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Abstract

In this thesis we investigate the estimation of the Lyvapunov exponent for
the nonlinear autoregressive time series model, especially the chaotic time
series model with additive dynamic noise. For the deterministic model, which
doesn’t have a noise, the Lyapunov exponent has been proposed to quantify
the sensitive dependence on an initial value. For nonlinear autoregressive
time series models with additive noise, some modified Lyapunov-like indexes
are proposed. However, they depend not only on the sensitive dependence on
initial value, but also on the additive noise. We investigate in this the
estimator of the Lyapunov exponent which isn’t influenced by the additive
noise.

First we introduce delay time to the nonlinear autoregressive model con-
sidered in Cheng and Tong (1995). We find it important to take into account
the delay time in the embedding dimension from the view point of curse
of dimensionality. We develop a method of estimating the embedding di-
mension and delay time by using kernel estimator and
Cross-Validation, and prove that the proposed estimator is consistent.

Next we consider a skeleton of the nonlinear autoregressive model with
dynamic noise by deleting the dynamic noise term. By the Lyapunov expo-
nent of the skeleton, we judge whether a randomness of the observed data is
caused only by the dynamic noise or also by the nonlinearity of the autore-
gressive model. We propose an estimator of the Lyapunov exponent of the
skeleton based on the observed data from the nonlinear autoregressive model
with dynamic noise, when the embedding dimension is 1 and the skeleton has

the Kolmogorov measure. And the consistency of the estimator is proved.
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Chapter 1

Introduction

In analysis of data from nonlinear autoregressive time series with dynamic
noise, it is a central issue whether randomness of the data is caused only by
the dynamic noise or also by the nonlinearity of the autoregressive model.
This thesis investigates the estimation of the Lyapunov exponent for the non-
linear autoregressive time series model to quantify the sensitive dependence

on an initial value.

1.1 The embedding dimension and delay time

Cheng and Tong (1995) considered a nonlinear autoregressive model with

additive dynamic noise

(1.1)

Cheng and Tong (1995) also proposed to embed (X, X, 1, -, X;_4) into
d 4+ 1-dimensional Euclidean space, called d as the embedding dimension, and
related the intuitive geometric reconstruction of phase space in theoretical
physics with statistical theory of the determination of order of a nonlinear
autoregressive model.

Although the delay time was not considered in Cheng and Tong (1995),

we find it important to take into account the delay time in estimating the em-
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bedding dimension. For example, Yenemoto and Yanagawa (1998) show that,
if the method of Cheng and Tong (1995) is applied to data generated by X, =
F(X 0, Xy ay -, X oq) + 6, t =1,2,-- -, the embedding dimension is esti-
mated to be 2d, that is, we should embed (X, X¢—1, Xi—o, -+, Xi—2d-1), Xi1—24)
into 2d + 1-dimensional Euclidean space. But we may represent the dynam-
ics of {X;} by embedding {(X;, Xi—o, -+, Xi—24),t = 1,2,---} in d + 1 di-
mensional space, thus better to consider 2 as the delay time. This finding
indicates that by also selecting the delay time we may embed the dynamics
in a lower dimensional space, which is desirable from the view point of curse

of dinensionality.

1.2 The Lyapunov exponent

Nonlinear dynamical systems which exhibit chaos are characterised by the
phenomenon that a small perturbation in the initial condition can lead to a
considerable divergence of the states of the system in the short term. In a
deterministic dynamical system, which takes the form of a nonlinear autore-

gressive model without noise,
(1.2)

this phenomenon has heen very well documented and is usually analyzed by
the well-known Lyapunov exponents (Eckmann and Ruelle (1985), Chatter-
jee and Yilmaz (1992), Berliner (1992)). However, for a stochastic, i.c. the
dynamic noise is involved, it is well known that the estimates of the Lyapunov
exponent by conventional methods is unreliable. Several methods have been
developed to overcome the difficulty. Kostelich and York (1990) approxi-
mated F by polynomials and separated the signal from noise, and Pikovsky
(1986), Landa and Rosenblum (1989), Cawley and Hsu (1992), and Sauer
(1992) filtered out the noise by using linear filters. McCaferey et al.(1992)
emploved nonparametric estimation of F, but they assumed identical noises.

Yao and Tong (1994a) explored alternative measures of detecting chaos in
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observational data. In this thesis we estimate F, the empirical distribution
of {X;} of the model (1.2), and the Lyapunov exponent of the model (1.2)
using the observed data from model (1.1).

The plan of the rest of the paper is as follows. In Chapter 2, we give a
brief sketch of local polynomial regression, which is used for estimating F
and its derivative in Chapter 4.

Chapter 3 provides the estimation of the embedding dimension and delay
time from chaotic time series with dynamic noise, on which the Lyapunov
exponent depends. In Section 3.1 we introduce the delay time to (1.1), and
explore the mathematical properties of the embedding dimension and delay
time. In Section 3.2 a method of estimating the embedding dimension and
delay time is proposed based on Cross-Validation, a similar technique as
Cheng and Tong (1995). Consistency of the proposed estimators is proved
in Section 3.3.

Chapter 4 provides the estimation of the Lyapunov exponent from chaotic
time series with dynamic noise. In Section 4.1, we review the basics of chaos
and the Lyapunov exponent. In Section 4.2, we define the class of the chaotic
time series that we investigate. Finally in Section 4.3 we give a method of
estimating the Lyapunov exponent and prove consistency of the proposed

estimator.

1.3 Basic definitions and condition

In this section, we give basic definitions and condition, used thronghout this

thesis.

Definition 1.1 (Stationary)

The stochastic process {X;;t > 0} is said to be stationary if the random

variables
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have the same joint probability distribution as the random variables

for any positive integer m, any ty,...,t, and h.

Definition 1.2 (Nonlinear autoregressive time series model)
The stochastic model { Xy;t > 0} is said to be a nonlinear autoregressive time
series with dynamic noise 1f {X,} is stationary with EX? < oo and 1f for

every integer t (t > d),

(1.3)

where d is positive integer, F : RT — R is a measurable function and {g,} is

a sequence of random noise and for any t,

and
E [Eﬂ.Affl(X)] =% (6 > 0), almost surely,

where AL(X) denotes the sigma algebra generated by (X, ..., Xy), for s <t.
Further, the integer d is called the degree of the nonlinear autoregressive time

SEres.

Definition 1.3 (Skeleton)
The deterministic system { X (x);t > 0} is said to be a skeleton of the non-
linear autoregressive time series with dynamic noise (1.3) if {X;(x);t > 0}

s generated by

A= F(#d ) Xt,—'z(-T), o PO DY, (for t > d) (1.4)

t

where ¥ =" (xg ...,x4-1) € R? is a fired vector and X((z) = xz; for t =

0,...,d—1.
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Definition 1.4 (Chaos)

The deterministic system { X,(z);t > 0} is said to be chaotic 1if { Xy (x);t > 0}
is bounded and there erists 6 > 0 such that for all z,e € R, there exists
Xo(z) = Xp(z+¢€)| > 9.

positive integer n such that

Definition 1.5 (Chaotic time series model)
The nonlinear autoregressive time series with dynamic noise is said to be

chaotic time series 1f its skeleton is chaotic.

For the function F : R — R in (1.3), we define F : R? — R? as
F(Ilal‘?a o0 0 7‘,1:([)

T
F(:I“lamllv"'amd) =

\ Lg—1

and put

Then the model (1.3) implies
Xy =F(Xi1) + €, (for t > d), (1.5)
and the model (1.4) implies
X =F(X;-), (for ¢t > d). (1.6)
The model (1.6) is also said to be a skeleton of the model (1.5).
In this thesis, we assume the following condition.

Condition 1.1
Let the support of {e;} be S. We suppose that there exists a set M C RY
such that Xy_1 € M and

F(zr+e) e M,

for all z € M and e =" (e1,0,...,0) where e, € S.



Chapter 2

Local polynomial regression

In this chapter, refering te Wand and Jenes (1995), Simeneff (1996) and Fan
and Gijbels (1996), we review the lecal pelynemial regressien to estimate F'

in (1.3) and its derivative.

2.1 Kernel Estimation

First of all, we censider the density estimatien preblem. Let Y be a ran-
dem variable that has prebability density function g(y) and let G(y) be the
distributien functien ef the randem variable Y, and {Y},...,Y,} represent a
randem sample of size n frem the density g.

Censider the definition of g(y):

Gly+h)—G(y—h)

d .
9(y) = @G(y) lim oh :

Replacing G(y) with the empirical distributien functien gives

1 #{Yi € (y — h,y + h]}

9(y) 2nh

This can be rewritten as

(2.1)
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where
L b =1 LT

- - 29

Ll { (2), otherwise.
The form (2.1) is that of the kernel density estimator, with kernel function
K. Note that this kernel function is a uniform density function on (-1, 1].

The problem is that the additive form of (2.1) implies that the estimate ¢
retains the continuity and differentiability properties of K. Since the uniform
density is discontinuous, so is the kernel density estimate based on a uniform
kernel function. A smoother kernel function will thus lead to a smoother
kernel density estimate.

In this thesis, we assume that the kernel function K(u) is an arbitrary

density function satisfying the conditions:

| T - S £ (4R e

2. limpy o0 [u| K (u) = 0,
3. K(u) = K(—u) for all u € R,
4. [u*K(u)du = 0% < 0.
The bias and variance of the kernel density estimator are given as follows.

Theorem 2.1 (Parzen (1962))
Assume that ¢"(y) is absolutely continuous and square integrable. Then we

have

and )
9(y)R(K)

=]
. +O0(Mn™),

Var[g(y)] =
where R(K) = [ K (u)*du.
I'he degree to which the data are smoothed has a strong effect on the ap-

pearance of g(y) through the setting of the bandwidth . Theorem 2.1 shows

the tradeoff of bias versus variance.

2.2. KERNEL REGRESSION 9

Remark 2.1 Combining variance and squared bias, we have the mean squared

error

Integrating over the entire line then we have the asymptotic MISE

where R(g") = [ ¢"(u)*du. The asymptotically optimal bandwidth satisfies

o R(K) e
" \nokR(gn)

implying manimal AMISE

The term R(g¢") measures the roughness of the true underlying density. In
general, rougher densities are more difficult to estimate and require a smaller

bandwidth.

2.2 Kernel Regression

Next we consider the nonparametric regression problem. Let (Y, Z) be a ran-
dom vector that has joint density function ¢(y, z), and {(Y1, Z1), ..., (Y, Zn)}
represent a random sample of size n from the density g. We consider the non-

parametric regression model

where the regression curve m(y) is the conditional expectation m(y) = E(Z|Y =

y) with E(e|]Y =y) =0, and Var(e|Y = y) = o%(y) not necessarily constant.
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By definition we have
m(y) E[Z|Y = y]
[ 29(aly)dz

g(y, 2

/z‘]('/ )(iz, (2.2)
v (y)

where gy (y) and g(z|y) are the marginal density of ¥ and the conditional

density of Z given Y, respectively. A product kernel estimate of g(y, 2) is

R e e b R Ry A el
)
1 2

Ty = by

while a kernel estimation of gy (y) is

Substituting into (2.2), and noting that [ K,(u) = 1 and [ukK,(u)du = 0,

yields the Nadayara-Watson kernel estimator,

The Nadaraya-Watson kernel estimator is most natural for data using a ran-
dom design. If the design is not random, but is rather a fixed set of ordered
nonrandom numbers i, . . ., Yn, a different form of kernel estimator is consid-
ered. Gaoser and Tiiller (1979) proposed the Gasser-Miiller kernel estimator,

[P (U=
man(y) = Ezzif K (l 7 '/> du,
T ae=1 Fi-1

)

where y1 < si.; < y;. Fan(1992) summarized the asymptotic bias and

variance of these estimator as follows:

1 m'(y)g' (1 i
Bias[tinw (y)] = <§m"(y) + %) h ._ w? K (u)du

2.3. LOCAL POLYNOMIAL REGRESSION 11

Bias[tgn (y)]
Var[man (y))

As Fan(1992) showed, Bias[mnw(y)] > Bias[imgas (y)] and Varfmyw (y)] <
Var(mear(y)]. Fan(1992) also showed that the bias of the local linear re-
gression estimator, which was proposed by Stone (1977), is equal to the bias
of the Gasser-Miiller estimator and the variance of the local linear regres-
sion estimator is equal to the variance of the Nadaraya-Watson estimator.
Fan, Hu and Troung(1994) considered a class of kernel estimators based on
local linear regression estimator, and showed the asymptotic normality of
these estimators. Cleveland (1979) proposed the local polynomial regression

estimator, which is the extension of the local linear regression estimator.

2.3 Local polynomial regression

In this section, we review the local polynomial regression estimator. Let
(Y, Z) be arandom vector that has joint density function ¢(y, 2), and {(¥7, Z)),
., (Y, Z,) } represent a random sample of size n from the density g. We are
interested in to estimate the regression function m(yy) = E(Z|Y = yy) and
its derivatives m/(yo), m"(yo), . .., m™ (y), where m@ represents the j-th

derivative of m.
Suppose that the (p + 1)-th derivative of m(y) at the point yo exists. We
approximate the unknown regression function m(y) locally by a polynomial

of order p. A Taylor expansion gives, for y in a neighborhood of yy,

m(p) (yo)
p!

m"(yo)

N (y —yo)".

(2.3)

Cleveland (1979) considered the following weighted least square problem:

m(y) ~ m(yo) + m'(yo)(y — yo) + (y—yo)* + -+
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minimize
mn P

S {Zi— - Bi(Yi— yo) YPER(Y: — o), (2.4)

=l 7=0
with respect to By, ..., 3, where h is a bandwidth controlling the size of the
local neighborhood, and Ky (y) = ih(%) with K a kernel function assigning
weights to each datum point. Denote the minimizer by f, ..., 3,. Note that
if p = 0, then ) coincides with the Nadaraya-Watson estimator of m(y).
Compare (2.4) with (2.3), an estimator for m®) (yo) is given by 7, (yo) =
v!183,. To estimate the entire function m®)(y), we denote by Y the design
matrix of problem (2.4):
(Y1 — wo) (Y1 — wo)?
(Y2 =) == (Y2 —%0)

bl

(Yn o ’!/0) (Yn = ’!Io)p

and put

Ifurther, let W be the n x n diagonal matrix of weights:

Ry (=) 0

0 Kn(Y2 — yo)
W = . K
0 0

Then the weighted least squares problem (2.4) can be written as:

minimize

(z-YB)W(z - Yp),

with respect to 4, where 3 =" (3, 81, ..., Bp). The solution vector is provided

by weighted least squares theory and is given by

(2.5)

2.3. LOCAL POLYNOMIAL REGRESSION 13

The conditional bias and variance of the estimator 8 are derived from its

definition (2.5):
E(BY) ('YWY) "YWm
B+ (YWY) ""YWr
Var(8]Y) (YWY) ('Y 3 Y)('YWY)

where
i m(yo)
m(11) m'(Yo)
m(Y; 1!
- (. 2) e I
m(Yy) m® (o)
p!

and r = m — Y 3, the vector of residuals of the local polynomial approxima-

tion, and

0
K2(Yy — yo)o?(Y2)

0
Since the residual r and the diagonal matrix 3 is unknown, there is a need
for approximating bias and variance. Ruppert and Wand (1994) obtained
the result in the following theorem. Denote the moments of K and K?
respectively by
g = / w K (u)du
and

v = / w! K*(u)du.

Some matrices and vectors of moment appear in the asymptotic expressions.
Let

S = (/ij+l)0§j,lgp, Cp = (/er+1, 5 o ,/L2p+1),
S = (/*Lj+l+1 )OSJ'JSPv Cp = (Np+2a c Hapta)s
S =

(Vj+)o<ji<p-
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Further, we consider the unit vector e,,; =' (0,...,0,1,0,...,0) € RPTL,

with 1 on the (v + 1)-th position for v = 0,1,...,p.

Theorem 2.2 (Ruppert and Wand (1994))

Assume that gy (yo) > 0 and that gy (y), mP*Y(y) and o?(y) are continuous
in a neighborhood of yy. Further, assume that h — 0 and nh — oo as n — oo.
Then the asymptotic conditional variance of m, (yo) s given by

V1202 (yo) ( 1 )
AL ETRET P !
q)(yo)nhl+ll/ l nh/l‘*‘ll/

Var (i (o) Y) =" €,4157'S*S e,y

The asymptotic conditional bias for p — v odd is given by
V!
(P 0

Further, for p — v even the asymptotic conditional bias 1s given by

Bias (1, (yo)|[Y) =t €,415 "¢, @D (yo) WP 4 0, (WPHTY).

Bias (1, (yo)|Y)
v!

:, (’U+15v—l('}p (p—+- 2

/
s () + 0+ 2 go) 7 ) 1 4 0, (12)

provided that g4 (y) and m®™*?(y) are continuous in a neighborhood of yq

and nh? = .

This theorem shows that the degree of the polynomial being fit determines
the order of the bias of 7, with polynomials of adjacent pairs of degree being
conceptually similar. For estimating the m(yy) (i.e. ¥ = 0), if p = 0, which
coincides with the Nadaraya-Watson estimator, or p = 1, which coincides
with the local linear fit considered in Fan, Hu and Troung (1994), then
estimation yields O,(h?) bias, and if p = 2,3 then estimation yields O, (h*)

bia .
2.4 Local polynomial regression for time se-
ries

[n this section, we study the local polynomial estimator when the sample is

not independent. First of all, we define the following mixing conditions.

2.4. LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES 15

Let {(X;,Y;)} be a stationary sequence of random vectors, and FF be
the o—algebra of events generated by the random variables {(.X;.Y)),i <
J < k}. Denote by Lg(fik) the collection of all random variables which are
FF—measurable and have finite second moment.

Definition 2.1 (Strongly mixing)

-

The stationary process {(X;,Y;)} is called strongly mizing if

sup |IP(ANB) — P(A)P(B)| = a(k) = 0 as k — oo.

ATl KBV
Definition 2.2 (Uniformly mixing)
The stationary process {(X;,Y;)} is called uniformly mizing of

sup |P(B|A) — P(B)| = ¢(k) — 0 as k — oo.

AeF°  ,BEFE

Definition 2.3 (p-mixing)
The stationary process {(X;,Y;)} is called p-mizing if
sup |Corr(U, V)| = p(k) = 0 as k — oo,
UeLa(F2 ), VELy(F)

where Corr (U, V') denotes the correlation coefficient between the random vari-

ables U and V

The key usage of mixing conditions is contained in the following lemma.
The lemma shows that dependent random variables can be approximated
by a sequence of independent random variables having the same marginal

distribution.

Lemma 2.1 (Volkonskii and Rozanov (1959))

Let Vi,...,V, be random wariables with |V;] < 1 for j = 1,...,n, and
Tl ,Fi" be the o-algebra of events generated by the random variables

Vi,..., Vi, respectively. Suppose that 1y < 7, < -+ < i, < j, and there exists

w > 1 such that 44y — jx > w, fork=1,...,n—1. Then

E ﬁ Vi — ﬁ E(V;)| £ 16(n — 1)a(w).
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Now we consider observations { X, ..., X4} from the non-linear autoregres-
sive model X; = m(X;_;) + &, and construct data {(X,Y7),..., (X, Y5)}

as Y; = X, fori =1,....n. We are interested in to estimate
m(z) = E(Y;|X; = z) and its derivative m)(z).

Masry and Fan (1993) approximated m(z) as in (2.3) and fits locally a poly-
nomial as in (2.4). Denote B(z) the solution to the weighted least squares
problem (2.4). Then, an estimator for m®*)(x) is m,(z) = 1/![3,,(:5). Masry
and Fan (1993) state that under certain mixing conditions, local polyno-
mial estimators for dependent data have the same asymptotic behavior as
for independent data.

Let f(x) be the density of X; and o?(z) = Var(¥,|X; = z). Let S, S*
and ¢, denote the same moment matrices and vector as those introduced in

previous section, and let
= /"(a,,+15_”'(l, u, ..., uP) K (u)uP T du

and
2
. / ("(f,,+lS_]'(l, Uy ... ,u”)]\'(u)) du.

Masry and Fan (1993) gave the following result.

Condition 2.1

1. The kernel K is bounded with bounded support.

2. Foralll € N, fxyx,vo,vi(To, Zt|Yo, wi) s bounded, where Fxo v (Zo, Zelyo, wi)

is a conditional density of (Xo, X)) given (Yo, Y)).
3. The stationary process {(X;,Y;)} is strongly mizing.
4. For some § >2 and a > 1 — 2/4,

p I(a(D]'=%° < 0o, E|Y}]® < o0, xipa (zly) is bounded.
I

24. LOCAL POLYNOMIAL REGRESSIO FOR TIME SERIES 17

5. There exists a sequence of positive integers satisfying s, — oo and

Sp = 0 (\/ nh) such that

n
’—az(s,,) — 0, as n — oo.
]

Condition 2.2

1. The kernel K 1is bounded with bounded support.

2. Foralll € N, fx,x,vo.vi (%o, Ti|yo, yi) ts bounded, where fx, x,1vo,v: (Lo, 21|Yo, W)

is a conditional density of (Xo,X;) given (Yo, Y]).

3. The stationary process {(X;,Y;)} is p-mizing.

> p(l) < 00, EY} < 08
{

There exists a sequence of positive integers satisfying s, — 00 and

SN0} (\/ nh,) such that

n
E/)(sn) =0, as n — oo.

&

Theorem 2.3
Under Condition 2.1 or Condition 2.2, if h = O(n'/P+3)) | then the estimator
m,(x) based on the local polynomial fitting is asymptotically normal:as n —

oo,

1 (1) p+l—v N2
—— Wy Vim (x)h D L(V)2o?(x)
nh (m,,(:zt) m(z) — yu, v+ 1)! = N10,& 1(x) .



Chapter 3

The embedding dimension and
delay time

3.1 The embedding dimension and the delay
time

We consider the stochastic model given by
(3.1)

where d and 7 are positive integers and g; is the dynamic noise. We assume
that {X;} is a discrete-time strictly stationary time series with EX? < oo

and for any ¢,

(3.2)

and
E [E?IAE_](X)] =02, (0 > 0), almost surely,

where AL (X) denotes the sigma algebra generated by (X, ..., X)), for s < £.
that from (3.1) and (3.2), it follows that

19
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For simplicity we put

The embedding dimension and the delay time are defined as follows.

Definition 3.1 The time series { X} is said to have the embedding dimen-
ston dy with the delay time 1o of and only of there exist non-negative integers

dy < 00 and Ty < oo such that

(3.3)
for any d < dy, and any 7 > 0, and

(3.4)

for any (d,7) € B(dy, 10),
where B(dy, 70) = {(d,7)|{70, 270, ..., doTo} C {7,27,...,d7} }.

The definition is identical to that given in Cheng and Tong(1995) when 7 = 1.

We have the following theorem.
Theorem 3.1 Suppose that for any T > 0 there exists dy(7) < 0o such that
(3.5)
for any d < dy(7), and
(3.6)

for any d > do(1). Then the embedding dimension dy and the delay time 1y
of { X} satisfy

g = IllTiIl do(T) = do(70).

3.1. THE EMBEDDING DIMENSION AND THE DELAY TIME 21
Proof. Tt is clear that min, dy(7) < dy(79), so we show that

i) do < mindy(T)
B
and

77) (10 2 (10(7’0).

i). If dy > min, dy(7), then there exist 7* such that dy > do(7*). Thus

we have from (3.6)

but this contradicts (3.3).

it). If dy < do(70), we have from (3.5)

but since dy < do(79) and (dy(79), 70) € B(do, 70), this contradicts (3.4).

Denoting the residuals and their variances by

E(d’T) - )\’t ((1 = 0)
’ IYt r Fd()(t~'r’ old o a‘Yt——d‘r) ({1 3 0)7

. 2
Flidi=8 [55'1’7)] :
We may show the following lemma.

Lemma 3.1

i) For any positive integers dy, dy, 1, 7o such that (dy, ) € B(dy, 12),

it) For any d > 0 and 7 > 0 such that (d,7) € B(dy, 79),
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Proof.
i). For simplicity, let Z,,(d’T) & (Mg .. 3 M= )l
[Fdz(‘xf Ton X’f dsz) _ F(ll (‘Y1~T17 0 o 7‘Yt—!il‘rl)]2
= B[{X- £, (Zr‘il ")} = {0 - By (2]
(

2

(11’T1) ((12,T2)

—2F [{ =l <Zt(dl’n)>} {){, — Fy (Zt(dl’ﬂ)) % (Zfdl,n)) =~ Py (Zf(lz,Tg))}]
2((1177'1) +o0o ((12,72)
=% (0’ ((11,T1) +F [{‘Yl = Fd, (Zfdl,’fl))} {Fd] (Z;(h,ﬂ)) - F(lg <Z((l2 T2 )}})

o2 (dy, 7o) —0*(d1, T1)
_9E [{Fdl (Z(dl T ) - ng <Zt((12,72)>} B [‘\r Fd1 (Z dy,m) ’2((11:7'1)]]
02((12,72) -0 ((11,7'1)

i1). From the definition of dy and 7¢, (d,7) € B(dy, 70) implies

and from Lemma 1 7) we have
a*(do, 7o) — 0*(d, )

o’ r r - 2
=4 [Fd(‘\l—T’ s a‘xt—dT) - Fdo(‘xi—Toa P B "\l—io‘ro)]
=0

From Lemma 1 we have the following theorem.

Theorem 3.2 For any 7 > 0 and dy(7) defined in Theorem 3.1,
i) o*(d,T) > o*(do(7),T) for any d < dy(T),
i) o*(d,7) = o*(dy(1),T) for any d > do(7),

iii)  0%(dy, 70) < 0*(d, ) for any d > 0 and 7 > 0.

Proof. ). From the definition of dy(7), for d < dy(7), we have
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and d < dy(7) implies (do(7),7) € B(d, 7). Thus from Lemma 1 i),

02((177) _ 02((10(7)7 T)
, . . . 2
E [Fy(Xi—rs s Xietr) = Faom(Xier, ., X do(ryr) |
> 0.

i1). From the definition of dy(7), for d > do(7), we have

and d > dy(7) implies (d,7) € B(dy(7), 7). Thus from Lemma 1 i),

o*(d, ) — o*(do(T),7)

2
= [Fd()\’l.—‘r, Sy Art—d‘r) = Fdo(v')()(t—ﬂ 570 a‘\,t—do(T)T):|
0.

411). For any 7 > 0, we may rewrite o%(dy(7),7) — 02(dy, 79) as

e Since (do(7)7,1) € B(do(7),7), from Lemma 1 i), we have

o?(do(7),7) — o(do(7)T,1)

r r 'e z 2
=F [ng(T)(‘Xt—'r’ 9.0 0 74\1.—(10(7')7') = Fdo(‘r)”r(f\l.—h 0 00 7)\1,7(10(7')7')]

> 0.

23

o When dyrg > do(7)7, we have (dy79,1) € B(dy(7)7,1). Thus from

Lemma 1 %), we have

02((10(T)T5 1) i OY2((1’/070, 1)

2 r r 2
=2 [Fdo(T)T(‘\f,—lv sy ‘\t—do(‘r)T) . Fdo'ro(‘\ t—=1y- - - ..7(1070)]

> 0.
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When dorg < do(7)7, we have (do(7)7,1) € B(domo,1) C B(dp, 70).
Thus from Lemma 1 77), we have
o?(do(1)7,1) — 0°(dgT9,1)
2
=-F [EIO(T)T(‘\’tfla s Kitoryrd — Tl X 1y 1\1.-(10T0)}
=X()

e Since (dy7y, 1) € B(dy, 79), from Lemma 1 i), we have

0%(dgto, 1) — 0(dy, 7o)
=== [Fdo‘ro(‘\’l,—la 6 099 ‘Yf.—do‘l‘o) - Elo(‘\rl—‘ro’ 0 50y ‘\7[,~(10T0)]2
=

So a?(dy, 79) < 0%(do(T), 7).

Thus from Theorem 3.2 i), ii), we have 0%(dy, 79) < 02(dy(7),7) < 0?(d, 7).

3.2 Estimation of the embedding dimension
and delay time

In this section we propose the procedure for determining the embedding
dimension and the delay time suggested by Theorem 3.2. This procedure is
based on the cross-validation approach developed by Cheng and Tong (1995)
for determining the embedding dimension.

Let {Xi,..., Xy} be the observed data, D,T be sufficiently large for
dy < D and 7 < T and L = DT.

Put

1 A A i . 2
Ty | Z <‘\t ol F\t(d,‘r)(‘xt—m 20 ot ‘\t—d‘r)) )

=10

CV(d,7) =

where Fyyq,r) denotes the estimated regression function with the t-th point

deleted. That is,
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where the summation over s omit ¢ in cach case. and

and Ky, is a kernel with constant bandwidth A that decreases toward 0 as

Ky () = (%) .

K, is usually taken to be a probability density function on R,

N tends to infinity, i.e.,

Now we describe our for determining the embedding dimension

and the delay time. First, minimize C'V'(d,7) with respect to d over 1 < d <
D for each 7 < T. Denoting the minimizer by dy(7), then the estimators of
embedding dimension and the delay time are given by dy = min < <7 do(7)

and 7y = argmin, <, «pdo(7).

Theorem 3.3 Under conditions (c),(d) and (f)-(r) which are listed in Sec-
GO, o0l

SRR &l L 1T, A}im P{(ZO(T) = (10(7)} =/

The proof of Theorem 3.3 is given in the next section.

3.3 Proof of Theorem 3.3

3.3.1 Basic conditions and theorems

We use the following conditions for Theorem 3.3.
(a) E [5,,|Aﬂ_olo(‘\’)] = 0, almost surely.
(b) E [£?|At_”OL(X)] = 0%, (0 > 0), almost surely.

(¢) Kq(u) =119 k(w;) for u = (uy,...,uq) € RY
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(d)

(¢)

()

I is Holder continuous, i.e. There exists ¢; > 0 and 0 < p < 1 such
that for all z,y € RY [F(z) — F(y)| < ]|z — y||*, where || - || denotes

the Eudidean norm in R%.
Wy is a weight function which has a compact support S C R¢ and

0< [ Wy(z)dz < 00,0 < Wy(z) < 1.

Forall d < D and 7 < T, let fqr) denote the probability density

function of (X;—,,..., Xi_¢r), which is strictly positive on S, and there

exists ¢, > 0 such that for all z,y € R, |f(d,7)(;1:) — Jun ()| < ellr -

yl|.

k has compact support, and there exists ¢z > 0 such that for all z,y €

R, |k(z) = k(y)] < eslz -y

For all d < D and 7 < T, and for every t,s,u,t',s’,u’ € N, the joint
probability density function of <Z,Fd’T), AR A Y fo’T))

S u

is bounded, where Zfd’T) is defined in the proof of Lemma 1.
Let 1/p+1/q = 1. For some p > 2 and 6 > 0 such that § < 2/¢q — 1,
Ele, |49 < 00 and E|F(X,_;,..., Xi_¢ )0+ < c0.

S x2hE

] ), where

) |

Let j = j(N) be a positive integer and 7 = (V) be the largest positive

For § in condition (i) and some € > 0, ﬁ;/(Hé) =4

sup | P(AJA} (X)) = P(A)|

A€A. | . (X)

1EN %

B; = sup (E

integer such that 275 < N,

lim sup (1 o 661/2/6;/(1+i))1 I
N oo

For ¢ =4( ) in condition (k) and the bandwidth h(N,d),

lim up (i(N)h,(N, d)d> < 0.

N
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(m) Nh(N,d)?® — oo as N — oo.
(n) For j in assumption (d), Nh(N,d)?™?* s 0as N oo.

(o) For ¢,6 and ¢ in condition (i) and (j), ¢h(N,d) 2% — (0 as N —
where 6 = 4d/(q + ¢9).

(p) The set M and S defined in Condition 1.1 are bounded.
(q) {X:} is ergodic.
(o), Ford 5, d',

h(N,d)?

BN, d)* — 0as N — oo.

Conditions (a)—(0) are needed for Theorem 3.4 and Theorem 3.5 described
below. Note that (a) and (b) are assumed in equation (3.2), and that (e)
is derived from (p) in the proof of Theorem 3.3. We need the following two
theorems which is immediately obtained from Theorem 1 and Theorem 3 in
Cheng and Tong (1992) by replacing (X,_1,..., X;—q) with (X;—, ..., Xy 4r).

Theorem 3.4 Under conditions (a) (0),

. 2a(d)y(d) 1
OV (dyr)=2-RSS(d, d y

(d,7) (g ( TN, v T v, aen

where
& 5y o [ :

RSS(d, r)= I+ ’; (Xc — X s . ,‘\t—dr)) Wallpmr, 3" R ),
where Wy is a non-negative weight function which satisfies the condition (¢)
and
where



28 CHAPTER 3. THE EMBEDDING DIMENSION AND DELAY TIME 3.3. PROOF OF THEOREM 3.3 29

[ Wy(x)dx
[ Walz) f(x)dx

Theorem 3.5 Under conditions (a)-(0),

= (2a(d) — B(d))y(d) 1
A Sl r) (1_ o0 e el e <h(N, ))

s T 2 v i -
- F [(55 g )) Wa(Xi—r,. .., Xi_ar)| almost surely as N = oo
d,T 2
B [55 )]

= o, (3.8)

and a(d) = ]{i/d(())a v(d) =

Thus from (3.7) and (3.8), we have
where A}glclx) CV(d,7) = o*(d,T).
For d < do(7), we have 02(d,7) — 02 (do(7),7) > 0 from Theorem 3.2. Thus
r {(io(r) = (1}
=P {CV((I, 7= lnd'pl CV(d, T)}
7)

3.3.2 The proof of Theorem 3.3 < P{CV(d,7) < CV(do(r), )}

To prove part i) of Theorem 3.3, we fix 0 < 7 < T, and let _p {02({1 ) + ( 7(d,7) — 02((1’7)) < o2(do(7),T) + <C\~'(do(r),r) _ 02((10(7),7»}
A2) :{ (1) itieiifi'éé ’ = P {0*(d,7) — a*(do(7),7) < (CV(do(7),7) = 0°(do(7),7)) = (CV(d, 7) — 0*(d, 7)) }
- < P{0®(d,7) = 0*(do(),7) <|CV(do(7),7) = 0*(do(r), 7)| +|CV (d, 7) = *(d, 7)|}
where —0as N = 0.

For dy(7) < d < D, we have

3 e - 7 e S Tee d T) & e e - L Yo > > - _ ({l (T),T)
Then from boundedness of {X,;}, Wy(z) satisfies the condition (e) and 5 = Xi—EX|Xir, .. Xigr] = X, —E [Az 7. CRITTN )\r,—du(r)r] =FW )
Wa(X,+,..., Xi—¢r) = 1 with probability 1. il
From condition (m) we have R

r {do(r) = d}
1
—0as N - oo, <
h(N,d)IN - < P{CV(d,7) < CV(dy(T

~ ~—
\]
~ ~—
——

: 7),7) and (X;_r, ..., Xyi_4r) € Sx foranyt=L,L+1,...
thus from Theorem 3.4 and Theorem 3.5, ’ g e il (dy) ’ ’

+P {C’V(d,T < CV{delr)om) and ( Xz, oq.5 Xp 47) € Sx(d‘,, forsomet =L, L+1,...
/(d, ) = 02 B i
CV(d,7) = oj(d,7) + 0p(1) for any d. (8.7) P {C‘ (d,7) < CV(do(7),7) and (Xi—r,..., Xs—gr) € Sx,,, forany t =L, L +1,...
From ergodicity of {:X}, we have When (X;—r,...,Xi_ar) € Sy, foranyt=L,L+1,...,N, we have
d i ,
g A7) = o L. (et >) WKy s o0y Xomar)

=,
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Note that for any (z,,...,14) € R¢

implies

we have

]' a 78)) S8 2
oxldo(r),7) = ———— - (7).

t=L

So for any (Xi—ry...,Xt—dr) € SX 4 (for any t = L,..., N), we have

Irom Theorem 3.4 and Theorem 3.5, we have

Ovid wr= b [ va-daiale st s L
sl ina ONY (N, dyeN T P \ (N, d)iN
CV(do(1),7)

= o (do(T),7) <1 i 5((10(7'))7((10(7))}7/(]\/ )do(T) N + o (lz,(N, dy

and
o (do(7), (l)dN(C‘/y(dO(T)’ a0
1/I(N,do(7)) %N 0,(1/h(N,dy(7)) %D N)
=Blor (™) oy ey T AEAND T T N, ayan
0p(1/h(N,d)¢N)

1/h(N,d)¢N

o))
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Thus
R {(j()(T) = (1}

<P {C‘,’(do(T),T) —CV(d,7) > 0and (X,_;,...,Xi_qs) € Sxiny (forany t =1L, ...,

% {U?\'((IU(T)v d)d (CV(do(7),7) = CV(d,T)) 2 0

and (Xy—r,...,Xi¢r) € S¥un (lorany t = L,..., N)}

1/h(N,do(7))%) 0,(1/h(N,dy(r)) %" N)
< P { iy om0 L
o ) d d
A s )

From assumption (r), we have

as N — oo in probability and from the definition of £(d),v(d), we have
B(d)y(d) > 0. Thus P{dy(r) = d} — 0 as N — oo in probability.
Next we prove part ii) of Theorem 3.3. For 7 > 0 such that dy(7) # dy,

we have dy(7) > dy(7¢) from Theorem 3.1. Thus

& wA PAREA

This completes the proof of Theorem 3.3.

N) }



Chapter 4

The Lyapunov exponent

In this chapter, we propose the consistent estimator of the skeleton using
the data from the non-linear autoregressive time series with dynamic noise.
First of all, refering to Taniguchi and Kakizawa (2000), we review the basics

of chaos and the Lyapunov exponent.

4.1 Chaos and the Lyapunov exponent

We consider the mapping F : M — M, where M C R?. We denote by F? the
p—fold composition of F, i.e., F» = F o FP~! and F! _ For each t € N,

let z; denote a d—dimensional state vector in M satisfying
(4.1)
and the sequence {z;;t > 0} is called the trajectory.

Definition 4.1 (Periodic point)

Let q be a finite positive integer. A d-dimensional vector x* € M s called
a periodic point with period q of (4.1) if z* = FI(z*) and z* # F(z*) for
1 < j <q. The ordered set {z*,F(x*),...,Fi=(z*)} is called a q-cycle.

Definition 4.2 (Attractor)
A d-dimensional set A C M 1s called an attractor for ¥ : M — M 1f A s a

33
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minimal compact set such that

B = {z; lim inf |F"(z) — y| = 0}

n—oo ye A

has positive Lebesque measure. The set B s called the basin of attraction for

A. If the attractor is a set of q points {x7,...,z}} such that

zy =F(x;_ ), $>1,

and

then it is said to be a limit cycle. If the attractor is not a limit cycle, it is

said to be a strange attractors.

If the attractor is a limit cycle, this case is regarded as degenerate.
A standard way to quantify the sensitive dependence of F : Ml — M, on
an initial conditions is to evaluate the so-called Lyapunov exponent. Let xg

and zy € M denote two initial vectors and put 0 = xy — xo. Then, after n

iteration
vy — o = F(xg) = F*(0)
~ DF"(zy)(zy — xo)s
where DF™ is the n x n derivative matrix of F*. Set J, = DF(x,) and

T, (x0) = Jo - Jy -+ Ju_1. By application of the chain rule we obtain
(4.2)

Let pu,, (x9) denote the largest eigenvalue of a positive definite matrix T, (xg) -

T,.(zy). Thus we get the following definition

Definition 4.3 (Lyapunov exponent)

The deterministic system (4.1) is said to have a Lyapunov exponent N xg) if

1
A(zo) = lim (Z log \;l,n(:bo)|> ’ (4.3)

er1sts.
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From (4.3) and (4.2) we can see that main order term of |z/, —z, | is exp(nA(xq))|d].
Hence positive A(x) confirms sensitive dependence of F on .

Eckmann and Ruelle (1992) propose the method for estimating the Lya-
punov exponent from the trajectory {x;;¢t = 0,...,n} of the deterministic

system as follows; For sufficiently small § > 0, put
A= 25 |2 T8 <0, 5 An), t=0 T

and find D(i) = D(i) that minimizes

Y

TsEA;

Topr = Tupr = D(i) (x, — )]

~

for each i = 0,1,...,n— 1. Denote by g the maximum eigenvalue of *(D(0) -

D()---D(n—1))-(D(0)-D(1)---D(n—1)). Then the Lyapunov exponent

is estimated by
1

log /1.
2n &l

The concept of a Lyapunov exponent has been developed to characterize

)=

the sensitive dependence on the initial value of a deterministic system, for
example, a skeleton of the non-linear autoregressive time series with dynamic
noise. However, in the case of the non-linear autoregressive time series with
dynamic noise, the sequence {X;;t > 0} depend not only on the initial
value but also on the dynamic noise. For this case, to quantify the sensitive
dependence on initial value, the Lyapunov-exponent-type quantities have

been proposed.

Definition 4.4 (Local Lyapunov exponent, Wolff(1992))

For the non-linear autoregressive time series model {X;t > 0},

where S; = {7;0 < |Y; = Y;

<d},n; = #(S;),m e N and 6 > 0, is called the

local Lyapunov exponent at'Y; for lag m.
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This idea is to estimate the Lyapunov exponent locally at Y; for lag m and
pre-specified ¢ representing the perturbation. Wolff(1992) studied the statis-
tical properties of A, ,, for a variety of data which are from specified models.

Yao and Tong(1994a) proposed m—step Lyapunov-like index for the one-

dimensional case.

Definition 4.5 (Lyapunov-like index, Yao and Tong(1994a))

For the non-linear autoregressive time series model { X;;t > 0},

m d i
Am(z) = E (H ",,—,F(Xk—l) Xo = l)

k=1 ax

is called the m—step Lyapunov-like index.

These Lyapunov-exponent-type indexes quantify the sensitive dependence
on initial value, but they also depend on the variance of &, in the non-linear
autoregressive time series model. Thus they aren’t consistent estimator of

the Lyapunov exponent of the skeleton if Ver(g;) > 0.

4.2 The ergodic theory of chaos

In this section we study stationarity and ergodicity of nonlinear autoregres-
sive time serics model and the ergodic theory of deterministic chaos to give
the Lyapunov exponent by space average. First of all, we discuss the funda-

mental properties of Markov chain.

Definition 4.6 (Markov chain)
An d-vector stochastic process { Xyt > 0} 1s called a Markov chain with

transition probability P(-,-), provided that

where L{X41|*} s the conditional distribution of Xy, given x, and F, =
F(Xy, ..., Xy) is the o-algebra generated by Xy, X,_1,...,Xo. The distribu-
tion F(Xo) of Xy is called the initial distribution of {X,}.
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For a Markov chain {X,}, the ¢-th step transition probability is defined

by

Definition 4.7 (Irreducibility)
Let ¢ be a o-finite measure on (R, BY) with ¢(RY) > 0. A Markov chain

{X:} is said to be ¢p-irreducible 1f

oo

Z Pz, A) >0,

=i

for all z € R and all A € BY with ¢(A) > 0.

If {X,} is ¢-irreducible for some ¢, it is simply called irreducible. In this
case the measure ¢ is called an irreducibility measure for {.X;}. A nonnull
set C € B is called to be small if there exists a positive integer k, a constant

b > 0 and a probability measure v such that
P¥(z,A) > bv(A), forallz € C, A € B (4.4)

Proposition 4.1 (Nummelin(1984))
For a small set C, define

1(C) = {k € N 2 b,v such that P*(z, A) > bv(A), for all z € C, A € B},

and let D(C) be the greatest common divisor of I(C). Then D(C) is the

same for all small sets.

Thus we may write D instead of D(C). If D = 1, the Markov chain is called
aperiodic otherwise it is called periodic with period D.

ow we discuss the ergodicity of nonlinear autoregressive models.

Definition 4.8 (Ergodic process)
A Markov chain {X,} is said to be geometrically ergodic if there exists a

probability measure m on (R, BY) and a positive constant p < 1 such that

(4.5)
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where || || is the total variation norm. If

holds, then { X} is said to be ergodic.

Definition 4.9 (Invariant measure)

For a Markov chain {X,}, a probability measure m on (R BY) is said to be
nvariant 1f
m(A) = /P‘(x,A)W(dI), forall A € B,

holds.

Proposition 4.2 (Nummelin(1984))
If @ Markov chain { X} is geometrically ergodic, and if the initial distribution
L{Xo} is min (4.5), then { X} is strictly stationary.

To argue the geometrical ergodicity of nonlinear autoregressive process, we

state three preliminary lemmas.

Lemma 4.1 (Chan and Tong (1985))
For a nonlinear autoregressive time series model (1.3), suppose that F is
bounded over bounded sets. Then {X;} defined by (1.5) is aperiodic and -

wreducible, where ji 1s the Lebesque measure. Furthermore, ji-nonnull com-

pact sets are small sets.

Lemma 4.2 (Tweedie’s criterion, Tweedie (1975))
Let { X} be an aperiodic and ireducible Markov chain. Support that there
exist a small set C, a nonnegative measurable function g, positive constants

cr, 0 and p <1 such that
E(g(Xe)|Xo = x) < pg(z) — 1, for any z € C,

and
E(g(Xi)|Xe =1) < ¢, for anyz € C.

Then {X,} is geometrically ergodic.
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Lemma 4.3 (h-step criterion, Tj¢stheim(1990))
If there exists a positive integer h such that a Markov chain { Xy, } is geomet-

rically ergodic, then {X,;} is geometrically ergodic.

To check the geometrical ergodicity of nonlinear autoregressive model (1.3),
An and Huang (1996) gave the following theorems to check the geometrical

ergodicty of the nonlinear autoregressive model given in (1.3).

Theorem 4.1
In model (1.3), suppose that there exists a positive number A < 1 and a

constant ¢ such that

Then { X} defined by (1.3) is geometrically ergodic.

Theorem 4.2
In the model (1.8), suppose that

sup |F(z)| < oo for each K > 0,
lel <K

and

F{z) -t a:
lim ——‘| (z) az| =0
| X|—>00 "L"

bl

L

where x =t (zy,...,2,), and a = (ay,...,a,) satisfies

Then {X,} generated by (1.8) is geometrically ergodic.

In the rest of this chapter, we consider the one-dimensional case (d = 1). Note

that for the one-dimensional case, the largest eigenvalue of T, (zy)T,,(zy)
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is T, (0)? (F'(z0) - F'(z1):-- F'(z,-1))°, and the Lyapunev expenent is

given by

1
A(zo) 11111 — log T, (zo)|

—oo n
n—1

HFIZ"
n—1

1
= Z log |F'(z,)|

n—oo n, i—e

lim /loglF’ )| dGy (z),

n— o0

lim —leg
n—oo

where 7
Gul) = 5#{() S e phprn AP,

Invariance and ergodicity are alse defined fer deterministic chaes serices.

Definition 4.10 (Invariant measure)
For the deterministic system x, = F(z,_,),z9 € M, a probability measure p
is said to be mwvariant if p(A) = p(F~'(A)) for any Borel set A C M.

Definition 4.11 (Ergodicity)

An invariant probability measure p is ergodic if it does not have a nontrivial

convez decomposition:

p=ap; + (1 —a)py witha 70,1,
where 1 ' K ' obabili :  or
where py and py are again invariant probability measure and py 7 ps.

Theorem 4.3 (Ergodic theorem, Birkhoff (1931b))
For the deterministic system x, = F(z,_1),z9 € M, let ¢ be an integrable
function on M and p an invariant probability measure, then for p-almost all

Xy € M, the limnat

1 n—1
= I
Al 2 Pl
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exists. If p is ergodic then for p-almost all xy € M,

n—1

1
[ ottt = sy 15 ot

Ergedic theerem shews that if the invariant measure p of the deterministic

system (4.1) is ergedic, then the Lyapunev expenent is given by
Azo) = /log |F'(x)|dG(x) fer p-almest all xy € M, (4.6)

where G is the distributien functien ef the invariant measure p.
Ulam and ven Neumann (1947) preved that an invariant measure feor

the legistic-4 map is that ef the beta(: distributien. Hall and Wolff

21 2)
(1995) previde the density functien of the invariant measure of legistic-f
map whenever the invariant distributien is abselutely centinueus, and shewed
that the Lyapunev expenent ef legistic- map is net centinuous functien of
. Laseta and Yerke (1973) preved the existence of absolutely continuous
invariant distributiens fer maps which are quite different frem the legistic.
Te estimate the invariant distributien, we assume the existence of the

fellewing Kelmegerev measure.

Definition 4.12 (Kolmogorov measure)

The deterministic system x, = F(x,_;),xy € M 1is said to have the Kolo-
mogorov measure p if the stationary stochastic system X, = F(X, |) +
€1, Xo € M has only one stationary measure p, and p, converges in law to p
as E(e2) — 0.

The assumptien of the existence of the Kelmegerev measure secms teo strict.
Hewever, in a cemputer study, reundeff errors should play the rele of the ran-
dem neise. Due te sensitive dependence en initial cenditions, even a very
small level of reundeff errers has impertance effects. The existence of the Kol-
megerev measure shews that calculated value in cemputer study converges
te the true value when reundeff errers tend te (0. Thus the assumption ef

the existence of the Kelmegerev measure is reasenable.
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4.3 Estimation of the Lyapunov exponent

In this section we propose the procedure for estimating the Lyapunov expo-
nent of the skeleton z; = F(x;_1), 29 € M given by equation (4.6).
Let {Xi,...,X,} be the observed data from the non-linear time series
model
(4.7)
Denote by F,(z) and f,(z), the local polynomial estimator of F(z) and its
derivative respectively. Next we regenerate the trajectory of the skeleton as

follows:

Y, = Fp(Yiy) for ¢ > 0, Y, = X,

and denote by G’m the empirical distribution of the trajectory {Yy, ..., Y, 1 }.

Then we propose an estimator of the Lyapunov exponent of the skeleton as

AF) = [ 10g1fa(0)|Grm(y).
We prove that the proposed estimator is consistent in the following theorem.

Theorem 4.4

Let f(x) be the density function of Xo and X be the Lyapunov exponent of
the skeleton of the non-linear time series (4.7). Suppose that the skeleton
of (4.7) has the ergodic Kolmogorov measure with distribution function G, A
satisfies —oo < X\ < 0o, f(x) has a compact support My, f(x) and F®+)(x)
are continuous on M, for some p > 1, and h = O(n"/@+3)) Then A(F) is a

consistent estimator of the Lyapunov exponent of the skeleton of (4.7).
(Proof.) Since M, is compact and f(z) and F®*+Y(x) are continuous on M,

there exist N, N, > 0 such that

F(PH)(J;)' < N and ‘ < N, for z € M,

We may rewrite
Fn()'t—l)
F(Yeo) + (Fa(Yim) = F(Yio)
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and let ¢ = F,,(Y,_;) — F(Y,—,), then by Theorem 2.3 we have

N,
1
e

E((f) < /16 (p+ 1)|

and
O'ZNQ
nh
Thus E(e?) converges to 0 as n tends to infinity. Then by the assumption of

Var(e) < &

the existence of the Kolmogorov measure, the empirical distribution of {};}
converges to the Kolmogorov measure.
Now we expand }/\(F) - /\| as

';\(F)—)\’

— /M log | fu (9)|dGom(y) — /M log IF’('.I/)IdG(:l/)I

= |, or a)ldGn(y) = [ (1081 a(w)] + (081 F(3)] - 051, (1)])) dG()
= |, VB falaGutw) = [ 1081 0) G ) + [ (108 1falo)] - log | )] dGi(y)

< [ floglfatu)l| v, () + [ [1og 1 7aw)] = tog | F'(y) | dG ().

where Vi; _,(y) is the total variation of G =G Fab any 0 < e < 1/2, we
put M, = {y € M;|F'(y)| < &}.
First we consider f, (log | fn(y)| — log |F’(y)|‘ dG(y). From Theorem 2.3

and continuity of the density of {X,}, Pr {|fn(1/)| < 5} converges to
€— —€— ,
) ( ’u"> - ( } u”) uniformly as n — oo, where
n

On
T e
= y) + pf P
L J ll(p+l)!l
and

.

o |G .

! Yf(y)

Thus for any > 0, there exist eg > 0 and n; € N such that

Pr {]fn(y)l < 6} <4 for e < gy and n > n;.
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And for y € M., |F'(y)| < € <1/2 and Theorem 2.3 imply that there exists
ny € N such that

Pr {lfn(y)| B l} < 6 for n > ny.

Thus for n > max(n;, ny), we have with probability larger than 1 — 24,

0 > [ loglfuy)ldG(y)
J M
> / log edG(y)
J M,

> [ 1og|[F(y)ldG ).
M

Then for n > max(n;, ny), we have with probability larger than 1 — 24,

2 [ 10 |F')ldG(y) < [ Jlog1fa(v)] ~ log |F'(y)]| dG(w) < 0.

Since A > —oo, we have

[ log | F'(y)|dG (y) = 0 as € — 0.

log | fu(y)| — log \F’(y)l\ dG(y). For y € M — M, by

Taylor Series expansions we have

Next we consider [y,

[10g £ ()] = log | F'(y)]] < +o(|1fa)] = IF')]])

fuly) = F'(y)|

(c

+o0 ( fn(?/) - FI(?/)D .

Bv Theorem 2.3 we have

|. n (y) _ "(yﬂ —<_ /IT Nlh:p

€ e(p+1)

! + o(h?)

and

r ‘ n(y) - q(f}')' - UNQ < 1 >
o € =& e2nh3 I nh?
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Then we have

p 2
B ( [ 1y, o8 /()| = log |F'(5) | d,G(y)>

< Bl (loglfuly)l - log |F'(y)])” dG(y)

Nib? \* L 0N, 1
g + & —= 2P <—>
</ Ye(p + 1)!) i el ol g nh3

Then by Chebychev’s inequality we have
Lo, o8 1Faw)] = 108 |/ ()| dGy) = o (1)

And by existence of the Kolmogorov measure, we have O
Fyreh T S

Therefore A(F) — A = 0,(1). This completes the proof of Theorem 4.4.

— 0.
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