
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Studies on Communication Strategies in
Cooperative Search

楢崎, 修二

https://doi.org/10.11501/3111011

出版情報：九州大学, 1995, 博士（工学）, 論文博士
バージョン：
権利関係：

Chapter 4

Evaluation and Discussion

In this chapter, we evaluatf' two strategies through simulations using Trav ling Salt-sman Prob­

lem (TSP) as an examplr of a search problem. Under varying conmmuicatiou costs, hot.h

strategies show good performance .. Vve also discuss the adaptability and ext<'ntiouality of our

strategies.

4.1 Traveling Salesman Problem as a Cooperative Search

We mueasure the quality of the strategies through simulations using the TmvPling Salf'stnan

Problem (TSP). TSP wa'3 defined by A. J. Hoffman aud P. 'iVolfe in p. 2 of [LLAUI\:S 5] as:

The TSP for a graph with specified edge lengths is the probl<' l ll of fillCliug a Ha.mil­

tonian cycle of shortest length.

A Hamiltonian cycle is a cycle that contains all the verticrs of thr graph exactly oJJC<'. TSP is

a well-known NP-hard problem.

We implemented the range control strategi s on both fiat spatial structur<'s and hi(•ra.rchica.l

ones, the frequency control strategy and a fixed strategy for comparison. And srarch algorithm

we used is the bran c h-and-bound method on search agents that run in parallel. They excha ug

the cost of the current best path as a threshold value. Since the' quality of the' thrrshold

increases monotonously, merging some pieces of information (threshold) mrans only sdrcting

the best one among them. It relieves the expectation cost. The pseudo-coded algorithm is thf'

following:

53

54 Evaluation and Di cu sion

partial path(subproblem)

fetch

searching agent

notify

Figure 4.1: structure of TSP system

put initial state in global bag
do in parallel {

}

while (global bag is not empty) {

}

pick up a node from global bag that is better than local threshold

expand it and return new nodes to global hag

if (a new node is better than threshold)
update local threshold and multic a st it

update history

report the best path

Italic statements in the code is for cooperation.

In this simulation, the number of cities is 10 and the length of histories is 10. h<' systrm

consists of 100 ag nts. In this case, the threshold updates ovrr 200 timrs. Aft<•r <'ach rxpaudiug

node, the difference between the value of current threshold and th<' one heforr thr <'Xpausiou

is stored in the history memory of an agent. Since the history holds the rrvisiou of thr<'shold,

we can calculate the expected values of threshold that other agents get most rer<'ntly. Thus

a Monte Carlo simulation on the history gives the agent the expected b st value among n

4.2. Results of Simulations 55

agent . At en'r.r step . agt'nt: �drct a commuuicatiou strnctnrr. iun' tlH' simulator modd!->

asynchronous network , the rang(' control stratrgy on hierarchical structures r cqnirt's som<' st<'ps

of communication in order to changr thr clu:tcr sizE'. If the probability of information updatrs

is unifornwd distribution, thr expectation formula 3.6 in the pl-e,·ious chapter can he used

instead of the �Ionte Carlo method. ·vrr ·will dcsrri l)(' the result of a comparisou bdw<'<'n

formula 3.6 and the :\Ionte Carlo simulation.

Here we show some propcrtirs of TSP. Figure 4.2 shows tlw distribution of answers in right

city's TSP. Its range is large and the average i two time worsr than th(' optimal ansWl'r. Figur<'

4.3 shows a trace of the renewal of threshold iu solving by a single agent. The value of n'It<'waJ

is almost random. \Ale can rxpert the assumption that renewals arc uuifonuly distributed 1s

not bad e. timation.

4.2 Results of Simulations

Our simulator was build on Common Lisp. Exactly speaking, vV<' usr CLOS / MOP's featttr<'S.

Each agent is implemented a<; an instance of a class. Its ddail. will be described in the ll('Xt

chapter. Each agent runs iu round robin. Dispatch granularity is thr same <:ls a maiu mrthod.

Communications in a stage occur simultaneously at the (•ucl of the stage. �Then an ap;C'll t

resumes, it checks its queue for received packets. Thus all nH'ssag<'s ar recrivcd th<' ll<'xt

stage of the sending stage. Every range control st.rategys cau chaug<' thr commuuicatiou rang<·

(cluster size) in ±2 at each tep. Thry evaluate the utility of communication using t 11<' Jiv<'

points: not change, increment by one or two, and decrenH'Ht by one or two. lu· strat(•gy

selects best one out of them. Though this process can not select th('])('st siz<> at ouc(', this

implementation avoids oscillation. Figure 4.4 shows a sample of thr rhang<'s of tlH' dust<'r

size. We fixed the optimal size to 10. But at the first step, all dustrr siz('s arc' ou<': <'etch

agent belongs to a cluster. They must change their clu tcr sizes to th(' optimal on<'s. Though

some clusters achieve the optimal size quickly, in general, our strurt nrC'-cha.ugiug protocol that

is mentioned at the previous chpater requires a long time for this transition. \VP C'xp c •ct tlt

changes of the optimal size in real problem solving is small in a short pPriod.

Through all experimeuts, we ignore the cost of getting subproblrms from thr global bag.

56

4.2.1

Evaluation and Di cussion

350

300

250

(/)
200

c
:::l
0
u

150

100

50

o L.����--�---L---L--�--�--�L-�
250 300 350 400 450 500

path length
550 600 650

Figure 4.2: distribution of all clistaHres in a TSP

700

The number of cities is 8. Thus the number of possible solutions is ! = 40320.

20

15

(/)

c
:::l

8 10

5
0 0

0 0

0 0 0 0

0 0 0 0

0 L_ ____ L_ ____ �----�-----L-----L----�----�----�

0 5 10 15 20 25 30 35 40
increament value of threshold

Figure 4.3: distribution of the renewal value's

spatial connectivity control strategy

First, we examine the frequency control strategy. As we descrilwd in the previous chapt<'r,

there are three . u b trategies:

4.2. Results of Simulations

po ibility
Optimal size: 1 0

0.4 .-----,-----.,-----.-----,-----.------r----,

0.35

0.3

0.25

2 4 6 8
cluster size

10

Figure 4.4: changes of clusters' size

• fixed in fiat structures

• fixed in clustered structures

• changing spatial structures during execution

stepS ­

step 10 ---­

step 15

step 30
step 45 ---

12 14

57

Here we examme all three strategies. The first two strat gics o11ly cbaug<' tlH' llllllll><'r of

receivers. La t one ha. a threshold that is the trigger to change the . patia.l struct nn'. Iu

this examinations, we gin• the threshold a priori. If an C'Xpected commmtication rang<' is

smaller than the threshold. agents apt to use fiat structures. OthrnvisC', agruts attrmpt to liS<'

cluster structures. Exactly speaking. in order to avoid a p('rturbation lwtwrcu two strnctnrC's,

our implementation use a x threshold for the trigger t o transit from fiat to clust<'r<•d, and

1/a x threshold for the reverse transition. We use 4.0 as the threshold and 0. 1 a.'i n.

Results are shown iu Figure 4.5,4.8, and 4.9. They show that the stratc'gi<'s achiC'VC' good

performance against affected communication costs. The data arc av<'rages of 10 "' 100 <'xpc·ri-

ments.

Figure ?? and 4. 7 compare the two estimation methods. Formula 3.6 cou ld achirvr as good

performance as t he 11onte Carlo method in TSP.

58 Evaluation and Discus ion

The communication cost function iu Ffigurr -L) an' simple ones. Thr ones used in Figure

4.8 non linear functious. This non-linearity i- introduced to imitatr thr cong<'stiou ou udwork.

In Figure 4.9 that shows thr traces of thr sizr of thr rangr with thr coiunmuication cost at

Figure 4.8 (a). thr solicl linr shows thr range control strategy 011 fiat structures. th<' da!--.h<'d linr

shows the optimal size on hierarchical structures. and the clottccl linr is th(� r('al siz<' of clust<'rs

on hierarchical structures. Strictly speaking. thr commlmication cost us<'d in Figun' -!.9 (h) is

different from the one in Figurr 4.9 (a). Thr cost function hard})· affrcts t hr t<'n<i<'uc_r of t hr

range change.

4.2. Results of Simulations 59

(A) communication co t/computation cost = O.Ol.r (B) O.OOl.r

�

Q)

. .§

1200r-�--.------.------.------.----�.-----, 500

1100

1000

900

BOO

700

600

500

400

300
0 10

400

350

300

250

200
0 10

20 30 40
initial size of range

(C) O.OOOl.r

50

cluster­
cluster at 4 ······

flat ·
fixed --

//_/·
//

/
- � ·.: . . ::·.:.:···

Q)

.§

60

Q)

-�

450 I

400

350

300

250

200
0 10

500

450

400

·-·

350

300

20 30 40
initial size of range

(D) O.llog(.r)

_ . . . -· ·

.. . . -- ······ ···

clsO­
cls4 ·

flat
t1xed

50

clsO­
flat ···--·

fixed

250 L---L-__ L_ __ L_ __ L_ __ L_ __ �--�--�--��
20

Q)

§

30 40
initial size of range

400

380

360

340

320

300

280

260

240

220
0

50 60

(E) eO.OOOl(x-l) _ 1

10 15 20
initial size of range

0 10 15 20 25 30 35 40 45 50
initial size of range

clsO­
flat ······

fixed

25 30

Figure 4.5: results of spatial strategiE's(l)

The average time of a single agent system is 21501. Thus the region under 215 meaus

superlinear.

60

60

Ql

.§

Ql

E

Evaluation and Discu sion

on fiat structures
300 .-----�-----r----�------.-----�-----r-----,

280

260

240 \,/

220

___ ,

cluster: Monte Carlo -

cluster: nl(n+ 1) ------

200 L_ ____ � ____ _L ____ _J ______ L_ ____ �-----L----�

0 5 10 15 20
initial size of range

on hierarchical structurf's

25 30 35

300 .-----�-----r-----.------.-----�-----r-----.

280

260

240

220

·-

·-

flat: Monte Carlo -
flat: nl(n+ 1) -----·

200 L-----�-----L--__ _J ______ L_ ____ �-----L----�

0 5 10 15 20
initial size of range

25 30 35

Figure 4.6: difference of Monte Carlo simulation and n/(n + 1) <'stimation

communication cost/computation cost is O.OOOl:r

4.2. Results of Simulations

1200

1100

1000

900

800
Ql

.§ 700

600
/��'V,

500 ,., /

400

300 0 5

650

600

550

500
Ql

.§
450

400

350

300 0 5

.. --�.-.. --_

10

on fiat strncturC's

,-

cluster: Monte Car1o �- -'
cluster: nl(n+ 1}/,,<-' ·

_

__
__

//_./_.�
--/

----··

__ // ___ ..
.. -

-

-
--

-

15 20 25 30 35
initial size of range

40 45 50

on hierarchical 'tructures

10 15 20 25
initial size of range

flat: Monte Car1o -
flat: nl(n+ 1) ----··

30 35 40

Figure 4.7: difference of 1onte Carlo .'imulation and n /(n + 1) <'stimation(2)

communication cost/computation cost is O.Ol:r

61

62

400

380

360

340

320

300

280

260

240

220

Evaluation and Discus ion

0.01 + O.OOOl.r + 0.0001(0.02.1')2 0.01 + O.OOOOl.r + 0.0001(0.02.rf
400

380

360

340

320

300

__ -···"'· 280

__

. -·· --·· ... ·· 260 --�------ __
-··· ·- . . . 240

220
10 20 30 40 50 60

0.1 + O.OOOLr + 0.0001(0.02.r)2
400rr-----.-----,----.-----.-----.----.--.

380

360

340

320

300

280 .

260 ·--... ··-.,�-:--
--

\\ ________ __ ·· ···· · ··· · · · · · · ··

240

-

--

220U-----�----L---�-----L----�----��
10 20 30 40 50 60

------- _,..,-·
10 20 30 40

No strategy (fixed size)
ou fiat trnctnrc
on hierarchical structure

Figure 4.8: results of spatial strategies(2)

50

45

40

35

30
(!)
Ol
1:::
" 25 1-<

20

15

10

0
0 50 100 150 200 250

step

changes of the communication range

Figure 4. 9: results of spatial strategies(3)

50 60

4.2. Results of Simulation

10

(.-\) 011 dnst<'rrd structnrC's

· · · · · ...

(B) 011 two structurrs

aehlvement rate -
number of packet ---·

commumcat1on range
cluster srze

besllhreshold/1 000 - - -
wO<s11hreshold/1 000 - - -

Figure 4.10: traces of the s1ze of thr raugr

63

64 Evaluation and Discussion

4.2.2 frequency control strategy

The second category of strategies is the frcqurncy control strategy. Our curr<'ut irupl<'-

mentation is basC'd on the manag<"r-work<'r model aud differrnt from a strudnr<' for thr ranp;r

Q.l
E

·;:::;

Cii
§

en
(j)
ro
0

:0
"S
E
c
Q.l
Q.l

�
Q.l

.0

ca
>

Cii
.�

300

290

280

270

260

250

240

230

220

210
5

25

20

15

10

5

10 15

controlled(cost= 0.1)
fixed!cost = 0.1l

controlled cost = 1 .0
fixed cost = 1 .0

20 25
initial interval

(a) execution time

cost= 2.0
cost= 1.0
cost= 0.5
cost= 0.1

30

0 L---�------L-----�----�------L-----�----�

5 1 0 15 20 25 30 35
phase: interval between multicasts

(b) changes of the broadcast frequency

Figure 4.11: r sult s of frequency strategy (l)
The cost of communication is shown as the ratio compared with the compntatiou cost.

'Phase· is the local computation step betvv en two broadcasts.

4.2. Results of Simulations

300 ,-----,------,-------.------.-------r------.

290

280

270

� 260
:.::::;
cu

:§ 250

240

230

220

controlled(cost= 0.1)
fixed(cost = 0.1)

210 �----�----�------�------�------�----�

Q)
E

·�

5 10 15 20
initial interval

25 30

300 .-�-.-------.------.------.------�----�

290

280

270

260

250

240

230

220

' .. ,,
',,

' ,
........

......... ,
....
.............

............................... _

controlled(cost = 1 .0)
fixed(cost = 1.0)

210 �----�----�------�------�------�----�
5 10 15 20

initial interval
25

Figure 4.12: results of frequency strat<'gy(2)

30

65

control strategy in which agents are identical in the initial state. Ouly OIH' mauager drtrr-

mines the frequency of mulitcast based on the result of its local computation. If it decidPs that

it is a time to exchange local knowledge, it multicasts a request for exchanging informatiou.

Receivers send back their knowledge to the manager. Then the manager multicasts tlH· best

knowledge of the received pieces. In this three- phase communi ation, every agrnt should stop

local computation.

Most parameters for experiments for the frequency control strategy is the same as th<· ours

66 Evaluation and Di cu sion

in the experiment. for :patial connC'ctiYity control straJt'gy. Th<' number of agr11ts is 100: om'

manager and 99 workers. Figure -!. 1 1. -!. 12 is th<' rr ·ults.

4.2.3 results

The propertie. WC' found arc ·ummarizccl below :

1. Changing the rang<' and the frequC'ncy during the <'X<'cntion is usdul. Tlw initial raug<'

hardly affects tlH' performance' in both fiat and hierarchical strudurrs. As Figure -!.10

shmvs, there are thrC'e stages from the view of the size of rang<'s on both structnrcs. Iu

the first stage (at 0 rv 20 step) and the last . tage (over about 150 step) the COlllllllllli­

cation range is relatively small. This result is dC'rin'cl from th<' uaturc of tltr srarchiug

process. At the initial stage, for no agC'nt finds a new threshold, tlt<' strategy r<'clttn's

the communication range. In the middle stage (at 20,....., 1GO step) wherC' the distributiou

of agents' information becomes large, the range becomes very large . Iu particular , the

strategy on hierarchical ·tructures changes sharply, b<'rausr an informatiou roll< ctor of

a cluster controls the size of the cluster. The best answer was often found at 0 ,....., 150

step. At the last stage after finding and broadcasting the best answer, updatillg tlH'

threshold never occurs aucl no more communication is needNl. In onclusion, t lH' more

frequently information is renewed, th<' more frequeu tly or morr widdy idc'ntical ag<'nts

communicate. But excessively frequent updates decreasr thr umnlwr of commnnication.

2. In the frequency control strategy, the frequ ncy of commuuication is aff<'Ct<'d l>y th<'

communication (broadca: t) cost. Similarly, the size of commtmication raug<' d<'crNt.s<'s if

its cost is high where the utility of communication becomes low.

3. There is no clear difference between fiat structurcs and hierarchical structurcs. Th<·

reason is the peak size of ranges i. not . o large in this simulat.iou and chaugiug dust<>r

size requires some other communication ou hierarchical stratcgic>s . This rr luc s th<> utrrit

of hierarchical structures. However, experiments with other cost functions showc'd largr

communication cost. make the difference clear. For example, in Figurr 4.3 (), (B) ;.mel

(C), the difference becomes small in its order. Generally, th structur chauging st.rat gy

is better than the strategy on cluster structures.

4.3. Discussion 67

4. A communication range becomes larger after the cliffcrcnn' hctwt'l'll t lw best knowlC'clge

and the wor t knowlrclgc in tinw brcom(' large. A history has Pllongh sensitiYity. This

result corresponds to thr rrsulr that wr mrutionecl in thr prrYious chaptrr.

5. The best t hresholcl spread, quickly whrn it is found. Somctim<'s s<'arch t<'rmina t<'s lH'fon·

evt=-ry agent knows it. But U.'ually most agruts know it. inn'. compan'd to Hat structnr<'s.

duster structure, apt to make dosrcl groups in rach dust<'rs, <'Xpausion sp<'<'d t <'IHls to

be slo\\rer than the onr on flat structures.

The properties described above are held in other communication cost functions from O(log(11))

to 0(exp(n)). They hardly depend on a cost function if it innras<'s monotonously. In coucln­

sion, programmers need not care about thr communication topology hy using tlw stratq?,i<'s.

4.3 Discussion

4.3.1 applicability of the strategies

In this section, we discuss the applicability of these strategi('s to other firlcls and ways of

implementing these strategies. Related works are also described.

another search algorithms

First, we think more about the branch-and-bound method. s we d<'scrilwcl, our irupl<·nt<'llta­

tion ignores the communication cost for gatllE'ring subproblems into a blackboard. \iV<' jttstify

this assumption as we can implement it as distributed memory rasily. But if so, we shonld

deal with the local starvation of thr problem. Of course, any agrnt can multica.st or sc'ncl a

request to neighbors when the local bag is empty. But agent must wait for its r<'sults. If w< do

not want to make agents idle, agents sent a requrst of subproblems to othrr a.grnts brfor<' it

becomes really idle. Thus we had better build a ooperativr communication stratt•gy Lo require'

subproblems. A local history about the consumption rate will bf a help. Thrn we can use

our strategy, where it control the flow of subproblems instead of a threshold. Furthrrmor(', by

using a history of request from other agents, it would behav mor(' cooperatively.

68 Evaluation and Discussion

Second topic i.· 011 A· �rarch. The current shortest path as a thn'slwld in T P is a kind

of information that is acquired during execution. The earch algorithm usrd h<'H' clo<'s Hot usc

any e timation heuristic.-. In a general casr. wr an usc an rstimatrd valnr a� t ll<' llH'asnrr for

modeling execution status. Con idcring A· s('arch [Pea8-l) . thr qnality of a uod<' (snhprobkm) is

measured by an evaluation function. Thus w<' can use the strategies for ('XC hanging su hprohkms

with the relations in Table 4.1.

Another cooperative searching metho l is bidirectional srarch [Poh/1, Ish93h) . It is .·<·arch

from an initial state and a goal state simultaneously. Two srarch processes look for a pat b that

they can meet. Locations of each agent in the search ·pace will help for cooperation. Thus

by giving a heuristic function like the procrecling rate, two agcn ts brhavr iu a cooprra.tivc

manner; for example, agent require les computational timr \vlH'll it has not proc<'<'d<·d.

history will provide a basis for cooperation. Here, the cooperativr stratrgy is not for commu-

nication. It changes an agrnt'. behavior itself. But if the communicatiou cost is very high, thr

communication strategy that can forecast other agents ' states will be useful agaiu.

out of search problem

Though we model only cooperative search problem, the co1mrctivity changing stratrgies are

applicable to a lot of areas. First \ve concern with the contmct net]JTotocol [DS]. 'ont ract

net protocol is a method for distributiug subproblems to appropriat.r agrnts. ach assigtllll<'lll

takes three phase communication among agents: issuing a task auuouncrmrttt, submitting a

bid,and making an award. A merit of this method is fairness of th<' r<'stdt. Thrsr llH'ssag<' rtr<'

broadcasted. But with a history of replies, agents omit ovcrsprcdiug of messag<'S. g<'nts us<'

multicast instead of broadcast.

shared object management Second example 1s shared ohjrct manag<'mcut. Exchcwging

threhsold can be thought of a.s algorithms for managing the consistency of thrrslwld that

application

measure

exchang d data

Table 4.1: comparison of search algorithms

branch-and- bound

update rate of thre ·hold

threshold

A"' search

update rate of stimatrd valtH'

good unexpaudcd subprobl('lll

4.3. Discussion 69

i shared weakly among a ,.�nt.·. In addition, the idea of using a local histor�· as a. modd of au

environment can manage shared objC'cts with strong consist('nc�·. l\mall�-. strongl�· consist<'at

objects are used much more than weak consist<'nt objC'cts 011 clistribntr<l syst<'lllS. Thus tlw pro­

grammers' burden of keC'ping coherency rffrctiYely will br rrlir,·r<l iu a number of application

areas.

In this rase. the measure of execution is the ratio of local access ancl n•motC' ac<'<'ss. \'alnrs

Exchanged among processors arr sharrcl objrrts themsrln's. If thr rurr<'nt cost for r<'mot<'

access is higher than the expected cost for managing coherency, a shan'd ohj<'ct should hr

duplicated and distributed. On the other hand. if it i low, thr copie. should br nH'rgcd to

reduce the cost in writing. If agents (copiC's of a. harrd objC'ct) know tll<' access ratio sntticirutly

with the access history, the ·trategir. would work well.

4.3.2 dealing with heterogeneity

Our approache assumes the homogeneity of agC'nts. HoweYrr, thr history-ha:;ecl expectatiou

mechanism could apply to not only homogeneous enYironmruts but also ll<'tnog<>nrons ours.

The history of the revision of information at other agents in current implementations is not

s parated from its own history. Ageut · exchange tlw informatiou with rach ot.lwr rUJd npdatr

their histories with the received information. But in heterogC'urons network, this disp<'rsiou

becomes an important problem. An implcmentatiou and thr eYaluation of stratrgirs has c •d 011

separated histories are of a future plan. Such an implrmenta.tion will also work on bd<'rog<'JH'otts

agents.

Another important heterogeneity is iu decision making: diversity of actious of ag<'n ts. If

heuristics can find only the most promised search direction , the best path in timr clo s 11ot

always lead to a way to the best answer. Thus for reducing tlw risk, divrrsity of srarch dirC'ct i cms

in some degrees i required. Lesser called such a s-arch strategy that induclcs this diY<'rsity

control as cooperative control [Les91] . We think t mpora.l diversity of the S<'lrction of t.ll<' ll<'Xt

problems can be acquired from probabilisti · way based ou the local history, that mak<·s rUl

appropriate distribution of all agent. in the system in a search spac . But furthn study is

required for this direction.

70 Evaluation and Di cussion

Last heterogenrit�· is ahoont ag('nts goals. Siner \\'C' focus on PS in which thr goal is

shared among all agents. situation like Pri.'onrr' · dilemma [.·<' �] clo not tak<' plaC<. Tint a

kind of fluctuation or oscillation of decision making may take plan'. his prohl<'lll is discnssPd

in [h:HH89]. Since our nwthods. howrYer, usc historirs. we do not think drastic loss of th<'

performance happens that is reported [I�HH 9].

Finally we summarize the limitations of tlw proposed sclH'lllr ag<:-tin:

1. Communication costs mu. t be known before execution. It wonlcl be difficult ou a syst<'lll

that has a hierarchical topology or a large-scale open system.

2. The strategies as. ume homogeneity of agents. But we gaYe .'Olllc posiblr solutions to it

above.

4.4 Summary

• Through simulations of TSP, we have evaluated the quality of onr strategies. They showed

better result than fixed communication systems for a wide range of communication costs.

• A history is a good model of rxe ution status. There is no dear cliffrrrncr between the

monte Carlo imulation and formula 3.6. They estimate t.hC' probability of information

update well in the range control strategy.

• We discussed problems to apply our . trategies to other search algorithms or othrr appli­

cation domains. By proposing extension plans, W(' claimed that many of them will lH'

solved.

• We also discu sed some assumptions to use our strategiPs; the hetrrog< n ity of ag(•nts

and knowledge on cost functions.

Chapter 5

Separate Description of

Communication Strategies

5.1 Communication Strategies as Metalevel Computa­

tion

Our communication strategies change the behavior of an agent by using a history that is a

measure almost independent of a problem-level program. They arc i11voked whrn somr c haugcs

in agent local status are happen. And after fini. hing their job, thr control flow rcturus to the

invoking point in the problem-level program. This flow reminds us a mmal subroutiu<· ca.lls.

But since when to invoke communication strategies is defined in tltr contrxt of the strat<'gi<'S

themselves, the interpreter can know it. This means programnH'rs need not to writ<' proc<'dtLr<'

calls down in their problem-level programs. In other words, comnmnicaticm st ra t <'gi<'S call IH'

embedded into the semantics of reference and update of local variables in problem solving

programs. It is a metalevel computation.

Thus we think deciding communication structures should be a kind of computational r<'­

flection [MN88]. This means communication strategies can he• S<'parated from probl<'m-l<'V<'l

programs and be a metalevel description of program solving agents.

This separation approach has two merits:

1. Programming is divided into two independent subta..,ks: building communication strat -

gies and writing problem-solving codes. As a result, writing codes for communication

71

72 Separate Description of Conununication Strat gies

separation
,.-- -________________________ --_ ---�-_____ -------------Agent----_,
: I : I I I I I I

i problem solving : ' module

MOP I

I I ' --- ----------------�---------------- 1-------- ------·

��
p
)

gra�
>elect class for communication

strategy
Progranuner library for cooperative processing

Figure 5.1: separate description

strategies can be omitted from problem-solving programmers' task. It also mak<'s r<'using

the communication strategies ea.sy, if there is a gencralizfcl protocol h<'tW<'<'ll ag<'llt aHCl

strategy. Communication strategies can be stored in a library. In vV<•rnrr's words, W<'

can distinguish "system programmers" and "application programnwrs" with this fnuue-

work [Wer92] . As a t:esult, communication strategies and application programs can be

developed and tested independently.

2. Since the communication strategies are included in the semantics of a lauguag<', th<' st.ra.U '-

gies are invoked automatically when needed. For example, if a commnuicatioll �trat<'gy

is defined as metalevel computation of the assignment to a slot that holds information

to exchange, every modification of the slot invok<'s the strategy. V·/c' can omit ('Xplicit

invocation codes from problem-level program.

\1\le made such a system on an object-oriented language. Vve f'xplain this in the followin g

sections.

5.2. Implementation on CLOS Meta-Object Protocol

5.1.1 related works

73

Relation between agent programming and object-oriented prograuuniug laugnages lu-n·<' lH'<'ll

inve tigatecl by a lot of researchers [XT90] [Hew/7, �IIT90 , Y TH /. �I\\'Y91. Gas921>. Fll

FC91, EPT9-l]. �Io. t ag nt-orientecl languages are based on first-ord<>r modal logic. since

logic-based representation of specification ran infer the agents· nH'ntal �tat s likr hrlirf, d<'�irr

and intention in a uniform mauner, which select the ageut behaYiors. On th<' otiH'r band.

concurrent object-oriented languages with extensions for coopcratiou will lH' nsdnl <'SJ><'cially

for DPS. Since our focas on language is how to separate prohlellls and stratcgi<'S, w<' do not

intend to build a new language but build a programming style. But here W<' gin' a short

summary on relation between DPS and OOPL.

[MWY91] i. an approach to chang<' b<'haviors in a group with mctaleYrl computation. In

this system a group has a metalevel. This is different from dassira.l meta-object laugnagcs

in which an object has a meta-object. Consistency in the group can be held <'asily. On t h

other hand, it requires frequent communication between nodes. Thus we do not think that this

approach is rational in cooperative system on distributed sy. tems.

Some concurrent reflective OOPLs like [FB88, FC91] have been used for DPS. For exampl<>,

Ferver's Mering IV [FC91] is an example of object- oriented languages with mcta-lrvd cOlllJHl­

tation for cooperative computation. His focus is providing high leYcl commtutication primi tivc•s

to programmers and not providing adaptiYe cooperativr mrt hods based 011 local co111 J>ll tat ion.

But there was no clear separation between cooperative strategy aud usN applicat.ion pro�ra.m.

Some Object-oriented OS uses reflection for a method of loa.d-halauciug and proc<'ss mi­

gration [OIT93, Yok93] . But the facility is embedded iu OS and ca.u not usr tlH' s<'lllantics of

application program well. We think more strongly ·ombination brtween stratrgy am\ applica­

tion is required. Compiler 's ·upport is crucial.

5.2 Implementation on CLOS Meta-Object Protocol

Some object-oriented-programming l anguages have meta obje ts that repr<'sC'nt brhaviors of

objects. In particular, CLOS (Common Lisp Object System) [S+9o. l{ee89] has flexible in­

terface to meta level programming, which is known as CLOS MOP (Meta-Object Protocol)

74 Separate Description of Comn1uni ation Strategies

[EdRB9L Pae93b] . Thus we cleciclecl to build a DAJ platform with the stategies on CLO

In the next section, we gin' a short drscriptiou of CLO j:..IOP.

5.2.1 meta-object protocol

A merit of object oriented programming language.· (OOPL) is modularity of progra.Hlllling

components or objects. A definition of a data structurr and proc<'dlll'('S for it a.rr capsulPd

on a description block called a class. An instance of a class heltaYC'S as ddincd in its class.

Some OOPLs an control behaviors of a class it . elf, that includes ways to 111akc' an instanc<'.

delete an instance, control method dispatch, inherit super classes and so on. Thrs<' <'Xtrn­

sions are done by making class itself an instance of a class: a rnetnclass. Iu such la1 1 gnag<'s.

all classes have its metaclass. By letting all met ada ses ctccept same methods (called vro­

tocols), we can change the behavior. of instances of a class ea.sily. V\'e ra.u srlcct most ap­

propriate metadass for problem soh·ing. Since such an rxtensiou to a us<'r ckfinC'd d a.ss is

not modification of an exi. ting system but an addition of n<'w behaviors for a particular

class, it is safe and easy for programmer. . A group of research rs had proposed a prot ocol

for the CLOS class structure. It became a standard known a.s MetaObj ct Protocol (�IOP).

CLOS MOP provides a way to change the behavior to access to a slot, npclatr of it, maJ�('

a new instance of the cla.'>s and so ou. For exampl , lOP has bN'n used to emulat<· ot h<>r

inheritance/message-passing models (Dvorak's hybrid knowle lg<' r<'presrntation tool [B93]

and CLOVERS(ftp: I /swiss-ftp. ai. mit. edu/archi ve/ clovers/ clovers-design-notes. text))

and to build a persistent OOPL sy tem (for example , PCLOS [Pae93b], AllrgroSt.orr(a comnH'r-

cial product based on Alegro Common Lit>p), ITASCA ODBMS (ITASCS Syst<'ms Iuc.). 1sp

FAQ (http: I /www. cs. emu. edu: 8001/Web/Groups/ AI/html/faqs/lang/lisp/top. html) stun­

marizes more implementation.) .

Now the following is a summary of requirements for S<'parcttc drscriptiou of our com llllllli­

cation trategies.

1. Change the behaviors of ace ssjupdatc of a particular slot of a11 agrut. Our strat <'girs

store the history of renewal of a slot. The . tratcgi<'s that also iuclnd<· a procC'durr of

update the history should be invoked whenever the slot is updated. Or sonH' strat(gi<'s

5.2. Implementation on CLOS Meta-Object Protocol 75

shold be inYokecl when the �lot is accessed. This is a kind of cxt<'usion of the s<'Uiantir�

of th<' languag<'.

2. The invocation should be transparent for programm<'rs. Prograntm<'rs who writ<' prohl<'m-

solving program. should IH='Yer concern about commuuication stratq.;i.<'S ;-ts much as pos-

sible. T hey do not want to call any procedurrs for a stra.t<'gy rxpliritly.

3. Communication strategies can send and recein· some sorts of llH'ssap;t's. Th<' llH'ssa.g<'s

should be imrisible from problem-levc•l programs. And a. particula.r lllC'ssap;C' dispatch<'r nut

be invoked when a message is received. This dispatcher must coexist with th<' dispatcher

in problem-level program.

CLOS MOP proYide features to meet the e requirements. Thus we decide to impl<'llH'nt tlw

communication strategies with MOP. In the following ·ections, we explain our impknH'utation.

5.2.2 class structure

Figure 5.2 shows the class hierarchy in CLOS. It also includes our n<'w cla.-,srs for drsnibing

communication stratrgies. In CLOS, every object is eith('r our in CLOS cla.-,s hierachy or one

of a built-in type. all objects, eveu if t hey belong to a built-in data tYIW, arc su bda."is<'s of

the object T1• T's superclass is T itself. top class of CLOS rlass hicraclty is standard-object.

It defines the primitive behaviors of all instances. Doth of slots and mdhods tlH'IllS<'IV<'s ar<'

subclasses of standard-class.

agent-class and agent-meta-class

First we sho uld define a new meta class agent-meta-cla.ss for a specifier of class lwltavion;.

Its definition is as simple as listed below. Since slots holding information for commnnica.t.ion

strategies are stored in an instance of each strategy's clas: , agcnt-meta-da.<;s has no own slot.

It is used only for slot instantiation. With it, as a base class of usrrs' agrnt class, W<' cldiu<'

agent-class.

(defclass agent-m ta-dass ()

())

1 In the Lisp dialects, T means true usually.

76 Separate Description of Con11nunication Strat gies

t
CLOS MOP class structure

i
standard-object

standard-slot-definition standard-class standard-method

i
standard-effective-slot-definition

Our extention

subclass agent-meta-class

strate

I
use--

communication-strategy

sub;;>a::' �class

cooperation-eff ective-slot-class

spatial-control-strategy
\

use

user level program

agent-class

Figure 5.2: class hierarchy

(defclass agent-class () ; super class is T.

((receive-counter : accessor receive-counter :initform 0)

(send-counter :accessor :send-counter :initform 0)

(agent-id :accessor ageut-id :initarg agent-icl))

(:metaclass agent-meta-class))

temporal-control-strategy

agent-class has two methods for inter-agent communication. Thry upd at e thr above two

slots in agent-class.

(defmethod send ((self agent-class) (receiver/s object) ...)

(defmethod receive ((self agent-class) (message t)) .. .)

5.2. Implementation on CLOS Meta-Object Protocol 77

slot structure

Our strategie use a history of :lot renewal. It is a model of progrcun cx<'cntiou. inc<' W<' ;-tssnnH'

that a hi tory of the Yaluc renewal of a slot is used as the mr<-t.'mre of prog;ram <'X<'cution. th<'

slot object must hold the history of itself. Thus it is rational to usc ·u1 instanc<' a.-; a wrapp<'r

to hold them at the same time. All strategies haYe a comm011 int<'rfac<' (protocol): a pron'durc

in accessing the Yaluc. one in updating the Yalue, and our i11 rcceiYing mcssagrs from anoth<'r

agent. Thus we make each strategy a class. An abstract class: comrntt:n.imt-ion-.'itndeqy is on<'

of their superclasse .. It can be defined as follow

(defclass communication-strategy ()

((value) ; the wrapped ·value itself

(model) ; a history of value

(communication-cost) ; a function to estimate cornrn:unication to8t

))

(defgeneric ref-strategy ((clac;s communication-strategy) instance slot)

(defmethod ref-strategy ((da ·s communication-strategy) instance slot)

nil)

(defgeneric set-strategy ((class communication-strategy) instance slot)

(defmethod set-strategy ((class communication-strategy) i11stanc<' slot)

nil)

(defgeneric dispatcher ((dac;s communication-strategy) iustanc<' slot)

(defvar *out-of-local-computation-p* nil)

(defmethod eli pate her around ((class communication-strategy) i11st.ance slot)

(let ((*out-of-local-computation-p* t))

(call-next-method)))

Note that method ref-strategy is required to update the history of local cou1putation

that i stored in model slot. *out-of-local-cornputation-p* is a flag variablr that is ust�d to

distinguish the value from an another agent from one found locally.

specify metaclass-designator

78 Separate Description of Con1n1unication Strat gie

. . . .
. . .

instance str ct re ' u u . .

cooperation-effective-slot-definition

vector for slots

std-i nstance-sl ots

. -- . . -. . r-- .,
"· . . strategy object set-strategy ref-strtegy .

slot-definition-location
. .

. value
. model

vector for slots
.

- value -
. . .

standard-effective-slot-definition

Figure 5.3: slot structure

.

--

t

(strategy

All classes must have a mctadass that is either the samr metada�s of their supc•rdass<·s or a

valid metaclass. The generic function: validate-superclass checks its validu<•ss wh<'lH'\'<'r a

new class is defined. Thus we must add a method for our agent-mrtalrv 1-class.

(defmethod pcl::valiclate-. uperclass

((class agen t-mctalevel-class) (superclass pd::standard-class))

t)

With this method, we an define any agent classes as subcla ·s of standard-class. Thry

use cooperation-effective-slot-definition for specific slots.

5.2. Implementation on CLOS Meta-Object Protocol

add slot-access-using-class method

79

In CLOS, the most primitin' access/assign functions are slot-value-using-class all(l (setf

slot-value-using-class) 2 respectively. Other slot accrs ·ors use t hrm internally. h us, now

we must define two methods for accessing and updating a slot of agcut rlass. slot-value-using

-class dispatches with an argument: slot-definition. "C"sual dass llS<'s pel:: standard-effective

-slot-definition. \VE' add cooper at ion-standard-effective-slot-definition a.'> a sub-

class of pel:: standard -effective-slot-definition as followi11g.:1

(defclass cooperation-standard -effective-slot-definition

#+CMUCL(pd: :standard-effective-slot-definition) ; if thf' sy.c;tern L'i CMUCL

#-CMUCL(. ·tandarcl-effective-slot-dcfinition) : otherwise

The following method is added for cooperation-standard-slot-definition. It is invoked

during the class initialization process. In this case, a slot that has : cooperative-strategy

keyword parameter of a subela of agent-class uses cooperation-standard-slot-definition

as its descriptor.

(defmethod pcl::effective-slot-definition-dass

((class ageut.-metalevel-dass) initargs)

(if (member :cooperation-strategy ini targs)

(pel: :find-class 'cooperation-standard-effecti VC'-slo t-defiHi t iou)

(pel: :find-class 'pel:: standard-effective-slot -dcfiHi tiou)))

The main difference is that the stored value in a slot is wrapped by th(' stratq�y object.

whose definition is described below. The fir. t one is for value assigmneut.

(defmethod (etf pcl::slot-value-using-class)

((new-value t) (cla. s agent-metalevel-class)

object (slotd comm-stanclard-effective-slot-defiHitiou))

, assign the new-value to slotd of object in class

(let ((location (pel: :slot-definition-location slotd))

2 (setf slot-value-using-class) is a symbol whose name includes braces and a spac0.
3In CLOS/MOP ystem, there is another lot clt>finition class: standard-direct-slot-definition. Sinn' it

is parallel to standard-effective-slot-definition, we ignore it in this th sis.

80 Separate Description of Con1munication Strategies

(slot-in ·tance))

(cond ((typep (pd: :Vc instancr-ref (pel: :std-in. ta.ucc-slots ohj<'ct) locatiou)

'commnnicatiou-stratrgy)

(let* ((slot (prl::lfcinstancr-rrf (pel::. td-instancr-slots object) location)))

(upclatr-valuc slot nrw-valur) ; model (hisfoTy) is updated in uprlaff'-t'nltll/.('

(when *ont-of-local-compu tation-p*

(funcall (set-strategy ·lot) object slot-instance slotd))))

(t (setf slot-instanC('

(make-instance (stratcgy-da..<;s slotd)

:history (make-array (nH'mory-siz(' slotcl)

:iuitial-eknH'nt 0.0)

:value new-valur)))))

new-value)

The rest is for its reference.

(defmethod pcl::slot-value-using-class

((class agent-metalevel-class)

object

(slotd cooperation-effective-slot-definition))

(let* ((location (pcl::slot-definition-location .lotd))

(strategy-object ...)) :; same as the original method

(if (typep (pcl::%instance-rd (pcl::std-in. tancc-slots ohjt>ct) location)

'communication-strategy)

(progn (fun call (ref-strategy strategy-object) slot)

(value strategy-obje t))

;; signal unbound error

(pcl::slot-unbound class object (pcl::slot-definition-namc slotd)))))

unboundness checking

In the initialization steps in make-instance. a strategy instance is created as tlw valur of a slot.

This means the standard method of slot -boundp returns t even if it has not b(rn nsrd. Wr de-

fine the following method for communication-strategy-slot-class. It call slot-boundp-using-calss.

Thus we add new method as well as slot-value-using-class, which invokes slot-boundp for valnr

in the strateg-y object.

5.2. Implementation on CLOS Meta-Object Protocol 81

5.2.3 interface to programmer

Now we must proYide an interface to problrm-soh·ing programnHTs. At first we }H'OYid<' a tH'W

macro for class definition: de.fagent. Its task is adding :mctaclass option to class options and

add some slots. Its definition is the following.

(defmacro defagcnt (class-name uper-dass-list &optional slot-clefs &:rest rest)

� (defclass ,class-name

,(if (member 'agent-class suprr-dass-list)

super-da. -list

(cons 'agent-class super-class-list))

,slot-defs

,(Ql(cons '(:metaclass agent-meta-class) rest)))

Therefore the following form:

(defagent an-agent-class () ·

(...))

is expanded as:

(defclass an-agen t-ela. s (agen t-el ass)

(...)

(:metaclass agent-class))

defagent can hide the names of both the mctaclass and slots for communication st r a.t<'gi C's .

make-instance

In CLOS, making an instance of a particular class is performed by make-instance. sually

its arguments are for slot initialization.

Our communication strategies re gtire knowledge about a counmtniratiou cost. It dcp<'tJds

on each environment. Thus when making an agent, we must giv a cost function to tlH' a.g<'llt as

well. However arguments required to the function depend on a strategy. Furth<'rmorr, au ag<'nt

may use more than one strategies in our implementation. Thus wr nred a way to distiuguislt

cost functions. Our solution is using a unique keyword for make-instance. Thr k<'yworcl is

82 Separate Description of Con1n1unication Strategi s

built as a concatenation of ·cost-function· and tlH' nanH' of thr stratrgy class. lms if wr us('

spatial-control as a strategy for exchanging the Yalue in slot foo in nsN-cldii H ' cl da.o..;s: C,

and use temporal-control as a strategy for slot woo, its instaucr is crratrd hy:

(make-instance 'C

:communication-cost-for-:patial-control #'(lambda (nnm-of-packct) ...)

:communicatiou-cost-for-temporal-rontrol #'(lambda (fn'< p teuc�·) .. .)

These keyword parameters are processed at initialize-instance method d<'finrd for agent-class.

As we described earlier, the former lambda function is storrd into cost-function slot of thr

instance of clas spatial-control that is assigned to the slot: foo of the install<'('.

5.3 Applications

In this section, we investigate the applicability of the implementatiou by using two programs.

The first one is the TSP program that we used in Chapter 4. The later is shared object

management in distributed environments.

5.3.1 traveling salesman problem

With this framework, writing TSP program in a separated way is straightforward. Both thr

spatial connectivity control strategy and the frequency coutrol stratrgy should b<' invok<'d wll<'ll

a slot renewal is occurred. The structure of the history depeuds ou the strategy. Its <1<-fiuitiou

is included in the definition of strategy classes.

(defagent search-agent ()

((threshold ; slot definition

: et-strateg)' spatial-control)

.. .))

(defclass spatial-control (communication-strategy)

((range :accessor range :initform 0 :initarg :range : type fixnum)

(neighbor-list :accessor neighbor-list :initform nil)
(recommended-. ize :acce. sor recommended-:izc :initfonu 1

:initarg :recommended-size :type fixuum)))

5.3. Applications

(defmethod set-strategy ((strategy spatial-control) inst auce)

;; range slot holds the new optimal ranqr

(setq (range trategy) (s<.>lect-b<.>st-rang<' (model strat('gy)))

;; send the body slot

(send (make-instance 'spartial-control-message

:body (list (class-name instance)

(Ya.l ue . trat<'gy)))

(choose-receivers (range strategy) (ncighbor-list strateg:v))))

;; In the program that -uses searching-aqent,

(make-instance search-agE'nt

:communication-cost-for-spartial-strategy

#'cost-estimation-function)

(defmethod dispatcher ((cl� s spatial-control) slot instance messagr)

(if (spatial-con trol-cla.ss-message-p message)

(when (betterp (body message) instance)

;; -update-val-ue is an internal method for commtmication-stmtegy

(update-value class slot instancE' new-value))))

distinction of received data

83

In this program, a received threshold is assigned to t h local threshold slot. If W<' used

(setf threshold) for the a signment, a communication strategy would bc invokrd CHIC<' mort-'.

It would cause rep tition of communi ation. Though the loop, howevE'r, would b(' t<'rllliuatc·d

since the utility of communication clecreasE'd by the incrca.-,e of homogeneity of agrllts, if W<'

want to avoid the loop, we should provide a raw assignment mcthod. But th r<'n wal should

be a part of metalevel computation. Therefore receiving is not visibl<.> to the prohl<'m-l<'v<'l

program but a task of metalevel computation inYokecl by the dispatching proc<'ss at mda.kv<'l.

It will use a raw level assignment method that does not invoke any communicatiou strat<'gy,

which is called update-value in the above program.

84 Separate Description of Con1n1uni ation Strat gies

5.3.2 shared object n1anagement

shared object m.anagPment �lost clistributrcl programs use �harC'd objects amoug Jn·occss<'s.

They require strong consistency. Thi.' is the most importaut diff<'reuc< from thr<'shold in

the previou. example. From our point of view, thrrshold requirC's only W<'ak consist<'IH'y:

the con istency is rrquirecl for effective execution . Obj<'cts with stro11g cousistency nut be

made in two ways in distributed enYironments. First approach is using ·uirtu.al shared nu·nwry

[Li86, Lh89]. The object is accessed by its address in th<' sanw way as local objC'cts. Ill this

system, memory pages are shared by all nodes. A copy of each pa.gC' is loca.t cd whcr<' it is

acces eel. Thus a running program has locality in nH'mOr)· accC'ss, it r<'clucC's tlH' iut<'r-uod<'

communication cost..

The second approach is based on a distributed algorithm. Th<' object is impl<'IllC'nt<'d as

local object on each node. They are identical; they haYC' thC' s<-UllC' valtH'. If a r<'nC'wal is

required, by broadcasting notification, all objects are updated as atomic actiou. This is a

mes age-passing tyle implementation.

Some virtual shared memory approaches tL e parallel cache algorithm (f.e. Suo py ·achC')

to hold coherency amang copies. Thi. algorithm distribute copies at first step. Th<' numbrr

of copies does not change. Thus it can be consider a variation of distrilntC' algorithm has<'d

approach.

The main difference between these approaches is thE' number of icl<'ntical copi<'s. �lost

viretual shared memorry approaches do not make copies of au objC'ct. Thus though th<' updat<''s

cost is low, if the locality is low, the accessing costs will br high. On tltr ot.lwr hand, th<' s<'coud

approach requires broadcasting whenever the renewal occmTs. WC' can imap;iH<' th<' adapt.in'

approach: change the locations and the number of copies. Thrsr decisions should b(' ha.s<'d on

the history of access/update pattern if we make it adaptive' dynamically. Ther<'forc• 011r history

based approach will be useful for this problem. Shared object managemrut call b<' i11t <'rprd<'d

as a problem of cooperation. Note that it is rather MAS than DPS, since <'adt ag<'nt' local

desires conflict with each other .

We should note that ome papers investigate control method for changing thC' impkmrn­

tation of objects by program analysis (for example [KL95]). Bnt it u. es static, prc'-<'X<'Cutioll

5.3. Applications

server node

*-agent

� shared object

'

update

agent

' � *--­
access

'
'

'
'

�
updat� *-

implicit remote

access
'

'
'

'
'

\
\

I' \
0

� _ Q
access - A

Figure 5.4: shared object eli tribution

information. Quantitative properties are ignored.

85

Here we describe a strategy that control the number of copies in a rcutralized mc-mucr

[YNU95). A pre-fixed node become. the . erver. The others become o\vucrs or clients.

(defagent parallel-worker ()

((shared-object

:cooperative-strategy sharecl-o b jcct-manager/ cen tral-ma11nrr) ...))

(defclass sharecl-o b ject-manager/ central-manner (comm uuicatiou-stratrgy)

((server-icl :type host-id)

(member-list :type list)

(owner-p :type boolean))

(defmethod server-p ((self shared-abject-manager/ central-manner))

(= (server-id self) (icl self)))

(defmethod set-strategy ((strategy shared-object-manager/ r ntral-mannrr) iustann')

(cond ((server-p trategy) (broadcast-update-request strategy))

86 Separate Description of Con1munication Strategie

(t (end-update-rcque ·t .�trateg)'))))

(defmethod ref- trategy ((strategy shared-object-manager/ cent ral-manHer) iustaur<')

(cond ((owner-p instance) nil)
(t (sencl-reference-rrquc�st strategy)))

To receive messages, we need one more method. The followiug dispatcher should IH'

invoked from receive fuuctiou.

(defmethod dispatcher ((strategy shared-object-manager/ ce11 tra1-mauucr) instance llH'ssa.g<')

(cond ((server-p strategy)

(cond ((request-message-p message)

(end-value . trategy message))

((upclate-nwssage-p message)

(update-slot-internal strategy message)

(broaclc� t-message strategy)

(receive-all-ack strategy)))

((and (owner-p strategy) (upclate-request.-p message))

, ... update and return ad; to server

(t (error)))))

To eliminate the central controller, each process should have a more' coop(•ratiYe protocol.

Modeling others that would use not only history of commuuication but also the r<'slllt of

program analysis or the description of other agents' mental models will IH' reqnin•d.

5.4 Discussion

As we explain above, this framework can de ·cribe many kinds of commnuication str<:ltcgi<•s.

Though we omit the detail here, we can also use this implementation to use temporary cadw

method that is mentioned in Chapter 2. Now, we will investigate some demerits aud difficnlti(·s

of this framework in the next section.

5.4.1 restriction of meta-object protocol approach

The main restriction of this implementation comes from MOP approach. MOP is uot a refkc­

tional computation mechanism that can change all of the base-level computation. Therefore au

5.4. Discussion 87

agent can not change the role of itself by any communication strategy. If we w·otnt to kt ag<'nt

do it, more interface between a problem-len'} program and a nwta.lrYd program is r<'qnirrd.

But it spoils the merit of separate description. This restriction will b<' crucial wlH'n wr want

to built more autonomous agents that has a planner in it in onlrr to c kric lr its futtuT pl<u1.

5.4.2 role differentiation by method combination

On the other hand, , ome modifications to base programs ntn be dour by mrt hod combiua.tion.

For example, we have proposed the patial connectiYity control s t rategy 011 two structures.

It requires an agent to change its role from a computing agrnt to a ckdicatrd information

collector. This changes is done as:

1. stop invoking original method.

2. register a new method for rollrcti ug information

3. inform this change to other agent

The main issue is how to change the method body. CLOS has a solution which usc mrthocl

combination. The chang process is

If I should become an information collec tor, I run a method for collecting in.foTnMt­

tion whanever I resume.

If I should become a searching agent, I run a method joT Sf-arching whanr·twr I

resume.

This is a kind of method eli . patching based on the result of the method priority compu tatioJt.

This method selecting computation differs from normal class-hierarchy based computation . But

CLOS provides a way to define new, arbitrary method combinations.

In this framework, operators (method) that are d scribed in an impcrativ<' style are inYok<'d

by the result of method selecting computation. By using a language rx tcnsio11, W<' nw writ< ' it

down in an imperative or declarative manner. When an ageut A resumes to ntn a method M,

the method with the highest priority in all m thod. in M at . A's point of view is select<>d, wherr

theM that does nothing for collecting information is defined iu a superdass of every agc·ILt class

88 Separate Description of Con1munication Strat gies

that is defined with def-agent. It is a default behaYior of eYrry agrut. It is natural to inherit

it and to select appropriatt' method dynamicall by u 'ing method comhinati011.

This framework will be implemented with define-method-combination and more protocol

definition between application programmer and the system.

More drastic approach i mixing a IOPecl OOPL with logi('-ha.'>ed langnag(' <'Xt<'nsion.

planner-based description can be merged more fiexiblely. \i'Ve plan thr usr of Schrnw [CR91]

with tiny-CLOS (subset of MOP in SchenH') [I\:ic91, Gal95] and an tool for logic program­

ming. Since modern Scheme implementations support parallel programming. intrr-procrssor

communication, real-time GC and so on, they will be a good platform for DAI/:t\1AS trst brd.

5.4.3 efficiency

MOP based-languages has an issue; its efficiency. Iu languages that supports 1IOP, t'YNY slot

access consists of a sequence of some methods. Comparing with a structure in traditional

languages , an access to a field in the structurr i transformrd to a machine code for loading

the content at an address with an offset. Sometimes the time for a reference of a slot lH'CO!lH'S

ten times ·lower than one for a reference of a field of a structure. But, as MOP rrsrardwrs

say, the language efficiency i. not an is. ue of the language itself but. one of impl<>mrntation.

For example, CMUCL optimizes CLOS code if the mctadass usc'd in a program is standard­

meta-object. In our approach , . ince metadass of slot is fixc'd during its <'X('Cntion, uufoldiug

metalevel code into a sequence of fiat procedure calls by compilrr could])(' possiblr. Iu this

case, we can avoid computation cost of fOP in execution time. For rx<uupk, /[a.suhara d a.!.

have proposed a method with partial evaluation of meta-level compnt.ation in AB 'L/R 2 and

ABCL/R3 [MMWY92, MWIY92, MMAY95].

Anyway, flexibility to change the program's behavior is important in distributrd syst('lllS.

since programmers can not forecast its exact execution situation.

5.5 Summary

1. The communication strategies are implemented as a metalcvcl computation wltrr<' tit('

base program corresponds to the application program.

5.5. Summary 89

2. �10P is a u -eful method to extend a base languagr for this purpose.

3. Our communication strategies an' thought as a set of tltc ext<'usions to s<'Iwtutics of rd­

erence and assignnw11t to au agent-local Yariable. Thus CLO �IOP proYid<'s a straight­

forward implementation of our strat<'gies.

4. We illu tratrd the implementation. of ome communication strategies.

5. We showed some restrictions of our framework. Onr is caused by t hr r<'strict('d rdi('ctioual

power of fOP that can not changr the problem leYd programs. AnotlH'r onr is <'fficiency

issue. \tVe also showed some idea to solve th('se issues.

90 Separate Description of Co1nn1unication Strategies

Chapter 6

Conclusion

In this thesis, we presented communication trategics based on partial histories of agcut.s for

modeling their environment to select efficient communication structures dynamically. Th<'

experiments showed that the strategies brought good communication structurcs to autonomous

agents. We proved that agent's local history as a qualitative model of revision of information,

which is a measure of execution, is useful for lAS.

Though there are some restrictions such as the implemented strategies assuming homogenc­

ity of agents, the simplicity of combining some pieces of information, and the information of

the communication cost function, we think that these strategies can b nsPd in many applica­

tions that acquire new information in execution time if w can find information which valn<'

increases monotonously ancl can build a communication rost function. TlH'S(' would cont a.iu

distributed databas systems that replicate data.

The reason of good results from local-history based cstimatiou method is that a�Pnls in

systems we used can be assum d homogeneous. Thus we need not to hnild an Xc ct mod 1 of

other agents. This implies the assumption that their goal. do not conflict with each oth<'r. It is

not useful for MAS architecture but DAI. The history-based expectation llH'('hauism, how<'V<'r,

could apply to not only homogeneous environments but also heterogeneous oncs. The history of

the revision of information at other agents in current implementations is not separated from its

own history. Agents exchange the information with each other and update its history with the

received information. But in heterogeneous network, the speration of histories would become

91

92 Conclusion

an important problem. The implementation and thr ('Yaluatio11 of stra.trgirs ha.-;rd 011 �<'paratt'd

historie are a future plan. It will also work on hetc-rogenrous ageuts.

In this thesis. we proposed a COOJWration schemr 011 cl istrihutrd systrms. Hnw<'HT coop­

erative processing is not only usdul on distributed .-ystrms hut also OIL concmT<'llt s�·strms.

One example that requires cooprration, rYrn if thr C'OllllllHllication cost ran hr iguon 'c l . is a

parallel search based on grnetic algorithms. A ·ea.r-ch procrss would fall in a local lllllllllltllll

position by over-distribution of the best code at each st.rp. Thus broadcasting t he 1H'st codc'

pattern does not necessarily lead to the optimal form of computation. The sam< discussion

is held on heuristic-base parallel search. In the. e examples, cooprration rluwgrs the way of

sharing information between agents. Thus we can define cooprration as nwthods for selrcting

an appropriate tructure of procrssing demrnt .. Its application is not rPstrictrcl to distributed

systems. We think that local-history based mrthods like ours will br useful for buildiug sdtcmrs

on such systems.

Our study assumes that the intention of a programmer is prrsentecl in a program but not

a specification. Therefore we consider about neither rule-ba.srcl or operator-based clC'sniption

nor MAS. Thus our approach has a restriction necessarily for building strongly autonontous

systems. But we think there is a hierarchy of autouomy. At the top of thE' hi(•rarchy, th(' unit

is human or a very autonomous agent. Tlwy can be clescribrd wrll by the t<'rlll of 1H'li<'f, d<'sin>,

and intention(they are called as BDI theory). But the bottom lrvrl thC' d<'scriptiou of tit<·

goal of a computational unit is decomposed to a sequencr of orclrrs. If wr assnuH' tlH' uutnlH'r

of computation unit in the real world becomes very large, to usr th<'m <'ffectivC'ly, pulliug

parallelism off is the important issue, even if the platform is distributed <:wd thus we cm1 uot

ignore the communication cost on them. Siuce there will be a hi< rarchy of physical clos<'H<'ss of

computational units our approach would be used in the low-level of problrm-solviug st ratc•gy·!->

hierarchy.

Of course, history-ba.srd estimation method will br usdnl in high-lrv<'l plcutuing. It will

require probabilistic reasoning. The emergence of intC'lligeucr is our of thr important r< sra.rc h

themes in Artificial intellig nee. Recent . tuclies about emergent computation invE'stigatr a way

to make information proces. ing machine from a pool of simple units [For91. FM90]. Making

93

more intelligent system from units by a kind of rYolntiou rrqmres a lll('ta-calculatiou about

utility like stability or uniqueness. Thrrrfore .'electing tlw input of itsC'lf and sd<'ctiug rdatNl

modules is crucial. The issue about computation of connccti,·ity between th<' nnits will lw

emerged once again [Lan90. I\:HH89] . TherrforP mor<' study about conn<'diYity sltoulcl h<'

expected.

94 Conclusion

Acknowledgments

I would like to thank to Professor 1\:azuo U hijima at I\:yushu U11in'rsity for supporting this

research and improving the quality of this thesis. I am very grateful to ProfC'ssor Akifumi

Makinouchi, Professor Ryuzo Hasegawa and Professor I\:otaro Hira.sav\'a at 1\:ynshu (nin'rsity.

Their valuable commments are gratefully acknowledged.

I would like to express my apprecation to Associate Professor orihiko Yoshida. at 1\:yushu

University for discussion about DAI, IAS, OOPL, and direction of this rC'sea.rch for long ,YC'ars.

I would also like to note two graduate students: Hiroomi Ya.mamura, the implcmeutC'r of

the freqeuncy control strategy and Kenji Yamasaki, who impclementecl tllC' core part of CLOS

MOP-based system.

95

96 Conclusion

Bibliography

[ACM95a]

[AC11I95b]

[AG92]

[Axe84]

[BG88]

[BJD85]

[BP95]

[CG89]

[CG90]

[Chi93]

ACM. ACM SIGPLAN NOTICES, Yolumr 30, nmnbC'r 10. AC:;\1 Prrss. Octobrr

1995.

ACM. OOPSLA '95 Conference Proceedings, Austill, 1995. R<'JHillt('cl as

[ACM95a].

Nicholas l'v1. Avoris and Lcs Gasser, editors. Distr--ibute d Artificial Intelligence:

Theory and Praxis. KluwC'r Academic Publi.·hers, 1992.

Robert Axelrod. The E-vol'Ution of Cooperation. Basic Books, T ew York, 1984.

Alan H. Bond and Les Gasser, editors. Readings in Distrib·uted Ar-t1:jicial Intelli­

gence. Morgan I\:aufmann, 1988.

M. Benda, V. Jagannathan, and R. Dodhiawalla.. On optimal coop<'ration of

knowledge sources. Technical report, Boei11g AI Centrr. 1985.

Edward A. Billard and JosC'ph C. Pasquale .. daptivC' Coordination iu Distributt·d

Systems with Delayed Communication. IEEE Tmns. Sys. Man CylJ., 25(4):546

554, April 1995.

N. Carriero and D. Gelernter. Linda in context. Comm. A CM 32(4):444 458,

April 1989.

Nicholas Carriero and Davis Gel ernter. How to Write Parallel Pr-oqmrn'i A

Fir-st Co'Urse. The MIT Press, 1990.

Andr w A. Chien. Conc'Urrent Aggregates. The MIT Press, 1993.

97

98

(CL88]

(CR91]

(DB93]

(DLC87a]

(DLC87b]

(DM89]

(DM91a]

(DM91b]

(DS88]

(Dur88]

BIBLIOGRAPHY

R. Conry. S.).le�·er and \-. Lesser. Iultistagr negotiation in distributrd planning.

In Bond and Gassrr [BG88]. chapter 5. 3, pages 367 3 -!.

Eilliam Clinger and Jonathan R es (editors). RrYisrd-1 rf'port on th<' algorithmic

language Scheme. Technical report, :r'\oyemlwr 1991.

.Jiri DYorak and Horst Bunke. U ijng dos to impdcnH'ut a h�·hrid kuow!C'dge

representation tool. In PaC'pckr [Pae93a], chapter 12, pages 293 320.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent Coopera­

tion Among Communicating Problem SolvNs. IEEE Transaction:> on Compv.trr.c;

C-36, pages 1275 1291, 1987. Reprinted in [BG88], pp. 268 2 -1.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Cooprratiou through

communication in a distributed problem solving nrtwork. Iu H nhHs [Huh 7],

chapter 2, pages 29-58.

Edmund H. Durfee and Thomas A. Montgomery. MICE: A flexible tested for

intelligent coordination experiments. In Proceedings of the Ninth WorLc;hop on

Distributed Artificial Intelligence, pages 25- 40, 1989.

Yves Demazeau and Jean-Pierre Muller, editors. Decentndizerl A.I. 2. �orth­

Holland , Saint-Quentin en Yvelines. France, 1991. Proceedings of th(' , '<'c­

oncl European \iVorkshop on 11oclelling Autonomous Ag('Uts in A M ult i- gent

World(1990).

Edmund H. Durfee and Thomas A. Montgomery. Coordination as Distributed

Search in a Hierarc hical Behavior Spac . IEEE Trans. Syst. Man Cyben1 .. (Sper: ·ial

Issue on Distributed AI) 21(6):1363-1378, 1ovember/December 1991.

R. Davis and Reid G. Smith. Negotiation as a metaphor for distributed problem

solving. In Bond and Gasser [BG88], chapter 5. 1, pages 331 356.

Edmund H. Durfee. Coordination of Distributed Problem Solvers. Klnwcr Aca­

d emic Publishers. 1988.

BIBLIOGRAPHY 99

[EI'¥188)

[EPT94)

[FB88)

[FC91)

[FKR95]

[FL77)

[FM90)

[For91)

[Fox88)

Robert Engdmore and Touy �!organ. editors. Blacl..:bonnl Syste ms. Addisou­

\Vesley. 198 .

Daxid Edmond, Mike Papazoglon, and Zahir Tari. "Csing R<'fil'ction as a �leans of

Achieving C oopC'ration . In International Symposiu.m. on P.ijt.h GPnf'ndi.on. Com­

puter Systems 1994 Workshop on H eterogr:neou.s CoopeTatillf' Knowledgf'-bas£'8.

pages 17-31. In titute for :'\rw Generation Compnt<'r TPdmology, D<'C<'!lllH'r

1994.

Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for

Distributed Artificial Intelligence. In Proceed·in gs of the Intenw.tional Co'TifeTPnce

of Fifth Generation Computer Systems, pages 755 162, 198 .

Jacques Ferber and P. Carle. Actors and Ageuts as Reflective' Coucurrent Ob­

ject:a Mering-IV Perspectivr. IEEE Transactions on Sy.c;tern8. Man. and Cyber­

netics, 21 (6): 1420-1436, November/December 1991.

tfaier Fenster, Sarit 1\:raus, and J effrcy S. Roscnschciu. Coordination wit.h­

out Communication: Experimental Validation of Focal Point T<'chuiques. In

Victor R. Lessor, editor, ICMAS-95 Proceeding.<; FiT8t Inte-rnational Confen-nc£'

on Multi-Agent Systems, pages 102-108, San francisco, .June 1995. Tb<' AAT

Press/The MIT Pre s.

R. D. Fennell and Victor R. Lesser. Parallelism in Artrifi.cial IutC'lligeiH'<' Pro blt>lll

Solving: A Case Study of Hearsay-H. IEEE Tmnc;. ComputeT.'!, C-26(2):98 111,

1977. Also reprinted in [BG88).

Stephanie Forrest and John H. Miller. Emergent behavior iu dassifi.C'r systems.

Physica D, 42:213-227, 1990. Reprinted in [For91].

Stephanie Forrest, editor. EmeTgent Computation. The MIT Pn'ss, 1991.

MarkS. Fox. An organizational view of distribut fd systems. Iu Bond anu Gasser

[BG88), pages 140-150.

100

[Gal95]

[Gas92a]

[Gas92b]

[GBH87]

[Gel85]

[GH89]

[GRHL89]

[HB91]

[Hew77]

[HG93]

[HH87]

BIBLIOGRAPHY

Erick Gallesio. STk. ·cniYersite de :\in�. ftp:j /kaolin.unice.fr/puhj. 1993. Lat<•:-.t

Yersion i · 3.0, }.!IT AI Repo ·itory is its mirror sit<'.

Les Gasser. Boundaries. idrntity. and a.ggn•gation: Plurality isstws in Imdtiag<•ut

ystems. In \Yerner and DC'mazeau [\YD92]. pages 199 213.

Les Gasser. Objrct-Basecl Concurrent Programmiug ancl Distributed . rtificia.l

Intelligence. In AYoris and GassC'r [AG92], pages 1 101.

Les Gasser. Carl Braganza, and aYa Herman. Impl<·mentiug distrilmtrd artifi­

cial intelligence systems using mace. In Proceedingc of the Third IEEE Conference

on Artificial Intelligence Applications. pages 3 15 320. 19 7. Rrprintecl in [BG].

pp.445-450.

David Gelernter. Generative comuunication in linda. A CM Tmn. Pmg. Lang.

Syst., 7(1):86-112, January 1985.

Les Gasser and Michael N. Huhns, editors. Distributrrl A Ttifitial Intdliyence

Volume II. Pitman/ forgan I\:aufmann, London. 19 9.

Les Gasser, Nicholas F. Rouquette, Randall W. Hill, cuHl .Jolm Lie b. Representing

and using organizational knowledge in distributed I systrms. In .. a.ss<'r aud

Huhns [GH89]. chapter 3, pages 55 78.

Michael N. Huhns and David M. Briclgelancl. Iulitag ut truth maint<'ll<Utce.

IEEE Trans. Syst. Man Cybern.(Special Is51te on D·istr·ib·uterl AI), 21(6):1437

1445, 1991.

Carl Hewitt. Viewing control structures as patterns of passing llH'ssagrs. ATtijitial

Intelligence, 8, 1977. orth-Holland.

Bernardo A. Huberman and N. S. Glance. Social dilemmas and fluid organiza­

tions. In in printing, pages 496-505, 1993.

Bernardo A. Huberman and Tad Hogg. Phase transition iu artificial intelligrn('('

systems. AI-journal, 23(2), 1987.

BIBLIOGRAPHY 101

[HH 8]

[HM84]

[HM90]

[Hub88]

[Hub90]

[Hub92]

[Huh87]

[HW93]

(IGY92]

[Ish93a]

[Ish93b]

Bernardo A. Huberman and Tad Hogg. The lwhaYior of computational <'rologirs.

In Huberman [Hu b]. pages II 115.

Joseph Y. Halpern and Yoram :\Io es. I\: nowledgr and commou kuowl<'dp;<' in a

clistribu ted cnYironment. In Proceerling8 of th(' Thi·rt! A nn:unl A CM Symposinm

on Principle8 of Distrib-uted Cornpv.ting, pages 30 61. 19 -t

Joseph Y . Halpern and Yora.m �Io cs. I\: nowle cl gr a.11<l commo11 kiiOWh'dp;t' iu a

distributed environment. J O?trnal of the A CM, 31(3):549 S81, July 1990. Tii vct<'d

version of IBM Research Report IBM RJ 4421(19 4).

Bernardo A. Hub erman . editor. The Ecology of Cornp ·ntatwn. ElsC'vier Sci<'nce

Publishers B.V.(l'\orth- Holland) , Amsterdam, 19 8.

Bernardo A. Hub erman. The prrformancC ' of coopC'ra.tivC' proc<'ss<'s. Phy.-;icn D,

42:38-47, 1990. Reprinted in [For91] .

Bernardo A. Huberman. The value of cooperation. In Masuch aud \Varglien

[MW92], chapter 10, pages 235-243.

l\1ichaf'l N. Huhns, f'ditor. Distributed Artificial Intell-igence. 1orgau Eaufma.nu,

1987.

Tad Hogg and Colin P. Williams. Solving the TIC'ally Hard Prohlnl<'s with Coop­

erative Search. In AAAI-93, pages 231-236. AAAI, I Press/ h<' MI Pr('ss.

1993.

Toru I. hida, Les Gasser. and Makoto Yokoo. Orgauizatiou Sdf-D<'sigll of Dis­

tributed Pro duction System . IEEE Transactions on Data and Knowled.r;e En­

gineering 4(2): 123-134, 1992.

Toru Ishida. editor. MultiAgent and Cooperat·ive Computation II, voluwC' 5 of

lecture note/software. Kindaikagakusha , 1993.

Toru Ishida. Realtime bidirectional search. Iu MultiAgent and Cooperative Com­

putation II [Ish93a], pages 121-135.

102

[Ish95]

[I�au93]

[KC93]

[KdRB91]

[Kee89]

[KG94]

[KHH89]

[Kic91)

[KL95)

[Kni93)

BIBLIOGRAPHY

Torn Ishida. Discussion on agents. Journul of .JaJULl/.(',<;e onf'fy for A 7'fLjicial

Intelligence. 10(5):663 661. Septemb<'r 1990. in Japanese.

Stuart A. Kauffman. The Origin8 of Order. Oxford CniYersity Press, 1993.

Y� uhiko Kitamura aud Zlwng Bao Chauaug. A cooper a tiY<' search sclH'llH' for

dynamic problem .. In I.·hida [Ish93a). pages 131 14/.

Gregor I�iczales. Jim des RiYit're , and Danid G. Do brow. ThC' A-rt of th(• Ml'taob­

ject Protocol. The MIT Press, 1991.

Sonya E. I�eene. Object- Oriented Programming in Common Lisp

rners's Guide to CLOS Symbolic.-, Inc., 1989.

A Pro_rrm.m.-

Taha Khedro and Michael R. Genesereth. l\1oclding multiag('llt cooperation as

distributed constraint satisfaction problem solving. In A. Cohn, editor, ECAID4.

page 249-253. John \i'liley & SOns, Ltd., 1994 . 11th Europ('all Conference on

Artificial Intelligence.

Jeffrey 0. I� 1 hart, Tad Hogg, and Brrnarclo A. Huberman. Dymuuirs of com­

putational ecosystems: Implications for D I. In Gasser and Hultns [�H 9].

chapter 4, pages 79 95.

Gregor Kiczales. Tiny CLOS.

openimplementations/. 1991.

Xerox, ftp:/ /arisia.X('rox.com/pub/

Anders I�ristensen and Colin Low. Problem-Ori('Utl'cl ObjC'ct !vfemory: Cns­

tomizing Consistency. In OOPSLA '95 ConfeTence Proceedings [A ' 1951]. pag('s

399-413. Reprinted as [AC 195a].

Kevin Knight. Are many reactive agents bett<'l' than a few d('lihera.tivc' ones'? Iu

Proceedings of the 1993 International Joint Conference on A Ttificial Intelligence.

page 432-437, 1993.

BIBLIOGRAPHY 103

[KTT093]

[Lan90]

[LC88)

[LE80]

[Les90)

[Les91)

[Lh89)

[Li86)

Ya: uhiko I\itamura. I\<>n 'ich Teranishi, Shoji Tatsnmi. and Takaaki Okumoto.

Communication control in distributed search. Iu IPSJ SIC Notf's AI-98- 9. 1np;rs

41 50, August 1993. in Japane. e.

Chri topher G. Langton. Computation at thr rdgr of chaos: Phase trausitious

and emergrnt computation. Physica D. 42:12 37. 1990. rrpriutrd in [For91).

Victor Lesser and D. Corkill. Functionally accuratt'. cooprratiY<' distri hu trcl

systems. In Bond and Gasser [BG88), chapt<'r 4.3.1, pages 295 310.

Victor R. Lesser and Lee D. Ennan. Di. tributed i11terprrtatiou: A modrl and ex­

periment. IEEE Transaction.s on Computers. 29(12):1144 1163. 19 0. TI<'pri11ted

in [BG88).

Victor R. Lesser. An Overview of DAI: Virwing Distributed . I as istributrcl

Search. Jo·urnal of Japane.se Society for Artificial Intelliqcncr, 5(4):392 400,

1990.

Victor R. Les .. er. A retrospective view of FA/C distributed problem solving.

IEEE Tmns. Syst. Man CybeTn.(Special I8,me on D?;stributrd AI), 21(6):1347

1361, November/December 1991.

I\ai Li and Paul huclak. 1emory cohcre11ce in sharrd virtual nwmory syst<•ms.

ACM Trans. Computing Systems, 7(4):229 239, ovcmber 19 9.

Kai Li. Shared Virtual MemoTy on Loosely Coupled M·ultiproce!i80T$. PhD tltesis,

Yale niversity, September 1986.

[LLARKS85) E.L. Lawer, J.I\. Lenstra, D.B. A.H.G. Ronnoouy Kan, and Sluuoys <·clitors.

[LR92)

The Tra'Ueling Salesman PToblem. Addison Wesley, 1985.

Ran Levy and Jeffrey Rosrnschcin. A game tlH'oretic approach to distrihut<'d

artificial intelligence and the pur uit problem. Iu Went rand Df'maz<'ctu [vVD92).

pages 129-146.

104 BIBLIOGRAPHY

["!YHT90] Takeo :\Iaruichi. :\Iasaki Ichikawa. and :\Iario Tokoro. �Iod('ling autonomous

agents and th<"ir groups. In Yv<'.' Dcmazcan and .l <'an-Pirrrc :\Iiilkr. editors.

Decentral'ized A.I .. pages 215 234. �orth-Holland. aiut-Qn<'lltil l <'ll \\·din<'s .

France, 1990. Proceedings of the First EuropraH \Yorkshop 011 �Ioddling Att­

tonomou. Ag�uts iu A �Iulti-Ag<'nt \Yorld (19 9).

[NI 1AY95] Hiclehiko l\fa.suhara. Satoshi l\Iatsuoka. hrnichi Asai. and . kinori Yollrzawa.

Compiling Away the Mcta-LeY<"l in Object-Orir i Ltt'd CorlCHlT('llt Tidl<·ctiYr Lan­

guages u ing Partial Evaluuation. In OOPSLA '95 Confen'11Cr' PTocf'eding8

[ACM95b], pages 300 315. R eprinted as [ACM95a] .

[MMWY92] Hidehiko 'lasuhara, Sato. hi tviatsuoka. Takuo \1\'atanabe. and kinori Yonezawa.

[MN88)

(NIW92]

(MWIY92]

[MWY91]

[Nar90]

Objet- oriented concurrent reflective languag s can hr impknwnt<'d dfici<' ntly . In

Proceedings of the A CM ConfeTence on Object- Oriented Proqm.mrning Sy:;tern8,

Languages, and Application8(00PSLA '92). pages 127 144. AC:t\I. 1992.

Pattie Maes and Daniele arcli, editors. Meta-Le11d Architect'ure8 and Rr.jif'ction.

North-Holland, 1988.

Michael Masuch and Ma simo Warglien, ecli tors. ATtificial Intelligence in 0Tqa­

nization and Management Theory. Elsevier ScirllCC Publish<'rs n. . . 1992.

Satoshi 1atsuoka. Talmo vVatanabe. Yuji Ichisugi. and Akiuori Yon<'zawa.

Object-oriented concurrent reflective arrhit<'ctnres. In Object-Bo .. 'ierl or .. twrn.et

Computing, volume 612 of Lect -aTe Notes in ComputeT Sc'iencP.. Spriuger- rrla,g,

1992.

Satoshi Matuoka. T. vVatauabe, and A. Yonezawa. Hibrid Group Rdi<>ctiv<'

Architecture for Ob ject-Orieutecl Cocurrent Refiectiv Programmiug. In Fifth

E COOP, July 1991.

Shuji N arazaki. Cooperative Processing Model Cellula ba.':lcd ou fields. Master's

thesis, Kyu hu University, March 1990. in .JapanC'se.

BIBLIOGRAPHY 105

[Nar95]

[NT90]

[Num92]

[NY93]

(NYY94]

[NYY95]

[OIT93]

[Osa93]

[Pae93a]

Shuji :\araza.ki. Effects of Yir"· ranges of agents in pursuit problem. In 1\:onichi

Hashicla, editor. M·ultiAgrnt and Coopara.ti·IJ(' Computation IV. ,·olnnw 13 of lf'r­

t-urenotejsoftwa.Te. pagrs -19 56. I\:inclaikagaknsha . .:,;0\"('lllher 1993. Proc<'('<liugs

of JSSST �IACC'94 workshop.

Chisato Numaoka and ?\Iario Tokoro. Distrilmt<'d arititicial intdlig<'ll<'< and pro­

gramming languages. JO-unwl of japanese SOcirty foT Aritift:cial Intelliqence.

5(5):441-421. .July 1990.

Chisato T umaoka. Conver. ation for organizational act iv ity. In \Vrrner and DC'­

mazeau [\VD92], pages 189 19 .

Shojiro ishio and Akinori Yonezawa, editors. Object Technolog·ies joT Arluanred

Software, 742, 1\:anazawa, Japan, 1993. JSSST. SpringC'r-VC'rla.g. First .JSSST

International Symposium.

Shuji arazaki, Hiroomi Yamamura, and orihiko Yoshid a.. StrategiC's for select­

ing communication structures in cooperative search. In InteTnational Symposi·nm

on Fifth Genemtion ComputeT Systems 1994 Workshop on H eteTogeneo·ns CoozJ­

eTative Knowledge-Bases, pages 155-166, Decembrr 1994. R print <'d as [YY95].

Shuji arazaki. Hiroomi Yamamura, and Norihiko Yoshid a.. Stratq?;irs for sd < 'd­

ing communication structures in cooperative search. In �� volum< ' - of Lert·an'

Notes in A r itificial Intelligence. Springer- Verlag, 1995.

Hideaki Okamura, Yutaka Ishikawa, and :Mario Tokoro. M<'ta.kvd DC'composi­

tion in AL-1 /D. In Nishio aud Yonezawa [. Y93]. pages 110 144. irst .JSSST

International Symposium.

Ei-I chi Osawa. Adaptive cooperation schemes coping with dynamic pro hl('lll

space. In Ishida [Ish93a], pages 105-120. iu .J a.pauesC'.

Andreas Paepcke, editor. Object-Oriented Pro_qramming The CLOS Perspective.

The MIT Press, 1993.

106

[Pae93b]

[Pea84]

[Poh71]

[RB89]

[RGG86]

[s+9o]

[SD92]

[Sim81]

[SM89]

[SRSF91]

BIBLIOGRAPHY

Andrea· Pacpcke . .. [ser-Lrn·l Language Crafting: Introducing t h<' CLO �I<'taoh­

ject Protocol. In Object - Or iented Programming Thf> CL OS p, . .,...,fJf'di tw [Pad)3a].

chapter 3, page, 65 99.

Judea Pearl. He·uristics ·intelligP1z.t search sfntf('_q'tf'8 for tomputf'r problf'm :;olu-

ing. Addison- \Ycslcy, 19 .J.

I. Pohl. Bi-directional search. Machine Intelligence. 6:127 140. 1971.

Jeffrey S. Rosenschein and John S. Breese. Communication- frcr interactions

among rational agent·: A probabilistic approach. In Gassrr and Huhus [GH 9],

chapter 5, pages 99 11

Jeffrey S. Rosrnschein, M. Ginsburg, and l\Iichad n. Grursrr<>th. Coop<'ratiou

without communication. In Proceeding s AAAI-86, pagrs 51 57 . .. AI. 19 6.

Reprinted in [BG88], pp.220-226.

Guy L. Steel .Jr. et al. Common Lisp the Lang'IULge. DEC press, second <'<lition,

1990.

Young-PaSo and Edmund H. Durfee. A Distrihntrd Problem- solving Infrastruc­

ture for Computer etwork 1auagement. IntPrrw.tional JonT"tw.l of Intdli.genl f'1

Cooperative Information systems, 1(2):363 392 . .Jnn<' 1992.

Herbert A. Simon. The Sciences of the A Tti.ficinl. ThC' MIT Prrss, Boston, s<'<"OtHl

edition, 1981.

Larry M. Stephens and fatthia!· � 1erx. Agrut organi�ation a.s <:ut df<'ctor of

DAI system performance. In PTOceeclings of the Ninth Work8hopon D·ist·,..iv·uted

Artificial Intelligence, pages 263 292, 1989.

Katia P. Sycara, Steven F. Roth, Norman Sadeh, and 1Ia.rk S. Fox. Distrilmt<'d

constrained h uristic search. IEEE Trans. Sy!3t. Man CybeTn. (Special J.c;,.;?u: on

Distributed AI) , 21(6):1446-1461, 1991.

BIBLIOGRAPHY 107

[Sta89]

(WD92]

[Wer92]

[YDII(92]

[YN90]

(YN91]

[YNU95]

[Yok93]

(Yok95]

Susan Leigh Star. Tlw structure of ill-strnctnrrd solutions: Boundary object:-.

and heterogeneous distributed problem sol\'iug. In Gassrr and Hnhns [GH 0].

chapter 2, pages 37 54.

Eric \\Terner and Yn's Demazeau. editors. De Cf ntrnllzrd A .I. :J. Els<'Yi<'r nencr

Publi. hers B.Y., 1992.

Eric vVerner. ThE' design of multi-agent systems. In \\T('l'll<'r and D<'lll<tZ<'iUl

(WD92], pages 3 28.

Makoto Yokoo, Edmund H. Durfer, Toru Ishida. and I(azuhiro I\ uwabara. Dis­

tributed constraint satisfaction for formalizing distributed problem soh·ing. In

Proceedings of the Twelfth IEEE InteTnational Conference on Distributed Com.­

puting Systems, pages 614 621, 1992.

N orihiko Yoshida and Shuji 1 arazaki. A cooperation and comrmmicatiou fram<'­

work for distributed problem solving. In PToCPeding.<; of IEEE 2nd Intenwtirmal

Conference On Tools For Artificial Intelligence, pages 530 536. I EE, 1990.

Norihiko Yoshida and Shuji Narazaki. A Distributed Pron'ssiag Sy st<'lll for the

Cooperation I'vfodel 'Cellula'. Tran8actions of Information pmce.c;sing Soc·idy of

Japan, 32(7):906-913 1991.

Kenji Yama-;aki, Shuji N arazaki, and I\azuo shijinm. Impn'lll<'ll tat iou of

Cooperative Processing with Mctalevel Computation. IPSJ SIC Notes PRG,

95(82):145-152. August 1995. in .Japanese.

Yasuhiko Yokote. Kernel structuring for objrct-oricutrd operating syst<'rns: The

aperotos approach. In Nishio and Yonezawa [- Y93], pag<'s 145 162. First .JSSST

International Symposium.

Makoto Yokoo. An overview of distril uted search. ComputeT Softwan�. 12(1):33

42, 1995. in .Japanese, .Japan Society for Softwarr Scic•ncc and Tcdwnology.

108

[YSTH 7]

BIBLIOGRAPHY

Akinori Yonrzawa. Etsu)·a hibayama, Toshihiro Takada. and Yasnaki Houda.

:\Iodelling and programming in an objrct-orirntrd concrrrnt languag(' abel/ 1.

In Akinori Yonf'zawa and 1Iario Tokoro, <'ditors, Objl'ct- Oriente d Cmu .. u.r-rent

Programming. pages 55 9. ThC' :\IIT Press, 19 7.

Index

A* search, 68

agent, 2

agent-meta-class, 75

bounded rationality, 2

class, 74

communication-strategy, 77

defagent, 81

Distributed Artificial Intelligence, 2

Distributed Hearsay-!!, 1

Distributed Problem Solving 3

Distributed Vehicle Monitoring Testbed, 10

ergodic process, 26

instance, 7 4

metaclass, 74

MetaObject Protocol, 74

Multi-Agent System, 3

NK-model, 23

objects, 7 4

Pursuit Problem, 13

shared object manag<'lllrllt. 6 . -!

Tra.vC'ling Sale s lllan ProblC'Hl, 53

utility of commnuicatiou, 22

virtual sharC'd memory, 4

109

110 INDEX

Y / 7f:/ 7 L. Joint Symposium on Paralld Processing '90 ,j.ifuj:jt (f-J;..\Z 2 1r. 0 JJ)

2. oEB*cfft, f�IIJ�11� , •·!JE t -1tftLt.:fo-t7-.0)�1:�.::.)�--:::5-<I"Ji,t,,j),��J'It-t7'JvC'<'Ilnht''. ·h'i

fiB!1.£.m���ffiUcJt � 31 �m 7 �J- (.,,�r& 2 1y. 7 n)

3. Norihiko Yoshida. Shuji _ arazaki. ·· A Cooperation and Conllnnniratio11 FraBH'\\'ork for

Distributed Problem Solving", Proceedings of IEEE 2ud International CoufctTur<' Ou

Tools For Artificial Intelligence(·fLJ:&; 2 if. 11)J)

7�(�RX:3�7 fJ)

5. mw�1�-, "7.l �rdJMW�i:k:O) t.: &>) 0) 11 fltn10f�J:iftj�.ftRi�ll�", 11-+: ·; 7 � 7 .L 7 :.ry;:� 11, · '93

�ffil)c� I? Jv-7-J.- �.) .:r. / � t t&UJ�M� IIIJ (��� 4 1f. 10 J J)

6. Shuji Narazaki, _ orihiko Yo hicla, Hiroomi Yamamura, "Strategi<>s for Selecting Com-

munication Structures in Cooperative Search", Iut<:>rnational Symposium on Fifth G<·u-

eration Computer Systems 1994 Workshop on Heterog<:>u<'ous Coopenttivr I�nowl<'dg<'-

Bases(�M 6 � 12 Jj)

7. �lll�H� , ")itfli.JJr"'�M�.::. 13 �t � tJVrf-O)ff.YM". B -4: 'J 7 r 7 .x. 7 14''{:� �L\CC94 ,ffiu .>c1.t I-< Jv

-T J. - :/ .:r. / r t tb.b � �t. IV J (·fL Jtx: 7 'tf 11 !1)

111

112 INDEX

8. Shuji -:\araza.ki. �orihiko Yoshida. Hiroomi Yamamura. ·· trategiC's for Ph•rting Com-

muniration Strurturrs in Cooprratin' S<:>arch .
.
. IntC'ruatiomd .l ournaJ of oop('rat iH' Iu-

1. ����Hit-. t1itH� -EIS. 1i-llfilt" -11!). Mil�� . .. �11(10ilhii�dl!.!:.l:lll.sd,£:/.A-1.L, IP E.T -II (_:J:)

tt � -r·- 7 B= EJU:r J\: �= -J 1.' -c ··. ·i·,•p*�J:1H"f: � Jui'I'I:Jz. ifl� k� (II({ .fll 63 1j'. 3 J J)

2. 1§"83�m, �W�11t=, ··1�� --1:f1tLt..:7·o-t7-.0)�1':�:E;:--:J< �lt>ilJI£1,���JIH-t7'Jt--
..

. ',lif·i·N'W

im1�"f-:�1x*rvJf�'*1!,-- cPsY 89-19(t·J£;c'tr. n)

3. �W�Hi� -, r.dflff.C�, ··,if;_�IJt£1��P1fl-tT'Jv Cellula O)'�JJ� � .�ffllli''. II /f(·; 7 � '7 .L 7.fl?:;)�

6 @]*� ('f�Jl;:l'f 10 Jl)

4. Norihiko Yoshida, Shuji Narazaki. '·A Cooperation 1Iodrl Comp secl of ·Process+ Fidd'

Amalgams", l}ft�Jnr�:O)-tT'Jv � J,l:.)l1J �=I�T � 11 !1i:. r;- 7 :/ :1 "; 7· (·n£;L;1f)

5. t� W�11� , �nHE 3f - . ".Jill 1G' -+r- r:· .A �c� 0) t..: &') 0) �ll�tlX � �VJ f'n:),�---5 < {;fz.fll d(rl) .flll SSL". �} ..J.O I ttl

·�¥!Bl!JI���r=KLk� (·fJJY: 4 '�f 3 Ji)

COMP(�I� 4 if 5 JJ)

7. �w�1�� , :l}.i\83 � , ·· .i!f!1A +r- I! 7-. �c.� 0) t..: &') 0) j�IJ�fk � fUJ1'n.: J�---5 < t:'f<.fll+1vn'.(,,�J'Il ssL··. '!','J

¥1BLh�*�10f���RT!�· PRG(+P.X: 4 :tr 8 FJ)

8. �w�H� , 'i§"BHcm, ".k7;tHl?t�rtr¥PliUJ'rr�=.B�t�:TJ-ttxr�':.f�.x.-:>_x./ I,O)Jillf,\11�1111!". 11�

�7��_x.7#*��10�k�(�P.X:5�6H)

INDEX 113

11. �M11� �- h"lll�,g_:_ ··rJL.Ml�it.I.-:/"_-r. ::-- � (.:=J: 6A!Hf�ij1Jt6.b,���!.\:f1W'. Su'11)1'1"tf(}.'.(J;f!J&M>1'C

li!!I,lE§IJ[9-.FtU:4--::5 < ·J·,tj'f.fi�.Ff!.J���i��d �-!Ill]:.,/ ;f-�/r] L. ('1-:IJX 611:-3 JJ)

12. L!Jt1"11: !?, Mllltffi� �- t-t�:fll --l. "t.6.b ;Ut�J�':H� �-= int 6 .I.-:> .-r. ::-- � IIU 0) ill!fa ;-lf!'iJJtiJ.!:�iidG»I�". 'di�(

r� i* 7: � J u·1·1 .>t �I) i1i 0 k � ('r: r£ 6 'if. 9 J J)

13. LlJUl���a. �Ul�{'�-�- Fj:)�{O,k. ··;J. � :t7':/'.:r. 7 � �JIJv)t..:)}/r�IIU!mfirfiJ,�7·o 7"71,0))}�11-.,i�

jzt". 1995 /rf·ijt f-·m'Will!c�r:��'f.' k� (-r�,.&: '{j: 3 J J)

14. LIJM��a. t�·UJ�1,�-=. t- �{II A: . .
. ;J. � v « Jv �1-Jr- � JiJ v) t..: t.6.b,���Jli[O)�.£Jf', ·h'it-!X �J�H'f: �1iJf)'C

*15 PRG95-82(�JJ.X: 71f- 8 �)

114 INDEX

