c',c) are also finite irreducible by the same way.

4. PROOF OF "IF" PART OF THEOREM 1

Assume the conditions (1) and (2) in Theorem 1. In each case $M_4(a, b, c, c')$ is irreducible. The problem is to show the finiteness of $M_4(a, b, c, c')$. We notice that $a, b, c, c' \in \mathbf{Q}$ by the assertion (1). This implies that γ_{j*} (j = 1, 2, 3) are of finite order.

In Section 4.1, we deal with the case when $\varepsilon (= c + c' - a - b - 1)$ is an integer. In Section 4.2, we deal with the case when ε is not an integer.

4.1. Case of $\varepsilon \in \mathbb{Z}$ Assume that $\varepsilon \in \mathbb{Z}$. Let

$$\phi: (x, y) \longrightarrow (X, Y) \qquad X = xy, Y = (1 - x)(1 - y)$$

be the branched double covering of \mathbb{C}^2 onto \mathbb{C}^2 . The covering ϕ is locally biholomorphic at any point (x, y) with $x \neq y$. We have $\phi(\{x = y\}) = C = \{(X - Y)^2 - 2(X + Y) + 1 = 0\}$. Recall $P_{\bullet} = (\delta, \delta), U = \mathbb{C}^2 - L_X \cup L_Y \cup C$. Put $W = \phi^{-1}(U)$ and $P_1 = (x_1, y_1)$ be a point such that $\phi(P_1) = P_{\bullet}$. It is easily verified that

 $W = \{(x, y) | xy(1 - x)(1 - y)(x - y) = 0\}.$ We have one to one homomorphism

$$\phi_*: \pi_1(W, P_1) \longrightarrow \pi_1(U, P_0).$$

The image of ϕ_* is a normal subgroup of $\pi_1(U, P_0)$ with index 2. Precicely speaking, we have

$$\pi_1(U, P_0) = \phi_*(\pi_1(W, P_1)) \cdot < \gamma_3 >$$

with $\gamma_3^2 \in \phi_*(\pi_1(W, P_1))$. Hence

$$N := (\phi_*(\pi_1(W, P_1)))_*$$

is a normal subgroup of M_4 with

$$M_4 = N \cdot < \gamma_{3*} > .$$

This implies that M_4 is finite if and only if N is finite. The finiteness of N is a direct consequence of the following proposition.

PROPOSITION 4.1. Assume that $\varepsilon \in \mathbb{Z}$ and that $M_4(a, b, c, c')$ is irreducible. Then

$$N \simeq M(a, b, c) \otimes M(a, b, c) := \{g \otimes g' | g, g' \in M(a, b, c)\}$$

with $M_4(a, b, c, c') = N \cdot \langle \gamma_{3*} \rangle, N \cap \langle \gamma_{3*} \rangle = \{1\}$ and $\langle \gamma_{3*} \rangle \simeq \mathbb{Z}_2$.

PROOF: Put $\varepsilon = n$. Since $M_4(a, b, c, c')$ is irreducible, we have $M_4(a, b, c, c') \simeq M_4(a, b, c, c' - n)$ by Theorem 2.2. Hence it is enough to prove for the case of $\varepsilon = 0$. So we assume $\varepsilon = 0$.

Since $\varepsilon = 0$, we have

$$\phi^*(E_4(a, b, c, c')) = E(a, b, c; x) \cdot E(a, b, c; y)$$

(Section 1 of [7]), and $\{x = y\}$ is an apparent singular locus of $\phi^*(E_4(a, b, c, c'))$.

Since ϕ is locally biholomorphic at P_1 , $V(P_0)$ is isomorphic to the space of germs of holomorphic solutions of $\phi^*(E_4)$ at P_1 , which is again isomorphic to $V(x_1) \otimes V(y_1)$ where $V(x_1)$ (resp. $V(y_1)$) is the space of germs of solutions of E(a, b, c) at x_1 (resp. y_1). Hence the representation of $\phi_*(\pi_1(W, P_1))$ in $GL(V(P_0))$ is isomorphic to the representation of $\pi_1(W, P_1)$ in $V(x_1) \otimes V(y_1)$, which is again isomorphic to the representation of $\pi_1(\mathbf{C} - \{0, 1\}, x_1) \times \pi_1(\mathbf{C} - \{0, 1\}, y_1)$ in $V(x_1) \otimes V(y_1)$. This implies that $N \simeq M(a, b, c) \otimes M(a, b, c)$.

If g and g' ($\in M(a, b, c)$) have eigenvalues (λ, μ) and (λ', μ') then the eigenvalues of $g \otimes g'$ are $\lambda \lambda', \lambda \mu', \mu \lambda', \mu \mu'$. Because $E_4(a, b, c, c')$ has exponents 0, 0, c + 1/2 along C (see Section 1), the eigenvalues of γ_{3*} are 1, 1, 1, -1. Hence γ_{3*} cannot be contained in $M(a, b, c) \otimes M(a, b, c)$. This implies that $N \cap < \gamma_{3*} >= \{1\}$.

4.2. Case of $\varepsilon \notin \mathbf{Z}$

Assume that ε is not an integer. Recall that $M_4 = N_C \cdot \langle \gamma_{1*}, \gamma_{2*} \rangle$ (see Section 2.2). Since γ_{1*} and γ_{2*} are of finite order and satisfy $\gamma_{1*}\gamma_{2*} = \gamma_{2*}\gamma_{1*}, \langle \gamma_{1*}, \gamma_{2*} \rangle$ is also of finite order. Hence M_4 is finite if and only if N_C is finite. The finiteness of N_C is a direct concequence of the following two lemmas. LEMMA 4.2.1. Assume that $M_4(a, b, c, c')$ is irreducible and that 1 - 1 $c, 1 - c' \equiv 1/2 \mod \mathbf{Z}$ then

$$N_C(a, b, c, c') \simeq N_1(a, b, c) \times N_1(a, b, c) \simeq N_1(a, b, c') \times N_1(a, b, c')$$

and $M_4(a, b, c, c')$ is imprimitive.

PROOF: In this case, generators of γ_{j*} of M_4 in Section 2.2 are as follows:

$$\varphi\gamma_{1*} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \varphi, \quad \varphi\gamma_{2*} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \varphi$$
$$\varphi\gamma_{3*} = \left(I + e((-a-b)/2) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}) \right) \varphi$$

where $\gamma_{31} = \gamma_{34} = \sin \pi a \sin \pi b$, $\gamma_{32} = \gamma_{33} = -\cos \pi a \cos \pi b$. Put

$$\psi_1 = \varphi_1 + \varphi_4, \quad \psi_2 = \varphi_2 + \varphi_3, \quad \psi_3 = \varphi_1 - \varphi_4, \quad \psi_4 = \varphi_2 - \varphi_3$$

and let

$$V_0 := \langle \psi_1, \psi_2 \rangle, \qquad V_1 := \langle \psi_3, \psi_4 \rangle$$

be subspaces of $V = V(P_0)$. Then γ_{1*}, γ_{2*} interchange V_0 and V_1 , and γ_{3*} fixes V_j (j = 0, 1) invariant. This means that $M_4(a, b, c, c')$ is imprimitive and that V_0, V_1 are invariant under $(\langle \gamma_3, \gamma_2 \gamma_3 \gamma_2^{-1}, \gamma_1 \gamma_2 \rangle)_*.$ Put

$$y_0 = \gamma_1 \gamma_2, \quad g_1 = \gamma_3, \quad g_2 = \gamma_2 \gamma_3 \gamma_2^{-1}$$

Then g_{1*} is identity on V_1 and g_{2*} is identity on V_0 . Hence we have

$$N_C = (\langle g_1, g_0 g_1 g_0^{-1}, g_2, g_0 g_2 g_0^{-1} \rangle)_*$$

$$\simeq (\langle g_1, g_0 g_1 g_0^{-1} \rangle)_* \times (\langle g_2, g_0 g_2 g_0^{-1} \rangle)_*.$$

The operations of g_{j*} (j = 0, 1, 2) on V_0 and V_1 are as follows:

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{0*} = G_0 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{1*} = G_1 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{2*} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$
$$\begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{0*} = G_0 \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}, \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{2*} = G_1 \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}, \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{1*} = \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix},$$

where

$$G_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad G_1 = I + 2e((-a-b)/2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} (\gamma_{31}, \gamma_{32})$$

Hence

$$(\langle g_1, g_0 g_1 g_0^{-1} \rangle)_* | V_0 \simeq N_1(a, b, c) \simeq N_1(a, b, c')$$

$$(\langle g_1, g_0 g_1 g_0^{-1} \rangle)_* | V_1 = \{I\}.$$

$$(\langle g_2, g_0 g_2 g_0^{-1} \rangle)_* | V_1 \simeq N_1(a, b, c) \simeq N_1(a, b, c')$$

$$(\langle g_2, g_0 g_2 g_0^{-1} \rangle)_* | V_1 = \{I\}.$$

This proves that

$$N_C(a, b, c, c') \simeq N_1(a, b, c) \times N_1(a, b, c) \simeq N_1(a, b, c') \times N_1(a, b, c').$$

LEMMA 4.2.2. Assume that $M_4(a, b, c, c')$ is irreducible. If $1 - c', b - a \equiv 1/2 \mod \mathbb{Z}$ then

$$N_C(a, b, c, c') \simeq N_1(a, b, c) \times N_1(a, b, c).$$

If $1-c, b-a \equiv 1/2 \mod \mathbf{Z}$ then

$$N_C(a, b, c, c') \simeq N_1(a, b, c') \times N_1(a, b, c')$$

In any case, $M_4(a, b, c, c')$ is imprimitive.

PROOF: Assume that $1 - c', b - a \equiv 1/2 \mod \mathbb{Z}$. Another statement under the assumption of $1 - c, b - a \equiv 1/2 \mod \mathbb{Z}$ is proved in the same way. In this case we have

$$\begin{split} \varphi \gamma_{1*} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e(1-c) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e(1-c) \end{pmatrix} \varphi, \\ \varphi \gamma_{2*} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \varphi, \\ \varphi \gamma_{3*} &= \begin{pmatrix} I - \frac{e((c-2a)/2)}{2\sin \pi c} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}) \end{pmatrix} \varphi, \end{split}$$

where $\gamma_{31} = \gamma_{33} = \sin 2\pi a$, $\gamma_{32} = \gamma_{34} = \sin 2\pi (c-a)$. Put

$$\psi_1 = \varphi_1 + \varphi_3, \ \psi_2 = \varphi_2 + \varphi_4, \ \psi_3 = \varphi_1 - \varphi_3, \ \psi_4 = \varphi_2 - \varphi_4$$

and let

$$V_0 := \langle \psi_1, \psi_2 \rangle, \qquad V_1 := \langle \psi_3, \psi_4 \rangle$$

be subspaces of $V = V(P_0)$.

Then γ_{2*} interchanges V_0 and V_1 , and γ_{1*}, γ_{3*} fix V_j (j = 0, 1) invariant. This means that $M_4(a, b, c, c')$ is imprimitive and that V_0, V_1 are invariant under $(\langle \gamma_1, \gamma_3, \gamma_2 \gamma_3 \gamma_2^{-1} \rangle)_*$.

Put

$$g_0 = \gamma_1, \quad g_1 = \gamma_3, \quad g_2 = \gamma_2 \gamma_3 \gamma_2^{-1}$$

Then g_{1*} is identity on V_1 and g_{2*} is identity on V_0 . Hence we have

$$N_C = (\langle \{g_0^j g_1 g_0^{-j}, g_0^j g_2 g_0^{-j} | j \in \mathbf{Z} \} \rangle)_*$$

$$\simeq (\langle \{g_0^j g_1 g_0^{-j} | j \in \mathbf{Z} \} \rangle)_* \times (\langle \{g_0^j g_2 g_0^{-j} | j \in \mathbf{Z} \} \rangle)_*.$$

The operations of g_{0*}, g_{1*}, g_{2*} on V_0 and V_1 are as follows:

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{0*} = G_0 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{1*} = G_1 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} g_{2*} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$
$$\begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{0*} = G_0 \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}, \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{2*} = G_1 \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}, \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} g_{1*} = \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix},$$

where

$$G_0 = \begin{pmatrix} 1 & 0 \\ 0 & e(1-c) \end{pmatrix}, \quad G_1 = I - \frac{\epsilon((c-2a)/2)}{\sin \pi c} \begin{pmatrix} 1 \\ 1 \end{pmatrix} (\gamma_{31}, \gamma_{32}).$$

Hence Lemma 4.2.2 holds in the same way as the previous lemma.

5. PROOF OF "ONLY IF" PART OF THEOREM 1

It is sufficient to prove the following lemma.

LEMMA 5. Assume that $M_4(a, b, c, c')$ is finite and irreducible and that $\varepsilon \notin \mathbb{Z}$. Then at least two of 1 - c, 1 - c', b - a are equivalent to $1/2 \mod \mathbb{Z}$.

PROOF: From Lemma 3.2, 3.3 and 3.4 we have

- (1) (1-c, c-a-b, b-a) belongs to the S-list,
- (2) (1-c', c'-a-b, b-a) belongs to the S-list,
- (3) (1 c', c' a b 2(1 c), b a) belongs to the S-list,
- (4) (1-c, c-a-b-2(1-c'), b-a) belongs to the S-list,
- (5) (1-c, (c'-a-b)+(b-a)-(1-c), 1-c') belongs to the S-list.

Suppose Lemma 5 does not hold. Then by the symmetry, we may assume that

$$1 - c = p/k, \ 1 - c' = p'/k' \quad k, k' \in \{3, 4, 5\}.$$

Put

$$c-a-b=q/m, \ c'-a-b=q'/m', \ b-a=r/n \ m,m',n\in\{2,3,4,5\}.$$

We will derive contradictions in any of the following cases.

(Case 1) k = k' = 4, p, p' are odd.

The property (4) implies that the denominator of c - a - b - 2(1 - c') = q/m - 2p'/k' is one of 2,3,4,5. Hence *m* is eaven. If m = 4 then $\varepsilon = q/m - p'/k' \equiv 0$ or $1/2 \mod \mathbb{Z}$. Since $\varepsilon, \varepsilon + 1/2 \notin \mathbb{Z}$, this is a contradiction. If m = 2 then $c - a - b - 2(1 - c') = q/m - 2p'/k' \in \mathbb{Z}$ and hence (4) does not hold. This is a contradiction.

(Case 2) k = 4, k' = 3 or 5, p is odd.

The property (5) implies that k' = 3. Then (4) implies that the denominator of c - a - b - 2(1 - c') = q/m - 2p'/k' is 3 and hence m = 3. By the same reason. (3) implies that m' = 4. Since ε is not an integer, the denominator of $\varepsilon = c - a - b - (1 - c') = q/m - p'/k'$ is 3. On the other hand $\varepsilon = c' - a - b - (1 - c) = q'/m' - p/k$ has even denominator. This is a contradiction.

(Case 3) k and k' are odd (=3 or 5).

The properties (3) and (4) imply that m' = k and m = k' respectively. Since $\varepsilon = (c - a - b) - (1 - c') = (c' - a - b) - (1 - c)$ is not an integer, we have k = k' which is the denominator of ε . Then (5) implies that the denominator of $(c' - a - b) - (1 - c) + (b - a) = \varepsilon + (b - a)$ is k. Hence n = k. This concludes that k = k' = m = m' = n.

(Case 3.1) k = k' = m = m' = n = 3.

Since $\varepsilon = c' - a - b - (1 - c) = (q' - p)/3 \notin \mathbb{Z}$, we have $p \not\equiv q' \mod 3$. On the other hand (3) implies $c' - a - b - 2(1 - c) = (q' - 2p)/3 \notin \mathbb{Z}$. Hence $p \equiv q' \mod 3$. This is a contradiction. (Case 3.2) k = k' = m = m' = n = 5.

In order that (1) and (2) hold, there are two cases, that is,

$$p, q, p', q', r \equiv \pm 1$$
 or $p, q, p', q', r \equiv \pm 2 \mod 5$.

Since $\varepsilon = (q'-p)/5 = (q-p')/5$ is not an integer, we have $p \not\equiv q', p' \not\equiv q \mod 5$.

If $p, q, p', q', r \equiv \pm 1$ (and $p \not\equiv q'$) mod 5 then the numerator of c' - a - b - 2(1 - c) = (q' - 2p)/5 is congruent to $\pm 2 \mod 5$.

If $p, q, p', q', r \equiv \pm 2$ (and $p \not\equiv q'$) mod 5 then the numerator of c' - a - b - 2(1 - c) = (q' - 2p)/5 is congruent to $\pm 1 \mod 5$.

In any case (3) does not hold. This is a contradiction.

This completes the proof of Lemma 5.

6. LEMMAS ON M(a, b, c)

In this section we denote

$$\lambda = 1 - c, \ \mu = c - a - b, \ \nu = b - a$$

and we assume that M(a, b, c) is finite irreducible. Recall that $N_1(a, b, c)$ is the smallest normal subgroup of M(a, b, c) containing L_{1*} (see Section 2.1). In this section we fix the base v_1 , v_2 of $V(x_0)$ and identify L_{x*} and $G_x x = 0, 1$.

LEMMA 6.1. Assume that $\lambda \equiv \nu \equiv 1/2 \mod \mathbb{Z}$. Then $L_{0*} \notin N_1(a, b, c)$.

PROOF: We have $G_0^2 = I$, $(G_0G_1)^2 = \alpha I$ for some root of unity α . Since $G_0G_1G_0^{-1} = \alpha G_1^{-1}$, G_1 and $G_0G_1G_0^{-1}$ have the common eigen vectors. This means that N_1 is reducible hence we have $N_1 \neq M(a, b, c)$. This implies $G_0 \notin N_1$.

LEMMA 6.2. Assume that $\lambda \equiv 1/2$, $\mu, \nu \not\equiv 1/2 \mod \mathbb{Z}$. Then $L_{0*} \notin N_1(a, b, c)$.

PROOF: If the denominator of μ is odd (*i.e.* 3 or 5) then the determinant of any $L_* \in N_1$ cannot be $-1 = det(G_0)$. Hence $G_0 \notin N_1$. If the denominator of μ is 4, then direct computations show that the orders of M(a, b, c) and N_1 are 192 and 96 (refer to Shephard-Todd [16]). Hence $G_0 \notin N_1$.

LEMMA 6.3. Assume that $\nu \equiv 1/2$, $\lambda, \mu \not\equiv 1/2 \mod \mathbb{Z}$. If both of the denominators of λ and μ are 5 then $L_{0*} \in N_1$. Otherwise $\langle L_{0*} \rangle \cap N_1 = \{I\}.$

PROOF: In the first case, we may assume $\lambda = 1/5, \mu = 2/5$. Then by direct calculations we have $(G_0G_1)^2 = (G_0G_1^3)^3 = \alpha I, \alpha = \epsilon(1/10)$. The

equality $(G_0G_1)^2 = \alpha I$ implies $\alpha G_0^3 = (G_0G_1G_0^{-1})(G_0^2G_1G_0^{-2}) \in N_1$. The equality $(G_0G_1^3)^3 = \alpha I$ implies $\alpha G_0^2 = (G_0G_1^3G_0^{-1})(G_0^2G_1^3G_0^{-2})$ $(G_0^3G_1^3G_0^{-3}) \in N_1$. Hence $G_0 \in N_1$.

In the case of $(\lambda, \mu) = (1/3, 1/3)$, by direct computations, we know that the orders of M(a, b, c) and $N_1(a, b, c)$ are 72 and 24 (refer to Shephard-Todd [16]). Hence $\langle G_0 \rangle \cap N_1 = \{I\}$.

In the case of $\{\lambda, \mu\} = \{1/3, 1/4\}, \{1/3, 1/5\}, \{2/5, 1/3\}$, the denominators of λ and μ are relatively prime. Hence we have $\langle G_0 \rangle \cap N_1 = \{I\}$.

7. STRUCTURE OF FINITE IRREDUCIBLE $M_4(a, b, c, c')$

The structure of M_4 with $\varepsilon \in \mathbf{Z}$ is stated in Proposition 4.1. We will consider finite irreducible $M_4(a, b, c, c')$ with $\varepsilon \notin \mathbf{Z}$. Recall that $M_4(a, b, c, c') = N_{C^*} < \gamma_{1*}, \gamma_{2*} >$ is imprimitive in this case (Lemma 4.2.1, 4.2.2).

THEOREM 7.1. Assume that M(a, b, c) is finite irreducible and that $\varepsilon \notin \mathbb{Z}$, $c, c' \equiv 1/2 \mod \mathbb{Z}$. Then $M_4(a, b, c, c') = N_C \cdot \langle \gamma_{1*}, \gamma_{2*} \rangle$ with $N_C \cap \langle \gamma_{1*}, \gamma_{2*} \rangle = \{I\}, N_C \simeq N_1(a, b, c) \times N_1(a, b, c), \langle \gamma_{1*}, \gamma_{2*} \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ and $M(a, b, c)/N_1 \simeq \mathbb{Z}_2$.

PROOF: Since $c - a - b \equiv \varepsilon + 1/2 \not\equiv 1/2$, Lemma 6.1 and Lemma 6.2 imply that $L_{0*} \not\in N_1$, whence $M(a, b, c)/N_1(a, b, c) \simeq \mathbb{Z}_2$. By Lemma 4.2.1, we have $N_C \simeq N_1(a, b, c) \times N_1(a, b, c)$ and $\langle \gamma_{1*}, \gamma_{2*} \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

Next we will prove $N_C \cap \langle \gamma_{1*}, \gamma_{2*} \rangle = \{I\}$. As in the proof of Lemma 4.2.1, $V = V_0 + V_1$. V_0, V_1 are invariant under N_C while γ_{1*}, γ_{2*} interchange V_0 and V_1 . Hence $\gamma_{1*}, \gamma_{2*} \notin N_C$. In the proof of Lemma 4.2.1, we have shown that the restrictions of $(\gamma_1 \gamma_2)_*$ and N_C to V_0 are L_{0*} and $N_1(a, b, c)$. Since $L_{0*} \notin N_1(a, b, c)$ by Lemma 6.1, 6.2, we have $(\gamma_1 \gamma_2)_* \notin N_C$. This proves that $N_C \cap \langle \gamma_{1*}, \gamma_{2*} \rangle = \{I\}$.

THEOREM 7.2. Assume that M(a, b, c) is finite irreducible and that $\varepsilon \notin \mathbb{Z}$, $c', b - a \equiv 1/2 \mod \mathbb{Z}$. Put c = p/k with (p, k) = 1.

(7.2.1) If both of the denominators of 1-c and c-a-b are 5, then $\gamma_{1*} \in N_C$, hence we have $M_4(a, b, c, c') = N_C \cdot \langle \gamma_{2*} \rangle$ with $N_C \cap \langle \gamma_{2*} \rangle = \{I\}$. And we have $N_C \simeq N_1(a, b, c) \times N_1(a, b, c) = M(a, b, c) \times M(a, b, c)$ and $\langle \gamma_{2*} \rangle \simeq \mathbf{Z}_2$.

(7.2.2) If the condition of (7.2.1) does not hold, then $M_4(a, b, c, c') = N_C \cdot \langle \gamma_{1*}, \gamma_{2*} \rangle$ with $N_C \cap \langle \gamma_{1*}, \gamma_{2*} \rangle = \{I\}, N_C \simeq N_1(a, b, c) \times N_1(a, b, c), M(a, b, c)/N_1 \simeq \mathbb{Z}_k \text{ and } \langle \gamma_{1*}, \gamma_{2*} \rangle \simeq \mathbb{Z}_k \times \mathbb{Z}_2.$

PROOF: As is shown in the proof of Lemma 4.2.2, $V = V_0 + V_1$ and γ_{2*} interchanges V_0 and V_1 while γ_{1*} and γ_{3*} fix (set theoretically) V_j j = 0, 1. Hence any element of N_C also fix V_j . Consequently we have $\gamma_{2*} \notin N_C$. By Lemma 4.2.2, the restrictions of γ_{1*} and N_C to V_j are L_{0*} and $N_1(a, b, c)$ for each j = 0, 1.

In case of (7.2.1), by Lemma 6.3, $L_{0*} \in N_1$. This implies $\gamma_{1*} \in N_C$. Hence $M_4(a, b, c, c') = N_C \cdot \langle \gamma_{1*}, \gamma_{2*} \rangle = N_C \cdot \langle \gamma_{2*} \rangle$ with $N_C \cap \langle \gamma_{2*} \rangle = \{I\}$. By Lemma 4.2.2, we have $N_C \simeq N_1(a, b, c) \times N_1(a, b, c) = M(a, b, c) \times M(a, b, c)$ and $\langle \gamma_{2*} \rangle \simeq \mathbb{Z}_2$.

In case of (7.2.2), by Lemma 6.3, $\langle L_{0*} \rangle \cap N_1 = \{I\}$. Hence $\langle \gamma_{1*}, \gamma_{2*} \rangle \cap N_C = \{I\}$. By Lemma 4.2.2, we have $N_C \simeq N_1(a, b, c) \times N_1(a, b, c)$ and $\langle \gamma_{1*}, \gamma_{2*} \rangle \simeq \mathbb{Z}_k \times \mathbb{Z}_2$.

8. EXAMPLES

We assume in this section that c = c' = 1/2 and that $M_4(a, b, c, c')$ is irreducible. We fix the base v_1, v_2 of $V(x_0)$ (see Section 2.1). Recall that

$$V = V_0 + V_1 = \langle \psi_1, \psi_2 \rangle + \langle \psi_3, \psi_4 \rangle,$$

where V_0 and V_1 are invariant subspaces of $V = V(P_0)$ under g_{0*}, g_{1*}, g_{2*} (see the proof of Lemma 4.2.1).

Put

$$\Psi = (\psi_1, \psi_2, \psi_3, \psi_4).$$

Then Ψ defines a multi-valued locally biholomorphic mapping of $\mathbf{P}^2 - L_X \cup L_Y \cup L_\infty \cup C$ into \mathbf{P}^3 . Let S_{Ψ} be the closure of its image in \mathbf{P}^3 . In the following examples S_{Ψ} are smooth hypersurfaces and Ψ^{-1} are defined by meromorphic functions on S_{Ψ} . The defining functions of S_{Ψ} and the inverse mapping functions are composed of the invariant (homogeneous) polynomials $\in \mathbf{C}[v_1, v_2]$ under the actions of M(a, b, c). First we prepare the following two lemmas.

LEMMA 8.1. Assume that $c, c' \equiv 1/2 \mod \mathbf{Z}$.

(1) If $f(v_1, v_2)$ is an invariant polynomial under the action of M(a, b, c)then $f(\psi_1, \psi_2) + f(\psi_3, \psi_4)$ and $f(\psi_1, \psi_2)f(\psi_3, \psi_4)$ are both invariant under $M_4(a, b, c, c')$.

(2) If $f(v_1, v_2)L_{1*} = f(v_1, v_2)$ and $f(v_1, v_2)L_{0*} = -f(v_1, v_2)$ then $f(\psi_1, \psi_2)^2 + f(\psi_3, \psi_4)^2$ and $f(\psi_1, \psi_2)f(\psi_3, \psi_4)$ are both invariant under $M_4(a, b, c, c')$.

PROOF:

Proof of (1). $f(\psi_1, \psi_2)$ and $f(\psi_3, \psi_4)$ are invariant under g_{0*}, g_{1*}, g_{2*} while $f(\psi_1, \psi_2)\gamma_{2*} = f(\psi_3, \psi_4)$. Hence (1) holds.

Proof of (2). $f(\psi_1, \psi_2)^2 + f(\psi_3, \psi_4)^2$ is invariant from (1). By the proof of Lemma 4.2.1, $f(\psi_1, \psi_2)$ and $f(\psi_3, \psi_4)$ are both invariant under N_C . Since $f(\psi_1, \psi_2)g_{0*} = -f(\psi_1, \psi_2)$, $f(\psi_3, \psi_4)g_{0*} = -f(\psi_3, \psi_4)$ and $f(\psi_1, \psi_2)\gamma_{2*} = f(\psi_3, \psi_4)$, we know that $f(\psi_1, \psi_2)f(\psi_3, \psi_4)$ is invariant under $<\gamma_{1*}, \gamma_{2*} >$. Hence (2) holds.

In Shephard-Todd [16], three invariants

$$f_n(v_1, v_2), h_{2n-4}(v_1, v_2), t_{3n-6}(v_1, v_2)$$

are considered. Where *n* denotes the degree of f_n , h_{2n-4} is the Hessian of f_n of degree 2n - 4 and t_{3n-6} is the Jacobian of f_n and h_{2n-4} of degree 3n - 6. For the application to $M_4(a, b, c, c')$, we will calculate the definite formes of them.

We put

$$v_1' = \frac{\Gamma(a)\Gamma(b)}{\Gamma(1+a+b-c)}F(a,b,1+a+b-c;1-x),$$

$$v_2' = \frac{\Gamma(c-a)\Gamma(c-b)}{\Gamma(1+c-a-b)}(1-x)^{c-a-b}F(c-a,c-b,1+c-a-b;1-x).$$

LEMMA 8.2. By the analytic continuations along real segment 0 < x < 1, we have

$$v_1' = \frac{\pi}{\Gamma(1+a-c)\Gamma(1+b-c)}(v_1 - v_2),$$

$$v_2' = -\frac{\pi}{\Gamma(1+a-c)\Gamma(1+b-c)}(\beta v_1 + v_2),$$

where

$$\beta = -\frac{\sin \pi a \sin \pi b}{\sin \pi (c-a) \sin \pi (c-b)}$$

PROOF: This follows from the connection formulas for E(a, b, c), given in [4], for example.

In the following examples we put

$$w_1 = \beta^{1/4} v_1, \ w_2 = \beta^{-1/4} v_2.$$

Example 8.3. c = c' = b - a = 1/2, $\varepsilon + 1/2$ (= c - a - b) = 1/n.

In this case, β (in the previous lemma) = 1. Hence

$$P_n(v_1, v_2) := (v_1 - v_2)^n + (v_3 + v_4)^n = \text{constant} \cdot (v_1^{\prime n} \pm v_2^{\prime n})$$

is invariant under M(a, b, c). Put

$$Q_n(v_1, v_2) = (v_1 - v_2)^n - (v_1 + v_2)^n.$$

Then Q_n is invariant under L_{1*} but $Q_n L_{0*} = -Q_n$. From Lemma 8.1, we know that

$$P_n(\psi_1,\psi_2) + P_n(\psi_3,\psi_4), \quad P_n(\psi_1,\psi_2)P_n(\psi_3,\psi_4),$$
$$Q_n(\psi_1,\psi_2)^2 + Q_n(\psi_3,\psi_4)^2, \quad Q_n(\psi_1,\psi_2)Q_n(\psi_3,\psi_4)$$

are invariant under $M_4(a, b, c, c')$. Since the exponents along L_{∞} are $-1/2n, -1/2n, (n-1)/2n, (n-1)/2n, P_n(\psi_1, \psi_2) + P_n(\psi_3, \psi_4)$ is constant while other three invariant functions are at most one degree polynomials in X, Y. Since $P_n(\psi_1, \psi_2)$ is invariant under $g_{1*} = \gamma_{3*}$, and $g_{0*} = (\gamma_1 \gamma_2)_*, P_n(\psi_1, \psi_2)$ has the following form: $P_n(\psi_1, \psi_2) = A_0(X, Y) + A_1(X, Y)(XY)^{1/2}$. Then we have $P_n(\psi_3, \psi_4) = A_0(X, Y) - A_1(X, Y)(XY)^{1/2}$. Hence we know that A_0 is constant $(= 2(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')})^2)$ and $A_1 = 0$. By expanding at X = 0, Y = 0, we have

$$Q_n(\psi_1, \psi_2)^2 + Q_n(\psi_3, \psi_4)^2 = 8(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')})^2(X+Y)$$
$$Q_n(\psi_1, \psi_2)Q_n(\psi_3, \psi_4) = 4(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')})^2(X-Y)$$

Thus we have proved that

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | P_n(\psi_1, \psi_2) - P_n(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree n, and that Ψ^{-1} is given by

$$X = \frac{(Q_n(\psi_1, \psi_2) + Q_n(\psi_3, \psi_4))^2}{(P_n(\psi_1, \psi_2) + P_n(\psi_3, \psi_4))^2},$$

$$Y = \frac{(Q_n(\psi_1, \psi_2) - Q_n(\psi_3, \psi_4))^2}{(P_n(\psi_1, \psi_2) + P_n(\psi_3, \psi_4))^2}.$$

Recall that $M_4(a, b, c, c')$ is of order $4n^4$ with center of order n.

Example 8.4. c = c' = 1/2, $b - a = \varepsilon + 1/2$ (= c - a - b) = 1/3.

In this case $\beta = (\sqrt{3} - 1)/(\sqrt{3} + 1)$. M(a, b, c) is the group No.6 in Shephard-Todd's list, the order of which is 48 and the center of which is $\{e(k/4)I|0 \le k \le 3\}$. There are invariant polynomials $f_4(v_1, v_2)$ and $t_6(v_1, v_2)^2$ of degree 4 and 12 (Shephard-Todd [16]). In order that f_4 shoud be invariant under L_{1*} , f_4 must be of the form $f_4 = v_1'^4 + \alpha v_1' v_2'^3$. In order that f_4 shoud be invariant under L_{0*} , by direct computations, we have

$$f_4(v_1, v_2) = w_1^4 + 2\sqrt{3}w_1^2w_2^2 - w_2^4.$$

By a constant multiplication, we have

$$t_6(v_1, v_2) = w_1 w_2 (w_1^4 + w_2^4)$$

which satisfies $t_6L_{1*} = t_6$ and $t_6L_{0*} = -t_6$. Then

$$f_4(\psi_1,\psi_2) = f_4(\psi_3,\psi_4) = \beta \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')}\right)^4.$$

We also have

$$t_6(\psi_1,\psi_2)^2 + t_6(\psi_3,\psi_4)^2 = 2k(X+Y),$$

$$t_6(\psi_1,\psi_2)t_6(\psi_3,\psi_4) = k(X-Y),$$

where

$$k = \beta^2 \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')} \right)^{10} \left(\frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(2-c)\Gamma(c')} \right)^2.$$

Thus we have proved that

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | f_4(\psi_1, \psi_2) - f_4(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree 4 and that Ψ^{-1} is given by

$$X = \alpha \frac{(t_6(\psi_1, \psi_2) + t_6(\psi_3, \psi_4))^2}{(f_4(\psi_1, \psi_2) + f_4(\psi_3, \psi_4))^3},$$

$$Y = \alpha \frac{(t_6(\psi_1, \psi_2) - t_6(\psi_3, \psi_4))^2}{(f_4(\psi_1, \psi_2) + f_4(\psi_3, \psi_4))^3}$$

where

$$\alpha = 2\beta \left(\frac{\Gamma(a)\Gamma(b)\Gamma(2-c)}{\Gamma(1+a-c)\Gamma(1+b-c)\Gamma(c)} \right)^2 = 24\sqrt{3}.$$

Example 8.5. c = c' = 1/2, $\varepsilon + 1/2$ (= c - a - b) = 1/3, b - a = 1/4. In this case $\beta = (\sqrt{3} - \sqrt{2})/(\sqrt{3} + \sqrt{2})$. M(a, b, c) is the group No.14 in Shephard-Todd's list, the order of which is 144 and the center of which is $\{e(k/6)I|0 \leq k \leq 5\}$. There are invariant polynomials $f_6(v_1, v_2)$ and $t_{12}(v_1, v_2)^2$ of degree 6 and 24 (Shephard-Todd [16]).

By direct computations, we have

$$\begin{aligned} f_6(v_1, v_2) &= w_1^6 + 5w_1^4 w_2^2 - 5w_1^2 w_2^4 - w_2^6, \\ t_{12}(v_1, v_2) \\ &= w_1 w_2 (w_1^{10} - \frac{11}{9} w_1^8 w_2^2 + \frac{66}{9} w_1^6 w_2^4 + \frac{66}{9} w_1^4 w_2^6 - \frac{11}{9} w_1^2 w_2^8 + w_2^{10}). \end{aligned}$$

The polynomial t_{12} satisfies $t_{12}L_{1*} = t_{12}$ and $t_{12}L_{0*} = -t_{12}$. Then

$$f_6(\psi_1,\psi_2) = f_6(\psi_3,\psi_4) = \beta^{3/2} \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')}\right)^6.$$

We also have

$$t_{12}(\psi_1,\psi_2)^2 + t_{12}(\psi_3,\psi_4)^2 = 2k(X+Y),$$

$$t_{12}(\psi_1,\psi_2)t_{12}(\psi_3,\psi_4) = k(X-Y),$$

where

$$k = \beta^5 \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')}\right)^{22} \left(\frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(2-c)\Gamma(c')}\right)^2.$$

Thus we have proved that

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | f_6(\psi_1, \psi_2) - f_6(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree 6 and that Ψ^{-1} is given by

$$X = \alpha \frac{(t_{12}(\psi_1, \psi_2) + t_{12}(\psi_3, \psi_4))^2}{(f_6(\psi_1, \psi_2) + f_6(\psi_3, \psi_4))^4},$$

$$Y = \alpha \frac{(t_{12}(\psi_1, \psi_2) - t_{12}(\psi_3, \psi_4))^2}{(f_6(\psi_1, \psi_2) + f_6(\psi_3, \psi_4))^4}$$

where

$$\alpha = 4\beta \left(\frac{\Gamma(a)\Gamma(b)\Gamma(2-c)}{\Gamma(1+a-c)\Gamma(1+b-c)\Gamma(c)}\right)^2.$$

Example 8.6. c = c' = 1/2, $\varepsilon + 1/2$ (= c - a - b) = 1/4, b - a = 1/3. In this case $\beta = (\sqrt{2} - 1)/(\sqrt{2} + 1)$. M(a, b, c) is the group No.9 in Shephard-Todd's list, the order of which is 192 and the center of which is $\{e(k/8)I|0 \le k \le 7\}$. The following polynomial

$$f_6(v_1, v_2) = w_1^6 - 5w_1^4w_2^2 - 5w_1^2w_2^4 + w_2^6$$

satisfies $f_6 L_{0*} = f_6$, $f_6 L_{1*} = \sqrt{-1}f_6$. The polynomials h_8 and t_{12}^2 are invariant under M(a, b, c). We have (up to constant multiplications)

$$h_8(v_1, v_2) = w_1^8 + \frac{28}{3}w_1^6w_2^2 - \frac{14}{3}w_1^4w_2^4 + \frac{28}{3}w_1^2w_2^6 + w_2^8,$$

$$t_{12}(v_1, v_2)$$

$$= w_1w_2(w_1^{10} + \frac{11}{9}w_1^8w_2^2 + \frac{66}{9}w_1^6w_2^4 - \frac{66}{9}w_1^4w_2^6 - \frac{11}{9}w_1^2w_2^8 - w_2^{10}).$$

The polynomial t_{12} satisfies $t_{12}L_{1*} = t_{12}$ and $t_{12}L_{0*} = -t_{12}$. Then

$$h_8(\psi_1,\psi_2) = h_8(\psi_3,\psi_4) = \beta^2 \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')}\right)^8$$

We also have

$$t_{12}(\psi_1,\psi_2)^2 + t_{12}(\psi_3,\psi_4)^2 = 2k(X+Y),$$

$$t_{12}(\psi_1,\psi_2)t_{12}(\psi_3,\psi_4) = k(X-Y),$$

where

$$k = \beta^5 \left(\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)\Gamma(c')} \right)^{22} \left(\frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(2-c)\Gamma(c')} \right)^2.$$

Thus we have proved that

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | h_8(\psi_1, \psi_2) - h_8(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree 8 and that Ψ^{-1} is given by

$$X = \alpha \frac{(t_{12}(\psi_1, \psi_2) + t_{12}(\psi_3, \psi_4))^2}{(h_8(\psi_1, \psi_2) + h_8(\psi_3, \psi_4))^3},$$
$$Y = \alpha \frac{(t_{12}(\psi_1, \psi_2) - t_{12}(\psi_3, \psi_4))^2}{(h_8(\psi_1, \psi_2) + h_8(\psi_3, \psi_4))^3}$$

where

$$\alpha = 2\beta \left(\frac{\Gamma(a)\Gamma(b)\Gamma(2-c)}{\Gamma(1+a-c)\Gamma(1+b-c)\Gamma(c)} \right)^2$$

.

Example 8.7. c = c' = 1/2, $\varepsilon + 1/2$ (= c - a - b) = 1/3, b - a = 1/5. M(a, b, c) is the group No.21 in Shephard-Todd's list, the order of which is 720 and the center of which is $\{e(k/12)I|0 \le k \le 11\}$. The following polynomial

$$\begin{split} f_{12}(v_1, v_2) = & w_1^{12} + \frac{22}{\sqrt{5}} w_1^{10} w_2^2 \\ & - 33 w_1^8 w_2^4 - \frac{44}{\sqrt{5}} w_1^6 w_2^6 - 33 w_1^4 w_2^8 + \frac{22}{\sqrt{5}} w_1^2 w_2^{10} + w_2^{12} \end{split}$$

is invariant under M(a, b, c). The polynomial t_{30} satisfies $t_{30}L_{1*} = t_{30}$ and $t_{30}L_{0*} = -t_{30}$.

By the same reason as previous examples, we have

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | f_{12}(\psi_1, \psi_2) - f_{12}(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree 12 and that Ψ^{-1} is given by

$$X = \alpha \frac{(t_{30}(\psi_1, \psi_2) + t_{30}(\psi_3, \psi_4))^2}{(f_{12}(\psi_1, \psi_2) + f_{12}(\psi_3, \psi_4))^5},$$

$$Y = \alpha \frac{(t_{30}(\psi_1, \psi_2) - t_{30}(\psi_3, \psi_4))^2}{(f_{12}(\psi_1, \psi_2) + f_{12}(\psi_3, \psi_4))^5}$$

where

$$\alpha = 8\beta \left(\frac{\Gamma(a)\Gamma(b)\Gamma(2-c)}{\Gamma(1+a-c)\Gamma(1+b-c)\Gamma(c)}\right)^2.$$

Example 8.8. c = c' = 1/2, $\varepsilon + 1/2$ (= c-a-b) = 1/5, b-a = 1/3. M(a, b, c) is the group No.17 in Shephard-Todd's list, the order of which is 1200 and the center of which is $\{e(k/20)I|0 \le k \le 19\}$. The following polynomial

$$f_{12}(v_1, v_2) = w_1^{12} - \frac{22}{\sqrt{5}} w_1^{10} w_2^2 - 33 w_1^8 w_2^4 + \frac{44}{\sqrt{5}} w_1^6 w_2^6 - 33 w_1^4 w_2^8 - \frac{22}{\sqrt{5}} w_1^2 w_2^{10} + w_2^{12}$$

satisfies $f_{12}L_{0*} = f_{12}$, $f_{12}L_{1*} = e(1/5)f_{12}$. The polynomial h_{20} is invariant under M(a, b, c) and the polynomial t_{30} satisfies $t_{30}L_{1*} = t_{30}$ and $t_{30}L_{0*} = -t_{30}$.

By the same reason as previous examples, we have

$$S_{\Psi} = \{ [\psi_1 : \psi_2 : \psi_3 : \psi_4] \in \mathbf{P}^3 | h_{20}(\psi_1, \psi_2) - h_{20}(\psi_3, \psi_4) = 0 \}$$

which is a smooth hypersurface of degree 20 and that Ψ^{-1} is given by

$$X = \alpha \frac{(t_{30}(\psi_1, \psi_2) + t_{30}(\psi_3, \psi_4))^2}{(h_{20}(\psi_1, \psi_2) + h_{20}(\psi_3, \psi_4))^3}.$$
$$Y = \alpha \frac{(t_{30}(\psi_1, \psi_2) - t_{30}(\psi_3, \psi_4))^2}{(h_{20}(\psi_1, \psi_2) + h_{20}(\psi_3, \psi_4))^3}.$$

where

0

$$\alpha = 2\beta \left(\frac{\Gamma(a)\Gamma(b)\Gamma(2-c)}{\Gamma(1+a-c)\Gamma(1+b-c)\Gamma(c)}\right)^2$$

REFFERENCES

[1] P. Appell, J. Kampé de Fériet: Fonctions Hypergéométriques et Hypersphériques, Gauthier Villars, Paris, 1926.

[2] F. Beukers, G. Heckman: Monodromy for the hypergeometric function $_{n}F_{n-1}$, Invent. math. 95 (1989) 325-354.

[3] P. Cohen, J. Wolfart: Algebraic Appell-Lauricella Functions, Analysis **12** (1992) 359-376.

[4] A. Erdélyi (Editor): Higher transcendental functions, Vol I, Mac-Graw Hill, New York, 1953.

[5] M. Iwano: Schwarz Theory, Math. Seminar Notes, Tokyo Metropolitan Univ., 1989.

[6] J. Kaneko: Monodromy Group of Appell's System (F_4) , Tokyo J. Math. 4 (1981) 35-54.

[7] M. Kato: A Pfaffian system of Appell's F_4 , Bulletin of College of Education Univ. of the Ryukyus **33** (1988) **331-334**.

[8] M. Kato: The Riemann Problem for Appell's F_4 , Memoirs of the Faculty of Science, Kyushu Univ., Ser. A, Vol. 47 (1993) 227-243.

[9] M. Kato: Connection Formulas for Appell's System F_4 and some Applications, Funkcialaj Ekvacioj **38** (1995) 243-266.

[10] M. Kato: The Irreducibilities of Appell's F_4 , Ryukyu Math. J. 7 (1994) 25-34.

[11] T. Kimura: Hypergeometric Functions of two Variables, Tokyo Univ. (1973).

[12] T. Sasaki: On the finiteness of the monodromy group of the system of hypergeometric differential equations (F_D) , J. Fac. Sci. Univ. of Tokyo 24 (1977) 565-573.

[13] T. Sasaki: Picard-Vessiot group of Appell's system of hypergeometric differential equations and infiniteness of monodromy group, Kumamoto J. of Sci. Math. 14 (1980) 85-100. [14] T. Sasaki, M. Yoshida: Linear Differential Equations in Two Variables of Rank Four. I, Math. Ann. **282** (1988) 69-93.

[15] H. A. Schwarz: Über diejenigen Fälle, in welchen die Gau β ische hypergeometrische Reihe eine algebraische Function ihres vierten Elements darstellt. J. Reine Angew. Math. **75** (1873) 292-335.

[16] G. C. Shephard, J. A. Todd: Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.

[17] K. Takano: Monodromy Group of the System for Appell's F_4 , Funkcialaj Ekvacioj **23** (1980) 97-122.

Mitsuo KATO

Department of Mathematics College of Education University of the Ryukyus Nishihara-cho, Okinawa 903-01 JAPAN

