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PREFACE

In this paper we study the Dirichlet boundary value problem associated with

quasilinear elliptic systems (1.1)-(1.2) of which ellipticity is violated at points

where |u| = 0. N.N.Ural'tseva 25| showed the existence of Holder continuous

weak solutions for the type (1.1) with only principal part, and yet (/i‘l Qi
N.lkebe-Y.Ohara |14] treated a single equation of the type (1.1) which has a
non-negative solution. For the single equation whose solution is not necessar-
ily non-negative, Y.Mizutani [19] showed the existence of a Holder continuous
solution. K.Hayasida-Y.Yokoi [13] considered the continuity of solutions ad-
jacent to the boundary. M.Araki [3| treated a system of the type (1.1) with

a;;, bt = b; which has non-negative solutions. For the

the coefficients «! }

j
system whose solutions are not necessarily non-negative, Araki-lkebe-Mizutani
|5) showed the existence of Holder continuous weak solutions. We, here, con-
sider the system whose coefficients uf,(.z:, u) and b’l(‘r, u) may be different with
respect to [, and construct the Holder continuous weak solutions of the system
(1.1)-(1.2). Chapter 1 is devoted to preliminaries. In Section 1, our equations
are introduced. In Section 2, main theorem and regularized problems are given.
[n Section 3, some auxiliary leminas are prepared to get the Holder estimates
of the solutions. Chapter 2 is devoted to prove the theorem for 0 < 7 < 1. In
Section 4, some integral inequalities are prepared to use the auxiliary lemmas
in the prool of the theorem. In Section 5, the auxiliary lemmas are applied
to the solutions of the regularized problem, and the Holder estimates of the

solutions are obtained by the method which is greatly owed to Ladyzhenskaya-

Ural'tseva |15] and N.N. Ural’tseva [25]. In Section 6, the weak solutions of

our problem are constructed and the main theorem is proved. Chapter 3 is

devoted to prove the theorem for 7 > 1 in the same way as in Chapter 2.
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CHAPTER |

1. INTRODUCTION

Let © be a bounded domain in " with (5 ,-class boundary €. We

consider the following Dirichlet problem for quasi-linear elliptic systems:

mn (‘) T
Z . ”i;(-“u(J'))“.lr ()} — Zbl’(.r.u(.r))u_’,, (2)
=0z ’ oo i ’
= Bl(o, wfz)) =0 in- & (1.1)
for { = 1,---, N, with nonhomogeneous boundary conditions

u(x) = P(r) on o) (1.2)

where u(z) = (u'(2), --,u™ (@)W (x) = @'(2), ¥V (@) € RN, ’U‘{r] =
oul | O

The coeflicients (1/]“(.1'. u) satisly the lollowing conditions:

; and the coeflicients (Lv]U(.I,.'./ u), ()_’,(.1?., u), bh(x,u) are all real functions.

{lil(.l'. u) (I_IIL(.z'. n] fer- 3,71= 1yt
(/70‘u‘T’€|2 S Z (L]Lj(:]'zu)gigl S (v() l|u}7’€’2 i Uv (‘\l)
b=l

for any (a,u,€) € O x RY x R™ where ('y is a positive constant, i.c., the

systems ((11) admit degeneracy of their ellipticity at points where |u| — 0.
There are two typical types of degenerate quasilinear elliptic equations as

follows:
(i) V(VuP Ve = f p>1), (i) V'V b f (7> 0),

i.c., the equation (i) is degenerate if p > 2 and singular if 1 < p < 2 at
points where |Vul 0, and the equation(ii) is degenerate at points where
|| = 0 and need to have lower order terms because of the reason: |u|”Vu

L/(1 4 7)V(Ju|™w). The equation (i) represents, for example, a steady state of
non-Newtonian fluid. The equation (ii). we here consider this type, represents,

for example, a steady state of the flow of liquids in porous media where u is

the density of the gas or the concentration of the liquid, and the degenerate




order 7 is a positive number: for example, 7 = | {or thin saturated regions in
porous media [22], 7 = 3 for thin liquid filins spreading under gravity [8]. and
7 = 6 for radiative heat transfer Marshak waves [16]. A steady state of mathe-
matical model ol ecology is represented by a system of the type (ii). Therefore,
it is useful to understand the degenerate elliptic equations in order to do their
parabolic versions. The author was interested in not only the behavior ol so-
lutions in the sense ol natural phenomenon, but the intrinsic mathematical
interest whether, il the coefficients ol equations are more generalized, if the
cquations have lower order terms, and il the solutions are not necessarily non-

25, 14. 5]). In

I

negative, the equation have a Holder continuous solution (cf.
Complex Analysis of several values, the potential theory of degencrate elliptic
equations is wanted to be studied. In Numerical Analysis, the lack of Holder
continuity ol solution leads to difficulties to estimate the precision ol approx-
imate solutions. It is an important matter whether the degenerate elliptic
systemn have a Holder continuous solution or not. There are many results on
the [older continuity ol viscosity solutions for degenerate quasilinear equa-
tions, but they are not available to show these for systems. In this paper
we shall construct a Holder continuous weak solution. We first make a series
of uniformly elliptic equations which approximate our system (1.1)-(1.2), and
show that the solutions of these reguralized equations are Holder continuous by
using the auxiliary lemmas of Ladyzhenskaya-Ural’tseva (cf. |15, 25]). And our
solutions are gained as the limit of the series of above solutions. We consider
this problem only in the framework of the Lo-theory.

The notations of function spaces are usual ones (cl. [15]). We set a Holder
nori:

r - () — 6(y)
|$lax =sup |p(z)| + sup —————
e z,yck ‘J‘ o .’/I“
rFY

for a smooth ¢ defined on a compact set I of R", where o € (0, 1).

2. ASSUMPTION AND THEOREM

We assume that the boundary 0f) satisfies the following condition:

mes{K, —QNK,} > O,mesK, (A)




for any ball A, of radius p (< p,) with the center on 0€), where p, and 0, are
some positive constants (cf. [15, 25]). In this connection, under the weaker
condition than the above, Hayasida-Yokoi |13] showed the Holder continuity at
the boundary for weak solutions ol degenerate quasi-linear elliptic equations.

Moreover we assume that the coeflicients (Li'J(J‘, u) belong to (', (€2 x RNYN
Cly, a0l ¥ 0 <t < 1), ()5(.17, w) and b)(x,u) belog to Cy (2 x RY), and

they satisly the following conditions:

bi(z,u)| < Cilul™?,  |by(z,uw)] <O for (r,u) € Qx RY (Ag)

where ('} and C? are some positive constants, and
1 1 ;

I
=S (e, uet < —Chlul* + s for (e u) € 2 x R (A3)
i

where ('y and ('3 are some positive constants.
The functions ' (x), where ¥ = (Y'(x), --,¢¥"(x)) from the bhoundary
condition (1.2), belong to 'y ,(£2) and satisly the conditions:
W' (2) < M on 60 (Ay)

where M’ is a positive constant and [ = 1. N.

Now, we shall define a weak solution of the problem (1.1)-(1.2).

DEFINITION. A vector valued function w(z) = (u'(x), -, u™N(r)) is
called a weak solution of the problem (1.1)-(1.2), if the following conditions

are fulfilled:

|2, e W), (1)
uloo = 1, (2)
and the [ollowing integral identity holds;
" l 1 1
a, (r,u) T U .
N D U T/Z g bk T [ 2441 / Al &
/()’L%l ‘U‘T D) {<U l | T (7_ | 2) ’u’(|u‘ )‘"J}T’:n,(l)
m/2) e /241 !
| Z T/z ('] w5 — mm( ul )ay }op ()
Fop (e, w) gt () | — 0 (3)
for any ¢'(x) eW () and I=1,-.-,N.




The main result of this paper is the following:

THEOREM. Under the above condilions, there exisls a bounded Holder

conlinuous weak solution w(x) of the Dirichlet problem (1.1)-(1.2).

In order to prove the theorem, we make z-regularized approximated systems
of our problem (1.1)-(1.2), that is, we consider the following uniformly elliptic

systems depending on the parameter = € |0, 1[;

mn ¢ 1
a ]

! !
o= ({)J.I"(L_“(Lu(z))uh@) 2 )i (@, u(z))u, (2)
—b(z,u(z) =0 in Q (2.1)
where [ — 1,---, N, with the boundary condition

U\nsz P (2.2)

where (L{U(J', w(r)) = b+ [, (]u})ai'l(.r,u), &i; 1s Kronecker’s delta, and [.(1)

is non-decreasing and twice continuously differentiable function defined for

ir 2 0)

f(l) = 0 i Q< ) T, 2.3)
Sk IR & i B> (=/9077, >
From (2.3) and the condition (A;), the following estimate is valid;
“‘(V(J e T 2 < - l . - o el T 2 /
Soe+ [uIEP S Y aly (oW < Colle + luliER (A
j 2=

for (r,u) € O x RY and any real vector € = (&,---.§,). Now it is already

s . 7 2 J
known that for every = > 0 there exists a solution w,(2) of the z-regularized
problem (2.1)-(2.2), whose components ul(x) are in (', () and satisly the
following estimates:

lul(z)| < My for z€Q (2.4)

where [ = 1, -, N and the constant M, = max{maxgq ||, (Cs/ min(1, ) ?},

that is, the estimates are uniformly bounded with respect to =. (cf.|15] p.421)




3. AUXILIARY LEMMAS

In this section, we prepare several lemimas to see that a bounded function
in W, (Q) satislies the Hélder estimate (cf. |14, 15, 25]). Let K, be an open
ball of radius p in €. lor a bounded function [(27) on £, we denote by Az,
and By, the sets {#r € K, : [(2) > k} and { € K, : [(x) < k} respectively,

and denote by oscy, [ the essential oscillation of [(x) on K.

LEMMA 3.1, ([15))  Let [(a) € W,S(Q) satisfy the following incqualitics

for some positive constants M and C';

()] < M, (3.1)

‘/‘k.()

VIR < C [ (@) - BAVCP 1+ e (32)
J Ak
for any ball K, C Q, for any ((x2) € Cy°(N,) and for any number k such thal

k > sup f — boscg, f (3.3)

K,

where & 1s a constant: 0 < 6 < 1. Moreover, lel

mes{z € K, : f(z) <sup f — bosck, f} > ymesK (3.4)

K,

hold where v 1s a constant: 0 < v < 1. Then, there cusls a posilive number s

depending only on M, C'. 68, and v such that either

oscg, , f < 2°p )

or
OSU/\',,M,/' sl — 2! “osew, f (3.6)

holds where the balls Ky, K, /4 are concentric with K,

LEMMA 3.17. ([15))  Let [(x) € W)(Q) satisfy the following inequalilies

Jor some positive constants M and C';

|/ (2)] < M., (S

/” ‘v./.(.1j)|2<2(_1-)(/.1' = (/'./I'fk {(/(1) i A;)Q'VC(J.M‘Z | Cz(J")}(/J' (3.2)’




for any ball K, C Q, for any ((x) € Cg*(K,) and for amy number k such that

P

k o i}x;f [+ doscy, f (8.3}
AY
where & 1s a constant: 0 < & < 1. Moreover, lel
mes{x € K, : f(2) > ilr_li‘ J A boser, [} > ymesK (3.4)
ip

hold where v 15 a constant: 0 <~y < 1. Then the same estimale as thal of

Lemma 3.1 holds.

LEMMA 3.2, ([25])  Let f(x) € W(Q2) be bounded, i.e., |[(x)] < M for
some posilive constant M. or any posilive conslants C', & and v, il s possible
to pick a positive number s depending only on C', &,y such thal: if [(r) salisfies

the wnequalities:
/ V()P (z)de < C / (@) = BV 1 CB)yder  (3.7)
J By )\By, By,

Jor any ball K, C Q, for any ((x) € CT(K,) and for any wumbers h, k such

thal A
OSCk, /

h € ]ill}f' Vil = "ill']l. [+ bosck, f], k€ lh,2h— ill'l[. ol (3.%)
and
mes{xr € K, f(r) > 111(1{' S dosek, [} > ymesK ), (3.9)
then either
osCr, . f < 2°p (3.10)
or
oscr,,,J < I “osck, [ (L)

holds where the balls K, K,/q are concenlric with K,

LEMMA 3.3. [15]  Let f(z) = (SN (2).---, SN (2)) be a vector-valued func-

tion on Q, = K,, NQ. Suppose that for any Q, = K, NQ where p < p,,

S Po

that is, K, is concentric with K,,, there exists a function [ () in the family
(£ @), -, £/ (@)}, de, 1, € (1, -, N), such that

oscq, [ > 6 11r1};1x;_<)5{;g2/,,/" (3.12)




holds and al least one of the follounng inequalilies holds:
0sCo, »l./'l” Sevy, (3.13)

oscq, 4,/'[" <46 usugzw/"". (3.14)

where 61, ¢ and 0 are some posilive constants, also O < 1, and the ball K,
is concentric with. K,,. Then, there exisls a constanl o' (0 < o < 1) depending

on N and 0 such thal for any posilioe namber p (< p,).

()sw,\-ﬂ‘/'l <cpo¥p® forall Le(l,---,N) (3.15)

holds, where the constant ¢ depends on o', N, 61, ¢1, p, and max,-; v\‘{(lh(‘g]m“/‘/}.

For the proofs of these lemmas, we reler to Lemmas 6.1, 6.2 and 7.1 ol

Chapter 2 in [15] and [25].

Remark. lorany ball A, with the center on 0€), Lenunas 3.1, 3.1, and
3.2 remain also valid on 2, = KA, N Q, il we assume the lollowing additional
conditions:

sup [ < sup f — doscank, S (in Lemma 3.1),
0K, QNK,

inf f> inf f+ doscqrk, f (in Lemmas 3.1", 3.2).
IONK, QNK, R

since the above assumptions and the boundary condition (A) in section 2 yield

‘

the conditions on the inequalities (3.2).(3.2)" and (3.7), and the conditions

(3.4), (3.4)" and (3.9) in Lemmas 3.1, 3.1" and 3.2, respectively.




CHAPTER. 11
=

/

I'his chapter is concerned with the degenerate order 0 <
G

4. INTEGRAL INEQUALITIES
(r) €W (). and integrate it over

2.1). by ol

(4.1)

0

ly the equation (

Let us mult
(), then we have
n

FY b, u )'u,im]y by (. ue )} da

-

" mn
2 e o
/ { Z ey (T, e )Us P,
= 1 - :
4,)=1 J
We prepare the following integral inqualities for 0 < 7 <'|
u (1)) be a solution of the
1

the funclions tul (1)

(z) = (u(=),
. Then,

LEMMA 4.1 Lel u
reqularized problem (2.1)-(2.2) salisfying (2.4)
satisfy the following integral inequalilies: for any (1) € CyO(N,) where W, C
Q and for any k :infg 1 < kS supgu, where b€ (110, N),
inf (e (ul”)/ |Vul [2Cdy
Ak,p o H,’;>I\'
) [, = RV Y (1.2)

< Crysup(e + |ue
Al\,(}
inf(z 4 |u:}7)/ |Vl [2CRd
Ji
3 (1.3)

)/. {(ul = k)*IVCI* + (PRl
. ué<k
ul < k} and the set

< Clyysug
By,
where the constants Cy and Cy depend only on 7,n, N, My, C'y,C', Cy and

,>/¢} lfj\l,f{.) E/\,,

3).

Cy. The sets Ay, ={r € K, :
— By i (4.
(«2) and £u.(x) are denoted by w(x) and w(r)

13 denote I3y, or I3y,

Proof.  Tor simplicity
respectively. As a test [unction g(2) in (1.1), we take the following one
) — k,0}¢% () €W, ()

O

L1
, <k <supg o, then we have
ey (0 — K)o}

3 T

! - 9,1
/; L[ > {(I‘”u,_,,‘l’u.,,,Q2 b 2a, s, (
JUu> s

(2) = max{u(:

for k& :infy

Y 2, 1=1




| Z!) Uy, (U — k)C? + b (u — k)CP|dz — 0. (1.1)

Applying the conditions (A}) and (Ay) to (1.4), we have

2(Y '
f—ﬂ— o ‘/1>k(

< / A{ZCO Yt ul") [ Vul [V (u—k)CHnCy w2V u| (u—k)C2 1 O (u—k)C? Yol
Ju>k

|| Vul*CPda

()

Using Young’s inequality, we have
/' (& + |[u[")|VulPCidz
Ju>k
<, / e Rl = W2V 4 {(w = k) o+ (u = k)Y
Ju>k

This yields (4.2), since « is bounded and 0 < 7 < 1.

Next, as a test function g(2) in (4.1), we take the following one:

co(2) = max{k —u(x),0}¢%(x) €W, (Q)

for k:infx,u <k < supy, u, then we have

/1 ‘ Z {7” ’Il 2 “'7 | 2”{1_1 “'.r,; ('L’ o “’)QQ:‘/}

61=1

| Zb Ay (B =1 F b (k — 1) ¢Pda = 0. (4.5)
Applying the conditions (A]) and (Ay) to (4.5), we have

2 . T P TR
i(vo/ k(:‘ Flu|™) | Vul“Cda

< [ 26 e ) Vull Vel h—u)¢
Juk

u|” Q\V'u\(k:—u,)cz | ('{(k:—u)(z}(l_l;

Using Young’s inequality, we have

didl

<Cs [ et Tl = IOCR 1 {(k = u)? b (k= )}

| Vul*¢*daz

This yields (4.3) for By, and By, — By, ,. since v is bounded and 0 < 7 < [.




5. HOLDER ESTIMATES

LEMMA 5.1, Let uc(x) be a solulion of the z-reqularized problem. (2.1)-
(2.2) satisfying (2.4) where we(x) = (ul(x), - u®(2)) and u'(r) € ()
for I =1,---  N. Then, there exist some posilive constanls Cy and 3 € (0, o)

whach. are independent of = such that

lu.(2) |50 < Cs, (5.1)

where | - | 3¢ denotes a Holder norm. with cxponent 3 in €.

Lemma 5.1 follows from Lemma 3.3 and the (ollowing lemma.

LEMMA 5.2, Lel u(2) be a solulion of the =-reqularized problem (2.1)-
(2.2) salisfying (2.1). and consider the following functions from the componenls
of il;

+ul(z)  for 1=1,---,N. (a8

Then, [or any ball K, C €, there exisls al leasl one funclion salisfying the

premises of Lemma 3.3 wn the famaly (5.2).

Proof. We fix an arbitrary ball K, C €. From every pair of functions
+u (1), we keep only the functions for which the greater parts ol these oscil-
lation in A, fall in the domain of positive values: without loss of generality we

denote these functions by u!(2). with regard to which we know that

7 Lo ) wh r e
mfw "+ — >0 (5.3)
K, )

where ! = OSC, u! for L = 1.---,N. Let lyy € (1,---,N) be the number such

that w'™ = max;—; ..y’ We indicate a constant g (> 0) determined exclu-

sively by Cfy and 7 in the condition (A) as below. 1t is sufficient to consider

the following three cases for the family {u'..- -, u™}:
‘ul'\f
Case | : Vb |infg w?]| € —  forall e (1 - N),
P = ‘)’/ *
wim
(@are I Jule . infr ule > for some [, € (1,---.N),
14 ; :

29

Ve




l
v

Case Il Jul infy, e -« = - for some [, € (1,---.N).

At first, we consider Case I, in this case the assertion of this lemma is

proved for u'». The following relations hold:

<™ forall le(l, -, N), (5.4)
N
sup |u| < Z supu' —infu' + inf |
K, =l 165 K, K,
! Nt ; Lk s 1
< Nu'™ 4 — N(1 W)w“” < 2NwW™ (g > 1). (B8]

From (54), the premise (3.13) of Lemma 3.3 holds with &, — 1.
Let ko = supy, ulM — Wl /4 and Ay, = {0 € K, u™(2) > k}. Lor all

kf . kf <X kf = SUPD '{I,IM. we }131\'(3
(0] IS = [ 2N
P ¥

1 . .2 whm WM ot ]
inf |4 = inf [w™] > k Zinf 4™ 4 | E . (5.6)
Akp Ak,p K, 2 1 |
Hence, from (5.5) and (5.6) we have
sup |u| <8N inf |ul for k:k, <k <supu'™. (5.7)
Ky Akp K,

From (5.7), as well as from inequality (4.2), for u'»(2) we arrive at the in-
equality (3.2) of Lemma 3.1 with €' = 8N for any k > k, = supy, whv — v /g,
Next, let take h and k& such that u)IM/Z" < h<k<3hand By, ={x €

K, :u'™(2) < k} where s is a number indicated in Lemma 3.2, Then we have

. ] ) ! J/v/,'\l
inf lul> inf |[uM|>h> : (5.8)
[))k,/r 15’,,.{, ];f\"{‘ h,p 2“
Hence, from (5.5) and (5.8) we have
sup |u| < 2% 'N inf |ul. (5.9)

K, By =By »

From (5.9), as well as [rom inequality (4.3), for «'~ () we arrive at the inequal-
ity (3.8) of Lemma 3.2 with C' = 2FIN for any h > w'™ /2% and k € |h, 3h|.

Moreover, it is apparent that one of the following two relations is true;

: I i
mes{z € K,/ : utM(z) < ks > ;mnsl\ /2> (a)

11




mes{z € K,/ : ul"( ) 2 kot 2 —mesK . (b)

&

¢

~

§

[f the case (a) is true, the value k, = supy, ulv — g obeys postulates
(3.3) and (3.4) of Lemma 3.1 with the constants & = | /4,7 = 1/2, hence the
assertion of Lemma 3.1 [ollows for ! . 1f the case(b) is true. the value k, obeys
postulates (3.9) and (3.10) of Lemma 3.2 with the constants ¢ — 3/4,4 1 2.
hence the assertion of Lemma 3.2 follows for «/¥. Let s be the larger one of
the two numbers dictated by Lemma 3.1 and Lemma 3.2, then Lemma 3.1 and
Lemma 3.2 guarantee the premise (3.14) or (3.1) of Lenuna 3.3 for u' (1)
Secondly, we consider Case 11, in this case the assertion of this lemma is
proved for u' too. The following relations hold:
sup |u| < inffu| 4 Nw'™ < N(infl |u| + w'™), (5.10)

I
K, Ko Ko

M

5 5 57 i (H.11)

1 1
be I S Gl 0 v ,']O e
i lul > )(l;\.lf{ lul + it ju']) 2 ‘)(1;\,13 |ul 4

Hence, we have, for all £ inly, wv < k< SUpy, ular

e = 29PN inf 4, |, )
sup |u| < 297 Ninf |u| < 5 (5. 42)
NG K,

94+1 N infp,, ul.

From (5.12), as well as from inequality (1.2) or (4.3), we arrive at the inequality
(3.2) of Lemma 3.1 or (3.2)" of Lemma 3.1’. Since either condition («) or (b)
is true, the premise (3.141) or (3.15) of Lemma 3.3 is guaranteed lor u'™ (7).

Lastly, we consider Case 11, in this case the ol assertion of this Lemma is
proved for «'*. From the condition (5.3) we have the estimate:

i

2ol ple=di pardV (5.13)

>
=901 T g

whm

i.e., v satisfies the premise (3.13) of Lemma 3.3 with & — 2 91
Let k, = supy, u" —wh /4 (> W™ /4) and Ay, = {o € K,;u" (1) > k}. The

following relation holds for k: k, < k < SUpy, Tl

. l . & 1 1 . l ‘/‘\/’
. S FEETP N R P ) s L -
/111:’[0 o), = 2(/1‘1:'['} |u| 4 I\I:fp |u™]) > 2(/11klyfﬂju| Fk) 2> 2(1/1}/}[ lu| 1 Ty =) (5.14)
Hence, from (5.10) and (5.11) we have
sup |u| < 297*N '1‘11[' lu| for k:k <k <supu". (5.15)

IN % L) I\>/‘




Let ki = infy, u" 4 wh /2941 (< —wh /29 and By, = {x € K, : u" ()
k}. The following relation holds for &k :infy, u" < k < k!:

| B At £ ot 1 W
inf lul > Q(ggyfp ul - inf Jul]) > 5(nf ul + [k]) 2 5 (it ul 4 o). (5-16)
Hence, from (5.10) and (5.16) we have
sup [u| < 29N inf ju| for k:infuh <k < K. (@17)
08 1y K,

[t is also apparent that one of the following two relations is valid;

: 1 .
mes{z € K,/ : u () <H P Smnsl\p 9, ()

) l , ;
mes{z € K, : ut (x) =k} > Gmt‘sl\/, 9. ()

From (5.15) or (5.17), as well as [rom inequality (1.2) or (4.3). we arrive at the
inequality (3.2) of Lemma 3.1 or (3.2)" of Lemma 3.1, and hence the premise
(3.14) or (3.15) of Lemma 3.3 is guaranteed for u” (x). This completes the

proof of Lemma 5.2.

Considering Lemma 5.2 and Lemma 3.3, we obtain the interior estimates of
u! () which are uniform on = € [0, 1] for / = 1,---, N. Applying the conditions
(:\) and Remark in Section 3 to the above argument, we obtain the estimates
of ul () in the region adjacent to the boundary. Consequently, we have the
estimaltes:

ilgg <C; for Il=1,---,N (5.18)

for some constants C; and (€ (0, o) which are independent of =. This proves

Lenma. 5. fopli< "=l

6. PROOF OF THEOREM FOR 0 < 7

VAN

Let ul(2) € (3.4 (9) be the solutions of the z-regularized problem (2.1)-(2.2)
24), 1

2
satisfying (2. hen by virtue of (5.1) we have

\1/{ lsa <Cs for l=1,---,N (6.1)

13




where the constants (s and 8 are independent of =. Since u! () — ') €W,

(©2), [rom (4.1) we have

.oon

! & rh I
/ ‘ Z a L»)('Iltu‘)“«:r](u’-‘:n, iy Lv:r,)
J i j=1

b [)(l(.l'. u,)ul_m (2, we) Fuk — ) ]dx = 0.
7=l

By the use of assumptions (A}), (Ay) and (2.1). we have

: N
/{)(E Flue|") ]X; | Vel |dz < Cy (6.2)
where a constant (g is independent of =. Consider the following functions:
V(z) = |ue|™7?*", Viz) = u|u|7? (6.3)
for [ = 1,---. N, and we have the following estimates:

N N
7 T T/ P {0 T i)’ ;
Ver, | = [(1 4 ) e . ‘2'{4:14..%} < (T )l Z(TZ]!VMV)‘ %

|4

€y

<

N
i . T T/ 2 AR TS i
= [l el - Gt e | < (L )
,.

N
T 2(Z|v“{"2>l 2'
7

Hence, from (6.2) we deduce the uniform boundedness of the integrals:

] N
/2{ Vo P+ YV, Yz < Gy for j=1,--,m (6.4)
g 1=1
where a constant CYy is independent of 2. On the basis of the estimates (6.1)

and (6.1), there exists a subsequence {’u,]_p} of {ul} such that as =, — 0,

u,{r — ' in Cos(82), (6.5)
(Vep)zy — Vo, weakly in Ly(2), (6.6)
(VD)a; = Vi, weakly in Ly(9), (6.7)
where some ul(zr) € Cy3(Q), V(z) = |u|7*! and Viz) = u|u|™/? for 1
l,---, N. Therefore, the functions u!'(2:) € Cyy4(Q) satisly the identity (3) for

l
p

(3) derived from the z-regularized equations (2.1)-(2.2) and it is possible to

any ¢ €W (Q), since the functions u! satisly the same integral identity as

pass the limit as £, — 0 in this form. This completes the prool of Theorem

for0< 7 < 1.




CHAPTIER I
This chapter is concerned with the degenerate order 7 > 1.

7. INTEGRAL INEQUALITIES

Let us multiply the equation (2.1) by p(r) €W (Q) and integrate it over
), and we have
n

/){ Z (1]_1.1(.17_11_)"11/_,, Do, Z!)_'I,(J'.uc-)"(l.{_,,;],p PO (e, u)etde =0 (7.1)

J

3.5=1 =l
where [ = 1,---, N. Irom this, we have the [ollowing integral inequalities.
LEMMA 7.1. Let w.(22) = (u!(x), -, ulN(2)) be a solution of the =-

reqularized problemy (2.1)-(2.2) satisfying (2.1). We consider the following 2N

functions for T > 1;

Ulz) = +dl (@) |ul(z)" ' forl=1,---,N. i

~1
(&,
~

Then these functions salisfy the following integral inequalilics for any (x) €
C(K,) where K, C Q, and for any numbers k and h = infy, U < h < k <
supy, { &
(i) if k> h >0, then
inf (= 4 |uc~|7)/ (VU [2C2de

By p— B, Bk, 0= Bio

—
=1
Lo

N

< Caysupe + |wl") [ {(k=UOCE + ¢,

Bi.

(i) ¢of k <0, then

inf (= + [u.]") / (VU 2¢2da

k,p J B

~1
=

< Cysup(e + [uel") [ {(k = UDHVCE 1 ¢ (7.

b’kw

(iii) of k& > 0, then

inf (z + |u.|") / (VU2 da
JA,
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< Cnsup(e 1 fuel") / { — B)2VC 4 (), (7.5)

A k,p
where Ay, = {r € K, : U'x) >k}, B, ={r € K, : U'(x) <k}, and the
constants Cy, Coy and Csy depend only on 7,1, N, M. (7 1.('} Cy and (.

Proof.  Vor simplicity, w.(2) and £u! (r) are denoted by w(x) and u(r).

respectively. For a number k, we define the number v such that k& v|p|™ 1.

. / i . .
ie., v = klk|O /T then k > k" implies v > 1/ where K — /|7 ', and vice

versa.
Iirstly, as a test function @(2) in (7.1), we take the following one:
o1(2) = [V P max{v — u(2). 0} (x) eW, (D)

where v @ infg, u < v < SUD, U, then we have

3 n
/ ’ Z {4(]]-7,/“-"_, ‘1/‘27 2“-":(:2 \ 2(]’]-//”-"'l ‘]/‘27 2(1/ - “)QQ"/}
Juv T . :

T
+ Z().[l‘um)]v[h T BT e w)C%dr = 0. (7.6)
=1
Applying the conditions (AY) and (A,), we have

9 ' Ll LY
@"0/ (= + || w2 2|V ul2cde

| |u|T)’v“'||v<HVf2T 2(l/ — u)(

[Q))

< [ o

FnCy|w|™2|Vu||v|* 2 (v — u)¢? + CY v |> ¥ 1)},

Using Young’s inequality, we have
] Y

/I 11(5 w7 | |*T % V2 d

< G [ (MW o= DGR (P 2 =) § T A=)}
Ju<v
(7.7)
where (75 is a positive constant. By virtue ol the inequality:

beqlul™Y)  if u<uy,

"Ny —u) <2

we have (7.3) from (7.7) provided that & > h > 0, since u is bounded and

2301,

Sl




Secondly, as a test function ¢(2) in (7.1), we take the [ollowing one:

eo(x) = max{v|v[*" 7 —ulx)|u(@)|* 2,033 (z) €W, (£)

where v @ infg, u < v < supg u, then we have
5

n

/ |Z{—(27‘—— l)(/{”u,,._,11,,;’]'{1127 ey 2(1{1/(/,,1,(1/’1/"“)" B uju\ i i
Juv 5y \

I Zbll-u‘ (|7 — ufu* )P o b (| |TT % = wlu)t™2) Y ds = ).
Applying the conditions (A}) and (Ay), we have
ZCo(2r — 1)/ (e + ") (jul" V[ Va|)2¢2de
L JULY
< [ 0G0 (e + ) VullVE w72 = uful" )
JUUV

FnC w2 | Vul (v )T = a2 CLw|v)*T % = ulu)®T 2P Y de. (7.8)

Applying the following inequality:
1/\1/)27 i 11,[1/,\27 &= 2|u|” 1(1/\1/17 e ulu|” Hoif w<w <0,

and using Young's inequality, we have (7.4) [rom (7.8), since u is bounded and
7> e

Lastly, as a test function ¢(x) in (7.1), we take the following one:
ea(2) = |72 max{u(x) — 1,0}%(x) €W)(),

then we have (7.5) in the same way as the first one.

8. HOLDER ESTIMATES

LEMMA &.1. Let ue(x) = (ul(x), -, ul(x)) be a solution of the
reqularized problem (2.1)-(2.2) satisfying (2.4) and u'(2) € Con(Q) for
L.« . N. Then, there erist some postlive constants /3 € (0. «) and Cy which
are tndependent of = such thal

}'LL, (.1')‘.)‘&2 i ('(j (81)




where | - | 3¢ denotes a Holder norm. with exponent 3 in ().

Lemma 8.1 follows from Lemma 3.3 and the [ollowing lemma.

LEMMA 3.2. Let ue(x) = (ul(2), -, uN(x)) be a solution of the =-
reqularized problem (2.1)-(2.2) salisfying (2.4), and consider the following func-

tions for T > 1:

T

tul (2)|u (2)

Tar el dve (N (8.2)

Then, for any ball K, C €, there exists al leasl one function salisfying the

premises of Lemma 3.3 from the family (3.2).

Proof.  We fix an arbitrary ball K, C 2. From every pair ol the functions
+ul |ul |77, we keep only the [unction for which the greater part of its oscilla-
tion on A, fall in the domain of positive values; without loss of generality we

denote this function by (/'(x), with regard to which we know that

S
ALY a1, 200 (8.3)
K, )

where &' = oscy, U for I = 1,---, N. Let Iy € (1,---, N) be the number such

that w'™ Max;—1.. n 2. We indicate a constant ¢ (> 0) determined exclu-

sively by 7y and 7 in the condition (Ay) as below. It is sufficient to consider

the following three cases for the family {{/'(x2), -+, UN (x)}:

: : ot

' Case ] " VU finfw, U < S forall € (1, N),
. _ wlm

Case Il : 31 inlg, & T for some [, € (1, -+, N),

‘ olm

| Case Il : 3/t infx, ity i = 5y for some [, € (1,---, N).

| o

l Ior the vector-valued functions w = (u!,- -, u) and U = (U, ... . UN),

the following relations hold;

u <NCDRD] and (U] < o

T

(8.4)




Iirstly, we consider Case 1, in this case the assertion of this lemma is proved
for U, Tor U™ the premise (3.12) of Lemma 3.3 holds with & l. The
following relation holds:

N
s < Y supUf — inf U +inf U] < No'™ - N < 2Nao'™
sup |U| < Z |sup 111_11 U - 1/1\_1{[ |-< N ) < 24 (q = 1).

K, = K, 5!

(8.5)
Let k, = supg, [/ — M/l and A, = {x € K, UM(z) > k}. For any
A SUDy, [/'v we have

QMWEQM”WZMzﬂ”L (8.6)
- s

r

Hence, from (8.5) and (8.6) we have, for &k : ko < k < sup,, Uim

sup |U| < 8N i‘n[' |U|, or sup|u|” < 8NTHI/2
= A p A

K,

Cul™. (87)

K, W

From (8.7). as well as [rom inequality (7.5), for (/'™ (x) we arrive at the
inequality (3.2) of Lemma 3.1 with (7 SNTHVECY) for any k > k,
SUpy, Ut — oM /4,

Next, let us take h and k : W™ /2% < h < k < 3h, and By, = {« €

R, UM (2) < k}, where s is a number indicated in Lemma 3.2, Then we have

I
inf JU‘ > inf I(-I,\,/! 8.0 i (8.8)
Bi,p— B, B = 9%

Hence, [rom (8.5) and (8.8) we have

sup [U| < 2°t'N _inf |U|, or sup|u|” <2°VINTHD2 inf  |u|.
K, Byp—Bh,p K, B B

(8.9)

['rom (8.9), as well as from inequality (7.3), for U™ (x) we arrive at the

inequality (3.7) of Lemma 3.2 with ¢’ = 25F'NTEN/20C0 for any h > w'v /28
and k € |h, 3h).

Moreover, it is apparent that one of the following two relations is true;

; ? l :
mes{z € K,/ : [ ""(.1') < k,} > ;musl\,, 9, (a)

: ) I y
mes{z € K,/ : UM (z) > k,} > SmesKys. (b)




Il the case (@) is true, the value k, = 511[),\-“("“" — @' obeys postulates
(3.3) and (3.4) of Lemma 3.1 with the constants ¢ = 1,/4,7 | 2, hence the
assertion of Lemma 3.1 follows for U I[ the case (b) is true, the value k, obeys
postulates (3.8) and (3.9) of Lemma 3.2 with the constants ¢ — 3,1y | 2
hence the assertion of Lemma 3.2 follows for U™, Let s be the larger one of
the two numbers dictated by Lemma 3.1 and Lemma 3.2, then Lemma 3.1 and
Lemma 3.2 guarantee the premise (3.13) or (3.14) of Lemma 3.3 for (/' (1),
Secondly, we consider Case I, in this case the assertion of this lemma is

proved for U too. The following relations hold:

sup |[U| < ill_ll']U\ - N2t < NY2( 111 ]U} @'™) (3.10)
K, Yp
1 /w
111 }U} > - 111[ U 4 111 e 7 111 \U\ 5 (8.11)
Hence, for any k: i]lf,\-p Ui < k< SUDy, U™ we have
N e el b g 244 l'\’r/Zl“ |u|T
sup |u|” <297 N™“inf |u|" < . (8.12)
K, Ky 2N infg,  |ul™.

Irom (8.12), as well as [rom inequality (7.1) or (7.5), we arrive at the inequality
(3.2) of Lemuna 3.1 or (3.2)" of Lemma 3.1°. Since either the condition (a) or
(b) is true, the premise (3.13) or (3.14) of Lemma 3.3 is guaranteed for (/' ().

Lastly, we consider Case I1I, in this case the assertion of this lemma is

proved for (/. From the condition (8.3) we have the estimate:

w‘/‘” ub,l
@ = 2 foralll=1,--- N (8.13)

)
) G e

i.e., U™ (2) satisfies the premise (3.12) of Lemma 3.3 with &, — 29!,
Let k, = supy, [ —@h /4 (> o /d) and Ap, = {2€ K, : U%(z) > k).
The following relation holds for any k : k, < k < supy, ik

/

e

(m[ U | 4 wT) (8.14)

l | |
111 |U‘ > = 111 |U| \ m[ U™ > )(i‘nf \U|+ k,) > 3

[lence, from (8.10), (8.13) and (8.14) we have

sup |u|” < 29F2NT/2 iln[' lu|™ for k:k, < k<supl/®. (8.15)

i Ak,p K,




Let k; = infg, ( i 00 ol f2 S wnd By, =z e = L)

k}. The following relation holds for any & : inf, U < k < ki:

I l 1 wh
. . > WAL v . . w7l ; > 5 e . - T) o . 5
z's’A.‘,[,)‘U’ > Z(gkljfﬂ\U! I ;;:yfpll ) > 2(;;:,1/, Ul+ k) = FUpf U] + 575)-
(8.16)
Hence, from (8.10), (8.13) and (8.16) we have
sup |u|” < 229INT/2inf |u|” for k:infU" <k <K (3.17)
K By o Ko

P

[t is also apparent that one of the [ollowing two relations is valid;

. . I ]
mes{x € K, : L)y < Tt ;mes/\,, 2, (a')
ot L S B e /
IIIOS{."I' — /\p 5 oultd (1) 2 ,'} > ;m«s \le ((,)

<

From (8.15) or (8.17), as well as [rom inequality (7.1) or (7.5), we arrive at the
inequality (3.2) of Lemuna 3.1 or (3.2)" of Lemma 3.1, and hence the premise
(3.13) or (3.14) of Lemma 3.3 is guaranteed for (" (x). This completes the

proof of Lemma 8.2.

Considering Lemma 8.2 and Lemma 3.3, we obtain the interior estimates of

'L(2) which are uniform on £ € (0, 1] for [ = 1,---, N. Applying the conditions

U;
(A) and Remark in Section 3 to the above argument, we obtain the estimates
of U(x) in the region adjacent to the boundary. Consequently, we have the

estimates:
U560 £C7r and |ul|ga <C, for (=1,---,N (8.18)

] ’ . . 2 P~
[or some constants 4 (0 < 3 < 1) and C;. C which are independent of 2. This

(f

proves Lemma 8.1 for 7 > 1.

9. PROOF OF THEOREM FOR 71 > |

Let vl (2) € (4 (€) be the solutions of the s-regularized problem (2.1)-(2.2)

satislying (2.4), then by virtue of (8.1) we have

ltles <Cs  for I=1,---,N (9.1)

91

<




where the constants (s and S are independent of . Since u!(r) — v!(x)

W) (€2), from (7.1) we have

. T
! W 1
/)1 S db (e uul, (il — L)
Rk g =1

| {Z [)]IV(JQ uf)u{_mj ok (e, we) Ml — @ ]de 0.
=1

By the use of assumptions (A7), (Ay) and (2.4), we have

. N
ki L2de < C 9.2
/)( F ol )I§l|Vu_| dz < Cyg (9.2)

where a constant Cy is independent of =. Consider the following functions:

Ve(z) = Jue|**, Viz)= iia (9.3)

for [l = 1,---, N, and we have the following estimates:

N
, T , — y
(V)| = 100+ el S, | < (14 ) ervw e,

= N
] r 4 T/ o :
7/2 11 |u |T/2 zzu u ] < '1'5)'11, ‘ Z(Z |v“;‘2)l/z.

na=1

|(‘/-])T]| ’“l-’:rj } g

Hence, from (9.2) we deduce the uniform boundedness of the integrals:

; N
{(Vo)a, P+ 3 |(V)a,PYdz < Cy for j=1,---,n (9.4)
Q v e

where a constant (g is independent of . On the basis of the estimates (9.1)

and (9.1), there exists a subsequence {fu,’_.P} of {u!} such that, as £, — 0,

u{p Sa g G 8(82), (9.5)
LAY weakly in L,(9), (9.6)
(Vi)e — Vi weakly in Ly(Q), (9.7)
where some u'(x) € Cyp(Q). V(z) = |u|72" and V(x) = u'|u|™? for |

e A ()ref‘()rc the functions u'(x) € (% 5(Q) satisfy the integral identity

l

(3) for any &' EH 2 (), since the functions ul satisfy the same integral identity

as (3) derived from the s-regularized equations (2.1)-(2.2) and it is possible to

pass the limit as g, — 0 in this form. This completes the proof of Theorem

ol 7= il

Ep
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