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Abstract 

In this thesis we investigate the estimation of the Lyapunov exponent for 

the nonlinear autoregressive time series model, especially the chaotic time 

series model with additive dynamic noise. For the deterministic modrl, which 

doesn't have a noise, the Lyapunov exponent ha been proposed to quantify 

the sensitive dependence on an initial value. For nonlinear autoregressive 

time series models with additive noise, some modified Lyapunov-like indexes 

are proposed. However, they depend not only on the sensitive dependence on 

initial value, but also on the additive noise. We investigate in this thesL the 

estimator of the Lyapunov exponent which isn't infiuen ed by the additive 

noise. 

F irst we introduce delay time to the nonlinear autoregressive model con­

sidered in Cheng and Tong (1995). We find it important to take into account 

the delay time in the embedding dimension from the view point of curse 

of dimensionality. We develop a method of estimating the embedding di­

mension and delay time by using Tadaraya-Watson kernel estimator and 

Cross-Validation, and prove that the proposed estimator is consistent. 

Next we consider a skeleton of the nonlinear autoregressive model with 

dynamic noise by deleting the dynamic noise term. By the Lyapunov expo­

nent of the skeleton, we judge whether a randomness of the observed data is 

caused only by the dynamic noise or also by the nonlinearity of the autore­

gressive model. We propose an estimator of the Lyapunov exponent of the 

skeleton based on the observed data from the nonlinear autoregressive model 

with dynamic noise, when th embedding dimension is 1 and the skeleton has 

the Kolmogorov measure. And the consistency of the estimator is proved. 
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Chapter 1 

Introduction 

In analysis of data from nonlinear autoregressive time series with dynamic 

noise, it is a central issue whether randomness of the data is caused only by 

the dynamic noise or also by the nonlinearity of the autoregressive model. 

T his thesis investigates the estimation of the Lyapunov exponent for the non­

linear autoregressive time series model to quantify the sensitive dependence 

on an initial value. 

1.1 The embedding dimension and delay time 

Cheng and Tong ( 1995 ) considered a nonlinear autoregressive model with 

additive dynamic noise 

(1.1) 

Cheng and Tong ( 1995 ) also proposed to embed (Xt, Xt-l, · · · , Xt-d) into 

d + 1-dimensional Euclidean space, called d as the embedding dimension, and 

related the intuitive geometric reconstruction of phase space in theoretical 

physics with statistical theory of the determination of order of a nonlinear 

autoregressive model. 

Although the delay time was not considered in Cheng and Tong ( 1995 ) , 

we find it important to take into account the delay time in estimating the em-
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2 CHAPTER 1. INTRODUCTION 

bedding dimension. For example, Yonemoto and Yanagawa (1998) show that, 

if the method of Cheng and Tong (1995) is applied to data generated by .Xt = 

F(Xt_2, ... Yt_4, · · · ,  X1_2d) + Et, t = 1, 2, · · ·, the embedding dimension is esti­

mated to be 2d, that is, we should embed (Xt, X1-1, Xt-2, · · ·, Xt-(2d-l), Xt-2d) 

into 2d + 1-dimensional Euclidean space. But we may represent the dynam­

ics of {Xi-} by embedding {(Xt,Xt-2,··· ,Xt-2d),t = 1,2,···} in d+ 1 di­

mensional space, thus better to consider 2 as the delay time. This finding 

indicatf's that by also selecting the delay time we may embed the dynamics 

in a. lower climensional space, which is desirable from the view point of curse 

of dimensionality. 

1.2 The Lyapunov exponent 

Nonlinear dynamical systems which exhibit chaos are characterised by the 

phenomenon that a small perturbation in the initial condition can lead to a. 

considerable divergence of the states of the system in the short term. In a 

deterministic dynamical system, which takes the form of a nonlinear autore­

gressive model without noise, 

(1. 2) 

this phenomenon has been very well documented and is usually analyzed by 

the well-known Lyapunov exponents (Eckmann and Ruelle (1985), Chatter­

jee and Yilmaz (1992), Berliner (1992)). However, for a stochastic, i.e. the 

dynamic noise is involved, it is w ll known that the estimates of the Lyapunov 

exponent by conventional methods is unreliable. Several methods have been 

developed to overcome the difficulty. Kostelich and York (1990) approxi­

mated F by polynomials and separated the signal from noise, and Pikovsky 

(1986), Landa and Rosenblum (1989), Cawley and Hsu (1992), and Sauer 

(1992) filtered out the noise by using linear filters. McCaferey et al. (1992) 

employed nonparametric estimation ofF, but they assumed identical noises. 

Yao and Tong (1994a) explored alternative measures of detecting chaos in 

1.3. BASIC DEFINITIONS AND CONDITIO.l\r 3 

observational data.. In this thesis we estimate F, the empirical distribution 
of {.Xt} of the model (1.2) , and the Lyapunov exponent of the moclrl (1.2) 
using the observed data from model (1.1) . 

T he plan of the rest of the paper is as follows. In ChapLn 2, '"e giYc a 

brief sketch of local polynomial regression, which is used for C'sbmat.ing F 

and its derivative in Chapter 4. 

Chapter 3 provides the estimation of the embedding dimension and drlay 

time from chaotic time series with dynamic noise, on which thf' Lya.punov 

exponent depends. In Section 3.1 we introduce the delay time to (1.1), and 

explore the mathematical properties of the embedding dimension and clelay 

time. In Section 3.2 a method of estimating the embedding dimension and 

delay time is proposed based on Cross-Validation, a similar technique as 

Cheng and Tong (1995). Consistency of the proposed estimators is proved 

in Section 3.3. 

Chapter 4 provides the estimation of the Lyapunov exponent from chaotic 

time series with dynamic noise. In Section 4.1, we review the basics of chaos 

and the Lyapunov exponent. In Section 4.2, we define the class of the chaotic 

time series that we investigate. Finally in Section 4.3 we give a method of 

estimating the Lyapunov exponent and prove consistency of the proposed 

estimator. 

1.3 Basic definitions and condition 

In this section, we give basic definitions and condition, used throughout this 

thesis. 

Definition 1.1 (Stationary) 
The stochastic process { Xt; t 2: 0} is said to be stationary if the r-andom 

variables 



4 CHAPTER 1. INTRODUCTION 

have the same joint probability distribution as the random vaTiables 

for any positive integeT m, any t1, ... , tm and h. 

Definition 1.2 (Nonlinear autoregressive time series model} 
The stochastic model { Xt; t � 0} is said to be a nonlineaT autoregr·essive time 

series with dynamic noise zj { Xt} is stationaTy with EX; < oo and if for 

every integer t ( t � d), 

(1.3) 

where r1 is positive integer, F : Rd --+ R is a measurable function and { c:t} is 

a sequence of random noise and for any t, 

and 

E [c:ziA�-1(X)] = a2, (a> 0), almost sur-ely, 

wher-e A�(X) denotes the sigma algebra gener-ated by (X8, • • •  , Xt), for s::; t. 

FuTthcr-, the integer d is called the degr-ee of the nonlinear autoregressive time 

SeT'leS. 

Definition 1.3 (Skeleton) 
The deterministic system {Xt(x); t � 0} is said to be a skeleton of the non­

linP-aT autor-egr-essive time series with dynamic noise (1.3) if { Xt(x); t � 0} 

is gener-ated by 

Xt(x) = F(Xt-l(x),Xt-2(x), · · · ,Xt-d(x)), (joT t �d) (1.4) 

wheTe .r =1 ( Xo . . . , �rct-L ) E Rd is a fixed vector and .Xt ( x) = Xt for t = 

0, . . . 'd- 1. 

1.3. BASIC DEFINITIONS AND CONDITION 

Definition 1.4 (Chaos) 

5 

The deterministic system { Xt ( x); t � 0} is said to be chaotic if { �Yt(.r); t, � 0} 

is bounded and there exists 6 > 0 such that for all x, c: E Rd, thrrc e.r,ists 

positive integer- n such that IXn(x)- Xn(x + c:)l > 6. 

Definition 1.5 (Chaotic time series model) 

The nonlinear autor-egr-essive time ser-ies with dynamic noise is said to be 

chaotic time ser-ies if its skeleton is chaotic. 

For the function F: Rd --+ R in (1.3), we define F : Rd --+ Rd as 

F (x1, x2, ... , xd) = 

and put 

Then the model (1.3) implies 

( F(x1, x�,
L
· .. , xd) l 

. ' 

.'Ed-1 

Xt = F(Xt-1) + Et, ( fort� d), 

and the model (1.4) implies 

Xt = F(Xt-1), (fort� d). 

The model (1.6) is also said to be a skeleton of the model (1.5). 
In this thesis, we assume the following condition. 

Condition 1.1 

(1.5) 

(1.6) 

Let the support of { c:t} be S. We suppose that there exists a set lvf c Rd 

such that Xd-l E M and 

F(x +e) EM, 

for- all x E M and e =t (e1, 0, ... , 0) where e1 E S. 



Chapter 2 

Local polynon1ial regression 

In this chapter, refering to Wand and Jones (1995), Simonoff (1996) and Fan 

and Gijbels (1996), we review the local polynomial regression to estimate F 

in (1.3) and its derivative. 

2.1 Kernel Estimation 

First of all, we consider the density estimation problem. Let Y be a ran­

dom variable that has probability density function g(y) and let G(y) be Lhe 

distribution function of the random variable Y, and {Y1, ... , Yn} represent a 

random sample of size n from the density g. 
Consider the definition of g(y): 

g(y) = !!_G(y) lim 
G(y +h)- G(y- h)

. dy h----+0 2h 
Replacing G (y) with the empirical distribution function gives 

A ( ) = #{Yi E (y - h, y + h]} 
g Y 2nh · 

This can be rewritten as 

7 

(2.1) 
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where 

K ( u) = { �, if - 1 � u :S 1, 
0, otherwise. 

The form (2.1) is that of the kernel density estimator, with kernel function 

J{. Note that this kernel function is a uniform density function on ( -1, 1]. 
The problem is that the additive form of (2.1) implies that the estimate g 

retains the continuity and differentiability properties of K. Since the uniform 

density is discontinuous, so is the kernel density estimate based on a uniform 

kernel function. A smoother kernel function will thus lead to a smoother 

kernel density estimate. 

In this thesis, we assume that the kernel function K ( u) is an arbitrary 

density function satisfying the conditions: 

1. sup_oo<u<oo K(u) < oo, 

2. limlul4oo JuJK(u) = 0, 

3. I<(u) = J(( -u) for all u E R, 

4. fu2I<(u)du = a'k < oo. 

The bias and variance of the kernel density estimator arc given as follows. 

Theorem 2.1 (Parzen (1962)) 
Assume that g" (y) is absolutely continuous and square integrable. Then we 

have 

and 

V [�( )] 
g(y)R( K) 

+ 0( -1 ) ar g y = 

1 
n , 

n1 
wher-e R(I() = J K(u)2du. 

fhr degree to which the data are smoothed has a strong effect on the ap­

prarancr of .9(y) through the setting of the bandwidth h. Theorem 2.1 shows 

the tradeoff of bia versus variance. 

2.2. KERNEL REGRESSION 9 

Remark 2.1 Combining variance and squared bias, we have the mean squared 

eTTOT 

IntegTating over the entire line then we have the asymptotic MISE 

where R(g") = J g"(u)2du. The asymptotically optimal bandwidth sati8.fir-s 

ho = 

implying minimal AMJSE 

( R(K) ) 1/5 
naj<R(g") ' 

The term R(g") measures the roughness of the true underlying density. In 

general, rougher densities are more difficult to estimate and require a smaller 

bandwidth. 

2.2 Kernel Regression 

Next we consider the nonparametric regression problem. Let (Y, Z) be a ran­

dom vector that has joint density function g(y, z ) , and { (Y1, Z1), . .. , (Yn, Zn)} 
represent a random sample of size n from the density g. We consider the non­

parametric regression model 

where the regression curve m(y) is the conditional expectation m(y) = E(ZJY = 

y) with E(cJY = y) = 0, and Var(clY = y) = a2 (y) not necessarily constant. 
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By definition we have 

m(y) E[ZIY = y] 

j zg(ziy)dz 

I g(y,z)d z z, 
gy(y) 

(2.2) 

where gv(y) and g(ziy) are the marginal density of Y and the conditional 

density of Z given Y, respectively. A product kernel estimate of g(y, z) is 

1 
n (y. - y) (Z - z) 

g(y,z) = -h h L KY tJ Kz tJ ' 
n y z i=l ly Lz 

while a kernel estimation of gy(y) is 

Substituting into (2.2) , and noting that J f{z ( u ) = 1 and f uKz ( u )du = 0, 
yields the Nadayara-Watson kernel estimator, 

The N adaraya-Watson kernel estimator is most natural for data using a ran­

dom design. If the design is not random, but is rather a fixed set of ordered 

nonrandom numbers y1, ... , Yn, a different form of kernel estimator is consid­

rn�d. Ga. ser and 1iiller ( 1979) proposed the Gasser-Muller kernel estimator, 

� 1 n rsi ( u - y ) 
mcM(Y) = h ti zi lsi- ) K -h-

du, 

whrrr Yi-l < si-J < Yi· Fan( 1992) summarized the asymptotic bias and 

Yariance of these estimator as follows: 

( 1 , 
( 

m' ( Y) g�, ( Y) ) 2/ 2 ( ) d Bias[n1Nw(y)] = 2m y) + gy(y) 
h . u K u u 

2.3. LOCAL POLYNOJ..1IAL REGRESSION 11 

Bias[mcM(Y)] 

Var[mcM(Y)] 

As Fan ( 1992) showed, Bias[mNJv(Y)] > Bias[Tncl\1 (y)] and Var[m,Nw(y)] < 

V ar[mcM(y)]. Fan( 1992 ) also showed that the bias of the local linear rr­

gression estimator, which was proposed by Stone ( 1977) , is equal to the bias 

of the Gasser-Muller estimator and the variance of the local linear regres­

sion estimator is equal to the variance of the adaraya-Watson estimator. 

Fan, Hu and Troung ( 1994) considered a class of kernel estimators based on 

local linear regression estimator, and showed the asymptotic normality of 

these estimators. Cleveland ( 1979) proposed the local polynomial regression 

estimator, which is the extension of the local linear regression estimator. 

2.3 Local polynomial regression 

In this section, we review the local polynomial regression estimator. Let 

(Y, Z) be a random vector that has joint density function g(y, z), and { (Yi, Z1), 
... , (Yn, Zn)} represent a random sample of size n from the density g. We are 

interested in to estimate the regression function m(y0) = E(ZIY = y0) and 

its derivatives n�'(y0), m"(y0), ... , m(P)(y0), where mUl represents the j-th 

derivative of m. 

Suppose that the (p + 1) -th derivative of m(y) at the point y0 exists. We 

approximate the unknown regression function m(y) locally by a polynomial 

of order p. A Taylor expansion gives, for :IJ in a neighborhood of y0, 

, m"(yo) 2 m(p)(Yo) 
m(y) � m(yo) + m (yo)(y- Yo)+ 

2! 
(y- Yo) + . . · + p! (y- Yo)P. 

(2.3 ) 
Cleveland ( 1979 ) considered the following weighted least square problem: 
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minimize n P "' j 2 2:: { Zz- � fJJ(�-Yo) } I<h(�-Yo), 
i=l j=O 

(2. 4) 

with respect to {30, ... (Jp, where h is a bandwidth controlling the size of the 

local neighborhood, and Kh(Y) = *K(*) with J{ a kernel function assigning 

weights to each datum point. Denote the minimizer by �0, ... , �p· ote that 

if p = 0, then �0 coincides with the Nadaraya-Watson estimator of 7n(yo). 
Compare (2.4) with (2.3), an estimator for m(v)(Yo) is given by rhv(Yo) = 

v!�v· To estimate the entire function m(v) (y), we denote by Y the design 

matrix of problem (2 . 4): 

and put 

(Y1 -Yo) 
(Y2 -Yo) 

(Yn- Yo) 

(Y1 -Yo)P l 
(Y2 -Yo)P 

• 1 

(�,.- Yo)P 

Further, let W be the n x n diagonal matrix of weights: 

W= 

[ J(h(YI-Yo) 0 · · ·  

0 I<h(Y2-Yo) ... 
. . . . . 

. . 
0 0 

Then the weighted least squares problem (2.4) can be written as: 

minimize 

1 (z- Y (J) W (z- Y {3), 

with respect to {3, \vhere {3 =t ((30, {31, ... , f3v)· The solution vector is provided 

by weighted least squares theory and is given by 

(2.5) 

2.3. LOCAL POLYNO!v!IAL REGRESSION 13 

The conditional bias and variance of the estimator � are derived from its 

definition (2.5): 

where 

E(� IY) 

Var(�IY) 

(tYWY)-1tYWm 

(3 + (tYWY) ltYWr 

CYWY)-1 CY l:: Y)(tYWY)-1 

m(yo) 
m'(yo) 

[ 

m(Yi) 

l 

m(12) m= (3 = . ' 

1! 

m(Yn) m(P)(Yo) 
p! 

and r = m-Y (3, the vector of residuals of the local polynomial approxima-

tion, and 

0 
K�(Y2 -Yo)a2(Y2) 

0 

Since the residual r and the diagonal matrix I: is unknown, there is a need 

for approximating bias and variance. Ruppert and Wand (1994) obtained 

the result in the following theorem. Denote the moments of K and 1{2 

respectively by 

J-tJ = I uJ K(u)du 

and 

vJ = I uJ K2(u)du. 

Some matrices and vectors of moment appear in the asymptotic expressions. 

Let 

S = (J-tj+l)OS:.J,l'S.p, Cp =t (J-tp+l, · · · ,J12p+I), 

S = (J-tJ+l+J )os.J,l'S.p, Cp =t (J-tp+2, ... , /-t2p+2), 

S* = (vJ+t)os..i,lS:.v· 
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Further, we consider the unit vector ev+l =t (0, ... , 0, 1, 0, ... , 0) E RP+l, 
with 1 on the (v + 1)-th position for v = 0, 1, . .. ,p. 

Theorem 2.2 (Ruppert and Wand (1994)) 
Assume that gy(y0) > 0 and that gy(y), ·m(p+l)(y) and a2(y) are continuous 

in a neighbodwod of y0. Further, assume that h ---+ 0 and nh ---+ oo as n ---+ oo. 

Then the asymptotic conditional variance of mv(Yo) is given by 

A t -l * -1 v!2a2(Yo) ( 1 
) Var(mv(Yo) IY) = ev+ls s s ev+l ( ) h1+2 

+ Op h1+2 . gy Yo n v n v 

The asymptotic conditional bias for· p - v odd is given by 

vi 
Bias( mv(Yo) IY) =t ev+l s-1Cp ( 

. 
) 

'7n (p+l) (Yo)hp+l-v + Op(hp+l-l.J). 
p + 1 . 

Further, for p - v even the asymptotic conditional bias is given by 

Bias(mv(Yo)IY) 

=' e s-lc v! (m(p+2)(yo) + (p + 2)m(p+l)(yo)g�(yo)) hp+2-v + 0 (hp+2-v) -v+l P (p + 2)! gy(yo) Ji ' 

provided that g�/ (y) and m(P+2) (y) are continuous in a neighborhood of y0 
and nh3 ---+ oo. 

This theorem shows that the degree of the polynomial being fit determines 

the order of the bias of 1hp, with polynomials of adjacent pairs of degree being 

conceptually similar. For estimating the m(y0) (i.e. v = 0), if p = 0, which 

coincides with the Nadaraya-Watson estimator, or p = 1, which coincides 

with the local linear fit considered in Fan, Hu and Troung (1994), then 

estimation yields Op(h2) bias, and if p = 2, 3 then estimation yields Or(h4) 
bia '. 

2.4 Local polynomial regression for time se-
. 

r1es 

In this section, we study the local polynomial estimator when the sample is 
not independent. F ir t of all, we define the following mixing conditions. 

2.4. LOCAL POLYNONIIAL REGRESSION FOR TIJ\IE SERIES 15 

Let { ( X1, }j)} be a stationary sequence of random vectors, and :Fik be 

the a-algebra of events generated by the random variabks {(.-Y1,1j),i:::; 
j :::; k}. Denote by £2 ( :Fik) the collection of all random variables '" hich arc 

:Fik-measurablc and have finite second moment. 

Definition 2.1 (Strongly mixing) 
The stationary process { (X1, }j)} is called strongly mixing if 

sup IP(A n B)- P(A)P(B)I = a(k)---+ 0 a k---+ oo. 
AEF�00,BEF'(' 

Definition 2.2 (Uniformly mixing) 
The stationary process { (X1, }j)} is called uniformly mixing if 

sup IP(BIA)- P(B)I = rp(k)---+ 0 ask---+ oo. 
AEF�00 ,BEF'(' 

Definition 2.3 (p-mixing) 
The stationary process { (X1, 1�)} is called p-mixing if 

sup I Cor T ( U, V) I = p ( k) ---+ 0 as k ---+ oo, 
UEL2(F�00), VEL2(F'(;) 

where CoTT(U, V) denotes the correlation coefficient between ihe r-andom vaTi­

ables U and V 

The key usage of mixing conditions is contained in the following lemma. 
The lemma shows that dependent random variables can be approximated 
by a sequence of independent random variables having the same marginal 

distribution. 

Lemma 2.1 (Volkonskii and Rozanov (1959)) 
Let 111, ... , Vn be random variables with I Vj I :::; 1 for· j = 1, . . . , n, and 

F/11, • • •  , :F/�' be the a-algebra of events generated by the random variables 

Vl, ... , 11n respectively. Suppose that i1 < .i 1 < · · · < in < Jn and there e.rists 

w � 1 such that ik+J - Jk � w, fork= 1, ... , n- 1. Then 
n n 

E II Vj- II E(11j) :::; 16(n- 1)a(w). 
j=l j=l 
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Now we consider observations { X1 ... , Xn+l } from the non-linear autoregres­

sive model Xt = m(Xt_ 1 ) + Et, and construct data {(XI, Y1), ... , (Xn, Yn)} 
as }i = Xi+l for i = 1, ... , n. We are interested in to estimate 

m(x) = E(1�1Xi = x) and its derivative m(v)(x). 

Ivlasry and Fan ( 1993) approximated m(x) as in (2.3) and fits locally a poly­

nomial as in (2.4). Denote O(x) the solution to the weighted least squares 

problem (2.4). Then, an estimator for m(v)(x) is mv(x) = v!Ov(x). IVIasry 

and Fan ( 1993) state that under certain mixing conditions, local polyno­

mial estimators for dependent data have the same asymptotic behavior as 

for independent data. 

Let f(.r) be the density of X1 and CT2(x) = Var(Y1IX1 = x). Let S,S* 

and cp denote the same moment matrices and vector as those introduced in 

previous section, and let 

and 

* j t s-lt(1 P)K( ) p+ld f-Lv = ev+l ) u, ... 'u u u u 

C = j (tei/+Ls-lt(l,u, ... ,uP)K(u))2 du. 

Masry and Fan ( 1993) gave the following result. 

Condition 2.1 

1. The kernel K is bounded with bounded support. 

2. For alll E N, fxa,XdYo,Yr (xo, XtiYo, Yt) is bounded, where fxa,X11Yo,}/ (xo, XtiYo, yt) 
is a conditional density of (Xo, Xt) given (Yo, Yi). 

3. The stationary pTOcess { (X1, Yj)} is strongly mixing. 

4. FaT some o > 2 and a> 1- 2/o, 

L l0(a(l)p-216 < oo, EIY1 I6 < oo, fx11Y1 (xiy) is bounded. 
l 
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5. There exists a sequence of positive integers satisfying sn � oo and 

Sn = o ( v:;;h) such that 

{!f;a(sn) � 0, as n � oo. 

Condition 2.2 

1. The kernel K is bounded with bounded support. 

2. For all l EN, fxo,XtiYo,Y/(xo,xtiYo,Yt) is bounded, wherefx0,X111·0,Y1(.Tu,xtiYo,Yt) 

is a conditional density of (X0, X1) given (Y0, }�). 

3. The stationary process { (Xj, Yj)} is p-mixing. 

4-

L p(l) < oo, EY12 < 00 
l 

5. There exists a sequence of positive integers satisfyin g Sn � oo and 
sn = o ( Jnii) such that 

.J'£p(sn) � 0, as n � oo. 

Theorem 2.3 

Under Condition 2.1 or Condition 2.2, if h = O(n11(2P+3)), then the estimator 

mv(x) based on the local polynomial fitting is asymptotically normal:as n � 

oo, 

J nh2v+1 m (x) - m(v) (x) - u * V.'/71 X � N 0 t:* v .
. 

() X ( 1 (p+l)( )hP+l-v) ( ( 1 ) 2 2 ( )) 
v I"" I/ 

(p + 1)! ' � v f (X) 
. 



Chapter 3 

The en1bedding din1ension and 

delay tin1e 

3.1 The embedding dimension and the delay 

time 

We consider the stochastic model given by 

(3.1) 

where d and T are positive integers and Et is the dynamic noise. We assume 

that { Xt} is a discrete-time strictly stationary time series with EX? < oo 

and for any t, 

(3.2) 

and 

E [cz IAi-1 (X)] = a2, (a > 0), almost surely, 

where A� (X) denotes Lhe sigma algebra generated by (Xs, ... , Xt), for s � t. 

Tote that from (3.1) and (3.2), it follows that 

19 
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For simplicity we put 

The embedding dimension and the delay time are defined as follows. 

Definition 3.1 The time series {Xt} is said to have the embedding dimen­

sion d0 with the delay time To if and only if there exist non-negative integer-s 

d0 < oo and To < oo such that 

(3.3) 

for- any d < d0, and any T > 0, and 

(3.4) 

for- any (d, T) E B(do, To), 

where B ( d0, To) = { ( d, T) I {To, 2T0, ... , d0 To} C { T, 2T, ... , dT} } . 

The definition is identical to that given in Cheng and Tong (1995 ) when T = 1. 

We have the following theorem. 

Theorem 3.1 Suppose that for any T > 0 there exists d0(T) < oo such that 

(3.5 ) 

for any d < d0(T), and 

(3.6) 

joT any d :2:: d0 ( T). Then the embedding dimension d0 and the delay time To 

of{ .. \'"t} satisfy 

do= min do(T) = do(To). T 

3.1. THE El\1BEDDING Dil\IENSION AND THE DELAY Tll\IE 

Proof. It is clear that min7 d0(T) :::; d0(T0), so we show that 

and 

i) d0 :::; min d0 ( T) 
T 

i i) do :2:: do (To ) . 
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i). If do > min7 d0 ( T), then there exist T* such that d0 > d0 ( T*). Thus 

we have from (3.6) 

but this contradicts (3.3). 
ii). If do< d0(T0), we have from (3.5 ) 

but since do< d0(To) and (d0(T0),To) E B(d0,T0), this contradicts (3.4). 
Denoting the residuals and their variances by 

(d,T) { XL (d = 0) 

Et = Xt-Fd (Xt-T, ... ,Xt-dT ) (d>O), 

a
2
(d, T) = E [dd

,
T)r . 

We may show the following lemma. 

Lemma 3.1 

i) For any positive integers d1, d2, T1, T2 such that ( d1, T1) E B ( d2, T2), 

ii) For any d > 0 and T > 0 such that (d,T) E B(do,To), 
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Proof. 

· ) F 
· 1· · 1 z(d,T) (X x ) 1, . or Simp ICity, et t = t-n. · . , t-dT · 

E [Fd2 (Xt-T2 ... 'Xt-d2T2)- Fdl (XL-TJ' ... ) _,yt-dJTJ)]2 
= E [ { Xt - Frl1 ( z�dJ,TJ))} - { Xt- Fd2 ( Zt(d2,T2))}] 2 

2 2 ( ) = a (d1, T1) +a d
2
, T

2 

-2E [{xt- Fd1 (zid],Td)} {xt- Fd1 (zidJ,Td) +Fd1 (z�d],Td)- Frl2 (z�rl2,T2l)}] 
a2(d1, Tt) + a2(d

2
, T

2
) 

-2 (a2(dl,Tl) + E [{xt- Fd, (z�dJ,Td)} {Fd1 (zirlJ,Tt))- Frl2 (zirl2,T2l) }]) 
CJ2 ( d

2
, T

2
) - CJ2 ( d1, Tt) 

-2E [{Fd1 (z�dJ,Tt))- Fd2 (zt(rl2,T2))} E [xt- Fdl (zid],Td) lz�d],Td]J 
a2(d

2
, T

2
)- CJ2(dl, Tl) 

ii). From the definition of do and To, (d, T) E B(do, To) implies 

and from Lemma 1 i) we have 

a2(d0, To)- a2(d, T) 

= E [Fd(Xt-n · · ·, Xt-dT)- Fri0(Xt-T0, • • ·, Xt-rloTo)]2 
= 0 

From Lemma 1 we have the following theorem. 

Theorem 3.2 For any T > 0 and d0 ( T) defined in Theor-em 3.1, 

i) a2(d, T) > a2(do(T), T) for any d < do(T), 

ii) a2(d, T) = a2(d0(T), T) for any d � do(T), 

iii) a2(d0,T0):::; CJ2(d,T) for any d > 0 and T > 0. 

Proof. i). From the definition of d0 ( T), for d < d0 ( T), we have 

3.1. THE El'v!BEDDING DIAIENSION AND THE DELAY TIAIE 

and d < d0(T) implies (do(T), T) E B(d, T). Thus from Lemma 1 i), 

a2(d,T)- a2(do(T),T) 

E [ Fd(Xt-T, · · · , Xt-dT) - Fdo(T) (Xt-T, ... , X, do(T)T) J 2 
> 0. 

ii). From the definition of d0(T), ford� do(T), we have 

and d � d0(T) implies (d, T) E B(do(T), T). Thus from Lemma 1 i), 

a2(d,T)- a2(do(T),T) 

- E [ Fd(Xt-n ... 'Xt-dT) - Fdo(T) (X t-Tl . . . 1 Xt-do(T)T) r 
0. 

iii). For any T > 0, we may rewrite a2(do(T), T)- a2(d0, To) as 

• Since (do(T)T, 1) E B(do(T), T), from Lemma 1 i), we have 

a2(d0(T),T)- a2(d0(T)T,1) 

= E [ Fdo(T) (Xt-n · · · , Xt-do(T)T) - Fdo(T)T (XL-I, · · · , Xt-do(T)T)] 2 

� 0. 
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• When d0T0 > d0(T)T, we have (d0T0, 1) E B(do(T)T, 1). Thus from 

Lemma 1 'i), we have 

a2(d0(T)T, 1)- a2(doTo, 1) 

= E [Fdo(T)T(Xt-1,· .. ,Xt-do(T)T)- FdoTo(Xt-I, ... ,X, __ doTo)r 
� 0. 
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When doTo ::; d0(T)T, we have (do(T)T, 1) E B(doTo, 1) C B(do, To). 

Thus from Lemma 1 ii), we have 

o-2(do(T)T, 1)- o-2(doTo, 1) 

= -E [Fdo(T)T(Xt-1, · · · ,Xt-do(T)T)- FdoTo(Xt-J, · · · ,Xt-doTo)]2 

= 0. 

• Since (d0T0, 1) E B(d0, To), from Lemma 1 ii), we have 

o-2(d0To, 1) - o-2(do, To) 

= -E [FdoTo (Xt-1, · · · , Xt-doTo) - Fdo (Xt-T0, • • · , Xt-doTo)]2 

= 0 

So o-2(d0, To) ::; o-2(do(T), T). 

Thus from Theorem 3.2 i), ii), we have o-2(d0, To) ::; o-2(do(T), T) ::; o-2(d, T). 

3.2 Estimation of the embedding dimension 

and delay time 

In this section we propose the procedure for determining the e1nbedding 

dimension and the delay time suggested by Theorem 3.2. This procedure is 

based on Lhe cross-validation approach developed by Cheng and Tong (1995) 
for determining the embedding dimension. 

Let {X 1, . . . , X N} be the observed data, D, T be sufficiently large for 

d0 ::; D and To ::; T and L = DT. 

Put 

1 N 
A 2 

CV ( d, T) = L ( Xt - F\t(d,T) (Xt-n · · · , Xt-dT)) , 
N- L + 1 t=L 

where F\t(d,T) denotes the estimated regression function with the t-th point 

deleted. That is, 

1 N 

-L 
L 

=L,s�t 

3.3. PROOF OF THEOREJ\I 3.3 

where the summation over s omit t in each case. and 
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and Kd,h is a kernel with constant bandwidth h that decreases tmvard 0 at-; 

N tends to infinity, i.e., 

Kd,h(z) = f�df{d (�) . 
Kd is usually taken to be a probability density function on Rd. 

Now we describe our procedure for determining the embedding dimension 

and the delay time. First, minimize CV ( d, T) with respect to d over 1 ::; d ::; 

D for each T ::; T. Denoting the minimizer by d0 ( T ) , then the estimators of 

embedding dimension and the delay time are given by d0 = min1�7�r do ( T) 

and f0 = argmin1�7�rdo(T). 

Theorem 3.3 Under conditions (c),(d) and (f)-(r) which are listed in Sec­

tion 3.3.1, 

i) For any T = 1, ... , T, lim P {da(T) = d0(T) } = 1, 
N--too 

ii) lim P {fa= To}= 1. 
N--too 

The proof of Theorem 3.3 is given in the next section. 

3.3 Proof of Theorem 3.3 

3.3.1 Basic conditions and theorems 

We use the following conditions for Theorem 3.3. 

(a) E [c:tiA�-�(.X)] = 0, almost surely. 

(b) E [c:ziA�-�(X)] = o-2, (a-> 0), almost surely. 

(c) Kd(u) = IT1=1k(ui) for u = (u1, . . . , ud) E Rd. 
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(d) F is Holder continuous, i.e. There exists c1 > 0 and 0 < J.L :::; 1 such 

that for all x,y E Rd, IF(x)- F(y)l:::; c1llx- Yll1\ where 11·11 denotes 

thr Euclidean norm in Rd. 

(e ) Hid is a weight function which has a compact support S c R d and 

0 < ( T¥rt(x)dx < oo, 0 :::; VVd(x) :::; 1. 
}Rd 

(f) For all d < D and T < T, let !(d,T) denote the probability density 

function of (Xt_7, ... , Xt-d7), which is strictly positive on S, and there 

exists c2 > 0 such that for all x, y E Rd, l!(d,T)(x)- !(d,T)(Y)I:::; c2llx-
Yll· 

(g) k has compact support, and there exists c3 > 0 such that for all x, y E 

R, lk(x)- k(y)l :::; c3lx- Yl· 

(h) For all d < D and T < T, and for every t, s, u, t', ', u' E N, the joint 

probability density function Of ( zid,T) 1 z�d,T) 1 z�d,T) 1 zi,d,T) 1 z;�,T) 1 z��,T)) 
is bounded, where zid,T) is defined in the proof of Lemma 1. 

(i) Let 1/p + 1/q = 1. For some p > 2 and 5 > 0 such that 5 < 2/q- 1, 

Elt:t l2p(l+<>) < oo and EIF(Xt-T, ... , Xt-dT) l2p
(l+b) < oo. 

(j) For 6 in condition (i) and some E > 0 ,  ;3JI(l+c5) = o(j-2+£), where 

;3j = sup (E [ sup IP(AIAi (X)) - P(A) 1]) . 
iEN AEAi+i (X) 

(k) Let j = j(N) be a positive integer and i = i(N) be the largest positive 

integer such that 2ij :::; N, 

lim sup ( 1 + 6e112 ;3Jf(l+i)r < 
00. 

N oo 

(l ) Fori= i( ) in condition (k) and the bandwidth h(N, d), 

lim up (i( )h(N, d) d) < oo. 
N 
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(m) N h(N, d)2d --1 oo as N-+ oo. 

(n) For J.L in assumption (d), Nh(N, d)2d+2J.L --1 0 as N 1 oo. 

(o) For q,b and E in condition (i) and (j), t:h(N,d) '2d+O --10 as N --1 

where (} = 4d/(q + qb). 

(p) The set M and S defined in Condition 1.1 arc bounded. 

( q) { Xt} is ergodic. 

( r) For d > d', 
h(N, d)d 

h(N, d')d' --1 0 as N --1 oo. 

Conditions (a)- ( o) are needed for Theorem 3.4 and Theorem 3.5 described 

below. Note that (a) and (b) are assumed in equation (3. 2), and that ( c ) 
is derived from (p) in the proof of Theorem 3.3. We need the following two 

theorems which is immediately obtained from Theorem 1 and Theorem 3 in 

Cheng and Tong (1992) by replacing (Xt-1, ... , Xt-d) with (X1,-7, ... , Xt.-dT). 
Theorem 3.4 Under conditions (a) (o)1 

where 

( 2a(d)r(d) ( 1 )) 
CV(d, 1) = RSS(d, T ) 1 + h(N, d)dN 

+ 
Op h(N, d)dN l 

1 N 
� 2 RSS(d,1) = L (xt- F(d,T)(Xt-n· .. ,Xt-dT)) Wd(Xt-n· .. ,Xt-dT), N- L + 1 t=L 

where Wd is a non-negative weight function which satisfies the condition (e) 
and 

where 
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1/d J lVd(x )dx 
and a ( d) = Kd (0), r(d) = 

f lVd(x)f(x)dx 

Theorem 3.5 Under conditions (a)-(o), 

2 
( (2a(d)- (J(d))r(d) ( 1 )) RSS(d, 7) = aN(d, 7) 1- h(N, d)dN 

+ 0P h(N, d)dN ' 

where 

3.3.2 The proof of Theorem 3.3 

where 

To prove part i) of Theorem 3.3, we fix 0 < 7 < T, and let 

l¥. (x) = { 1 X E Sxd,r 
d 0 otherwise ' 

Then from boundedness of {Xt}, Wd(x) satisfies the condition (e) and 

l.Vd(Xt-n . . . , Xt-dT) = 1 with probability 1. 

From condition (m) we have 

1 

h(N, d)dN -+ 0 as N-+ oo, 

thus from Theorem 3.4 and Theorem 3.5, 

C11(d, 7) = a�(d, 7) + op ( 1 ) for any d. 

From crgodicity of { Xt}, we have 

( 3.7) 
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-+ E [ ( c: �d,T)) 2lFd(X1_n . . . , Xt-dT) J almost surely as N -+ oo 

E [ c:�d,T)r 
= a2(d, 7). ( 3.8 ) 

Thus from ( 3.7) and ( 3.8 ) , we have 

lim C11(d, 7) = a2(d, 7). N-+oo 

Ford< d0(7), we have a2(d, 7)- o-2 (d0(7), 7) > 0 from Theorem 3. 2. T'hus 

P {do(7) = d} 
= P { C11(d, 7) = ��n C11(d', 7)} 
:::;; P { C11 ( d, 7) :::;; C11 ( d0 ( 7), 7)} 

= P { a2 ( d, 7) + ( C11 ( d, 7) - a2 ( d, 7)) :::;; a2 ( d0 ( 7), 7) + ( C1! ( d0 ( 7), 7) - a2 (do ( 7), 7)) } 
= P { a2 ( d, 7) - a2 ( d0 ( 7), 7) :::;; ( C11 ( d0 ( 7), 7) - a2 ( d0 ( 7), 7)) - ( C1! ( d, 7) - o-2 ( d, 7))} 

:::;; P {a2(d,7)- a2(d0(7),7):::;; JC11(do(7),7)- a2(d0(7),7) 1 + JC11(d,7)- a2(d,7) 1} 
-+ 0 as N-+ oo. 

For d0(7) < d:::;; D, we have 

(d,T)- X E[X IX X ] -X E [x IX X J - (do(T),T) 
Et - t- t t-n · · ·

' 
t-dT - t- t t-n · · · , t-do(T)T - Et , 

and 

P { do(7) = d} 
:::;; P {CV(d, 7):::;; C11(d0(7), 7)} 

= P { C11 ( d, 7) :::;; C V (do ( 7), 7) and ( Xt-n . . . , X t-dT) E S x (d. 
T 

> for any t = L, L + 1, .. . , N} 
+P { C11(d, 7):::;; CV(do(7), 7) and (Xt-n ... , Xt-dT) � Sx(d,r) for some t = L, L + 1, .. . , N} 

= P { CV(d, 7) :::;; CV(do( 7), 7) and (Xt-n ... , Xt-dT) E Sx(d,r) for any t = L, L + 1, ... , N} 
When (Xt-n ... , Xt-d7) E Sy(d,r) for any t = L, L + 1, ... , N, we have 

2 
1 � ( (d,T) ) 2 ( aN(d,7) = 

L 6 Et wd Xt-d, ... ,Xt-dT) N- + 1 t=L 



30 CHA.PTER 3. THE EMBEDDING Dll\IENSION AND DELAY Tll\1E 

Note that for any (xt, . . . , xd) E Rd 

implies 

we have 

(J
2 (d (T) T) = 

1 � (c(do(T),T)) 
2. 

N 0 ) N-L+1 L.., t t=L 
So for any (Xt-T, ... , Xt-dT) E S x(d,T) (for any t = L, ... , N), we have 

From Theorem 3.4 and Theorem 3.5, we have 

CV(d, T) = a-�(d, T) ( 1+ jJ(d)'y(d) h(N,
l
d)d N + Op ( h(N,

l
d)d N)) 

CV(d0( T ), T) 

=a� (do(T), T) ( 1 + /3(do( T) )"!(do ( T)) h(N, do(�) )do(') N + 0P ( h(N, do (�))do(') N)) ' 
and 

a�(do(T), T�/h(N, d)dN (CV(do(T), T)- CV(d, T)) 

1/ h(N, d0 ( T) )do(T) N op(1/ h(N, d0( T) )do(T) N) 
= fJ(do(T))I(do(T)) 1/h(N, d)dN - {J(d)l(d) + 1/h(N, d)dN 

Op(1/h(N, d)dN) 
+ 1/h(N, d)dN . 
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Thus 

P { do(T) = d} 
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:::; P { CV(do(T), 1)- CV(d, 1 ) 2:: 0 and (Xt_7, ... , Xt-d7) E Sx(d,TJ (for any t = L ... , N) } 

= P { a-'F,.(do(T), �)/h(N, d)d (CV(dv(T), T)- CV(d, T)) 2 0 

and (Xt-T, ... , Xt-d7) E Sx(d,TJ (for any t = L, ... , N) } 

< p {{J(d ( )) (d ( )) 1/h(N, do(T))do(T) op(ljh(N, do(T))do(T)N) 
- 0 T I '0 T 1/h(N, d)d + 1/h(N, d)dN 

From assumption ( r), we have 

op(lj h(N, d)d N) > fJ(d) (d)} . 
+ 1/h(N, d)dN - I 

as N --+ oo in probability and from the definition of {3( d), 1( d), we have 

{3( d) I( d) > 0. Thus P{ d0 ( T) = d} --+ 0 as }l --+ oo in probability. 

Next we prove part ii) of Theorem 3.3. ForT > 0 such that d0(1) f. d0, 
we have d0(1) > d0(10) from Theorem 3.1. Thus 

P { f = T} - P {do ( T) = mjn do ( T) } 
< P { da(T):::; do(To)} 
< P { d0(1) < d0(1) or do( To) > do(To) } 
< P { do(T) < do(T) } + P { do(To) >do( To) } 

--+ 0 as N--+ oo. 

This completes the proof of Theorem 3.3. 



Chapter 4 

The Lyapunov exponent 

In this chapter, we propose the consistent estimator of the skeleton using 

the data from the non-linear autoregressive time series with dynamic noise. 

First of all, refering to Taniguchi and Kakizawa (2000), we review the basics 

of chaos and the Lyapunov exponent. 

4.1 Chaos and the Lyapunov exponent 

We consider the mapping F: M --1 111, where 111 c Rd. We denote by FP the 

p-fold composition ofF, i.e., FP = F o pp-l and F1 =F. For each t E N, 

let Xt denote a d-dimensional state vector in M satisfying 

( 4.1) 

and the sequence { Xt; t � 0} is called the trajectory. 

Definition 4.1 (Periodic point) 
Let q be a finite positive integer. A d-dimensional vector :r:* E M i.s called 

a periodic point with period q of (4.1) if x* = Fq(x*) and x* i-Fj(x*) for 

1:::; j < q. The ordered set {x*, F(x*), ... , pq-1(x*)} is called a q-cycle. 

Definition 4.2 (Attractor) 
A d-dimensional set A C M is called an attractor for F : M --1 M if A i.s u 

33 



34 CHAPTER 4. THE LlAPUl\OV EXPONENT 

minimal compact set such that 

B = {x; lim inf IFn(x)- Yl = 0} 
n-+oo yEA 

has positive Lebesgue measure. The set B is called the basin of attraction for 

A. lf the attractor is a set of q points { xr, .. . , x�} such that 

x; = F(x;_1), t > 1, 

and 

then it is said to be a limit cycle. lf the attractor is not a limit cycle, it is 

said to be a strange attractors. 

If the attractor is a limit cycle, this case is regarded as degenerate. 

A standard way to quantify the sensitive dependence of F : M -t M, on 

an initial conditions is to evaluate the so-called Lyapunov exponent. Let Xo 

and x� E Jvf denote two initial vectors and put 6 = x� -Xo. Then, after n 

iteration 

X� -Xn Fn(x�) -Fn(xo) 

� DFn(xo)(x�-xo), 

where DFn is the n x n derivative matrix of Fn. Set lt = DF(xt) and 

�1(x0) = J0 · ]1 · · · ln-l· By application of the chain rule we obtain 

(4.2) 

Let jJ,,11 (.1:0) denote the largest eigenvalue of a positive definite matrix 
tTn(xo) · 

�1 ( x0). Thus we get the following definition 

Definition 4.3 (Lyapunov exponent) 
The deterministic system (4.1) is said to have a Lyapunov exponent A(.ro) if 

rxisis. 

A(xo) = lim (_]:___ log IJ-tn(xo)l) · 
n-+ 2n 

(4.3) 
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From (4.3) and (4.2) we can see that main order termof lx�t-xn l isexp(nA(.r.0))161. 
Hence positive A(x0) confirms sensitive dependence ofF on .c0. 

Eckmann and Ruelle (1992) propose the method for estimating the Lya­

punov exponent from the trajectory {.Tt; t = 0, ... , n} of the deterministic 

system as follows; For sufficiently small 6 > 0, put 

� = {xs; lxs-xi I< 6, s =F i, n} , i = 0, . . . , n- 1 

and find D( i) = D( i) that minimizes 

L jxs+l -Xi+l -D( i) (xs -Xi) j 
XsEAi 

for each i = 0, 1, ... , n- 1. Denote by J-t the maximum eigenvalue of 
t(iJ(O). 

D(1) · · · D(n- 1)) · (D(O) · D(1) · · · D(n -1)). Then the Lyapunov exponent 

is estimated by 
� 1 A = 2n 

log f.L 

The concept of a Lyapunov exponent has been developed to characterize 

the sensitive dependence on the initial value of a deterministic syt;tem, for 

example, a skeleton of the non-linear autoregressive time series with dynamic 

noise. However, in the case of the non-linear autoregressive time series with 

dynamic noise, the sequence { Xt; t 2: 0} depend not only on the initial 

value but also on the dynamic noise. For this case, to quantify the sensitive 

dependence on initial value, the Lyapunov-exponent-type quantities have 

been proposed. 

Definition 4.4 (Local Lyapunov exponent, Wolff(1992)) 
For the non-linear autoregressive time series model { Xt; t ;::: 0}, 

where si = {j; 0 < jl�-}}I � 6}, ni = #(Si), mEN and 6 > 0, is called the 

local Lyapunov exponent at }i for lag m. 
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This idea is to estimate the Lyapunov exponent locally at 1� for lag m and 

pre-specified 8 representing the perturbation. Wolff(1992) studied the statis­

tical properties of Ai,m for a variety of data which are from specified models. 

Yao and Tong(1994a) proposed m-step Lyapunov-like index for the one­

dimensional case. 

Definition 4.5 (Lyapunov-like index, Yao and Tong(1994a)) 

For the non-linear autoregressive time series model { Xt; t 2:: 0}, 

Am(x) = E (ft �F(Xk-l)IXo = x) 
k=l dx 

is called the m-step Lyapunov-like index. 

These Lyapunov-exponent-type indexes quantify the sensitive dependence 

on initial value, but they also depend on the variance of Et in the non-linear 

autoregressive time series model. Thus they aren't consistent estimator of 

the Lyapunov exponent of the skeleton if V ar(ct) > 0. 

4.2 The ergodic theory of chaos 

In this section we study stationarity and ergodicity of nonlinear autoregres­

sive time series model and the ergodic theory of deterministic chaos to give 

the Lyapunov exponent by space average. F irst of all, we discuss the funda­

mental properties of Markov chain. 

Definition 4.6 (Markov chain) 

An d-vcctor- stochastic process { Xt; t 2:: 0} zs called a Mar-kov chain with 

transition probability P( ·, · ) , provided that 

where L{ Xt+II *} is the conditional distribution of Xt+ 1 given *, and Ft = 

F(Xt ... , X0) is the CJ-algebra generated by Xt, Xt_1, ... , Xo. The distribu­

tion F(.}(_0) of X0 is called the initial distribution of { Xt}. 
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For a Markov chain { Xt}, the t-th step transition probability is drfinrd 
by 

Definition 4. 7 (Irreducibility) 

Let ¢ be a CJ-finite measure on (Rd, Bel) with ¢(Rd) > 0. A Markov chain 

{ Xt} is said to be ¢-irreducible if 

00 

L Pt(x, A) > 0, 
t=l 

for all x E Rd and all A E Bd with ¢(A) > 0. 

If { Xt} is ¢-irreducible for some ¢, it is simply called irreducible. In this 

case the measure ¢ is called an irreducibility measure for {Xt}· A nonnull 

set C E Bd is called to be small if there exists a positive integer k, a constant 

b > 0 and a probability measure v such that 

Pk(x, A) > bv(A), for all x E C, A E Bd. 

Proposition 4.1 (Nummelin(1984)) 

For a small set C, define 

( 4.4) 

I(C) = { kEN :::J b,v such that Pk(x,A) > bv(A), for all x E C,A E Bd}, 

and let D(C) be the gr·eatest common divisor of I(C). Then D(C) is the 

same for all small sets. 

Thus we may write D instead of D(C). If D = 1, the Markov chain is called 

aperiodic otherwise it is called periodic with period D. 

ow we discuss the ergodicity of nonlinear autoregressive models. 

Definition 4.8 (Ergodic process) 

A Markov chain { Xt} is said to be geometrically ergodic if there exists a 

probability measure 1r on ( Rd, Bd) and a positive constant p < 1 such that 

(4.5) 
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wher·e II · II is the total var·iation norm. lf 

holds, then { Xt} is said to be ergodic. 

Definition 4.9 (Invariant measure) 

For a Markov chain { Xt}, a pmbability measure 7r on ( Rd, Bd) is said io be 

invariant if 

Ir(A) = j P1(x, A)Ir(dx), for all A E Bd, 

holds. 

Proposition 4.2 (Nummelin(1984)) 

lf a Markov chain { Xt} is geometrically ergodic, and if the initial distribution 

.C{X0} is 7r in (4.5), then {Xt} is strictly stationary. 

To argue the geometrical ergodicity of nonlinear autoregressive process, ,�re 

state three preliminary lemmas. 

Lemma 4.1 (Chan and Tong (1985)) 

For· a nonlinear autoregressive time series model (1. 3 ), suppose that F is 

bounded over bounded sets. Then {Xt} defined by (1. 5) is aperiodic and fL­
irreducible, where p, is the Lebesgue measure. Furthermore, p,-nonnull corn­

pact sets are small sets. 

Lemma 4.2 (Tweedie's criterion, Tweedie (1975)) 

Let {Xt} be an aperiodic and ireducible Markov chain. Support that there 

exist a small .set C, a nonnegative measurable function g, positive constants 

r1, c2 and p < 1 such that 

E (g(Xt+I)IXt = x) < p g (x) - c1, for any x � C, 

and 

E (g(Xt+I)I.Xt = x) < c2, for any x E C. 

Then { X1} is geometrically ergodic. 
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Lemma 4.3 (h-step criterion, Tj¢stheim(1990)) 
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lf there exists a positive integer h such that a Markov chain { .. Yth} is geomet­

rically ergodic, then { Xt} is geometrically ergodic. 

To check the geometrical ergodicity of nonlinear autoregressivr model (1.3), 

An and Huang (1996) gave the following theorems to check the geometrical 

ergodicty of the nonlinear autoregressive model given in (1.3). 

Theorem 4.1 

In model (1. 3), suppose that there exists a positive number ).. < 1 and a 

constant c such that 

Then { Xt} defined by ( 1. 3) is geometrically ergodic. 

Theorem 4.2 

In the model (1.3), suppose that 

and 

sup IF(x) I < oo for each I< > 0, 
lxi:SI< 

1. IF(x) _tax I 
liD = 0 

IXI-->oo lxl 
' 

where x =t (.-r1, . . . , xp), and a =t (a1, . • .  , ap) satisfies 

Then { Xt} generated b y  (1. 3) is geometrically ergodic. 

In the rest of this chapter, we consider the one-dimensional case (d = 1). Note 

that for the one-dimensional case, the largest eigenvalue of tyn (x0)Tn (.-r0) 
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is Tn (xo)2 

given by 

where 
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(F'(x0) · F'(x1) · · · F'(xn-d)2, and the Lyapunov exponent is 

,\(xo) lim � log ITn(xo) I 
n-too n 

lim -log II F' (xt) 
1 �n-1 I n-too n t=O 

1 n-1 

lim - L log IF'(xt)l 
n-too n t=O 

lim I log IF'(x)l dGn(x), 
n-too 

1 
Gn(x) = -# {0::; t < n ; xt::; :r}. 

n 

Invariance and ergodicity are also defined for deterministic chaos series. 

Definition 4.10 (Invariant measure) 
For the deterministic system Xt = F ( Xt-t), x0 E l\1, a probability measure p 

is said to be invariant if p(A) = p(F-1(A)) for any Borel set A C M. 

Definition 4.11 (Ergodicity) 
An invariant probability measure p is ergodic if it does not have a nontrivial 

convex decomposition: 

p = ap1 + (1 - a)p2 with a #- 0, 1, 

where p1 and p2 are again invariant probability measure and Pt #- P
2
. 

Theorem 4.3 (Ergodic theorem, Birkhoff (1931b)) 
For the deterministic system Xt = F(xt_1),x0 E l\1, let¢ be an integrable 

fun tion on l\1 and p an invariant probability measure, then for p-almost all 

.r0 E l\J, the limit 

1 n-1 
lim - L ¢(xi) 
n-too n i=O 
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exists. lf p is ergodic then for p-almost all x0 E 1\f, 

J 
1 n-1 

cp(.r)p(dx) = lim - L ¢(xi)· 
n--too n i=O 
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Ergodic theorem shows that if the invariant measure p of the detcrmini tic 

system ( 4.1) is ergodic, then the Lyapunov exponent is given by 

.-\(xo) = I log IF' (x) ldG(x) for p-almost all x0 E l\1, ( 4.6 ) 

where G is the distribution function of the invariant measure p. 

Ulam and von Neumann (1947) proved that an invariant measure for 

the logistic-4 map is that of the beta (� , � ) distribution. Hall and Wolff 

(1995) provide the density function of the invariant measure of logistic-0 

map whenever the invariant distribution is absolutely continuous, and showed 

that the Lyapunov exponent of logistic-tJ map is not continuous function of 

tJ. Lasota and Yorke (1973) proved the existence of absolutely continuous 

invariant distributions for maps which are quite different from the logistic. 

To estimate the invariant distribution, we assume the existence of the 

following Kolmogorov measure. 

Definition 4.12 (Kolmogorov measure) 
The deterministic system Xt = F(xt_t), x0 E M is said to have the Kolo­

mogorov measure p if the stationary stochastic system Xt = F(Xt-J) + 

Et, Xo E M has only one stationary measure pf and pf converges in law to p 

as E(c;) --+ 0. 

The assumption of the existence of the Kolmogorov measure seems too strict. 

However, in a computer study, roundoff errors should play the role of the ran­

dom noise. Due to sensitive dependence on initial conditions, even a very 

small level of roundoff errors has importance effects. The existence of the Kol­

mogorov measure shows that calculated value in computer study converges 

to the true value when roundoff errors tend to 0. Thus the assumption of 

the existence of the Kolmogorov measure is reasonable. 
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4.3 Estimation of the Lyapunov exponent 

In this section we propose the procedure for estimating the Lyapunov expo­

nent of Lhe skeleton Xt = F(xt-d, x0 E M given by equation ( 4.6). 
Let {X1, . . . ,Xn} be the observed data from the non-linear time series 

model 

(4.7) 
Denote by Fn(x) and .f�(x), the local polynomial estimator of F(x) and its 

derivative respectively. Next we regenerate the trajectory of the skeleton as 

follow : 

yt = Fn(1't_I) for t > 0, Yo = Xo, 
and denote by Gm the empirical distribution of the trajectory {Yo, . . . , Ym-d· 
Then we propose an estimator of the Lyapunov exponent of the skeleton as 

�(F)= 
.
f log /}n(Y)/Gm(y). 

We prove that the proposed estimator is consistent in the following theorem. 

Theorem 4.4 

Let .f(x) be the density function of X0 and A be the Lyapunov exponent of 

th skeleton of the non-linear time series (4. 7). Suppose that the skeleton 

of (4. 7) has the ergodic Kolmogorov measure with distribution function GJ A 

satisfies -oo <A< ooJ f(x) has a compact support M1! f(x) and F(P+1l(x) 
are continuous on l/11 for some p � 1) and h = O(n11(2P+3l). Then �(F) is a 

consistent estimator of the Lyapunov exponent of the skeleton of (4. 7). 
( Proof.) Since 111ft is compact and f(x) and F(P+ 1l(x) are continuous on A11, 
thC'rc exist N1, N2 > 0 such that 

lp(P+ll (x ) I ::; N1 and I 
f
t
x) 
I ::; N2 for x E M1 

VVe may rewrite 

Fn(1t-l) 
F(1't-l) + ( FnCYt-d - F(Yt-1)) , 
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and let Et = FnP't-t)-F(Yt-1), then by Theorem 2.3 'vE' hav(' 

E(c ) < * 

Nl hv+l 
t _ flo (p + 1) ! , 

and 
CJ2N 

11 ar(Et) :::; (� nh 
2
. 
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Thus E(cZ) converges to 0 as n tends to infinity. Then by the assumption of 

the existence of the Kolmogorov measure, the empirical distribution of {11} 
converges to the Kolmogorov measure. 

Now we expand ��(F)- AJ as 

l�(F)- AI 
= IL log lfn(Y)IdGm(Y) - L log IF'(y)ldG(y) l 
= IL log lfn(Y)IdGm(Y)- L (log 1/n(Y)I + (log IF'(y)l - log lfn(Y)I)) dG(y) l 

= IL log lfn(Y)IdGm(Y)- L log lfn(Y)IdG(y) + L (log 1/n(Y)I- log IF'(y)l) dG(y) l 
:::; .IM J log /fn(Y)/j d11c·"'-c(Y) + .IM Jlog /fn(Y)/-Iog /F'(y)/j dG(y), 

where VGrn-c(Y) is the total variation of Gm- G. For any 0 < E :::; 1/2, we 
put lllfc: = {y EM; /F'(y)J < E} . 

F irst we consider JM" J iog lfn(Y)/-log /F'(y)/j dG(y). From Theorem 2.3 
and continuity of the density of { Xt}, Pr {I fn (y) / < E} converges to (E- /1 ) ( -E- /1 ) <I> CJn 

n 
- <I> CJn 

n 
uniformly as n -t oo, where 

m(P+1)(y) lln = F'(y) + 11� (p 
+ 

1)! hp 

and 
(J2 CJn = (i 

J (y )' 
Thus for any 5 > 0, there exist Eo > 0 and n1 E N such that 

Pr {lfn(Y)/ < E} < 5 forE< Eo and n > n1. 
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And for y E J..I£, IF'(y)l ::; c::; 1/2 and Theorem 2.3 imply that there exists 

n2 E N such that 

Pr {If� (y) I > 1} < 
o for n > n2. 

Thus for n > max (n1, n2 ) , we have with probability larger than 1 - 26, 

0 > J
M" 

log lfn(Y)IdG(y) 
> J

M" 
log cdG(y) 

> / log IF'(y)ldG(y). 
M.: 

Then for n > max (n1, n 2) , we have with probability larger than 1- 26, 

2 { log IF'(y)ldG(y)::; 1 llog lfn(Y)I-log IF'(y)ll dG(y)::; 0. 
}ME: ME 

Since ,\ > -oo, we have 

f log IF'(y)ldG(y)---+ 0 as f---+ 0. 
}Me 

Next we consider fM-M" llog lfn(Y)I-log IF'(y)ll dG(y). For Y EM- 1\1£, by 

Taylor Series expansions we have 

IIog 1/n(Y) 1-log IF'(yJII < li/n(Y
I
)��;�'(yJII + 0 (11/n(Y) 1- IF'(y) II) 

< ifn(Y)-F'(y)i + o (ifn(Y)-F'(yJI). f 
Bv Theorem 2.3 we have 

and 

E (lfn(y)-F'(y)l ) <1-L* NlhP +o(hP) f - 1 c(p + 1)! 

t r ( lfn(Y)- F'(y)l ) < t:* aN2 + 0 (-1 ) 0 
1 ar _ .., 1 2 h3 h3 f f n n 
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Then we have 

E ( { llog lfn(Y)I-log IF'(y)ll dG(y)) 2 
j M-llf, 

< E { (logl.fn(Y) I-logiF'(y)l)
2dG(y) lu -M" 

< ( * N1 hP ) 2 * a N2 2P ( 1 ) 1-LI ( + 1) I 
+ � J �h3 + o( h ) + o -, 3 cp 0 En n1. 

Then by Chebychev's inequality we have 

11-M" 
llog lf�(y)l-log IF'(y)ll dG(y) = op(1). 
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And by existence of the Kolmogorov measure, we have v6, _0 ---+ 00 
Therefore ;(F)-).= op(1)0 This completes the proof of Theorem 4.40 
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