九州大学学術情報リポジトリ Kyushu University Institutional Repository

ガス絶縁機器の絶縁信頼性向上と小形化に関する研 究

八島, 政史

https://doi.org/10.11501/3108125

出版情報:九州大学, 1995, 博士(工学), 論文博士 バージョン: 権利関係:

4.2 ベーパミスト誘電体の絶縁特性

4.2.1 まえがき

総縁材料あるいは絶縁媒体は従来、真空、ガス、液体、固体といった概念でとらえられているが、ベー パミスト誘電体は主成分となるガスに対し、液体をミスト化することで空間的に分散させて混合した点に 特徴がある。したがって、ベーパミスト誘電体の絶縁特性は主成分ガスとミストとして使用する液体の組 合せによって大きく左右されるだけでなく、ミストの濃度(単位体積あたりの個数密度)や個々のミストの 直径(粒径)などの条件も影響すると考えられる。そのため、主成分ガスとミスト液体の選定、ミストの発 生方法をまず検討する必要がある。さらに、ベーパミスト誘電体の絶縁特性が基本的には主成分ガスとミ ストの気化ガスであるベーパとの混合ガスの特性によるものか、あるいはミストの存在が決定的な役割を 果たすのかを明確にする必要がある。

本節では、主成分ガスとミスト液体の選定、ミストの発生方法に関して考察したのち、これまで小規模 な供試電極系で、しかも限られたガス圧力条件でしか検討されていなかったベーパミスト誘電体の絶縁特 性を広範囲の実験条件を設定して詳細に検討する。すなわち、主成分ガスを N_2 またはSF₆とし、C₂Cl₄の ミストを混合したベーパミスト誘電体に対して、直流、交流、雷インパルスの3種類の電圧波形を印加し た場合の絶縁特性を0.025~0.4MPaのガス圧力領域にわたって検討する。また、電極表面が濡れてC₂Cl₄の しずくが付着することも考慮して、電極を水平に配置した場合と垂直に配置した場合の比較、ミストの濃 度を3段階に変化させた場合の絶縁特性についても検討する。

4.2.2 主成分ガスとミスト用液体の選定

主成分ガスとして、これまでの検討では大気圧空気やSF₆が使用されているが、大気圧空気をそのまま 使用すると粉塵や水分の混入が絶縁特性に影響する可能性があるので、絶縁耐力が空気と同程度のN₂を使 用するのが適当である。SF₆はガス絶縁機器に実用されるガスである。負イオンを形成しにくい非付着性 のN,に対し、電気的負性ガスという特性の違いにも着目できる。

ミストに使用する液体に要求される条件として、それ自身の絶縁耐力が高いこと、化学的に安定である ことに加えて、ミスト近傍の電界の変歪を小さくするために比誘電率がガスに近いことが重要である。ま た、ミスト化を容易にし、かつ短時間で蒸発や沈降をさせないため、常温での蒸気圧が適度に低く、適度 な表面張力があり、密度が小さいことが必要である。表4.1にミストとして使用できる可能性があるハロゲ ン化炭素系液体4種類の物性値^{(32)~(34)}をまとめる。同表には後述する超音波圧電振動子によるミストの発 生状況も併記した。

密閉タンクに封入した主成分ガスにこれらのミストを混合すると、必然的にそのベーパも蒸気圧に相当 する分圧で混合されることになる。C₂Cl₄の例では大気圧の主成分ガスに対して1.86%(vol.)のベーパが混 合される。ハロゲン元素を含む液体のベーパは電気的負性ガスが多く、一般にそれ自身絶縁耐力が高い。 したがって、主成分ガスがN₂の場合、ベーパの混合だけでも絶縁耐力が向上することが予想され、絶縁耐 力の向上に及ぼすミスト、ベーパそれぞれの効果を区別して評価する必要がある。この点を考慮すると、 ミスト用液体の選定には以下の2つの考え方がある。

(1) 蒸気圧が低い液体を使用する (ベーパの分圧比が低い)。

(2) 蒸気圧が高い液体のベーパを主成分ガスとし、それ自身のミストを発生させる(21)~(28)。

後者はミストの効果だけを評価できるが、ガス圧力の設定はその液体の蒸気圧に固定され、大気圧を含 む広いガス圧力範囲にわたって実験を行うことができない。したがって、ここでは前者の考え方を採用す る。以上より、本研究ではミスト用液体として、常温での蒸気圧が最も低く、ミストの発生が最も容易で その他の諸特性も比較的良好なC,Cl,を選定する。

呼 称	C ₂ Cl ₄	F11	F113	FC75
化学式	同上	CCl ₃ F	C ₂ Cl ₃ F ₃	C ₈ F ₁₆ O
名 称	テトラクロロ エチレン	トリクロロモノ フルオロエチレン	トリクロロトリ フルオロエチレン	パラフルオロ ジプチルエーテル
密度[g/cm3]	1.623 〇	1.488 ()	1.572 ()	1.78 〇
沸点[℃]	121.20	23.82	47.57 🔺	102.0 🔺
凝固点[℃]	-22.35 🔺	-111 🔺	-35 🔺	-113 🔺
蒸気圧 [kPa]	1.86 〇	91.3 ()	36.7 〇	4.15 <i>\(\Delta\)</i>
表面張力(対空気) [dyn/cm]	32.32 ()	22 🛆	17.75 〇	15 🛆
比誘電率	2.30 △	2.28	2.41 🛆	1.87 🛆
可燃性·引火性	なし	なし	なし	なし
揮発性	あり	あり	あり	あり (弱い)
腐食性	一部の樹脂を溶かす	ほとんどなし	ほとんどなし	なし
毒 性	微弱	きわめて微弱	きわめて微弱	なし
超音波圧電振動子 によるミストの発 生状況	良好	不良	不良	やや不良

表4.1 ミスト用液体として使用可能なハロゲン化炭素系液体の物性値

※ 温度・圧力等の条件…○:20℃、△:25℃、□:29℃、▲:0.1013MPa

ミストの発生方法としては超音波圧電振動子による超音波霧化法^{(3)~(23)}、噴霧ノズルを用いる手法⁽¹⁵⁾、 急激な体積膨張により凝縮ミストを得る手法⁽³¹⁾、液体の沸点前後に温度を制御し、そのベーパ中に凝縮ミ ストを得る手法^{(24)~(28)}などが考えられる。超音波圧電振動子による霧化法は所要動力が小さく、粒径が数 μm程度の極めて微細なミストを効率よく生成できるメリットがある。さらに、超音波の出力や周波数の 制御により、ミストの粒径や濃度(単位体積あたりの個数密度)を制御できる可能性がある。噴霧ノズルに よる手法はコンプレッサなどの動力が必要なことと、実験容器内の圧力を一定に維持するのが困難である などの問題がある。凝縮ミストを生成する手法は圧力か温度を変化させる必要があり、これらを実験条件 として一定に維持することができない。特に、液体の沸点前後で凝縮ミストを得る手法は実験できる温度 条件が限定される。これより、ミストの発生方法として超音波圧電振動子による霧化法を選定する。

4.2.3 実験装置と実験手法

実験装置の概要を図4.1に示す。実験タンクは内径 50cm、内容積 0.3m³の鉄製圧力容器で、石英ガラス 製観測窓を二方向に有する。供試ギャップは図4.2に示す球-球電極(黄銅製)で、球径は6.0cm、ギャップ 長は1.0cmである。電界利用率(平均電界/最大電界)は0.89であるので、ギャップ間の電界は準平等電界と

図4.1 実験装置の概要

(a) 水平配置 (b) 垂直配置 図4.2 供試ギャップ

見なせる。電極に付着するしずくの影響を考慮して水平配置と垂直配置を比較した。電極表面は金属研磨 材とエタノールで処理して、鏡面仕上げとした。

主成分ガスとしてN₂またはSF₆を使用し、超音波圧電振動子でミスト化したC₂Cl₄を拡散用ファンに より、供試ギャップ付近に供給した。超音波圧電振動子は超音波加湿器用の振動子(松下電子部品:直径2 cm、固有振動周波数1.7MHz)を使用し、これを液体皿の底部に18個設置して容器外部の発振器により駆動 した。前節で述べたように、絶縁特性に及ぼすミスト、ベーパそれぞれの効果を区別して評価するため に、表4.2に示す3種類のガス条件を検討対象とした。ベーパ混合時もC₂Cl₄の蒸発や拡散を促進させるた め、拡散ファンを使用した。この状態では供試ギャップにフラッシオーバが生じた際に、微細なミストが 発生したので、ベーパは飽和蒸気圧に近い分圧で混合されていると考えられる。

ガスの条件	ガスの構成	表 記 (主成分 文中	ガスがN ₂ の例) 図中	方 法
主成分ガスのみ	・主成分ガス	純N ₂ または 主成分ガス単体	純 N 2	直接封入
C ₂ Cl ₄ のベーバを混合	 ・主成分ガス ・ベーパ (飽和蒸気圧) 	ベーバ混合時	N ₂ +C ₂ Cl ₄ ベーバ	C ₂ Cl ₄ 液体を実験タンク中 に放置して自然蒸発させ、 ファンで拡散。
C ₂ Cl ₄ のミストを混合	・主成分ガス ・ベーパ (飽和蒸気圧) ・ミスト (液滴)	ミスト混合時	N ₂ +C ₂ Cl ₄ ミスト	超音波圧電振動子で直接 ミスト化し、ファンで供 試ギャップ付近に誘導。

表4.2 検討対象となるガスの条件

ミストの濃度(単位体積あたりの個数密度)は圧電振動子の出力制御により、ある程度調整することがで きる。ギャップ間に浮遊するミストの粒径や濃度は実験条件として定量的に把握すべき数値であるが、実際に測定するのは困難である。レーザ光散乱型粒度分布計(東日コンピュータアプリケーションズLDSA-1200A)により、N₂中にC₂Cl₄のミストを発生させて測定を試みたところ、粒径として5~13 μ m (50%粒径は8~10 μ m)、濃度として20~100個/cm³との数値を得た。このときのミストは観測窓から電極が十分見えるほどの希薄なものとしたが、実験時は圧電振動子の出力を上げ、電極がほとんど見えないほどにしたので、個数濃度は上記より2~3桁は大きい(10⁴~10⁵個/cm³)と推察される。粒径はN₂の圧力を大気圧から0.3MPaまで変化させてもほとんど変化しなかった。

印加電圧は直流(正・負極性)、交流(50Hz)、電インパルス(1.1/75µsまたは1.4/90µs)とした。フラッ シオーバ電圧の測定は直流および交流については電圧上昇法を、電インパルスについては昇降法を適用し た。同一の実験条件における電圧印加回数は直流および交流については5~10回、電インバルスについては 15~30回である。密閉タンク内で準平等電界におけるフラッシオーバ電圧を測定するため、直流電圧を印 加する場合を除いて、初期電子を十分に供給できるよう、水銀ランプ(東芝 H400-P、直流 2 A で点灯)に て供試ギャップに紫外線照射を行った。観測窓の紫外線透過率は90%以上あるので、照射の効果を評価す るには十分である。ただし、ミストを発生させると観測窓からは電極がほとんど見えなくなるので、紫外 線照射の効果は弱められると考えられる。

フラッシオーバ電圧の測定は以下の各条件で行った。すなわち、ベーパ混合時の条件として2ケース、 ミスト混合時の条件として濃度を変化させた3ケース、さらに、ミストの発生を停止した後の状態(ベーパ 混合時に相当)での2ケースである。

(1) 主成分ガス単体

(2) ベーパ混合時:

(2-1) 自然気化状態 (拡散ファンを使用しない場合)

(2-2) 拡散ファン使用時

(3) ミスト混合時:

(3-1)ミスト濃度低- 観測窓より電極がはっきり見える、電極表面 が薄く濡れる

(3-2)	"	中	"	うっすら見える、	11	ずぶ濡れ
(3-3)	"	高一	11	ほとんど見えない、	11	ずぶ濡れ(しずく付着)
2 - 1 -	76 11 Pt-	1.11.				

(4) ミスト発生停止後:

(4-1) 電極表面湿潤(しずくが残る状態)

(4-2) 電極表面乾燥

ミストの発生量は温度やガス圧力の変化により必ずしも同一ではないので、超音波発振器の出力および 拡散ファンにより調整した。目視観測によると、ミストの発生量はガス圧力が大気圧に近い場合が最も多 く、低気圧では発生量は多いものの浮力の減少によりギャップ付近に届きにくく、また高気圧では発生量 そのものが若干減少することが観測された。

4.2.4 温度補正法

実験時のタンク内温度は20~30℃の範囲である。密閉タンクに所定圧力の主成分ガスを封入する場合、 温度によってガス密度が変化するため、フラッシオーバ電圧も温度の影響を受ける。そこで、上記温度範 囲内でフラッシオーバ電圧はガス密度に比例すると仮定し、20℃を標準温度として次式の補正を行った。

フラッシオーバ電圧 (補正値) = フラッシオーバ電圧 (測定値)× <u>t [℃] + 273</u> 293 (4.1)

ここで、t:所定圧力封入時の主成分ガス温度

一方、温度変化によりC₂Cl₄の蒸気圧も変化するため、主成分ガスに対するベーパの分圧比の変化から、 やはりフラッシオーバ電圧に影響を与える。そのため、フラッシオーバ電圧値の温度補正として、ベーパ 分圧比の変化も考慮する必要がある。図4.3に5~30℃までの温度範囲でN₂のベーパ混合時(N₂+C₂Cl₄ベー パ)のフラッシオーバ電圧を測定した結果を整理する。印加電圧は直流(正・負極性)または交流である。同 図の縦軸は純 N_2 に対するフラッシオーバ電圧で規格化して示した。また、プロットはすべて(4.1)式の補正 を行っている。同図で、 C_2Cl_4 ベーパの分圧比 (p)と温度 (t)の関係は次式の実験式⁽³⁵⁾により求めた。

(4.2)

$$\log \frac{p[Pa]}{133.3} = 7.02 - \frac{1415}{221 + t[°C]}$$

図4.3より、N₂のフラッシオーバ電圧はわずかなC₂Cl₄ベーパの混合により、1.3~2.2倍に上昇すること が判る。この影響はガス圧力が低い場合ほど大きい。ただし、ベーパの分圧が約3kPa以上になると飽和す る傾向がある。したがって、フラッシオーバ電圧値の温度補正として、(4.1)式によるガス密度に対する補 正と、図4.3によるベーパの分圧比に対する補正の両方が必要である。以下に示すフラッシオーバ電圧の実 測データは、すべて20℃を標準温度としてこれらの補正を行っている。ただし、主成分ガスがSF₆の場合 はベーバ混合によるフラッシオーバ電圧の上昇が小さいので、ガス密度に対する補正のみを行った。

4.2.5 フラッシオーバ電圧の測定結果

図4.4に前節で述べたベーパ混合時およびミスト混合時の各条件で測定したフラッシオーバ電圧を示す。 主成分ガスはN,、ガス圧力は 0.1MPa、印加電圧は直流 (正・負)、交流、雷インパルス (正・負)、電極配 置は水平配置である。同図のプロットは直流および交流についてはフラッシオーバ電圧の平均値を、雷イ ンパルスについては50%フラッシオーバ電圧を示す。また、フラッシオーバ電圧値にばらつきが見られた ケースではエラーバーでその範囲を示した。雷インパルスについては最高非フラッシオーバ電圧と最低フ ラッシオーバ電圧の範囲を示した。

図4.4より、以下のことが判る。

(1)純N,のフラッシオーバ電圧は印加電圧波形に関係なくほぼ同一値である。

- (2) ペーパ混合時(自然気化状態)のフラッシオーバ電圧は純N2に対し、印加電圧波形に関係なく1.4~1.6 倍上昇する。拡散ファン使用時は直流および交流フラッシオーバ電圧はこれと同程度であるが、雷イン パルスフラッシオーバ電圧はさらに上昇する傾向がある。
- (3) ミスト混合時は印加電圧波形の効果が強く現れる。すなわち、雷インパルスフラッシオーバ電圧は、正・ 負極性とも純N₂の約4倍まで上昇するが、直流および交流フラッシオーバ電圧はこのような上昇は生 じない。
- (4) ミスト濃度とフラッシオーバ電圧の関連に着目すると、雷インパルスではミスト濃度の上昇により、フ ラッシオーバ電圧も上昇する傾向がある。交流ではフラッシオーバ電圧の変化はほとんどないが、最も ミスト濃度が高い状態で、わずかに上昇している。一方、直流に対してはミスト濃度の上昇に伴い、フ

ラッシオーバ電圧がわずかに低下する傾向がある。

(5) ミスト混合時の雷インパルスフラッシオーバ電圧測定時に、著しく長い放電時間遅れ (10~40 µ s) がし ばしば観測された。

(6) ミストを停止すると、雷インパルスフラッシオーバ電圧はベーパ混合時(拡散ファン使用時)と同程度 に低下するが、それでも純N。と比較して2倍程度高い。

図4.4と同様の絶縁特性を主成分ガスN₂について、0.025~0.4MPaまでのガス圧力に対して測定した。電 極配置についても水平配置、垂直配置の両方を検討した。これらの結果を図4.5~図4.7に整理する。これら の図において、ベーパ混合時の特性(実線)は自然気化状態のものである。また、ミスト混合時の特性(破 線)はミスト濃度の異なる3ケースのうち、最もフラッシオーバ電圧が上昇した例を引用した。ただし、ミ スト濃度の上昇に伴って、フラッシオーバ電圧が低下した場合はその特性を細点線で示した。同図には純 N₂に対する特性も一点鎖線で併記した。

これらの結果を要約すると以下のようになる。 (1)直流フラッシオーバ電圧特性(図4.5)

純N₂とベーバ混合時のフラッシオーバ電圧を比較すると、ベーバ混合の効果はガス圧力が低いほど大き く現れ、フラッシオーバ電圧は0.025MPaのケースで約2倍に、0.4MPaのケースで約1.2倍に上昇する。純 N₂およびベーバ混合時に対するフラッシオーバ電圧は、直流電圧の極性や電極配置の影響をほとんど受け ない。ミスト混合時のフラッシオーバ電圧は、0.1MPa以下の領域では水平および垂直配置ともにわずかに 上昇するが、これはミスト発生後のミスト濃度が低い状態においてであり、上昇割合はベーバ混合時と比 較して1.1~1.2倍である。ミスト濃度が上昇して電極表面が濡れるようになると、ベーパ混合時の値と同程 度になる。すなわち、ミストの効果がなくなる。0.2MPa以上の領域ではミストを発生させても、ベーパ混 合時のフラッシオーバ電圧とほぼ同じであり、垂直配置ではむしろ低下する。この低下は課電側(上側)の 電極に付着するC,CL,のしずくに起因すると考えられる。正・負極性効果は明確には認められない。

(2) 交流フラッシオーバ電圧特性(図4.6)

ベーパ混合時のフラッシオーバ電圧は直流電圧印加の場合と同様に、純N₂に対して上昇する。ミスト混 合時については水平配置の場合、0.05~0.15MPaの範囲でベーパ混合時のフラッシオーバ電圧と比較して1.1 ~1.2倍の上昇を示す。この上昇割合は直流電圧印加の場合とほぼ同じであるが、0.1MPa以下ではミスト濃 度が上昇してもフラッシオーバ電圧は低下しない。ミスト濃度の上昇につれてフラッシオーバ電圧が低下 するのは0.15MPa付近のみである。0.2MPa以上の領域では直流電圧印加時と同様に、ベーパ混合時のフラッ シオーバ電圧値と同程度になる。また、垂直配置に対しては、フラッシオーバ電圧の上昇割合やその傾向 など、直流電圧印加時とほぼ同じであるが、ミスト濃度が上昇して電極からしずくが滴下するようになっ ても、フラッシオーバ電圧はほとんど低下しない。

(a) 電極配置:水平配置

図4.5 N₂+C₂Cl₄ベーパおよびミストに対する直流フラッシオーバ電圧-ガス圧力特性

図4.6 $N_2 + C_2 Cl_4$ ベーパおよびミストに対する交流フラッシオーバ電圧 – ガス圧力特性

(3) 雷インパルスフラッシオーバ電圧特性(図4.7)

ベーバ混合時のフラッシオーバ電圧の上昇割合は直流、交流電圧印加の場合とほぼ同じであるが、ミス ト混合時のフラッシオーバ電圧は大幅に上昇する。特に低ガス圧領域で上昇割合が大きく、0.025MPaでは 水平、垂直配置によらず、ベーパ混合時と比較して2.5~3.5倍(純N₂と比較すると5.5~7.5倍)に達する。 ガス圧力が高くなると上昇割合は低下し、0.4MPaでは1.2~1.5倍(純N₂と比較すると1.8~2.0倍)程度とな る。高ガス圧領域でフラッシオーバ電圧が150~160kV程度に達するようになると、フラッシオーバ電圧は ミスト濃度の上昇により、かえって低下するようになり、ガス圧力に対してフラッシオーバ電圧の上昇が 飽和する傾向となる。このような特性に対する水平、垂直配置の差は、垂直配置の方がミスト混合時のフ ラッシオーバ電圧がやや低い程度でその他は認められない。また、正・負極性効果も直流の場合と同様、明 確には現れない。なお、図4.4の説明でも触れたように、ミスト混合時のフラッシオーバ電圧の測定におい ては、著しい波尾フラッシオーバ(10~40 µ sに及ぶ放電時間遅れ)が頻繁に観測された。

図4.7 N₂+C₂Cl₄ベーパおよびミストに対する雷インパルスフラッシオーバ電圧-ガス圧力特性

図4.8および図4.9は主成分ガスがSF₆の場合のフラッシオーバ電圧特性を示す。図4.8は図4.4と同様、ガ ス圧力を0.1MPaとして、ベーパ混合時およびミスト混合時の各条件で測定したフラッシオーバ電圧特性で ある。ベーパ混合時のフラッシオーバ電圧は、印加電圧波形によらず純SF₆とほぼ同じで、N₂を主成分ガスとした場合のような上昇は見られない。ミスト混合時のフラッシオーバ電圧も直流および交流電圧印加の場合はほとんど上昇せず、電インパルス電圧(負極性)印加の場合のみ、純SF₆の約1.6倍に上昇した。Harrold氏の報告⁽³⁾⁽⁴⁾では大気圧のSF₆に対し、交流フラッシオーバ電圧が約2倍、電インパルスフラッシオーバ電圧が約1.8倍に上昇した例が示されているが、本実験ではこれほどの上昇は得られなかった。

図4.8 SF₆+C₂Cl₄ベーパおよびミストに対するフラッシオーバ電圧特性(ガス圧力: 0.1MPa)

図4.9はSF₆を主成分ガスとした場合のガス圧力に対するフラッシオーバ電圧特性である。フラッシオー バ電圧の上昇が生じる雷インパルス (負極性)に対してのみ、水平配置において測定を行った。ベーパ混合 時のフラッシオーバ電圧は0.1MPa以下の低ガス圧領域では純SF₆と比較して同程度かわずかに上回るが、 0.2MPa以上では逆に低下する。ミスト混合時のフラッシオーバ電圧は0.2MPa以下ではベーパ混合時よりも さらに上昇するが、0.2MPa以上ではベーパ混合時と同程度で純SF₆よりも低い値となる。主成分ガスが SF₆の場合も、著しい放電時間遅れ (10~30 μ s) が頻繁に観測された。

図4.9より、印加電圧の値が約200kV (印加電界で約220kV/cm)を越えると、ミストの効果がなくなること が判るが、主成分ガスがN₂の場合 (図4.7) においても、ミスト混合時の電インパルスフラッシオーバ電圧 が同程度の電圧レベルに近づきながら飽和する傾向が現われている。このことは、ミストの効果が現れる

条件として、主成分ガスの種類によらず、印加電圧(印加電界)の絶対値に上限があることを示唆する。

図4.9 SF₆+C₂Cl₄ベーパおよびミストに対する雷インパルスフラッシオーバ電圧-ガス圧力特性 (電極配置:水平配置)

4.2.6 フラッシオーバ電圧の上昇割合

図4.10にフラッシオーバ電圧の上昇割合を整理して評価する。同図では主成分ガス単体のフラッシオーバ 電圧を基準とした上昇割合をガス圧力に対して示しており、同図(a)は直流および交流電圧に対する特性、 同図(b)は電インパルス電圧に対する特性である。図中の斜線で示した領域、および同図(b)の実線bがベー パ混合時の特性、プロットはミスト混合時の特性を示す。したがって、このミスト混合時の特性とベーバ 混合時の特性の差がミストの効果を表す。

主成分ガスがN₂の場合、直流および交流電圧印加時では、ガス圧力が低いとき(0.025MPa)、フラッシ オーバ電圧が純N₂の1.6~2.4倍に上昇する。しかし、この上昇の大部分はベーパの混合によって生じるも

 $a: N_2 + C_2 Cl_4 \checkmark - n b: SF_6 + C_2 Cl_4 \checkmark - n$

- 126 -

のである。ガス圧力が0.2MPa以上の場合はミストの効果がほとんどなくなる。主成分ガスがSF₆の場合 も直流および交流電圧印加時はミストの効果が現れない。このことは、直流および交流電圧の印加時に、 ギャップ空間のミストに著しい擾乱、あるいはミストの消滅が生じることを示唆する。この点は4.3.6節で 解明する。

ー方、電インパルス印加時はミストの効果が大きく現れ、主成分ガスが N_2 でガス圧力が0.025MPaの場合、フラッシオーバ電圧は5.5~7.5倍に上昇する。0.1MPaでもフラッシオーバ電圧の上昇割合は約4倍で、これは同じ供試ギャップでの純SF₆のフラッシオーバ電圧よりも高い。フラッシオーバ電圧の上昇にはベーパよりもミストが大きく寄与している。ガス圧力が高くなるとフラッシオーバ電圧の上昇割合は減少し、ミストの効果よりもベーパの効果の方が相対的に大きくなる。主成分ガスがSF₆の場合も同様の傾向で、フラッシオーバ電圧の上昇割合はガス圧力が0.025MPaのとき約5倍、0.1MPaのとき約1.6倍である。しかし、ガス圧力が0.2MPaを越えるとミストの効果はなくなり、逆にフラッシオーバ電圧は純SF₆よりも低下する。

4.2.7 まとめ

これまで小規模な供試電極系で、しかも限られたガス圧力条件でしか検討されていなかったベーパミスト誘電体の絶縁特性を詳細に明らかにした。すなわち、主成分ガスを N_2 またはSF₆とし、C₂Cl₄のミストを混合したベーパミスト誘電体に対して、直流、交流、雷インパルスの3種類の電圧波形を印加した場合の絶縁特性を0.025~0.4MPaのガス圧力領域にわたって解明した。また、電極表面が濡れてC₂Cl₄のしずくが付着することも考慮して、水平電極配置および垂直電極配置による絶縁特性の違いも検討に加えた。さらに、ミストの濃度を3段階に調節して絶縁特性に及ぼす効果も検討した。主要な結果を以下に整理する。

(1) 従来検討されていなかったベーパの分圧比の変化を考慮したフラッシオーバ電圧の温度補正法を提案 し、それぞれの測定値に適用した。

(2) 主成分ガスがN,の場合について

- (2-1) ベーパ混合時のフラッシオーバ電圧は純N₂に対して上昇する。その上昇割合は0.1MPaのガス圧力 条件で、印加電圧波形や電極配置によらず1.4~1.6倍である。この上昇割合はガス圧力が高くなるほ ど小さくなる。
- (2-2) ミスト混合時のフラッシオーバ電圧特性には印加電圧波形の効果が強く現れる。すなわち、雷イン パルスフラッシオーバ電圧は、0.1MPaのガス圧力条件で、正・負極性とも純N₂の約4倍まで上昇す る。この上昇にはベーパの効果よりもミストの効果が大きく寄与している。高ガス圧力になるほど、 雷インパルスフラッシオーバ電圧の純N₂に対する上昇割合は小さくなり、同時にミストの効果より もベーパの効果の方が相対的に大きくなる。一方、直流および交流フラッシオーバ電圧はベーパ混合 時と同程度であり、0.1MPa以下の低ガス圧力でこれをわずかに上回る程度であるが、0.2MPa以上の 高ガス圧力領域ではミストの効果がほとんど現れない。

(2-3) ミスト濃度とフラッシオーバ電圧の関連に着目すると、雷インパルスではミスト濃度の上昇によ

り、フラッシオーバ電圧も上昇する傾向があるが、交流ではフラッシオーバ電圧の変化は小さく、 直 流に対しては逆にフラッシオーバ電圧が低下する傾向がある。

(2-4) 電極配置が水平であっても垂直であっても、フラッシオーバ電圧はさほど影響を受けない。しか し、垂直配置に対し、0.2MPa以上の高ガス圧力領域で直流電圧を印加する場合は、ミスト混合時のフ ラッシオーバ電圧がベーパ混合時のフラッシオーバ電圧よりも低下する。この低下は上側電極に付着 するC,CL のしずくに起因すると考えられる。

(3) 主成分ガスがSF6の場合について

- (3-1) ベーパ混合時のフラッシオーバ電圧は純SF₆に対して低ガス圧力領域では上昇するが、0.1MPaでは同程度であり、0.2MPa以上の高ガス圧力領域では逆に低下する。
- (3-2) ミスト混合時のフラッシオーバ電圧はN₂を主成分ガスとした場合と同様に、雷インパルスに対し てはベーパ混合時以上に上昇するが、直流および交流に対してはベーパ混合時と同程度である。雷イ ンパルスフラッシオーバ電圧は、0.1MPaのガス圧力条件で純SF₆の約1.6倍である。この上昇割合は 低ガス圧力領域ではさらに大きくなるが、0.2MPa以上の高ガス圧力領域ではベーパ混合時と同程度と なり、ミストの効果がなくなる。
- (4) ミストの存在が雷インパルスフラッシオーバ電圧の上昇に寄与する条件として、主成分ガスの種類によらず印加電圧(印加電界)の絶対値に上限があると考えられる。この上限値は本実験では約200kV(印加 電界で約220kV/cm)である。
- (5)ミスト混合時の雷インパルスフラッシオーバ電圧測定時に、紫外線照射を行っているにもかかわらず、 著しく長い放電時間遅れ (10~40 µ s) がしばしば観測された。
- (6) 直流および交流電圧の印加により、ギャップ空間のミストに著しい擾乱、あるいはミストの消滅が生じ る可能性がある。

4.3 ベーパミスト誘電体の絶縁耐力向上要因

4.3.1 まえがき

ベーパミスト誘電体の電インパルスフラッシオーバ電圧が主成分ガス単体に比べて大幅に高くなること から、その要因について非常に興味が持たれる。ミストの混合による絶縁耐力の向上要因の解明は、ミス トを有効に活用できる条件を明らかにし、ベーパミスト誘電体の特性が適用できる分野や理想的なベーパ ミスト誘電体の構成、適切な使用形態などを検討するうえでの重要な課題となる。ベーパミスト誘電体に ついてのこれまでの検討例^{(6)~(28)}ではフラッシオーバ電圧の測定が主体であり、放電進展機構や絶縁特性に 及ぼすミストの効果に関する検討はほとんどない。これについては、放電現象がミストに覆われるため光 学的観測が困難であること、また電極表面の濡れやミストの浮遊、温度変化などのため、ギャップ条件が 不安定・非定常となり、絶縁特性に寄与する種々のパラメータを明確には分離できないなどの問題もある。 これまでの検討によれば、絶縁耐力の向上に寄与するミストの効果として、定性的には以下の提案がある。

(1)電子なだれやストリーマ進展を引き起こす電子やイオンをミストが捕獲する(3)(4)。

(2)ベーパと主成分ガスの混合によるシナジズム効果(3)(4)。

(3) 過飽和のベーパ中でイオンなどがミスト形成の凝縮核となる(5)。

(4) 電極からの電界電子放出が抑制される(5)。

(5) ミストが外部からの紫外線や照射光を吸収、分散する⁽⁵⁾⁽³¹⁾。

(6) ミストによるギャップの細分化(36)。

(7)不平等電界ではミストが一種のバリアとして作用する(21)(25)。

しかし、これらの提案は実験的には検討されておらず、根拠となるデータも乏しい。4.2節での検討により、ペーパミスト誘電体の基礎的な絶縁特性が明らかとなり、従来の絶縁媒体には見られないいくつかの 知見が得られた。それらを整理すると以下のようになり、ミストの混合がフラッシオーバ電圧の上昇にい かなる要因で寄与するかを解明するうえで有益な情報となる。

(1) フラッシオーバ電圧の上昇に寄与するミストの効果は、雷インバルス印加時のみ大きく現れる。

(2)紫外線照射を行っているにもかかわらず、著しく長い放電時間遅れが生じる。

(3) 直流および交流電圧印加時にミストの擾乱あるいは消滅が生じる可能性がある。

上記の(1),(2)からはミストの混合により、放電開始と種となる初期電子の欠乏が生じる可能性が示唆される。そこで、本節では初期電子の欠乏の可能性に着目して、紫外線照射の効果、初期電子を十分に供給した場合の絶縁特性を実験的に検討する。さらに、直流および交流電圧に対してはフラッシオーバ電圧の上昇がほとんど生じない点を解明するために、直流と電インパルスを重畳した場合の絶縁特性についても検討する。これらの結果に基づき、ミストおよびベーパについてフラッシオーバ電圧の上昇に寄与する効果と、逆に異物としての効果を印加電圧波形との関連も含めて整理する。

4.3.2 紫外線照射効果の検討

4.2節の実験のように、鉄製のタンク中で準平等電界ギャップの絶縁特性を測定する場合、初期電子の供給不足により、放電の統計的時間遅れが長くなり、その結果フラッシオーバ電圧のばらつきや上昇を招くことが知られている。これは主として宇宙線や紫外線などがタンク壁で減衰されたり、タンク壁で荷電粒子が再結合するなど、ギャップ空間における初期電子の生成が十分でないためと解釈されている。したがって、放電の統計的時間遅れは大気中で実験を行う場合よりも長くなり、純N₂に対して数秒のオーダーにも達し得ることが示されている⁽³⁷⁾。この現象は雷インバルスのような短波頭電圧を印加する場合や、供試ギャップの規模が小さいときに問題となり、一般に電極への紫外線照射などにより改善できる。実際のガス絶縁機器では有効な照射源は存在しないが、電極面積が極めて大きいことや、測定データの信頼性を

考慮してこの種の検討では紫外線や放射性物質などにより照射を行う例が多い。

4.2節の実験では直流電圧印加のケースを除いて水銀ランプによる紫外線照射(以下照射)を行った。本 実験で使用した水銀ランプの放射限界は約200nm (6.2eV)であるので、 N_2 やSF₆の電離エネルギー(それ ぞれ14.5eV, 9.3eV)より小さい。したがって、照射時の初期電子供給は主に電極からの光電子放出による と考えられる。一方、 C_2Cl_4 のベーパやミストに対する照射の作用は明らかでなく、ミストの存在により紫 外線のような短波長光は分散されたり、弱められる可能性もある。また、ベーパあるいはミスト混合時で は、自由電子や負イオンが生成されてもミストに付着したり、ミストを形成する凝縮核になってミストに 取り込まれるなどして、放電開始の有効な種にならないことも考えられる。そこでまず、ベーパミスト誘 電体の絶縁特性に及ぼす照射の効果を検討する。

図4.11は主成分ガスがN₂、ガス圧力が0.05MPa、電極配置が水平配置の条件で、ミスト濃度が十分高い 状態で連続して測定した交流フラッシオーバ電圧値を示す。横軸は経過時間である。比較のためベーパ混 合時の交流フラッシオーバ電圧レベル(照射時)を破線で併記する。図中〇および●で示したプロットは それぞれ照射時および非照射時の測定結果である。これより、非照射時のフラッシオーバ電圧の平均値約 41kVは、照射時の平均値約33kVと比べて明らかに高いことが判る。すなわち、本実験における最もミスト 濃度が高い状態でも照射の効果があると考えられる。同図では照射時、非照射時ともにベーパ混合時と同 程度のフラッシオーバ電圧レベルでフラッシオーバしたケースが一例ずつある(図中 ※)。このことは、 ミスト混合時のフラッシオーバ電圧の上昇が必ずしも定常的でないことを示唆し、その要因としてギャッ プ条件(ミストの粒径、形状、個数濃度など)の変動や統計的時間遅れの関与などが考えられる。

図4.11 交流フラッシオーバ電圧に対する照射の効果(ガス圧力:0.05MPa、水平配置)

図4.12は一定値の交流電圧を連続して印加し、フラッシオーバが生じるまでの時間を測定した結果(長時間V-t特性)である。主成分ガスはN₂、ガス圧力は0.1MPa、電極配置は水平配置、ミスト濃度は十分高^い状態である。同図にも比較のため、ベーパ混合時の交流フラッシオーバ電圧レベルを併記した。これよ

り、全体として右下りのV-t特性、すなわち低い印加電圧でも電圧印加時間が長いとフラッシオーバし やすくなる傾向があり、照射によりフラッシオーバまでの時間(放電時間遅れ)が短くなることが判る。 ベーパ混合時と同程度のフラッシオーバ電圧レベルで、フラッシオーバが生じるまでの最短時間は照射時 で約15秒、非照射時で約2分である。放電時間遅れは長い場合は10分に達する場合がある。

すでに触れたように、ミストの条件が時間的に変動している可能性があり、ここで観測された著しく長 い放電時間遅れも、こうしたギャップ条件の変動に起因することも考えられる。しかし、図4.11と同様に照 射の効果がかなり明瞭に現れることから、初期電子の欠乏が十分に考えられる。図4.12の結果から、ミスト 混合時でも照射の効果は残るが、放電時間遅れは数秒~数分にまで長くなることが判る。従って交流フ ラッシオーバ電圧の測定を電圧上昇法で行う場合、電圧上昇速度が速い場合にフラッシオーバ電圧の上昇 傾向を示すことは十分に考えられ、特に電圧継続時間の短かい電インパルスなどを印加する場合、フラッ シオーバ電圧の上昇割合はさらに大きくなることが考えられる。

図4.12 交流フラッシオーバ電圧と電圧印加時間の関係(ガス圧力:0.1MPa、水平配置)

次に、電インパルスフラッシオーバ電圧に対する照射の効果を図4.13および図4.14に示す。図4.13は主成 分ガスが N_2 の場合、図4.14は主成分ガスがSF₆の場合で、ガス圧力条件はどちらも0.1MPaおよび0.3MPa である。電インパルスの極性は負極性で、電極配置は水平配置である。図中のプロットは50%フラッシ オーバ電圧 (V_{50})を示し、各データに標準偏差(σ)および放電時間遅れとしてフラッシオーバ時間の平 均値(図中 平均FO時間)を併記した。また、測定を進めるうちにフラッシオーバ電圧が変化する場合が あったので、測定順を矢印で明記した。測定途中でフラッシオーバ電圧が明らかに変化した場合は、その 前後で別々にフラッシオーバ電圧や標準偏差を求め、両方をプロットした。測定途中でのフラッシオーバ 電圧の変化(ほとんどは上昇)はベーパ混合時にしばしば観測された。 図4.13(a)の純N₂(ガス圧力 0.1MPa)に対して、非照射時のデータは照射時に比べて明らかにばらつきが 大きく、V₅₀は約1.4倍高い。このとき、昇降法による測定時に、照射時よりもはるかに広い電圧範囲で非 フラッシオーバの連続とフラッシオーバの連続が繰返し現れた。この現象は初期電子の欠乏を示す特徴的 な現象である。ベーパ混合時もV₅₀は非照射時のほうが高くなるが、照射の効果に加えて時間経過ととも に上昇する傾向が読取れる。ミスト混合時はV₅₀が大幅に上昇するとともに、フラッシオーバ時間が長く なる。照射時、非照射時でV₅₀の変化は少ないが、ばらつきは照射時のほうが小さい。すなわち、照射の 効果が認められる。同様の傾向はガス圧力が0.3MPaの図4.13(b)においても見られる。この場合、照射時、 非照射時でV₅₀の変化が大きい。ミスト混合時の非照射の場合に、フラッシオーバ電圧が測定途中に低下 する特異な変化が観測された。

図4.14(a)の純SF₆(ガス圧力0.1MPa)に対しても、純N₂の場合と同様に非照射時のほうがフラッシオー バ電圧が高い。ベーパ混合時は照射時のほうがフラッシオーバ電圧が高くなっているが、これは時間経過 に伴う上昇と考えられる。照射時では測定中もさらにフラッシオーバ電圧が上昇し、ミスト混合時のV₅₀に

図4.13 雷インパルスフラッシオーバ電圧特性に及ぼす照射の効果(主成分ガスN,)

(d) ベベルグ・0.1MFa (0) ベベルグ・0.5MFa (0) ベベルグ・0.5MFa (0) ベベルグ・0.5MFa (0) ベベルグ・0.5MFa

近づく傾向を示している。ミスト混合時も主成分ガスがN₂の場合と同様に、非照射時にばらつきが極めて 大きくなり、フラッシオーバ時間が長くなる。ガス圧力が0.3MPaの図4.14(b)においては、他の傾向とは全 く異なり、ベーパ混合時とミスト混合時でフラッシオーバ電圧の差がほとんどなく、照射時、非照射時で もほとんど変化がない。また、いずれの場合もフラッシオーバ電圧のばらつきが小さく、フラッシオーバ 時間が短い。このことはこのように高い電界が印加される条件ではミストを混合してもその効果がなくな るとともに、初期電子の供給は照射以外の機構によって十分な量で行われることを示唆している。図4.9の 結果から、雷インパルス印加の場合、約220kV/cm以上の高電界が印加される条件でこのような状態になる ことが考えられる。

ミスト混合時の雷インパルスフラッシオーバ電圧のばらつきが照射によって小さくなることから、照射による初期電子の供給機構はミスト中でも存在するといえる。これには電極に達した照射光による電極からの光電子放出のほか、誘電体についても金属と同様に照射による光電子放出が起こり得る⁽³⁸⁾ことから、 ミスト自身からの電子放出も考えられる。220kV/cm以上の高電界下での初期電子の供給機構は照射の効果 によらないことから、電極からの電界電子放出やSF₆やC₂Cl₄の負イオンからの電子離脱などが考えられる。

照射に起因する他の現象として、ベーバ混合時に極めて微細なミストが発生することがあった。照射光 により電極表面からは光電子放出が生じるが、C₂Cl₄のベーパはハロゲン元素を含む電気的負性ガスである ので、ガス中の電子が付着して容易に負イオンが形成されると考えられる。飽和蒸気圧あるいはそれを上 回る蒸気圧(過飽和)のベーバ中では霧箱の原理と同様に、負イオンが凝縮核となってミストが形成される 可能性がある⁽⁵⁾。実際にガス温度が比較的高く(30℃以上)、拡散ファンを使用した場合など、このような ミストが観測された。超音波霧化法で発生させたミストと比べると非常に希薄であり、注視しないと確認 できないほどであった。同様に何回かのフラッシオーバが生じた後でもこのような希薄なミストが自然発 生することがあった。このような状態でフラッシオーバ電圧を測定すると、直流および交流については ベーバ混合時のフラッシオーバ電圧とほぼ同じであったが、雷インパルスフラッシオーバ電圧は極めて大 きなばらつきを示した。

図4.15は電インパルスフラッシオーバ電圧が異常なばらつきを示した一例で、昇降法のデータをそのまま 示した。フラッシオーバを示す〇印の上部にフラッシオーバ時間を併記した。このときの実験条件は主成 分ガスがN₂、ガス圧力は0.4MPa、電極配置は垂直配置である。この条件で、自然気化によるベーバ混合時 の雷インパルスフラッシオーバ電圧を測定したところ、V₅₀は139kVであった。しかし、拡散ファンを使 用すると、照射光に照らされた領域に極めて希薄なミストが観測されるようになり、それにつれて昇降法 における非フラッシオーバの連続とフラッシオーバの連続が172~222kVの広範囲にわたって測定された。 非フラッシオーバが連続した後でフラッシオーバが生じる場合、フラッシオーバ時間が極めて長く、一度 フラッシオーバが生じて電子やイオンがギャップ空間に放出されると、その後は波頭でのフラッシオーバ が連続して生じる。このような特性は明らかに初期電子の欠乏を示している。同図には図4.7(b)でのミスト

図4.15 照射光による微細なミストの発生により電インパルスフラッシオーバ電圧が異常に上昇した例 (主成分ガス:N,、ガス圧力:0.4MPa)

混合時の電インパルスフラッシオーバ電圧値(V₅₀=179kV)およびそのばらつきを左端に併記したが、そ れよりもはるかに高いレベルまでフラッシオーバ電圧が上昇していることが判る。このことは雷インパル スフラッシオーバ電圧が上昇するためには必ずしも濃いミストは必要なく、直接には初期電子の欠乏が重 要な要因となっていることを示唆する。拡散ファン使用の有無が関係するのは、これによってC₂Cl₄のベー パが過飽和な状態に近づくことが考えられる。したがって、紫外線照射が十分に電極に達して光電子放出 が生じても、過飽和ベーパ中で負イオンがミスト形成の凝縮核となってミストに取り込まれ、放電開始能 力を失い、結果として初期電子の欠乏が生じるという機構が考えられる。

4.3.3 光電子放出電流の測定

4.3.2節の検討で、照射による初期電子供給の効果はミスト混合時でも認められるものの、その効果は十 分ではなく、初期電子の欠乏によって放電時間遅れの増大や電インパルスフラッシオーバ電圧の上昇を生 じている可能性が濃厚となった。特に、ベーパ混合時で照射光が電極を十分に照射していても、初期電子 の欠乏が生じる可能性があることから、初期電子の供給量およびその寿命についてさらに検討すべきであ る。本実験での初期電子の供給源としては照射による電極からの光電子放出が支配的であると考えられ、 220kV/cm以上の高電界が印加される場合は負イオンからの電子離脱や電極からの電界電子放出などが支配 的となると考えられる。そこで、本実験で使用した電極系に対して、照射時の光電子の発生量(光電子電流) を測定する。

測定に使用した電極はこれまでの実験で使用したものと材質、形状において同一であるが、接地側電極の一部を光電子電流測定用のプローブとした。その構造を図4.16に示す。プローブは接地側電極の最大表面 電界の90%以上の領域に相当し、その直径は1.2cm、面積は1.13cm²である。照射用の水銀ランプを実験時 と同じく、供試ギャップの中心より40cmの距離から、電極中心軸に対し垂直方向から照射するよう配置し た。光電子電流の測定は実験の都合上、大気中で行い、高精度安定化直流電源 (Spellman RHSR10PN60、リ ブル 0.001%rms、電圧安定度 0.005%)により低リブルの直流電圧 (正極性 10kV)を印加し、プローブ流入 電流を微小電流計 (タケダ理研 TR8651)で測定した。なお、照射時の測定電流は非照射時の約1000倍であっ たので、回路内漏れ電流、直流電圧のリプル分による変位電流、大気中の自然電離電子やイオンによるド リフト電流などは無視できる。光電子電流は清浄な電極で測定した値を基準とし、電極系をC₂Cl₄ベーバ中 に長時間放置した場合、C₂Cl₄を直接電極に塗布した場合について、測定電流の変化を調べた。

測定結果を図4.17に示す。同図で、縦軸の光電子電流は電極洗浄直後の初期値(約0.1nA)で規格化して示 した。また、横軸の経過時間は初期値を測定した時点からの時間である。比較のため、電極系を大気中に 放置した場合の特性(図中■)も併記した。大気中に電極を長時間放置すると光電子電流は徐々に低下し、 2時間で約90%に、50時間で約半分になる。これに対し、C₂Cl₄のベーパを含むN₂やSF₆中に電極を放 置した場合は、さらに1~2桁も光電子電流が減衰する。また、C₂Cl₄を直接電極に塗布した場合は、光電子 電流はいきなり1桁低下し、約2時間後に再度塗布すると、初期値の約1/50にまで低下した。このとき、 黄銅製の電極は黄色に変色しており、ベーパの吸着などにより表面状態が変化したことが考えられる。

図4.16 光電子電流測定用プローブ付き電極

図4.17 光電子電流の減衰特性

光電子電流の大幅な低下は、照射時の光電子放出による初期電子の供給を困難にし、時間経過とともに照 射の効果が弱められることを意味する。このことは、図4.13および図4.14におけるベーパ混合時のフラッシ オーバ電圧が時間経過とともに上昇する傾向と密接に関連するものと考えられる。

以上の結果より、純N₂や純SF₆に対しては照射によって雷インパルスフラッシオーバ電圧が安定する が、ベーバ混合時やミスト混合時は照射光が電極に到達しても光電子放出が減少することから、初期電子 が欠乏して雷インパルスフラッシオーバ電圧の上昇やばらつきの増大の一因となることが十分に考えられ る。しかし、一般にはミスト混合時の雷インパルスフラッシオーバ電圧は主成分ガス単体やベーパ混合時 に対する非照射時のデータよりもさらに高いことから、光電子放出の減衰以外に、さらにフラッシオーバ 電圧の上昇に寄与する要因があると考えられる。

4.3.4 初期電子供給時の絶縁特性

ベーパやミストの混合によって初期電子の欠乏が生じることが示唆されるので、ここでは初期電子を十 分に供給した状態で絶縁特性を検討する。放電開始点付近で十分な初期電子を得るために、図4.18に示すよ うに、供試電極の接地電極側に微小ギャップを設け、主ギャップ間に電圧を印加する直前に微小な放電(以 下補助スパーク)を発生させた。石英ガラスで周囲と絶縁した補助スパーク印加電極には7.1kVの負極性 直流電圧で充電した0.1 μFのコンデンサを接続し、サイラトロンスイッチにより放電させて補助スパーク を得た。主ギャップへの印加電圧は電インパルスで、接地電極側で初期電子が供給されることを考慮し て、極性は正極性とした。補助スパークの発生から電インパルスが印加されるまでの時間 Δ T を10⁻³ s から 10s の範囲で変化させた。すべての実験ケースで照射も併せて行った。

図4.18 初期電子供給用供試電極

図4.19に Δ Tを変化させた場合の50%フラッシオーバ電圧(V_{50})および標準偏差(σ)の測定結果を示す。 主成分ガスは図4.19(a)のケースが N_2 、図4.19(b)のケースがSF₆である。ガス圧力はどちらも0.1MPaで ある。同図には Δ Tが十分長い場合として、補助スパークなし(雷インパルス単独)で測定した V_{50} レベル を右側の直線群として併記した。また、直流電圧を単独で印加した場合のフラッシオーバ電圧を、本供試 電極でのスパークを発生させない場合の最低フラッシオーバ電圧と考え、左側の直線群(図中 直流FO電 圧)で示した。なお、補助スパークなしの場合の V_{50} および σ は図4.13および図4.14の特性と異なるが、こ れは供試電極の接地電極側の構造が異なるためである。

(a) 主成分ガス:N₂ (0.1MPa)

(b) 主成分ガス: SF₆ (0.1MPa)
 図4.19 初期電子供給時の雷インパルス絶縁特性

本実験においては接地電極側の電界最大点付近にて補助スパークを発生させているため、ΔTが短い場 合は空間電荷による電界の変歪のため、フラッシオーバ電圧が供試電極の耐電圧(スパークなしの場合の最 低フラッシオーバ電圧)以下に低下する可能性がある。そこで、ΔTが短い領域で補助スパーク発生時の フラッシオーバ電圧が直流フラッシオーバ電圧よりも低下する場合は検討外とした。電界変歪の影響は絶縁耐力が低いガス条件ほど大きく現れると考えられるので、最もフラッシオーバ電圧が低いガス条件を基準とした。すなわち、図4.19(a)においては純 N_2 の V_{50} が直流フラッシオーバ電圧と同程度となる $\Delta T = 10^2 s$ よりも長時間側が電界変歪の影響が無視できる領域とした。同様に同図(b)においては、 $\Delta T = 10^1 s$ よりも長時間側が電界変歪の影響が無視できる領域とした。

図4.19(a)の主成分ガスがN,の結果について、以下のことが判る。

- (1) ミスト混合時に雷インパルス単独を印加した場合、純N₂およびベーパ混合時に比べてV₅₀は大幅に上 昇する。しかし、 $\Delta T = 10^{-2}$ sではばらつきが小さくなり、V₅₀は直流フラッシオーバ電圧と同程度に なる。ミスト混合時では、補助スパークの効果が小さくなるのは $\Delta T = 10^{-1}$ s以上である。
- (2) ベーパ混合時は雷インパルスと直流でフラッシオーバ電圧の差が小さいため、上記の傾向は明確でない が、補助スパークの効果が小さくなるのは△T=10s以上である。
- (3)これらの△Tは補助スパークによって生成された電子や負イオンが、主ギャップの放電開始において初 期電子となり得る状態での有効時間(寿命)と考えられ、ベーパ混合時よりもミスト混合時のほうが2 桁程度短くなる。

図4.19(b)の主成分ガスがSF₆の結果についても、ほぼ同様の傾向が認められる。ただし、直流フラッシオーバ電圧は3種類のガス条件でほぼ同程度であり、また、雷インパルス単独のフラッシオーバ電圧は ミスト混合時のみ上昇する。補助スパークの効果が小さくなるΔTは、ミスト混合時で1s程度、ベーパ 混合時で10sで、やはりミスト混合時のほうが1桁短くなる結果を得た。

初期電子を十分に供給することにより、ミスト混合時の電インバルスフラッシオーバ電圧の大幅な上昇 がなくなり、著しいばらつきも小さくなることから、ベーパミスト誘電体の電インパルスフラッシオーバ 電圧が上昇する直接の要因は初期電子の欠乏であるといえる。

4.3.5 直流・雷インパルス重畳時絶縁特性

図4.19の結果からは、直流電圧に対してはベーパ混合時とミスト混合時のフラッシオーバ電圧が同程度で あり、ミストの効果が雷インパルスほど現れないことが判る。この要因のひとつは、直流は電圧継続時間 が長く、初期電子の欠乏が生じてもフラッシオーバ電圧への影響が小さいためと考えられる。しかし、 4.2.6節でも触れたように、直流電圧の印加によって供試ギャップ間のミストに擾乱が生じたり、ミストの 濃度が低下することも示唆されるため、ここでは直流と雷インパルスを重畳印加した場合の絶縁特性を検 討する。

実験に使用した供試ギャップは図4.2と同一で、電極に付着するしずくの影響を考慮して水平配置とした。高電圧側電極に正極性の直流バイアス電圧 (V_{DCB})を印加した状態で、負極性雷インパルスを重畳印加して50%フラッシオーバ電圧 (V_{50})および標準偏差 (σ)を測定した。主成分ガスは N_2 (0.3MPa)およびSF₆(0.1MPa)とした。実験に使用した試験回路と印加電圧波形を図4.20に示す。なお、低電圧側の電極は

常に接地電位であるので、V₅₀は接地電位に対する雷インパルスの波高値で表示する。また、フラッシオー バ時間も測定した。

(a) 試験回路

電圧軸:31.4kV/div、時間軸:2μs/div (b)印加電圧波形

図4.20 直流・雷インパルス重畳用試験回路と印加電圧波形

図4.21に結果を示す。同図(a)は主成分ガスが $N_2(0.3MPa)$ の場合である。図中の矢印は測定順を示す。また、図面下部のプロットはフラッシオーバ時間の分布と平均値を示す。ミスト混合時は V_{DCB} の効果が明瞭で、 V_{DCB} が40kVを越えると V_{50} は大幅に低下し、 $V_{DCB}=50kV$ 以上ではベーバ混合時の V_{50} レベルよりも低いほぼ一定値となる。この低下した V_{50} は直流電圧単独で測定したフラッシオーバ電圧値(図中 直流FO電圧)に近いレベルである。また、フラッシオーバ時間も $V_{DCB}=40kV$ 付近を境として、それ以上の V_{DCB} に対して、数10 μ sから数 μ sに急激に安定する。これに対し、ベーパ混合時は V_{50} に対する V_{DCB} の効果が明瞭ではなく、全体にばらつきが大きい。フラッシオーバ時間についても V_{DCB} の効果は明瞭に

は認められない。したがって、V_{DCB}はガスには影響を与えないが、ミスト混合時にはフラッシオーバ電 圧上昇の効果を失わせる作用がある。

図4.21(b) は主成分ガスがSF₆(0.1MPa)の場合である。上記の傾向はこの場合にもほぼ同様に認められ る。ベーパ混合時のV₅₀のばらつきは非常に大きく、V_{DCB}=50kVのように、ミスト混合時のV₅₀と同程 度まで上昇しているケースがある。ミスト混合時ではV_{DCB}が40kVを越えるとV₅₀が急激に低下し、50kV 以上で直流フラッシオーバ電圧に近いレベルとなる。この状態で非照射とした場合のV₅₀(図中 ※)も測定 したが、照射時と同程度であり、照射の効果が認められない。ミスト混合時のV₅₀が急激に低下するV_{DCB} の値が主成分ガスの種類によらず同程度であることから、ミストの効果が消滅する要因は主成分ガスでな くミストそのものにあり、一定値以上の直流電界(約50kV/cm)の印加により生じると考えてよい。この状 態ではフラッシオーバ時間が短くなり、照射の効果もなくなるので、初期電子の欠乏は生じておらず、初 期電子の供給にミストが直接関与していることが示唆される。

4.3.6 直流および交流電圧印加時の液膜の変歪

供試ギャップ間に浮遊するミストは印加電界により静電的な作用を受けると考えられる。したがって、 直流および交流電圧を印加する場合、無電圧の状態でのミストの条件(粒径、形状、個数濃度など)はフ

- 141 -

ラッシオーバが発生する時点では必ずしも維持されていないことを考慮する必要がある。

ギャップ間に浮遊するミストの状況を直接観測するのは困難であるので、ここでは図4.2の垂直配置において、上部電極の底部に付着したC₂Cl₄のしずくの変歪状況を観測する。主成分ガスはN₂とし、しずくの 変歪状況を高電界領域まで観測するために、ガス圧力は0.3MPaとした。印加電圧は直流および交流電圧と した。

図4.22に観測結果を示す。同図(a) は直流 (負極性) 電圧を印加した場合で、印加電圧が10 kV程度から変 化が現れる。このとき、しずくは平たく広がる。しかし、20 kVでは先端が鋭く尖り、細い糸状の滴下によ り電極間が橋絡されるようになる。さらに、30~50 kVに電圧を上昇させると滴下箇所が増加し、接地側電 極から重力に反して上方に伸びるものも現れる。滴下の軌跡は何れも電気力線に沿っている。印加電圧が 70 kVを越えると滴下箇所に現れるしずくの突起は小さくなり、電極表面のかなり広い範囲に多数現れると ともに、糸状の滴下から霧状に分散するようになり、電極間を完全に橋絡するものは少なくなる。■ 4.22(b)の交流電圧を印加した場合も上記と類似しているが、しずくが突起状になり、糸状の滴下が生じる のは、印加電圧50 kV (波高値) 以上で直流の場合よりもかなり高い。

以上の状況から、ギャップ間に浮遊するミストについても印加電界の作用が及ぶことは確実で、特に重力よりも強い作用をしずくに与える印加電圧(直流で30~50kV、電極表面電界は約50kV/cm)以上では、水

図4.22 電極表面に付着したC₂Cl₄のしずくの変歪状況 (主成分ガス:N₂、0.3MPa)

⁽b) 印加電圧:交流 図4.22 電極表面に付着したC₂Cl₄のしずくの変歪状況 (主成分ガス: N₂、0.3MPa)

平配置においてもギャップ間のミストに大幅な擾乱が生じるはずである。このことは図4.21に示したV_{DCB} =40kV以上で雷インパルスフラッシオーバ電圧の急激な低下が生じ、かつフラッシオーバ時間が短くなる 結果と整合する。したがって、ミストの擾乱が初期電子の供給に寄与することになる。

なお、電インパルス電圧を印加する場合は電圧の継続時間が短かいために、印加電界による電極表面の しずくやギャップ間のミストへの作用は小さいと考えられる。実際に図4.22と同様にしずくの状態を観測し ても、雷インパルス印加時やフラッシオーバの際にしずくが滴下したり、揺れ動くことはなかった。ま た、フラッシオーバの経路がしずくから発することはまれであった。したがって、雷インパルス電圧の印 加によるギャップ間のミストの変化は少なく、電極表面にしずくが存在してもフラッシオーバ電圧を低下 させる要因にはならないと考えられる。

4.3.7 絶縁耐力向上要因の検討

前節までの実験結果により、電インパルス印加時に生じるフラッシオーバ電圧の上昇には初期電子の欠 乏が決定的な要因となることを解明した。本実験条件においては初期電子の生成は主にガスの自然電離、 高電界領域における負イオンからの電子離脱、光電子放出や電界放出など電極からの電子放出などにより 行われていると考えられる。さらに、ミストからも局所的な高電界が印加されれば、電子放出が生じる可 能性がある。これらに対し、ベーパおよびミストがどのようにして初期電子の欠乏をもたらすか、また、 電圧波形によってこれらの効果が絶縁特性に対してどのように現れるかを整理する。 (1) ベーパの効果

本実験で使用したC₂Cl₄のベーパはハロゲン元素を含む電気的負性ガスであり、それ自身の絶縁耐力が高 いので、主成分ガスがN₂の場合はベーパの混合だけでフラッシオーバ電圧の上昇が生じる。この効果は主 成分ガスに比べてベーパの分圧比が大きい場合、すなわち温度が高くC₂Cl₄の蒸気圧が高い条件、あるいは 主成分ガスの圧力が低い場合ほど大きく現れる。ただし、図4.3の結果から、ベーパの分圧比が大きくなっ ても、フラッシオーバ電圧は飽和する傾向がある。このようなフラッシオーバ電圧の上昇は電圧波形や電 極の配置によらず生じる。

っぎに、4.3.2節で述べたように、ベーパ混合時の実験においては紫外線照射をした場合や何回かのフ ラッシオーバが生じた後で、希薄なミストが発生することがしばしば観測された。このことは、本実験条 件ではほぼ飽和蒸気圧に相当する分圧でベーパが混合されていることを示し、このような雰囲気中では電 子やイオン(ハロゲン元素を含むC₂Cl₄のベーパ中では電子は単体で存在せず、ほとんどは負イオンと考え られる)が多数の中性分子を引き寄せて巨大化分子を生じたり、それらが凝縮核となってミストが形成され る可能性を示唆する。ミスト混合時に生じる過飽和な雰囲気中では霧箱の内部と同様に荷電粒子が凝縮核 になる可能性が十分に考えられるが、ベーパ混合時でも温度の不均一などにより、局所的に過飽和状態が 生じる可能性がある。このような状態で負イオンを核としてミストが形成され、電子離脱が生じにくくな ることで、負イオンが初期電子源としての機能を失うことは十分に考えられることである。さらに、C₂Cl₄ のベーパにさらされた電極からは光電子放出が大幅に抑制されることから、これも含めた電極からの二次 電子放出が抑制され初期電子の次乏に寄与することも十分に考えられる。

ベーパはガスであり、その分圧比などの条件に電圧波形の影響はほとんど考えられない。したがって、 電圧波形によってベーパの効果が変わるわけではないが、その現れかたが雷インパルスに対しては初期電 子の欠乏による放電確率低下ということで生じる。

(2) ミストの効果

ミストを混合した状態は、液体が自然に蒸発する場合よりも多くの量の液体を強制的に主成分ガスに送 り込んだ状態であり、ベーパ混合時よりも飽和性が増す(あるいは過飽和な状態となる)と考えられる。電 子や負イオンの初期電子源としての寿命が、ベーパ混合時よりも1~2桁短くなる実験結果から、負イオン が凝縮核となってミストを形成したり、中性分子を吸着して巨大化するなど、初期電子源としての機能を 失う可能性がさらに有力に考えられる。したがって、初期電子の欠乏による放電確率の低下から、雷イン パルスフラッシオーバ電圧が上昇する。また、交流フラッシオーバ電圧の測定においては、数秒~数分と いう著しく長い放電時間遅れを生じ、印加電圧の上昇速度によってはフラッシオーバ電圧の上昇が観測さ れる場合がある。このように、初期電子の欠乏がベーパミスト誘電体の直接の絶縁耐力向上要因である。

しかし、逆にフラッシオーバ電圧の上昇に寄与しない異物としての側面もあることを考慮する必要がある。とくに、直流や交流電圧を印加する場合は静電気力がミストの形状や個数濃度を変化させ、ミストそ

のものが初期電子の供給に寄与する可能性がある。図4.22の結果から、ギャップ間のミストは直流および交 流電界の印加により、凝集を生じたり、凝集したミストが電気力線に沿って突起状に変歪するなど、著し い擾乱を受けることが明らかとなった。突起状に変歪したしずくや突出した液膜の先端では電子放出が生 じたり、その周囲の高電界領域では負イオンからの電子離脱が生じる可能性があり、ミストそのものが初 期電子の供給に寄与する要因になり得る。この機構は図4.21の結果からも十分に考えられることであり、そ のときの直流電界強度は約50kV/cm以上である。

以上の考察をもとに、ベーパミスト誘電体の絶縁特性に及ぼすベーパおよびミストの効果と印加電圧波 形のとの関係を表4.3に整理する。

	主成分ガス ⇒ ベーパ混合時	⇒ ミスト混合時	印加電圧波形の条件	絶縁耐力
ミストの有効な効果 (絶縁耐力向上に寄与)		 ○初期電子の寿命短縮 ・負イオンがミスト形成の凝縮 核になる ・負イオンが巨大分子化し、電 子離脱が生じにくくなる ○光電子放出の著しい抑制 ・照射光の遮蔽 ・電極表面の濡れ 	・雷インバルス (約220kV/cm以下)	⇒大幅に向上
	○光電子放出の抑制・電極へのペーパの吸着		 ・ 雷インパルス (約220kV/cm以下) 	⇒ばらつき 増大
	○絶縁耐力が高い ペーパの混合	〇同左	·全波形	⇒若干向上
	a. There a	○ミスト周囲の電界上昇	·全波形	⇒影響小さい
ミストの異物として影響 (絶縁耐力向上に 寄与しない)		 ○初期電子の供給 ・変歪したミスト、突出したミストからの電子放出 ・変歪したミスト周囲の高電界 領域で、負イオンからの電子 離脱 	 ・直流、交流 ・直流(約50kV/cm以上) +雷インバルス ・雷インバルス (約220kV/cm以上) 	⇒向上しない

表4.3 ベーパミスト誘電体の絶縁特性に及ぼすベーパおよびミストの効果

4.3.1節で触れたように、これまでの検討ではミストの効果として、電子なだれやストリーマ進展を引き 起こす電子やイオンをミストが捕獲する効果⁽³⁾⁽⁴⁾、ベーパと主成分ガスの混合によるシナジズム効果⁽³⁾⁽⁴⁾な ども指摘されている。後者はベーパの分圧比を大きくしてもフラッシオーバ電圧が飽和する傾向があるこ とから、絶縁耐力の主要な向上要因にはあたらない。前者についてはこれまで最も有力に考えられてきた 機構であるので、SF₆の例で放電開始条件と臨界電子なだれ進展長を評価してみる。

- 145 -

SF₆をはじめ電気的負性ガスの放電進展条件は一般に次式で表される。

$$\int_0^{x_0} (\alpha - \eta) dx = K$$

(4.3)

ここで、 α :電離係数、 η :付着係数、x:電極からの距離、 x_0 : $\alpha - \eta = 0$ となる点の距離、 K:電離指数

本実験で使用した電極系に対し、上式で K=18⁽³⁹⁾ として計算した x_0 とフラッシオーバ電圧の計算結 果を表4.4に示す。同表には、負極性直流電圧で測定したフラッシオーバ電圧の実測値とフラッシオーバ電 界における α の逆数 (衝突電離が1回生じる間に電子が進む平均距離)を併記した。なお、 α および η の値 は文献⁽⁴⁰⁾に記載されているものを使用した。フラッシオーバ電圧の計算値と実測値は比較的良く一致して いるので、(4.3)による評価と K=18 の仮定は妥当といえる。

ガス圧力	X. [cm]	αの逆数	フラッシオー	·バ電圧 [kV]
[MPa]	N ₀ [em]	[cm]	計算值	実測値
0.025 0.05 0.1 0.2 0.3 0.4	4.6×10 ⁻¹ 2.5 1.7 1.1 0.91 0.78	3.4×10^{-3} 1.8 1.0 0.53 0.36 0.28	23.5 45.1 87.3 170.3 252.5 334.3	21.2 42.4 83.2 163.7 241.9 309.5

表4.4 SF6中の臨界電子なだれ進展長の計算結果

ー方、超音波霧化法で発生させたミストの液滴間の平均距離は $1.8 \times 10^2 \text{ cm}^{(3)}$ 程度と推定される。この値 と表4.4の \mathbf{x}_0 、および α の逆数と比較すると、たとえば大気圧の結果では \mathbf{x}_0 は約10倍大きく、 α の逆数 は約1/20である。したがって、衝突電離の個々の過程で電子がミストに捕獲される可能性は極めて小さ いが、放電開始条件が成立する \mathbf{x}_0 の距離まで考えれば、電子なだれの進展をミストが抑止する可能性は ある。ガス圧力が高くなれば \mathbf{x}_0 は小さくなるのでミストが電子なだれを抑止する可能性は低下し、ミス トの効果は小さくなる。この傾向は定性的には図4.9の実測結果と一致する。

上記の機構は電圧印加時の電子なだれの進展に対して寄与し得るものであり、初期電子の生成量や寿命 に直接には依存しないので、絶縁耐力の向上要因としては初期電子の欠乏とは異質のものである。上記の 検討からミストが電子なだれやストリーマ進展を抑止する可能性は否定できないが、ベーパミスト誘電体 の絶縁特性として、初期電子を十分に供給すればフラッシオーバ電圧の上昇がなくなること、ベーパ混合 時でもフラッシオーバ電圧が大幅に上昇する場合があることなどを考慮すれば、この機構も絶縁耐力の主 要な向上要因にあたらない。

4.3.8 ベーパミスト誘電体の実用分野

これまでの検討から、主成分ガスにミストを混合することにより、絶縁耐力が向上するためには次のような条件、あるいは制約が伴うことが判明した。

(1)印加電圧が雷インパルスなど、電圧継続時間の短いサージ性過電圧であること。

(2)印加電界に上限(本実験では約220kV/cm)がある。すなわち、SF₆に対してはガス圧力が約0.2MPa以下であること。

(3)一定値を越える直流電界(本実験では約50kV/cm以上)または交流電界が重畳されない場合。

さらに、電インパルスで絶縁耐力が向上する第一の要因は初期電子の欠乏であることが明らかとなった。 これらの知見を基にベーパミスト誘電体の実用分野を検討する。

実用のSF₆に対しては、ミストの効果が現れるのはガス圧力が0.2MPa程度以下の場合に限られ、実際のガス絶縁機器で使用される0.4~0.6MPaといった高ガス圧領域では絶縁耐力はむしろ低下する。さらに、絶縁耐力の向上が初期電子の欠乏に起因することから、電極面積が格段に大きな実機器においては、絶縁耐力の上昇割合として、本実験の供試ギャップで得られた値(大気圧のSF₆に対して約1.6倍)以上は期待できない。したがって、ガスの絶縁耐力を高める目的で実用のガス絶縁機器にベーパミスト誘電体を適用することは、現状ではメリットが少ないと考えられる。大気圧程度のSF₆を主絶縁に使用するc-GIS(キュービクル形GIS)については、サージ性過電圧に対する絶縁信頼性の向上を目的として、相応のメリットが期待できる。

一方、不平等電界においては直流および交流電圧に対しても絶縁耐力が向上する可能性がある^{(5)(20)~(22)}。 この要因は電極の先端部にミストが凝集して電界電子放出を抑制する⁽⁵⁾、あるいは先端部の電界を緩和し たり、一種のバリアとして作用する^{(20)~(22)}ことなどが提案されているが、明確な根拠はない。ミストが電 極の突起部など、高電界部分に選択的に凝集、付着して部分放電を抑制するならば、ガス絶縁機器の絶縁 上の問題となるパーティクルの混入に対する対策になり得る。

ガス絶縁機器への適用に関しては絶縁耐力の向上だけではなく、冷却性能の向上を目指すことも有望で あると考えられる。Westinghouse社におけるベーパミスト誘電体に関する検討の当初の目的はガス絶縁変 圧器の絶縁・冷却媒体への適用⁽⁴¹⁾であった。この検討は現在は継続されておらず、その後、液体絶縁媒体に 比べて軽量化できるという特長を生かして、航空機搭載を目的とした高出力マイクロウェーブの発信・受信 セルの絶縁媒体への適用が考えられている⁽³¹⁾。ガス絶縁変圧器はわが国でも既に275kV級の電力用機器が 実用段階にあり⁽³⁰⁾、防災上の理由により油絶縁からの脱却が進められている現状では、今後台数が増加す ることが予想される。現在、大容量機器では冷却効果を高めるために液体フロンを散布するなどの方法が とられているが、絶縁・冷却媒体として液滴混合ガスを適用する道が開けるかもしれない。

ガス絶縁機器以外への適用としては、パルスパワー機器への適用が有望である。パルスパワー機器では 過電圧の時間領域が極めて短いので、ベーパミスト誘電体の絶縁特性が有効に活用できる可能性がある。 ミストの発生に動力を要するという問題も、パルスパワーの発生に合わせてパルス的にミストを発生させ るなどの方策で軽減される可能性がある。今後、これらの分野での検討が進むことが期待される。

その他、直流フラッシオーバ電圧と電インパルスフラッシオーバ電圧の差が大きいこと、放電時間遅れ が極めて長いことなどを活用する方法などがあるかもしれない。また、紫外線など短波長光を遮蔽する効 果、放電に伴う衝撃音をミストにより緩和するといった効果の利用も考えられる。さらに、過飽和ベー パーを絶縁媒体に使用し、部分放電の発生によりミストを形成させるといった利用なども考えられる。こ れらを表4.5にまとめる。

活用するミストの効果	適用機器	メリット	問題点または制約条件
(and a set	ガス絶縁機器全般	パーティクル、電極表面粗さに起因す る絶縁性能の低下を軽減できる可能性 がある	不平等電界での絶縁特性 が十分に解明されていな い
絶縁耐力の向上	c-GIS	大気圧付近のガス圧力領域での急峻波 サージなどインバルス性過電圧に対す る絶縁耐力の向上、それによる機器の 縮小化	交流電圧の常規印加電界 を高く設定できない
	パルスパワー機器	バルス性の過電圧に対する高い絶縁耐 力の活用	対象となる過電圧の波形 や電極構成などの整理が 必要
	マイクロウェーブの 発信・受信セル ⁽³¹⁾	機器の縮小化・軽量化	検討例が少ない
冷却効果	ガス絶縁変圧器(41)	ミストが蒸発する際の気化熱が冷却効 果に寄与する	液体散布方式との優劣が 不明
放電エネルギーの吸収	遮断器(41)	アーク電流を抑制する可能性がある	検討例なし
放電時間遅れの増大	?	直流とインパルスでフラッシオーバ電 圧の差が大きいことの活用	?
紫外線の遮蔽・吸収	?	紫外線など短波長光の照射を減衰させ る	?
遮音効果	?	放電発生時の衝撃音を緩和する	?
過飽和性	?	放電の発生に伴うベーパの凝縮、ミス ト形成の活用	?

表4.5 ベーパミスト誘電体の実用分野

4.3.9 まとめ

ミストの混合によって初期電子の欠乏が生じる可能性に着目して、紫外線照射の効果、初期電子を十分 に供給した場合の絶縁特性を実験的に検討した。さらに、直流および交流電圧に対してはフラッシオーバ 電圧の上昇が生じない点を解明するために、直流と雷インパルスを重畳した場合の絶縁特性についても検 討した。これらの結果に基づき、ミストおよびベーパのそれぞれについて、フラッシオーバ電圧の上昇に 寄与する効果と、逆に異物としての効果を印加電圧波形との関連も含めて整理した。主要な結果を以下に まとめる。

(1)紫外線照射の効果

- (1-1)交流電圧を印加して測定した長時間V-t特性は右下りの特性となるが、照射によりフラッシオー バまでの時間(放電時間遅れ)が短くなる。放電時間遅れは照射時でも数秒~数分に達する場合があ る。
- (1-2) 雷インパルスフラッシオーバ電圧に関しては、照射の有無で50%フラッシオーバ電圧はさほど変わらないが、ばらつきは照射時の方が小さくなる。ベーバ混合時の雷インパルスフラッシオーバ電圧は

照射の有無よりも、時間の経過に伴って上昇する傾向がある。印加電界が約220kV/cmを越える条件 (主成分ガスがSF₆の場合、ガス圧力が約0.2MPaを越える領域)では、雷インパルスフラッシオーバ 電圧は照射の有無やガスの条件 (主成分ガス単体、ベーパ混合時、ミスト混合時)によらず、ほぼ同 一の値となる。

- (1-3) 照射によってベーパ混合時に極めて希薄なミストが自然発生することがある。この状態でフラッシ オーバ電圧を測定すると、直流および交流についてはベーパ混合時のフラッシオーバ電圧とほぼ同じ であったが、雷インパルスフラッシオーバ電圧は極めて大きなばらつき(非フラッシオーバが連続し た後、フラッシオーバが連続する現象)を示した。このような特性は初期電子の欠乏を示す。
- (1-4) 電極からの光電子電流は、電極を C_2Cl_4 のベーパを含む N_2 やSF₆中に放置した場合、あるいは C_2Cl_4 を直接電極に塗布した場合、もとの状態に比べて1~2桁低下する。このことは初期電子の供給 量が減少する要因となり得る。

(2) 初期電子を十分に供給した場合の絶縁特性

- (2-1) 初期電子を十分に供給することにより、電インパルスフラッシオーバ電圧の上昇がなくなり直流フ ラッシオーバ電圧と同程度となる。
- (2-2) 電子や負イオンが初期電子となり得る状態で存在する有効時間(寿命)はミストの混合により大幅 に短くなる。主成分ガスがN₂の場合、ミスト混合時の初期電子の寿命はベーパ混合時に比べて2桁 程度短くなる。主成分ガスがSF₄の場合も1桁程度短くなる。
- (2-3) 上記の結果から、ベーパミスト誘電体の雷インパルスフラッシオーバ電圧が上昇する直接の要因は 初期電子の欠乏といえる。

(3) 直流・雷インパルス重畳時の絶縁特性

- (3-1)約50kV/cm以上の直流電界を重畳印加した状態では、雷インパルスに対してもフラッシオーバ電圧 の上昇が生じなくなる。また、フラッシオーバ時間が短くなり、照射の効果がなくなる。この電界値 はガスの種類や圧力によらずほぼ一定である。
- (3-2) 上記の結果より、ミストの効果が消滅する要因は主成分ガスでなくミストそのものにあり、初期電子の欠乏にミストが関与していることが示唆される。
- (4) 直流および交流電界が印加されると、ギャップ間のミストに著しい擾乱が生じる。電極が垂直配置の場合は突出した液膜がギャップ間を橋絡する現象を直接観測した。ギャップ間のミストに作用する静電力は重力の作用よりも強いことから、水平配置でも同様の状況が考えられる。

(5) ベーパミスト誘電体の絶縁耐力向上要因

- (5-1) ベーパの効果として、それ自身絶縁耐力が高く主成分ガスの絶縁耐力を上昇させること、過飽和な 雰囲気を生じやすく負イオンがミスト形成の凝縮核になることで初期電子源としての機能を失うこ と、電極からの光電子放出を大幅に抑制することなどが指摘できる。
- (5-2)ミストの効果として、上記のベーパ効果をさらに高めること、初期電子の寿命がベーパ混合時より もさらに短くなることが指摘できる。

(5-3) 電インパルス印加時は初期電子欠乏による放電確率の低下がフラッシオーバ電圧の上昇に直接的に 寄与する。

(5-4) 直流および交流印加時はそれ自身が初期電子の供給に寄与するなど、ミストの異物としての効果が

現れる。この状態では雷インパルスを重畳印加してもフラッシオーバ電圧の上昇は生じない。

(6) ベーパミスト誘電体の実用分野として、パルスパワー機器の絶縁媒体への適用が有望である。

4.4 結 論

本章では、ベーパミスト誘電体の実用可能性を評価するうえで基礎となる絶縁特性と絶縁耐力の向上要 因を実験的に検討した。主成分ガスをN₂またはSF₆とし、C₂Cl₄をミストとして混合したベーパミスト 誘電体について、実用的規模の供試ギャップを使用し、0.025~0.4MPaという広範囲のガス圧力領域にわ たって、その絶縁特性を明らかにした。

直流および交流フラッシオーバ電圧は、ミストを混合しても主成分ガスとベーバの混合で決まる値以上 には上昇しない。すなわち、ミストの効果はほとんど現れない。これは、直流および交流電界の印加によ り、ミストに著しい擾乱が生じるためである。ただし、放電時間遅れが著しく長くなるので、交流電圧印 加時で電圧上昇速度が速い場合などは、フラッシオーバ電圧の上昇が観測される場合がある。

一方、電インパルス印加時はミストの混合により、ベーパだけを混合した場合よりもフラッシオーバ電 圧が上昇する。この上昇割合はガス圧が低い場合ほど大きい。電インパルスフラッシオーバ電圧が上昇す る直接の要因は初期電子の欠乏による放電確率の低下である。初期電子の欠乏はミストの混合により、初 期電子源となる電子や負イオンが短時間のうちにその機能を失うこと、および電極からの光電子放出が抑 制されることによってもたらされる。

参考文献

- D.R. James, L.G. Christophorou & R.A. Mathis: "New unitary and multicomponent gaseous dielectrics", Gaseous Dielectrics II, L.G. Christophorou, ed., Pergamon Press, New York, pp.115-125 (1980)
- (2) R.E. Wootton, S.J. Dale & N.J. Zimmerman: "Electric strength of some gases and gas mixtures", *ibid*, pp.137-146 (1980)
- (3) R.T. Harrold: "Vapor-mist dielectrics", 1981 Annual Report of the Conference on Electrical Insulation and Dielectric Phenomena, pp.360-369 (1981)
- (4) R.T. Harrold: "Physical aspects of vapor-mist dielectrics", 1982 IEEE Industry Applications Society Conference, San Francisco, CA, pp.1172-1178 (1982)
- (5) R.T. Harrold: "Partial discharge suppression in vapor-mist dielectrics", 1984 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Clayton, DE, pp.21-24 (1984)
- (6) 宮本, 金子, 下妻, 田頭: "ベーパーミスト絶縁の研究(I)", 昭和60年電気関係学会北海道支部連合大会, No.213 (1985)

(7) 宮本, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(II)", 昭和61年応用物理学会北海道支部大会, B25 (1986)

(8) 宮本, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(N)", 昭和61年電気学会全国大会, 178 (1986)

(9) 宮本, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(V)", 電気学会放電研究会資料, ED-86-68 (1986)

- (10) H. Tagashira, Y. Miyamoto, Y. Kaneko, M. Shimozuma & T. Sato: "Breakdown voltage measurement of some vapor-mist dielectrics", 5th Int. Symp. on Gaseous Dielectrics, Knoxville, Tennessee, U.S.A. (1987)
- (11) 高橋, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(X)", 昭和63年電気学会全国大会, 105 (1988)
- (12) 高橋, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(XIII)", 平成元年電気学会全国大会, 143 (1989)
- (13) 高橋, 金子, 下妻, 佐藤, 田頭: "ベーパーミスト絶縁の研究(XIV)", 電気学会放電研究会資料, ED-89-58(1989)
- (14)八島,藤波,宅間: "液滴混合ガス (N₂+C₂Cl₄)の準平等電界ギャップにおける絶縁破壊電圧特性",昭和
 62年電気学会全国大会,177 (1987)
- (15) 八島,藤波,宅間: "液滴混合ガスの絶縁特性",電力中央研究所報告, T87030 (1988)
- (16) 八島, 藤波, 宅間: "液滴混合ガス (SF₆+C₂Cl₄)の準平等電界ギャップにおける雷インパルスフラッシオーバ特性", 昭和63年電気学会全国大会, 103 (1988)
- (17)八島,藤波,宅間: "液滴混合ガスの絶縁耐力向上要因の検討",電力中央研究所報告, T88040 (1989)
- (18) M. Yashima, H. Fujinami & T. Takuma: "Effect of carbon-chloride mist on flashover characteristics of nitrogen and SF₆ under nearly uniform fields", 6th Int. Symp. on High Voltage Eng., 49.10, New Orleans, Louisiana (1989)
- (19) M. Yashima, H. Fujinami & T. Takuma: "Breakdown characteristics of gases mixed with tetrachloroethylene mist under nearly uniform fields", IEEE Trans. on Electrical Insulation, Vol.EI-25, No.2, pp.371-379 (1990)
- (20) 仲西, 花崎, 大寺: "C, Cl, ベイパーミスト誘電体の絶縁破壊特性", 昭和62年電気学会全国大会, 175 (1987)
- (21) 仲西, 井波: "ベイパーミスト誘電体の交流・直流破壊特性", 昭和63年電気学会全国大会, 104 (1988)
- (22) 仲西, 井波: "ベイパーミスト誘電体の交流・直流絶縁破壊特性", 電気学会放電研究会資料, ED-88-54 (1988)
- (23) K. Nakanishi, K. Inami & Y. Shibuya: "Breakdown characteristics of C₂Cl₃F₃ vapor-mist dielectrics", IX th Int. Conf. on Gas Discharge and Their Applications, Venezia, pp.19-23 (1988)
- (24) 矢島, 曽禰, 光井: "ベーパーミストにおける過飽和蒸気の影響", 昭和63年電気学会全国大会, 106 (1988)
- (25) 平林, 曽禰, 光井: "ベーパーミスト形成の破壊電圧に与える影響", 電気学会放電研究会資料, ED-88-53 (1988)
- (26) 矢島, 曽禰, 光井: "交流電圧におけるベーパーミストの効果", 電気学会放電研究会資料, ED-89-44 (1989)
- (27) 曽欄, 矢島, 田畑, 光井: "各種ベーパーミスト材料の効果", 電気学会放電研究会資料, ED-89-45 (1989)
- (28) 矢島, 飯島, 曽禰, 光井: "各種気体のベーパーミスト効果", 電気学会放電研究会資料, ED-89-60 (1989)
- (29) Final Report EPRI Contract EL-302: "Gas insulated fluidized bed transformer" (1977)
- (30) Y. Harumoto, Y. Kabayama, Y. Kuroda, Y. Yoshida, H. Kan, Y. Miura, E. Tamaki & T. Hakata: "Development of

275kV EHV class gas-insulated power transformer", IEEE Trans. on Power Apparatus and Systems, Vol.PAS-104, No.9, pp.2501-2507 (1985)

(31) R.T. Harrold: "Radar frequency and transient electrical breakdown in vapor-mist dielectrics", 1987 Annual

Report of the Conference on Electrical Insulation and Dielectric Phenomena, pp.479-491 (1987)

(32)(社)日本化学会: "化学便覧応用編", 丸善(1980)

(33) ダイキン工業: "ダイフロンガスハンドブックー冷媒編-"(1984)

(34)住友スリーエム(株)資料: "フロリナート"

(35)(社)日本化学会: "化学便覧基礎編 II", 丸善, p.111 (1984)

- (36) 御所: "ギャップの分割による耐圧の上昇", 昭和62年電気学会全国大会, 158 (1987)
- (37)野口, 堀井: "高気圧窒素中の交流破壊電圧と統計的時間遅れ", 電気学会雑誌, Vol.87-12, No.951, p.2477-2484 (1967)

(38) 御所, 佐伯: "大気中誘電体表面からの電子放出", 放電研究, No.119, pp.9-12 (1988)

(39) A. Pedersen: "Criteria for spark breakdown in sulfur hexafluoride", IEEE Trans. on Power Apparatus and Systems, Vol.PAS-89, No.8, pp.2043-2048 (1970)

(40) 電気学会: "放電ハンドブック", p.26 (1975)

(41) R.T. Harrold: "Ultrasonic fluid-atomizing cooled power transformer", U.S. Patent, No.4350838 (1982)