SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Studies on Communication Strategies in
Cooperative Search

alE, E=

https://doi.org/10.11501/3111011

HARIEE : FUMKZ, 1995, BX (T%) , @wXEL
N—=2 3

HEFIBAMR

Chapter 4

Evaluation and Discussion

In this chapter, we evaluate two strategies through simulations using Traveling Salesman Probh-
lem (TSP) as an example of a search problem. Under varying communication costs. both
strategies show good performance.. We also discuss the adaptability and extentionality of our

strategies.

4.1 Traveling Salesman Problem as a Cooperative Search

We mueasure the quality of the strategies through simulations using the Traweling Salesman.

Problem (TSP). TSP was defined by A. J. Hoffman and P. Wolfe in p. 2 of [LLARKS85] as:

The TSP for a graph with specitied edge lengths is the problem of finding a Hamil-

tonian cycle of shortest length.

A Hamiltonian cycle is a cycle that contains all the vertices of the graph exactly once. TSP is
a well-known NP-hard problem.

We implemented the range control strategies on both flat spatial structures and hierarchical
ones, the frequency control strategy and a fixed strategy for comparison. And search algorithm
we used is the method on search agents that run in parallel. They exchang
the cost of the current best path as a threshold value. Since the quality of the threshold
increases monotonously, merging some pieces of information (threshold) means only selecting
the best one among them. It relieves the expectation cost. The pscudo-coded algorithm is the

following:

54 Evaluation and Discussion

partial path(subproblem)

fetch

searching agent

notify

Figure 4.1: structure of TSP system

put initial state in global bag
do in parallel {
while (global bag is not empty) {
pick up a node from global bag that is better than local threshold
expand it and return new nodes to global hag
if (a new node is better than threshold)
update local threshold and at

}

update history

}

report the best path

Italic statements in the code is for cooperation.

In this simulation, the number of cities is 10 and the length of histories is 10. The system
cousists of 100 agents. In this case. the threshold updates over 200 times. After each expanding
node, the difference hetween the value of current threshold and the one before the expansion
is stored in the history memory of an agent. Since the history holds the revision of threshold.
we can calculate the expected values of threshold that other agents get most recently. Thus

a Monte Carlo simulation on the history gives the agent the expected hest value among n

4.2. Results of Simulations 55

agents. At every step. agents select a communication structure. ince the simulator models
asynchronous network. the range coutrol strategy on hierarchical structures requires some steps
of commuunication in order to change the cluster size. If the probability of information updates
1s uniformed distribution. the expectation formula 3.6 in the previous chapter can be used
instead of the Monte Carlo method. We will describe the result of a comparison between
formula 3.6 and the Monte Carlo simulation.

Here we show some properties of TSP. Figure 4.2 shows the distribution of answers in eight
city’s TSP. I[ts range is large and the average is two time worse than the optimal answer. Figure
4.3 shows a trace of the renewal of threshold in solving by a single agent. The value of renewal
is almost random. We can expect the assumption that renewals are uniformly distributed is

not bad e. timation.

4.2 Results of Simulations

Our simulator was build on Common Lisp. Exactly speaking. we use CLOS/MOPs features.
Each agent is implemented as an instance of a class. Its will be described in the next
chapter. Each agent runs in round robin. Dispatch granularity is the as a main method.
Communications in a stage occur simultanecously at the end of the stage. When an agent
resumes, it checks its queue for received packets. Thus all messages are received the next
stage of the sending stage. Every range control strategys can change the communication range
(cluster size) in £2 at cach step. They evaluate the utility of communication using the five
points: not change, increment by one or two, and decrement by oune or two. le strategy
selects best one out of them. Though this process can not select the best size at once. this
implementation avoids oscillation. Figure 4.4 shows a sample of the changes of the cluster
size. We fixed the optimal size to 10. But at the first step, all cluster sizes are one: each
agent belongs to a cluster. They must change their cluster sizes to the optimal ones. Though
some clusters achieve the optimal size quickly, in general, our structure-changing protocol that
is mentioned at the previous chpater requires a long time for this transition. We expect th
changes of the optimal size in real problem solving is small in a short period.

Through all experiments. we ignore the cost of getting subproblems from the global bag.

?6 Evaluation and Discussion

350 T

300

250

200

counts

150

100

50

250 300 350 400 450 500 550 600 650 700
path length

Figure 4.2: distribution of all distances in a TSP

The number of cities is 8. Thus the number of possible solutions is ! = 40320.

20
15
12
=
3
4] 10 &
5
© o
° o
o o 4 o
° o ° ©
&
0 5] 10 15 20 25 30 85 40

increament value of threshold

Figure 4.3: distribution of the renewal values

4.2.1 spatial connectivity control strategy

First, we examine the frequency control strategy. As we described in the previous chapter,

there are three . ubstrategies:

4.2. Results of Simulations 57

posibility
Optimal size: 10
04
step5 —
step 10 ----
0.35 step 15 -
step 30
03 step 45 - --
0.25
2 4 6 8 10 12 14

cluster size

Figure 4.4: changes of clusters’ size

e fixed in flat structures
e fixed in clustered structures
e changing spatial structures during execution

Here we examune all three strategies. The first two strategies only change the number of
receivers. Last one ha. a threshold that is the trigger to change the . patial structure. In
this examinations, we give the threshold a priori. If an expected communication range is
smaller than the threshold. agents apt to use flat structures. Otherwise, agents attempt to use
cluster structures. Exactly speaking. in order to avoid a perturbation hetween two structures,
our implementation use a x threshold for the trigger to transit from flat to clustered, and
1/a x threshold for the reverse transition. We use 4.0 as the threshold and 0.81 as «.

Results are shown in Figure 4.5,4.8, and 4.9. They show that the strategies achieve good
performance against affected communication costs. The data are averages of 10 ~ 100 experi-
nents.

Figure 77 and 4.7 compare the two estimation methods. Formula 3.6 could achieve as good

performances as the Monte Carlo method in TSP.

58 Evaluation and Discus ion

Tlhe communication cost function in Ftigure 4.5 are simple ones. The ones used in Figure
4.8 non linear functions. This non-linecarity 1~ introduced to imitate the congestion on network.
In Figure 4.9 that shows the traces of the size of the range with the communication cost at
Figure 4.8 (a). the solid line shows the range control strategy on flat structures. the dashed line
shows the optimal size on hierarchical structures. and the dotted line is the real size of clusters
on hierarchical structures. Strictly speaking. the communication cost used in Figure 4.9 (D) is
different from the one in Figure 4.9 (a). The cost function hardly atfects the tendency of the

range cliange.

4.2. Results of Simulations 59
(A) communication cost/computation cost = (.01 (B) 0.001.r
500
clsO —
1100 cls4 -
fat
450 fixed
1000
900 400
800
g g 30
T 700 -
600 300
500
250
400
300 200
0 10 20 30 40 50 60 0 10 20 30 40 50 60
initial size of range initial size of range
(C) 0.0001x (D) 0.1log(r)
400 500
cluster — cls0 —
clusterat 4 ----- flat -----
flat tixed
fixed —— 450
350
/ 400
£ ow £
350
250
-------- . 300
200 :
0 10 20 30 40 50 60 0 10 15 20 25 30 35 40 45 50
initial size of range initial size of range
(E) (,(),(J()(Jl(r.—l) =
400
clso —
f1atgg-----
=0 tixed
360
340
320
4
£
I)
280
260
240
220
0 10 15i 20 25 30

initial size of range

Figure 4.5: results of spatial strategies(1)

The average time of a single agent system is 21501. Thus the region under 215 means

superlinear.

Evaluation and Discu sion

on flat structures

300
cluster: Monte Carlo —
cluster: /(n+1) -----
280
260
]
£
240 %/
v
220
o 5 10 15 20 25 30 35
initial size of range
on hierarchical structures
300
flat: Monte Carlo ——
flat: n/(N41) -
280
260
@
E
240 -
220
¥ |
0 5 10 15 20 25 30 85

initial size of range
Figure 4.6: difference of Monte Carlo simulation and n/(n + 1) estimation

communication cost/computation cost is 0.0001x

4.2. Results of Simulations

on flat structures
1200 > i

cluster:Monte Carflo |
1100 cluster: n/(n+1) =< -

1000
900

800

time

700
600
500
400

300
0 5) 10 15 20 25 30 35 40 45 50
initial size of range

on hierarchical
650

flat: Monte Carlo —
flat: /(n+1) ----- -
600

550

500

time

450
400
350

300
0 5 10 15 20 25 30 35 40
initial size of range

Figure 4.7: difference of Monte Carlo simulation and n/(n + 1) estimation(2)

commuuication cost/computation cost is 0.01z

61

62

320

280

260

240

220

0.01 4 0.0001 + 0.0001(0.02.0)?

340

320

280

260

240

20

400

340

320

280

260

240

220
30 40 50 60

0.1 4+ 0.0001a 4 0.0001(0.02.)?

range

20 30 40 50 60

Evaluation and Discus ion

0.01 4 0.00001. + 0.0001(0.02.)?

No (fixed size)
on flat structure
on hierarchical structure

Figure 4.8: results of spatial strategies(2)

S0

45

40

85

30

25

20

15;

10

0 50 100 150

step

200 250

changes of the communication range

Figure 4.9: results of spatial strategies(3)

60

4.2. Results of Simulation

(A) on clustered structures

achivement rate ——
number of packet ----
communication range
cluster size
10 best threshold/1000 - - -
worst threshold/1000 - - -

(B) on two structures

Figure 4.10: traces of the size of the range

63

64

Evaluation and Discussion

4.2.2 frequency control strategy

The second category of strategies is the frequency control strategy.

Our current imple-

mentation is based on the manager-worker model and different from a structure for the range

300

290

280

270

260

total time

250

240

230

220

210

25

20

10

interval between multicasts

controlled(cost = 0.1
fixed(cost = 0.1
controlled(cost = 1.0
fixed(cost = 1.0
5 10 115 20 25 30
initial interval
(a) execution time
cost=2.0
cost=1.0
cost=0.5
cost = 0.1
5 10 15 20 25 30 35

phase: interval between multicasts
(b) changes of the broadcast frequency

Figure 4.11: results of frequency strategy(1l)
The cost of communication is shown as the ratio compared with the compntation cost.

‘Phase’ is the local computation step between two broadcasts.

4.2. Results of Simulations 65

300

controlled(cost

=0.1)
290 fixed(cost = 0.1

)
280
270
260

250

total time

240
230
220

210
5! 10 15 20 25 30
initial interval

300

controlled(cost = 1.0)
290 fixed(cost = 1.0)
280
270

260

time

250
240 Sy
230

220

210
5] 10 15 20 25 30
initial interval

Figure 4.12: results of frequency strategy(2)
control strategy in which agents are identical in the initial state. Only one manager deter-
mines the frequency of mulitcast based on the result of its local computation. If it decides that
it i1s a time to exchange local knowledge, it multicasts a request for exchanging information.
Receivers send back their knowledge to the manager. Then the manager multicasts the best
knowledge of the received pieces. In this three-phase communication, every agent should stop
local computation.

Most parameters for experiments for the frequency control strategy is the sane as the ones

66

i the

Evaluation and Di cu sion

for spatial connectivity control strategy. The number of agents is 100: one

manager and 99 workers. Figure 4.11. 4.12 is the re ults.

4.2.3 results

The propertie. we found are -ummarized helow:

Il

(8]

Changing the range and the frequency during the execution is useful. The initial range
hardly affects the performance in bhoth flat and hierarchical structures. As Figure 4.10
shows, there are three stages from the view of the size of ranges on both structures. In
the first stage (at 0 ~ 20 step) and the last . tage (over about 150 step) the commuui-
cation range is relatively small. This result is derived from the nature of the secarching
process. At the initial stage, for no agent finds a new threshold, the strategy reduces
the communication range. In the middle stage (at 20 ~ 150 step) where the distribution
of agents’ information becomes large, the range becomes very large. In particular, the
strategy on hierarchical ‘tructures changes sharply, because an information collector of
a cluster controls the size of the cluster. The best answer was often found at 0 ~ 150
step. At the last stage after finding and the best answer, updating the
threshold never occurs and no more communication is needed. In conclusion, the more
frequently information is renewed. the more frequently or more widely identical agents

communicate. But excessively frequent updates decrease the number of communication.

In the frequency control strategy., the frequency of communication is affected by the
commuuication t) cost. Similarly. the size of communication range decreases if

its cost 1s high where the utility of communication bhecomes low.

There is no clear difference between flat structures and hierarchical structures. The
reason 1is the peak size of ranges 1. not .o large in this simulation and changing cluster
size requires some other communication on hierarchical strategies. This reduces the merit
of hierarchical structures. However, experiments with other cost functions showed large
communication cost. make the difference clear. For example, in Figure 4.5 (), (B) and
(C), the difference hecomes small in its order. Generally. the structure changing strategy

1s better than the strategy on cluster structures.

4.3. Discussion 67

4. A communication range becomes larger after the difference hetween the best knowledge
and the worst knowledge in time becomes large. A history has enougl sensitivity. This

result corresponds to the result that we mentioned in the previous chapter.

(W]

Tle best threshold spread - quickly when it is found. Sometimes search terminates before
every agent knows it. But usually most agents know it. ince. compared to tlat structures,
cluster structure. apt to make closed groups in each clusters. expansion speed teuds to

be slower than the one on flat structures.

The properties described above are lield in other communication cost functions from O(log(n))
to O(exp(n)). They hardly depend on a cost function if it increases monotonously. In conclu-

sion, programmers need not care about the communication topology by using the strategies.

4.3 Discussion

4.3.1 applicability of the strategies

In this section. we discuss the applicability of these strategies to other fields and ways of

implementing these strategies. Related works are also described.

another search algorithms

First, we think more about the bhranch-and-bound method. s we described, our implementa-
tion ignores the communication cost for gathering subproblems into a blackboard. We justify
this assumption as we can implement it as distributed memory easily. But if so. we shonld
deal with tlie local starvation of the problem. Of course. any agent can multicast or send a
request to neighbors when the local bag is empty. But agent must wait for its results. If we do
not want to make agents idle. agents sent a request of subproblems to other agents before it
becomes really idle. Thus we had better build a cooperative communication strategy to require
subproblems. A local history about the consumption rate will be a Lelp. Then we can use
our strategy, wlhere it control the flow of subproblems instead of a threshold. Furthermore, by

using a listory of requests from otlier agents. it would behave more cooperatively.

68 Evaluation and Discussion

Second topic i on A* scarch. The current shortest path as a threshold in TSP is a kind
of information that is acquired during execution. The search algorithm used here does not use
any e timation heuristics. In a general case. we can use an estimated value as the measure for
modeling execution status. Considering A™ search[Pea84]. the quality of a node (subproblem) is
measured by an evaluation function. Thus we can use the strategies for exchanging subproblems
with the relations in Table 4.1.

Another cooperative searching method is bidirectional scarch [Poh71, Ish93b]. It is -carch
from an initial state and a goal state simultancously. Two search processes look for a path that
they can meet. Locations of each agent in the search -pace will help for cooperation. Thus
by giving a heuristic function like the proceeding rate, two agents behave in a cooperative
manner; for example, agent require less computational time when it has not proceeded.
history will provide a basis for cooperation. Here, the cooperative strategy is not for commu-
nication. It changes an behavior itself. But if the communication cost is very high, the

communication strategy that can forecast other agents’ states will he useful again.

out of search problem

Though we model only cooperative search problem, the connectivity changing strategies are
applicable to a lot of arcas. First we concern with the contract net protocol (DS |. “ontract
net protocol is a method for distributing subproblems to appropriate agents. ach assignment
takes three phase communication among agents: a task announcement, submitting a
bidiand making an award. A merit of this method is fairness of the result. These message are
broadcasted. But with a history of replies. agents omit overspreding of messages. gents use
multicast instead of broadcast.

shared object management Second example 1s shared object management. Exchanging

threhsold can be thought of as algorithms for managing the consistency of threshold that

Table 4.1: comparison of search algorithms

application | branch-and-bound A~ search
neasure update rate of thre hold update rate of estimated value
exchanged data threshold good unexpanded subproblem

4.3. Discussion 69

is shared weakly among a>ent.. In addition. the idea of using a local history as a model of an
environment can manage shared objects with strong consistency. Usually. strougly consistent
objects are used much more than weak consistent objects on systemws. Thus the pro-
grammers burden of keeping colierency effectively will be relieved in a number of application
areas.

In this case. the measure of execution is the ratio of local access and remote access. Values
Exchanged among processors are shared objects themselves. If the current cost for remote
access 1s higher than the expected cost for managing coherency. a shared object should he
duplicated and distributed. On the other hand. if it is low. the copie. should he merged to
reduce the cost in writing. If agents (copies of a. hared object) know the access ratio sutticiently

with the access lhistory, the ‘trategie. would work well.

4.3.2 dealing with heterogeneity

Our approaches assumes the homogeneity of agents. However, the history-hased expectation
mechanism could apply to not ouly homogenecous environments but also heterogeneous oues.
The history of the revision of information at other agents in current implementations is not
eparated from its own history. Agent ' exchange the information with ecach other and update
their histories with the received information. But in heterogencous network. this dispersion
becomes an important problem. An implementation and the evaluation of strategies hased on
separated listories are of a future plan. Such an implementation will also work ou heterogeneous
agents.

Another important heterogeneity is in decision making: diversity of actions of agents. [If
heuristics can find only the most promised search direction , the best path in time does not
always lead to a way to the best answer. Thus for reducing the risk. diversity of search directions
in some degrees is required. Lesser called such : strategy that includes this diversity
control as cooperative control [Les91]. We think temporal diversity of the selection of the next
problems can be acquired from probabilisti - way based ou the local history, that makes an
appropriate distribution of all agent. in the system in a search e. But further study is

required for this direction.

70

Evaluation and Discussion

Last heterogeneity is aboout agents goals. Since we focus on PS in which the goal is

shared among all agents. situation like Prisoner’ dilemma [.-¢ 4] do not take place. But a

kind of fluctuation or oscillation of decision making may take place. his problem is discussed

in [KHH89]. Since our methods. however. use histories. we do not think drastic loss of the

performance happens that is reported [INHH89).

Finally we summarize the limitations of the proposed scheme again:

4.4

Communication costs mu. t be known before execution. It would be difficult on a system

that has a hierarchical topology or a large-scale open system.

The strategies as. ume homogeneity of agents. But we gave some posible solutions to it

above.

Summary

Through simulations of TSP, we have evaluated the quality of our strategies. They showed

better results than fixed communication systems for a wide range of communication costs.

A history 1s a good model of execution status. There is no clear difference hetween the
monte Carlo simulation and formula 3.6. They estimate the probability of information

update well in the range control strategy.

We discussed problems to apply our . trategies to other search algorithms or other appli-
cation domains. By proposing extension plans, we claimed that many of them will he

solved.

We also discussed some assumptions to use our strategies; the heterogen ity of agents

and knowledge on cost functions.

Chapter 5

Separate Description of
Communication Strategies

5.1 Communication Strategies as Metalevel Computa-
tion

Our communication strategies change the beliavior of an agent by using a history that is a
measure almost independent of a problem-level program. They are invoked when some changes
in agent local status are happen. And after fini hing their job. the control ow returns to the
invoking point in the problem-level program. This fow reminds us a usual subroutine calls.
But since when to invoke communication strategies is defined in the context of the strategies
themselves, the interpreter can know it. This means programumiers need not to write procedure
calls down 1n their problem-level programs. In other words, communication strategies can be
embedded into the semantics of reference and update of local variables in problem solving
programs. It is a metalevel computation.

Thus we think deciding communication structures should be a kind of computational re-
flection [MNB88]. This means communication strategies can be separated from problem-level
programs and be a metalevel description of program solving agents.

This separation approach lias two merits:

1. Programming is divided into two independent subtasks: building communication strate-

gies and writing problem-solving codes. As a result. writing codes for communication

71

72

Separate Description of Communication Strategies

separation
.

S S e e SO I e Agent-.-.. Y
: : :
: \
! . i
: problem solving '
: module
MOP !

____________________ R R

] 1

1 |

program I

|

select class for communication
e strategy
Programmer library for cooperative processing

Figure 5.1: separate description

strategies can be omitted from problem-solving programmers’ task. It also makes reusing
the communication strategies easy, if there is a generalized protocol between agent and
strategy. Communication strategies can be stored in a library. In Werner's words, we
can distinguish “system programmers”™ and “application programmers™ with this frame-
work [Wer02]. As a result. communication strategies and application programs can he

developed and tested independently.

Since the communication strategies are included in the semantics of a language, the strate-
gies are invoked automatically when needed. For example, if a communication strategy
1s defined as metalevel computation of the assignment to a slot that holds information
to exchange. every modification of the slot invokes the strategy. We can omit explicit

invocation codes from problem-level program.

We made such a system on an object-oriented language. We explain this in the following

sections.

5-2- Implementation on CLOS Meta-Object Protocol 73

5.1.1 related works

Relation between agent programming and object-oriented programming languages have heen
investigated by a lot of rescarchers [NT90] [Hew77. MIT90. YSTH87. MWY91. Gas92h. FB
FC91. EPT94]. M\lo.t agent-oriented languages are based on first-order modal logic. since
logic-based representation of specification can infer the agents’ mental states like helief. desire
and intention in a uniform manner. which select the agent behaviors. On the other hand.
concurrent object-oriented languages with extensions for cooperation will he useful especially
for DPS. Since our focas on language is how to separate problems and strategies. we do not
intend to build a new language but build a programming style. But here we give a short
sumimary on relation between DPS and OOPL.

[IMWY91] i. an approach to change hehaviors in a group with metalevel computation. In
this system a group has a metalevel. This is different from classical meta-object languages
in which an object has a meta-object. Consistency in the group can be held ecasily. On th
other hand. it requires frequent communication between nodes. Thus we do not think that this
approach is rational in cooperative system on distributed sy. tems.

Some concurrent reflective OOPLs like [FB88. FC91] have heen used for DPS. For example.
Ferver's Mering IV [FC91] is an example of object-oriented languages with meta-level compu-
tation for cooperative computation. His focus is providing high level communication primitives
to programmers and not providing adaptive cooperative methods based on local computation.
But there was no clear separation between cooperative strategy and user application programn.

Some Object-oriented OS uses reflection for a method of load-halancing and process mi-
gration [OIT93, Yok93]. But the facility is embedded in OS and can not use the semantics of
application program well. We think more strongly -ombination between strategy and applica-

tion is required. Compiler’s ‘upport is crucial.

5.2 Implementation on CLOS Meta-Object Protocol

Some object-oriented-programming languages have meta cts that represent hehaviors of
objects. In particular, CLOS (Common Lisp Object System) [ST90. Kee89] has flexible in-

terface to meta level programming, which is known as CLOS MOP (Meta-Object Protocol)

74 Separate Description of Communication Strategies

[KdRBI1. Pae93b]. Thus we decided to build a DAT platform with the stategies on CLO

In the next section. we give a short description of CLOS/MOP.

5.2.1 meta-object protocol

A merit of object oriented programming language. (OOPL) is modularity of programming
components or objects. A definition of a data structure and procedures for it are capsuled
on a description block called a class. An nstance of a class behaves as defined in its class.
Some OOPLs an control behaviors of a class it.elf. that includes wayvs to make an instance,
delete an instance. control method dispatch. inherit super classes and so on. These exten-
sions are done by making class itself an instance of a class: a metaclass. In such languages.,
all classes have its metaclass. By letting all metaclasses accept same methods (called pro-
tocols), we can change the beliavior. of instances of a class easily. We can select most ap-
propriate metaclass for problem solving. Since such an extension to a user defined 18
not modification of an exi ting system but an addition of new behaviors for a particular
class, it is safe and easy for . A group of rescarchers had proposed a protocol
for the CLOS class structure. It became a standard known as MetaObject Protocol (
CLOS MOP provides a way to change the hehavior to access to a slot, update of it, make
a new instance of the class and so on. For exampl . TOP lhas been used to emulate other
inheritance/message-passing models (Dvorak’s hybrid knowledge representation tool [DI393]
and CLOVERS(ftp://swiss-ftp.ai.mit.edu/archive/clovers/clovers-design-notes.text))
and to build a persistent OOPL system (for example. PCLOS [Pac93Db]. AllegroStore(a commer-
cial product based on Alegro Common Lisp), ITASCA ODBMS (ITASCS Systems Inc.). asp
FAQ (http://wuw.cs.cmu.edu:8001/Web/Groups/AI/html/faqs/lang/lisp/top.html) sum-
marizes more implementation.).

Now the following is a summary of requirements for separate description of our communi-

cation strategies.

1. Change the behaviors of access/update of a particular slot of an agent. Our strategies
store the history of renewal of a slot. The . trategies that also include a procedure of

update the history should be invoked whenever the slot is updated. Or some strategies

5.2. Implementation on CLOS Meta-Object Protocol 75

shold be invoked when tlhe slot is accessed. This is a kind of extension of the semantics

of the language.

2. The invocation should be transparent for programmers. Programmers who write problem-
solving program. should never concern about communication as much as pos-

sible. They do not want to call any procedures for a strategy explicitly.

3. Communication strategies can send and receive some sorts of messages. The messages
should be invisible from problem-level programs. And a particular message dispatcher can
be invoked when a message is received. This dispatcher must coexist with the dispatcher

in problem-level program.

CLOS MOP provide features to meet these requirements. Thus we decide to implement the

communication strategies with MODP. In the following -ections. we explain our implementation.

5.2.2 class structure

Figure 5.2 shows the class hierarchy in CLOS. It also includes our new classes for describing
communication strategies. In CLOS. every object is either one in CLOS class hierachy or one
of a built-in type. all objects, even if they belong to a built-in data type. are subclasses of
the object T'. T's superclass is T itself. top class of CLOS class hierachy is standard-object.
It defines the primitive hehaviors of all instances. Both of slots and methods themselves are

subclasses of standard-class.

agent-class and agent-meta-class

First, we should define a new meta class agent-meta-class for a specifier of class hehaviors.
Its definition is as simple as listed below. Since slots holding information for communication
strategies are stored in an instance of each strategy’s class, agent-meta-class has no own slot.
It is used only for slot instantiation. With it, as a base class of users’ agent class. we define

agent-class.

(defclass agent-meta-class ()

0)

'In the Lisp dialects. T means true usually.

76 Separate Description of Communication Strategies

@ CLOS MOP class structure

T

standard-object

standard-slot-definition standard-class standard-method

standard-effective-slot-definition

Our extention

TN agent-meta-class

strate

communication-strate
) | use— =
cooperation-effective-slot-class /’

subclass

subclass
spatial-control-strategy

temporal-control-strategy

user level program

agent-class

Figure 5.2: class hierarchy

(defclass agent-class () L super class 1s T.
((receive-counter receive-counter :initform ()
(send-counter :accessor :send-counter :initform 0)
(agent-id :accessor agent-id :initarg agent-id))

(:metaclass agent-meta-class))
agent-class has two methods for inter-agent communication. They update the above two
slots in agent-class.

(defmethod send ((self agent-class) (receiver/s object) ...)

(defmethod receive ((self agent-class) (message t)) ...)

5.2. Implementation on CLOS Meta-Object Protocol 77

slot structure

Our strategies use a history of slot renewal. It isa model of program execution. ince we assune
that a history of the value renewal of a slot 1s used as the measure of program execution. the
slot object must hold the history of itself. Thus it is rational to use instance as a wrapper
to hold them at the same time. All strategies have a common interface (protocol): a procedure
in accessing the value. one in updating the value. and one in receiving messages from another
agent. Thus we make each strategy a class. An abstract class: communicatron-strategy is one

of their superclasse. . It can be defined as follow

(defclass communication-strategy ()

((value) i the wrapped value tself
(model) L a history of value
(communication-cost) :a function to estimate cost

(defgeneric ref-strategy ((class communication-strategy) instance slot)
(defmethod ref-strategy ((cla s communication-strategy) instance slot)
nil)
(defgeneric set-strategy ((class communication-strategy) instance slot)
(defmethod set-strategy ((class communication-strategy) instance slot)
nil)
(defgeneric dispatcher ((class communication-strategy) instance slot)
(defvar *out-of-local-computation-p* nil)
(defmethod dispatcher around ((class communication-strategy) instance slot)
(let ((*out-of-local-computation-p* t))

(call-next-method)))

Note that method ref-strategy is required to update the history of local computation
that is stored in model slot. *out-of-local-computation-px* is a flag variable that is used to

distinguish the value from an another agent from one found locally.

specify metaclass-designator

78 Separate Description of Communication Strategie

.

cooperation-effective-slot-definition

TR T, | vector for slots

std-instance-slots

\ strategy object
.
.
.
"‘ set-strategy
.
‘\‘ ref-strtegy
slot-definition-location ™
1 value
\“
% model
"
vector for slots
‘\
8
.
value
‘l
8
s
‘\
standard-effective-slot-definition 9

Figure 5.3: slot structure

All classes must have a metaclass that is either the same metaclass of their superclasses or a
valid metaclass. The generic function: validate-superclass checks its validness whenever a

new class is defined. Thus we must add a method for our agent-metalevel-class.

(defmethod pcl::validate-. uperclass

((class agent-metalevel-class) (superclass pelistandard-class))

t)

With this method, we can define any agent classes as subclas of standard-class. They

use cooperation-effective-slot-definition for specific slots.

5.2. Implementation on CLOS Meta-Object Protocol 79

add slot-access-using-class method

In CLOS, the most primitive access/assign functions are slot-value-using-class and (setf
slot-value-using-class)? respectively. Other slot acces ors use them internally. Thus. now
we must define two methods for accessing and updating a slot of agent class. slot-value-using
-class dispatches with an argument: slot-definition. Usual class uses pcl: :standard-effective
-slot-definition. We add cooperation-standard-effective-slot-definition as a sub-
class of pcl: :standard -effective-slot-definition as following.*

(defclass cooperation-standard-effective-slot-definition

#+CMUCL(pcl::sstandard-effective-slot-definition) : of the system is CMUCL
#-CMUCL(. tandard-effective-slot-definition) : otherwise

The following method is added for cooperation-standard-slot-definition. It is invoked
during the class initialization process. In this case, a slot that has : cooperative-strategy
keyword parameter of a subclass of agent-class uses cooperation-standard-slot-definition

as its descriptor.

(defmethod pcl::effective-slot-definition-class
((class agent-metalevel-class) initargs)
(if (member :cooperation-strategy initargs)
(pclifind-class "cooperation-standard-effective-slot-definition)

(pel:sfind-class pelistandard-effective-slot-definition)))

The main difference is that the stored value in a slot is wrapped by the strategy object

whose definition is described below. The t one is for value assignment.

(defmethod (setf pclislot-value-using-class)
((new-value t) (cla. s agent-metalevel-class)
object (slotd comm-standard-effective-slot-definition))
53 assign the new-value to slotd of object wn class

(let ((location (pcl::slot-definition-location slotd))

2(setf slot-value-using-class) is a symbol whose name includes braces and a space.
3In CLOS/MOP system, there is another slot definition class: standard-direct-slot-definition. Since it
is parallel to standard-effective-slot-definition, we ignore it in this thesis.

80 Separate Description of Communication Strategies

(slot-in~tance))
(cond ((typep (pcli:%instance-ref (pelistd-in tance-slots object) location)
‘communication-strategy)

(let* ((slot (pel::%instance-ref (peli: td-instance-slots object) location)))
(update-value slot new-value) : model (history) is updated in update-valuwe
(when *out-of-local-computation-p*

(funcall (set-strategy -lot) object slot-instance slotd))))
(t (setf slot-instance
(make-instance (strategy-class slotd)
:history (make-array (memory-size slotd)
:initial-element (0.0)
:value new-value)))))

new-value)
The rest is for its reference.

(defmethod pcli:slot-value-using-class
((class agent-metalevel-class)
object
(slotd cooperation-effective-slot-definition))
(let* ((location (pcl::slot-definition-location . lotd))
(strategy-object ...)) i same as the original method
(if (typep (pel::Zinstance-ref (pel:std-in. tance-slots object) location)
‘communication-strategy)
(progn (funcall (ref-strategy strategy-object) slot)
(value strategy-object))
5 signal unbound error

(pclizslot-unbound class object (pel:slot-definition-name slotd)))))

unboundness checking

In the initialization steps in make-instance. a strategy instance is created as the value of a slot.
This meaus the standard method of slot-boundp returns t even if it has not been used. We de-
fine the following method for communication-strategy-slot-class. It call slot-boundp-using-calss.
Thus we add new method as well as slot-value-using-class. which invokes slot-boundp for value

in the strategy object.

5.2. Implementation on CLOS Meta-Object Protocol 81

5.2.3 interface to programmer

Now we must provide an interface to problem-solving programmers. At first we provide a new
macro for class definition: defagent. Its task is adding :metaclass option to class options and
add some slots. Its definition is the following.
(defmacro defagent (class-name super-class-list &optional slot-defs &rest rest)
‘(defclass .class-name
L(if (member “agent-class super-class-list)
super-cla. -list
(cons ‘agent-class super-class-list))
slot-defs

JQ(cons “(:metaclass agent-meta-class) rest)))

Therefore the following form:

(clefagent an-agent-class ()

(-r))
is expanded as:

(defclass an-agent-cla. s (agent-class)

(...)

(:metaclass agent-class))

defagent can hide the names of both the metaclass and slots for communication strategies.

make-instance

In CLOS, making an instance of a particular class is performed by make-instance. sually
its arguments are for slot initialization.

Our commuunication strategies require knowledge about a communication cost. It depends
on each environment. Thus when making an agent, we must give a cost function to the agent as
well. However arguments required to the function depend on a strategy. Furthermore, an agent
may use more than one strategies in our implementation. Thus we need a way to distinguish

cost functions. Our solution is using a unique keyword for make-instance. The keyword is

82 Separate Description of Communication Strategies

built as a concatenation of "cost-function” and the name of the strategy class. Thus if we use
spatial-control as a strategy for exchanging the value in slot foo in user-detined class: C.
and use temporal-control as a strategy for slot woo. its instance is created hy:
(make-instance 'C

:communication-cost-for-spatial-control #’(lambda (num-of-packet) ...)

:communication-cost-for-temporal-control #'(lambda (frequency) ...)

These keyword parameters are processed at initialize-instance method defined for agent-class.
As we described earlier, the former lambda function is stored into cost-function slot of the

instance of class spatial-control that is assigned to the slot: foo of the instance.

5.3 Applications

In this section, we investigate the applicability of the implementation by using two programs.
The first one is the TSP program that we used in Chapter 4. The later is shared object

management in distributed environments.

5.3.1 traveling salesman problem

With this framework, writing TSP program in a separated way is straightforward. Both the
spatial connectivity control strategy and the frequency control strategy should be invoked when
a slot renewal is occurred. The structure of the history depends on the strategy. Its definition

is included in the definition of strategy classes.

(defagent search-agent ()
((threshold : slot definition
:set-strategy spatial-control)

-))

(defclass spatial-control (communication-strategy)
((range :accessor range :initform 0 :initarg :range :type fixnum)
(neighbor-list :accessor neighbor-list :initform nil)
(recommended-.ize :acce. sor recommended-size :initform 1

:initarg :recommended-size :type fixnum)))

5.3. Applications 83

(defmethod set-strategy ((strategy spatial-control) instance)
w range slot holds the new optimal range
(setq (range strategy) (sclect-best-range (model strategy)))
1 send the body slot
(send (make-instance ‘spartial-control-message
:hody (list (class-name instance)
(value . trategy)))

(choose-receivers (range strategy) (neighbor-list strategy))))

i In the program that uses searching-agent,
(make-instance search-agent
:communication-cost-for-spartial-strategy

cost-estimation-function)

(defmethod dispatcher ((s spatial-control) slot instance message)
(if (spatial-control-class-message-p message)
(when (betterp (body message) instance)
i update-value s an internal method for communication-strategy

(update-value class slot instance new-value))))

distinction of received data

In this program, a received threshold is assigned to the local threshold slot. If we nsed
(setf threshold) for the assignment, a communication strategy would be invoked once more.
It would cause repetition of communication. Though the loop. however, would he terminated
since the utility of communication decreased by the increase of homogeneity of agents, if we
want to avoid the loop, we should provide a raw assignment method. But the renewal should
be a part of metalevel computation. Therefore receiving is not visible to the problem-level
program but a task of metalevel computation invoked by the dispatching process at metalevel.
It will use a raw level assignment method that does not invoke any communication strategy,

which is called update-value in the above program.

84 Separate Description of Communi ation Strat gies

5.3.2 shared object management

shared object management NMost distributed programs use shared objects among processes.
They require strong counsistency. Thi- is the most important ditference from threshold in
the previou. example. From our point of view. threshold requires only weak consistency:
the consistency is required for effective execution. Objects with strong consistency can be
made in two ways in distributed environments. First approach is using virtual sharved memory
[Li86, LL89]. The object is accessed by its address in the same way as local objects. In this
system, memory pages are shared by all nodes. A copy of cach page is located where it is
accessed. Thus a running program has locality in memory it reduces the inter-node
communication

The second approach is based on a distributed algorithm. The object is implemented as
local object on each node. They are identical; they have the same value. If a renewal is
required, by broadcasting notification, all objects are updated as atomic action. This is a
message-passing style implementation.

Some virtual shared memory approaches e parallel cache algorithm (f.e. Snoopy cache)
to hold colierency amang copies. Thi. algorithm distribute copies at first step. The number
of copies does not change. Thus it can be consider a variation of distribute algorithm based
approach.

The main difference between these approaches is the number of identical copies. Most
viretual shared memorry approaclies do not make copies of an object. Thus though the update’s
cost 1s low, if the locality is low, the accessing costs will be high. On the other hand, the second
approach requires broadcasting whenever the renewal occurrs. We can imagine the adaptive
approach: change the locations and the number of copies. These decisions should be based on
the history of access/update pattern if we make it adaptive dynamically. Therefore onr history
based approach will be useful for this problem. Shared object management can he interpreted
as a problem of cooperation. Note that it is rather MAS than DPS, since ecach agent’ local
desires conflict with each other.

We should note that some papers investigate control method for changing the implemen-

tation of objects by program analysis (for example [KL95]). But it w. es static, pre-execution

5.3. Applications 85

server node

%&gant

. shared object

N
N
N
N

implicit remote
access

N

update \\
\
\
\

agent .

\
-~
[
\\ — upda te\ S~ —
access access

Figure 5.4: shared object distribution

information. Quantitative properties are ignored.
Here we describe a strategy that control the number of copies in a centralized manner

[YNU95]. A pre-fixed node become. the .erver. The others become owners or clients.

(defagent parallel-worker ()
((shared-object
:cooperative-strategy shared-object-manager/central-manner)

-))

(defclass shared-object-manager/central-manner (communication-strategy)
((server-id :type host-id)
(member-list :type list)

(owner-p :type boolean))

(defmethod server-p ((self shared-object-manager/central-manuner))
(= (server-id self) (id self)))

(defmethod set-strategy ((strategy shared-object-manager/central-manner) instance)

(cond ((server-p strategy) (broadcast-update-request strategy))

86 Separate Description of Communication Strategie
(t (send-update-reque 't

(defmethod ref-strategy ((strategy shared-object-manager/central-manner) instance)
(cond ((owner-p instance) nil)
(t (send-reference-request strategy)))
To receive messages, we need one more method. The following dispatcher should be
invoked from receive function.
(defmethod dispatcher ((strategy shared-object-manager/central-manuner) instance message)
(cond ((server-p strategy)
(cond ((request-message-p message)
(send-value . trategy message))
((update-message-p message)
(update-slot-internal strategy message)
t-message strategy)
(receive-all-ack strategy)))
((and (owner-p strategy) (update-request-p message))

i ... update and return ack to server

(t (error)))))

To eliminate the central controller, each process should have a more cooperative protocol.
Modeling others that would use not only history of communication but also the result of

program analysis or the description of othier agents’ mental models will be required.

5.4 Discussion

As we explain above, this framework can de cribe many kinds of communication strategies.
Though we omit the detail Liere. we can also use this implementation to use temporary cache
method that is mentioned in Chapter 2. Now, we will investigate some demerits and difficulties

of this framework in the next section.

5.4.1 restriction of meta-object protocol approach

The main restriction of this implementation comes from MOP approach. MOP is not a reflec-

tional computation mechanism that can change all of the base-level computation. Therefore an

5.4. Discussion 87

agent can not change the role of itself by any communication strategy. If we . to let agent
do it. more interface between a problem-level program and a metalevel program is required.
But it spoils the merit of separate description. This restriction will be crucial when we want

to built more autonomous agents that has a planner in it in order to decide its future plan.

5.4.2 role differentiation by method combination

On the other hand. . ome modifications to base programs can be done by method combination.
For example, we have proposed the spatial connectivity control strategy on two structures.
It requires an agent to change its role from a computing agent to a dedicated information

collector. This changes is done as:
1. stop invoking original method.
2. register a new method for collecting information

3. inform this change to other agent

The main issue is how to change the method body. CLOS has a solution which use method

combination. The change process is

If I should become an information collector. I run « method for collecting wnforma-
tion whanever I resume.
If I should become a searching agent, I Tun a method for searching whancoer [

resume.

This is a kind of method di. patching based on the result of the method priority computation.
This method selecting computation differs from normal class-hierarchy based computation. But
CLOS provides a way to define new. arbitrary method combinations.

In this framework. operators (method) that are described in an imperative style are invoked
by the result of method selecting computation. By using a language extension. we can write it
down in an imperative or declarative manner. Wlen an agent A resumes to run a method M,
the method with the highest priority in all method. in M at.A’s point of view is selected, where

the M that does nothing for collecting information is defined in a superclass of every agent class

88 Separate Description of Communication Strategies

that is defined with def-agent. It is a default behavior of every agent. It is natural to inherit
it and to select appropriate method dynamicall by u method combination.

This framework will be implemented with define-method-combination and more protocol
definition between application programmer and the system.

More drastic approach is mixing a TOPed OOPL with logic-based language extension.
planner-based description can be merged more flexiblely. We plan the use of Scheme [CR91]
with tiny-CLOS (subset of MOP in Scheme) [Kic91, Gal93] and an tool for logic program-
ming. Since modern Scheme implementations support parallel programming. inter-processor

communication, real-time GC and so on, they will be a good platform for BAI/NMAS testbed.

5.4.3 efficiency

MOP based-languages has an issue: its efficiency. In languages that supports MOP, every slot
access consists of a sequence of some methods. Comparing with a structure in traditional
languages, an access to a field in the structure is transformed to a machine code for loading
the content at an address with an offset. Sometimes the time for a reference of a slot hecomes
ten times ‘lower than one for a reference of a field of a structure. But, as MOP researchers
say, the language efficiency 1. not an is. ue of the language itself but one of implementation.
For example, CMUCL optimizes CLOS code if the metaclass used in a program is standard-
meta-object. In our approach, .ince metaclass of slot is fixed during its execution, unfolding
metalevel code into a sequence of flat procedure calls by compiler could be possible. In this
case, we can avold computation cost of MOP in execution time. For example, Tasuhara et al.
liave proposed a method with partial evaluation of meta-level computation in AB 'L/R2 and
ABCL/R3 [MMWY92, MWIY92, MMAY95].

Anyway, flexibility to change the program’s behavior is important in distributed systems.

since programulers can not forecast its exact execution situation.

5.5 Summary

1. The communication strategies are implemented as a metalevel computation where the

base program corresponds to the application program.

5.5. Summary 89

2. MOP is a w method to extend a base language for this purpose.

3. Our communication strategies are thought as a set of the extensions to semantics of ref-
erence and assignment to an agent-local variable. Thus CLO MOP provides a straight-

forward implementation of our strategies.
4. We illustrated the implementation. of some communication strategies.

We showed some restrictions of our framework. One is caused by the restricted reflectional

(W2}

power of MOP that can not change the problem level programs. Another one is etficiency

issue. We also showed some ideas to solve these issues.

90

Separate Description of Communication Strategies

Chapter 6

Conclusion

In this thesis, we presented communication strategies based on partial histories of agents for
modeling their environment to select efficient communication structures dynamically. The
experiments showed that the strategies brought good communication structures to autonomous
agents. We proved that agent’s local history as a qualitative model of revision of information,

which is a measure of execution, is useful for “TAS.

Though there are some restrictions such as the implemented strategies assuming homogene-
ity of agents, the simplicity of combining some pieces of information, and the information of
the communication cost function, we think that these strategies can b used in many applica-
tions that acquire new information in execution time, if we can tind information which value
increases monotonously and can build a communication cost function. These would cont
distributed database systems that replicate data.

The reason of good results from local-history based estimation method is that agents in
systems we used can be assum d homogeneous. Thus we need not to build an xcct model of
other agents. This implies the assumption that their do not conflict with each other. It is
not useful for MAS architecture but DAL The history-based expectation mechanism, however,
could apply to not only homogeneous environments but also heterogeneous ones. The listory of
the revision of information at other agents in current implementations is not separated from its
own history. Agents exchange the information with each other and update its history with the

received information. But in heterogeneous network, the speration of histories would become

91

92 Conclusion

an important problem. The implementation and the evaluation of strategies based on separated
histories are a future plan. It will also work on heterogencous agents.

In this thesis. we proposed a cooperation scheme on distributed systems. However coop-
erative processing is not only useful on distributed systems but also on concurrent svstems.
Omne example that requires cooperation. even if the communication cost can be ignored. is a
parallel search based on genetic algorithms. A earch process would fall in a local minimum
position by over-distribution of the best code at each step. Thus broadcasting the hest code
pattern does not necessarily lead to the optimal form of computation. The same discussion
is held on heuristic-base parallel search. In the. e examples. cooperation changes the way of
sharing information between agents. Thus we can define cooperation as methods for selecting
an appropriate structure of processing element. . Its application is not restricted to distributed
systems. We think that local-history based methods like ours will he useful for building schemes

on such systems.

Our study assumes that the intention of a programmer is presented in a program but not
a specification. Therefore we consider about neither rule-based or operator-based description
nor MAS. Thus our approach has a restriction necessarily for building strougly autonomous
systems. But we think there is a hierarchy of autonomy. At the top of the hierarchy. the unit
is human or a very autonomous agent. They can be described well by the term of belief. desire,
and intention(they are called as BDI theory). But the bottom level the description of the
goal of a computational unit is decomposed to a sequence of orders. If we assume the number
of computation unit in the real world becomes very large, to use them effectively, pulling
parallelism off is the important issue, even if the platform is distributed and thus we can not
ignore the communication cost on them. Since there will be a hierarchy of physical closeness of
computational units, our approach would be used in the low-level of problem-solving strategy’s
hierarchy.

Of course, history-based estimation method will be useful in high-level planning. It will
require probabilistic reasoning. The emergence of intelligence is one of the important research
themes in Artificial ence. Recent . tudies about emergent computation investigate a way

to make information proces. ing machine from a pool of simple units [For91. FM90]. Making

93

more intelligent system from units by a kind of evolution requires a meta-calculation about
utility like stability or uniqueness. Therefore selecting the input of itself and selecting related
modules is crucial. The issue about computation of connectivity between the units will he
emerged once again [Lan90. KHH89]. Therefore more study about connectivity should be

expected.

_W____l_ - NTEE
|]

Achkrnus kil gme it

| el N el R § ™ S B A el o il
Bt e By B e B S [, R s . B
I.I...I.-.I.-.hn..-._l_-.-.l_l..n.-.irg.l.q.l_!.p_

' ' H--.i.-—-prl-'n-rl-l-r-'

& Wit

Rl b gy madky g e g] o o rpemg
plﬂ-ll-ﬁ N e = - "
" [P T S S

-l-l-r*- -.jL 3 i

. . I-.'J
. n

Acknowledgments

I would like to thank to Professor Kazuo Ushijima at Ixyushu University for supporting this
research and improving the quality of this thesis. I am very grateful to Professor Akifuni
Makinouchi. Professor Ryuzo Hasegawa and Professor IXotaro Hirasawa at Kyushu
Their valuable commments are gratefully acknowledged.
I would like to express my apprecation to Associate Professor Norihiko Yoshida at Kyushu
University for discussion about DAL, MAS. OOPL, and direction of this research for long years.
I would also like to note two graduate students: Hiroomi Yamamura. the implementer of
the freqeuncy control strategy and Kenji Yamasaki, who impelemented the core part of CLOS

MOP-based systemn.

y ot Vg e 2 S l
e T e

Bibliography

[ACM95a]

[ACMO5D)

[AG92]

[Axe84]

(BGSS)

(BJDS85)

(BPYS]

(CG89)

(CG90]

(Chi93]

ACM. ACM SIGPLAN NOTICES, volume 30. number 10. ACM Press. October
1995.

ACM. (QOPSLA 95 Conference Proceedings. Austin, 1995. Reprinted as
[ACM95a].

Nicholas M. Avoris and Les Gasser. editors. Avrtificaal Intelligence:

Theory and Prazis. Kluwer Academic Publi hers. 1992.
Robert Axelrod. The Evolution of Cooperation. Basic Books, “ew York. 1984.

Alan H. Boud and Les Gasser, editors. Readings in Distributed Artificial Intelli-

gence. Morgan Kaufmann, 1988.

M. Benda, V. Jagannathan. and R. Dodhiawalla. On optimal cooperation of

knowledge sources. Technical report, Boeing AI Center. 1985.

Edward A. Billard and Joseph C. Pasquale. . daptive Coordination in Distributed
Systems with Delayed Communication. [EEE Sys. Man Cyb., 25(4):546
554, April 1995.

N. Carriero and D. Gelernter. Linda in context. Comm. A 32(4):444 458,

April 1989.

Nicholas Carriero and Davis Gelernter. How to Write Parallel Programs A

First Course. The MIT Press, 1990.
Andrew A. Chien. Concurrent Aggregates. The MIT Press, 1993.

97

98

[CL8s)

[CR91)

[DB93)

[DLC87a)

[DLC87H)

[DM89]

[DM914a]

[DMO1b)]

[DS88)

[Dur88]

BIBLIOGRAPHY

R. Coury. S. Mever and V. Lesser. Tultistage negotiation in distributed planning.

In Boud and Gasser [BG88]. chapter 5.3. pages 367 384.

Eilliam Clinger and Jonathan Rees (editors). Revised! report on the algorithmic

language Scheme. Technical report, November 1991.

Jirt Dvorak and Horst Bunke. Usijng clos to impelement a hybrid knowledge

representation tool. In Paepcke [Pac93al. chapter 12, pages 295 320.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Colerent Coopera-
tion Among Communicating Problem Solvers. [EEE Transactions on. Computers

C-30, pages 1275 1291. 1987. Reprinted in [BG88], pp.268 2 4.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Cooperation through
communication in a distributed problem solving network. In Huhns [Huh87].

chapter 2, pages 29 58.

Edmund H. Durfee and Thomas A. Montgomery. MICE: A flexible tested for
itelligent coordination experiments. In Proceedings of the Ninth Workshop on

Dastributed Artificial Intelligence, pages 40. 1989.

Yves and Jean-Pierre Miller, editors. Decentralized A.1. 2. North-
Holland, Saint-Quentin en Yvelines. France, 1991. Proceedings of the ec-
ond European Workshop on Modelling Autonomous Agents in A Multi- gent

World(1990).

Edmund H. Durfee and Thomas A. Montgomery. Coordination as Distributed
Search in a Hierarchical Behavior Space. IEEE Trans. Syst. Man Cybern. (Special
Issue on Distributed AI), 21(6):1363-1378. Tovember/December 1991,

R. Davis and Reid G. Smith. Negotiation as a metaphor for distributed problem

solving. In Bond and Gasser [BG88]. chapter 5.1, pages 331 356.

Edmund H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Aca-

demic Publishers. 1988.

BIBLIOGRAPHY 99

[EMSS]

[EPTO4]

[FBsS)

[FC91]

[FKKR93]

[FL77)

[FMO0)

[For91]

[Fox88]

Robert Engelmore and Tony Morgan. editors. Blackboard Systems. Addison-

Wesley. 1988.

David Edmond. Mike Papazoglou, and Zahir Tari. Using Reflection as a Means of
Achieving Cooperation. In International Symposium on Fifth Generation Com-
puter Systems 1994 Workshop on Heterogeneous Cooperative Knowledyge-bases.
pages Institute for New Generation Computer Technology, December

1994.

Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for
Distributed Artificial Intelligence. In Proceedings of the International Conference

of Fifth Generation Computer Systems, pages 755 762, 1988.

Jacques Ferber and P. Carle. Actors and Agents as Reflective Concurrent Ob-
ject:a Mering-1V Perspective. [IEEE Transactions on Systems. Man. and Cyber-
netics, 21(6):1420-1436, November/December 1991.

Taier Fenster, Sarit Kraus, and Jeffrey S. Rosenschein. Coordination with-
out Communication: Experimental Validation of Focal Point Technigues. In
Victor R. Lessor, editor, ICMAS-95 Procecdings Furst International Conference
on Multi-Agent Systems, pages 102-108, San francisco, June 1995. The AAl
Press/The MIT Press.

R.D. Fennell and Victor R. Parallelism in Artrificial Intelligence Problem
Solving: A Case Study of Hearsay-II. IEEE Trans. Computers,, C-26(2):98 111,
1977. Also reprinted in [BG88].

Stephanie Forrest and John H. Miller. Emergent behavior in classifier systems.

Physica D, 42:213-227, 1990. Reprinted in [For91].
Stephanie Forrest, editor. Emergent Computation. The MIT Press, 1991.

Mark S. Fox. An organizational view of distributed systems. In Bond and Gasser

[BG88], pages 140-150.

100

[Gal9))

[Gas92a]

[Gas92b)

[GBHST]

[Gel85)

[GH89)

[GRHL8Y)

[HBO1]

[HewT77]

[HG93)

[HH87]

BIBLIOGRAPHY

Erick Gallesio. STk. Universite de Nice. ftp://kaolin.unice.fr/pub/. 1995. Latest

version 1- 3.0. MIT AI Repo itory is its mirror site.

Les Gasser. Boundaries. identity. and aggregation: Plurality issues in multiagent

ystems. In Werner and Demazeau [WD92]. pages 199 213.

Les Gasser. Object-Based Concurrent Programming and Distributed . rtificial

Intelligence. In Avoris and Gasser [AG92]. pages 81 107.

Les Gasser. Carl Braganza, and ava Herman. Implementing distributed artifi-
cial intelligence systems using mace. In Proceeding. of the Third IEEE Conference
on Artificial Intelligence Applications. pages 315-320. 1987. Reprinted in [BG88).
pp-445-450.

David Gelernter. Generative comuunication in linda. ACM Tran. Prog. Lang.

Syst., 7(1):86-112, January 1985.

Les Gasser and Michael N. Hulns. editors. Distributed Artificial Intelligence

Volume II. Pitman/Morgan Kaufmann, London. 1989.

Les Gasser. Nicholas F. Rouquette, Randall W. Hill, and Jolhn Lieh. Representing
and using organizational knowledge in distributed I systems. In vasser and

Hulns [GH89]. chapter 3. pages 55 78.

Michael N. Hulins and David M. Bridgeland. Tulitagent truth maintenance.
IEEE Trans. Syst. Man Cybern.(Special Issue on Distributed AT), 21(6):1437
1445, 1991.

Carl Hewitt. Viewing control structures as patterns of passing messages. Artuficial

Intelligence, 8, 1977. North-Holland.

Bernardo A. Huberman and N. S. Glance. Social dilemmas and fluid organiza-

tions. In wn printing, pages 496-505, 1993.

Bernardo A. Huberman and Tad Hogg. Phase transition in artificial intelligence

systems. Al-journal, 23(2). 1987.

BIBLIOGRAPHY 101

(HH88)

[HM84)

[HMO0]

[Huh8g|

[Hub90]

[Hub92]

[Hulh87]

[HW03]

[1GY92)

(Ish93a]

[Ish93D)

Bernardo A. Huberman and Tad Hogg. The behavior of computational ecologies.

In Huberman [Hub88]. pages 77 115.

Joseplh Y. Halpern and Yoram Moses. Knowledge and common knowledge in a
distributed environment. In Proceedings of the Third Annual ACM Sympostum

on Principles of Distributed Computing. pages 50-61. 1984.

Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM. 37(3):549 587, July 1990. Riveted
version of IBM Research Report IBM R.J 4421(1984).

Bernardo A. Huberman. editor. The Ecology of Computation. Elsevier Science

Publishers B.V.(North-Holland), Amsterdam. 1988.

Bernardo A. Huberman. The performance of cooperative processes. Physica D,

42:38-47. 1990. Reprinted in [For91].

Bernardo A. Huberman. The value of cooperation. In Masuch and Warglien

[MW92], chapter 10, pages 235-243.

Michael N. Hulins. editor. Distributed Artificial Intelligence. lorgan Kaufmann,

1987.

Tad Hogg and Colin P. Williams. Solving the Really Hard Problmes with Coop-
erative Scarch. In AAAI-93, pages 231-236. AAAL AAAI Press/The MIT DPress.
1993.

Toru hida, Les Gasser. and Makoto Yokoo. Organization Self-Design of Dis-
tributed Production Systems. IEEE Transactions on and Knowledge En-

gineering, 4(2):123-134. 1992.

Toru Ishida. editor. and Cooperatwe Computation I1, volume 5 of

lecture note/software. Kindaikagakusha, 1993.

Toru Ishida. Realtime bidirectional search. In MultiAgent and Cooperative Com-

putetion II [Ish93a]. pages 121-135.

102

BIBLIOGRAPHY

(Ish93)

[Kau93)

[KC93)

[KdRBO1]

[Kee89]

[KG94]

[KHH89)

(Kic91)

[KL95)]

[Kni93]

Toru Ishida. Discussion on agents. Jowrnal of japanese ociety for Artificeal

Intelligence. 10(5):663 667. September 1995. in Japanese.
Stuart A. Kauffinan. The Origins of Order. Oxford University Press. 1993.

uhiko Kitamura and Zheng Bao Chauang. A cooperative search scheme for

dynamic problem.. In .. (Ish93a]. pages 137 147.

Gregor Kiczales. Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. The MIT Press, 1991.

Souya E. Keene. Object-Oriented Programming in. Common Lusp A Program-

mers’s Guide to CLOS Symbolics, Inc., 1989.

Taha Khedro and Michael R. Genesereth. Modeling multiagent cooperation as
distributed constraint satisfaction problem solving. In A. Cohn. editor. ECAI9.
pages 249-253. John Wiley & SOus, Ltd., 1994. 11th European Conference on

Artificial Intelligence.

Jeffrey O. K | hart, Tad Hogg. and Bernardo A. Huberman. Dynamics of com-
putational ecosystems: Implications for DAL In Gasser and Hulins | 9],

chapter 4. pages 79 95.

Gregor Kiczales. Tiny CLOS. Xerox, ftp://arisia.xerox.com/pub/

openimplementations/. 1991.

Anders Kristensen and Colin Low. Problem-Oriented Object Memory: Cus-
tomizing Cousistency. In OOPSLA 95 [A ' 195D]. pages
399-413. Reprinted as [ACM95a].

Kevin Kuight. Are many reactive ageuts better than a few deliberative ones? In
Proceedings of the 1993 International Joint Conference on A Intelligence.

pages 432-437, 1993.

BIBLIOGRAPHY 103

[KTTO93]

[Lan90]

[LC8S]

[LES0]

[Les90)]

[Les91]

[L189]

[Li86]

[LLARKSS5)

[LR92]

uhiko Kitamura. Ken'ich Teranishi. Shoji Tatsumi. and Takaaki Okumoto.
Communication control in distributed search. In IPSJ SIG Notes AI-93-89. pages

41 50. August 1993. in Japane. e.

Christopher G. Langton. Computation at the edge of chaos: Phase transitions

and emergent computation. Physica D. 42:12 37, 1990. reprinted in [For01].

Victor Lesser and D. Corkill. Functionally accurate. cooperative distributed

systems. In Bond and Gasser [BG88]. chapter 4.3.1. pages 295 310.

Victor R. Lesser and Lee D. Erman. Di tributed interpretation: A model and ex-
periment. [EEFE Transactions on. Computers. 29(12):1144 1163. 1980. Reprinted
in [BG8S|.

Victor R. Lesser. An Overview of DAL: Viewing Distributed . I as Distributed
Search. Journal of Japanese Society for Artificial Intelligence, 5(4):392 400,
1990.

Victor R. Lesser. A retrospective view of FA/C distributed problem solving.
IEEE Trans. Syst. Man Cybern.(Special Issue on Distributed AI). 21(6):1347
1361, November/December 1991.

Kai Li and Paul hudak. Memory colierence in shared virtual memory systems.

ACM Trans. Computing Systems, 7(4):229 239. ovember 1989.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,

University. September 1986.

E.L. Lawer, J.K. Lenstra. D.B. A.H.G. Ronnoony Kan, and Shmoys editors.

The Traveling Salesman Problem. Addison Wesley, 1985.

Ran Levy and Jeffrey Rosenschein. A game theoretic approach to distributed
artificial intelligence and the pursuit problem. In Werner and Demazeau [WD92].

pages 129-146.

104

[MIT90)

[MMAY95]

[MMWY92]

[MN8S]

[MW92]

[MWIY92)

[MWY91]

[Nar90]

BIBLIOGRAPHY

Takeo Maruichi. Masaki Ichikawa. and Mario Tokoro. Modeling autonomous
agents and their groups. In i Demazeau and Jean-Pierre Miuller. editors.
Decentralized A.l.. pages 215 234. “orth-Holland., Saint-Quentin en Yvelines,
France, 1990. Proceedings of the First European Workshop on Modelling Au-
tonomou. Agents in A Multi-Agent World (1989).

Hidehiko Masulhara. Satoshi Matsuoka. INenichi Asai. and . kinori Younezawa.
Compiling Away the Meta-Level in Object-Oriented Concurrent Reflective Lan-
guages using Partial Evaluuation. In QOPSLA'95 Conference Proceedings
[ACMI5b], pages 300 315. Reprinted as [ACM93a].

Hidehiko Masuhara. Sato. hi Matsuoka. Takuo Watanabe, and Akinori Yonezawa.
Objet-oriented concurrent reflective languages can be implemented efficiently. In
Proceedings of the ACM Conference on Object- Oriented Programmang Systems,

Languages. and Applications(OOPSLA "92), pages 127 144. ACNL. 1992.

Pattie Maes and Daniele ardi, editors. Meta-Level Archatectures and Reflection.

North-Holland. 1988.

Michael Masuch and Massimo Warglien, editors. Artificial Intelligence in Orga-

nwzation and Management Theory. Elsevier Science Publishers B. .. 1992,

Matsuoka. Takuo Watanabe. Yuji Ichisugi. and Akinori Yonezawa.
Object-oriented concurrent reflective architectures. In Obyect-Based — ocurrnet
Computing, volume 612 of Lecture Notes in. Computer Science. Springer-Verlag,

1992.

Satoshi Matuoka. T. Watanabe, and A. Yonezawa. Hibrid Group Reflective
Architecture for Object-Oriented Cocurrent e Programming. In Fufth

ECOOP, July 1991.

Shuji Narazaki. Cooperative Processing Model Cellula based on ficlds. Master’s

thesis, Kyushu University, March 1990. in Japanese.

BIBLIOGRAPHY 105

[Nar95)

[NT90)

[Num92)

[NY93)

[NYY94)

[NYY95)

[01T93]

[0sa93]

[Pae93a]

Shuji Narazaki. Effects of view ranges of agents in pursuit problem. In Nouichi
Hashida. editor. MultiAgent and Cooparative Computation I'V. volume 13 of lec-
turenote/software. pages 49-56. Kindaikagakusha. November 1995. Proceedings

of JSSST MACC'94 workshop.

Chisato Numaoka and Mario Tokoro. Distributed aritificial intelligence and pro-
gramming languages. JOwrnal of japanese SOciety for Aritificial Intelligence.
5(5):441-421. July 1990.

Chisato umaoka. Conver. ation for organizational activity. In Werner and De-

mazeau [WD92]. pages 189 198.

Shojiro ishio and Akinori Yonezawa, editors. Object Technologies for Advanced
Software. 742, Kanazawa, Japan, 1993. JSSST. Springer-Verlag. First JSSST

International Symposium.

Shuji Narazaki. Hiroomi Yamamura, and Norihiko Yoshida. Strategies for select-
ing communication structures in cooperative search. In International Symposiuwmn
on Fifth Computer Systems 1994 Workshop on Heterogeneous Coop-

erative Knowledge-Bases, pages 155-166, December 1994, Reprinted as [NY'Y93).

Shuji arazaki. Hiroomi Yamamura, and Norihiko Yoshida. Strategies for select-
lng communication structures in cooperative search. In 2, volume - of Lecture

Notes i Aritificial Intelligence. Springer-Verlag. 1995.

Hideaki Okamura. Yutaka Ishikawa, and Mario Tokoro. Metalevel Decomposi-
tion in AL-1/D. In Nishio and Yonezawa [. Y93]. pages 110 144. First JSSST

International Symposium.

Ei-Ichi Osawa. Adaptive cooperation schemes coping with dynamic problem

space. In Ishida [Ish93a], pages 105-120. in Japanese.

Andreas Paepcke. editor. Object-Oriented Programmang The CLOS
The MIT 1993.

106

[Pae93h)]

[Pea8d]

[PoliT]

[RB89)

[RGGS6)

[S+90]

[SD92]

[Sim81]

[SM89]

[SRSF91]

BIBLIOGRAPHY

Andrea - Paepcke. User-Level Language Crafting: Introducing the CLO NMetaobh-
ject Protocol. In Object-Oriented Programming The CLOS crspective [Pae93al.

chapter 3, page~ 65 99.

Judea Pearl. Heuristics antelligent search strategies for computer problem solv-

wng. Addison-Wesley, 1984.
[. Polil. Bi-directional search. Machine Intelligence. 6:127-140. 1971.

Jeffrey S. Rosenschiein and John S. Breese. Communication-free interactions
among rational : A probabilistic approach. In Gasser and Hulins [GH89].

chapter 5, pages 99 11-

Jeffrey S. Rosenschein, M. Ginsburg, and Michael R. Geneseretli. Cooperation
without communication. In Proceedings AAAI-86. pages 51 57. . . Al 1986.

Reprinted in [BG88]. pp.220-226.

Guy L. Steel Jr. et al. Common Lisp the Language. DEC press. second edition,

1990.

Young-Pa So and Edmund H. Durfee. A Distributed Problem-solving Infrastruc-
ture for Computer etwork Management. International Journal of Intelligent €4

Cooperative Information systems. 1(2):363- 392. June 1992.

Herbert A. Simon. The Sciences of the Artificial. The MIT Press, Boston. second
edition. 1981.

Larry M. Stephens and S Agent organization as an effector of
DAI system performance. In Proceedings of the Workshopon Distributed

Artificial Intelligence, pages 263 292, 1989.

Katia P. Sycara. Steven F. Roth. Norman Sadeli. and Mark S. Fox. Distributed

constrained li uristic search. IEEE Trans. Syst. Man Cybern.(Special lssue on
Dustributed AI). 21(6):1446-1461. 1991.

BIBLIOGRAPHY 107

[Sta89)

[WD92]

[Wer92]

[YDIK92]

[YN90]

[YNO1]

[YNU95)

[Yok93]

[Yok95]

Susan Leigh Star. The structure of ill-structured solutions: Boundary objects
aud heterogeneous distributed problem solving. In Gasser and Huhns [GH89).

chapter 2. pages 37 54.

Eric Werner and Yves Demazeau. editors. Dece ntralized A.I. 3. Elsevier clence

Publi. hers B.\V.. 1992.

Eric Werner. The design of multi-agent systems. In Werner and Demazeau

[WD92], pages 3 28.

Makoto Yokoo. Edmund H. Durfee, Toru Ishida. and Kazuhiro Kuwabara. Dis-
tributed coustraiut satisfaction for formalizing distributed problem solving. In
of the Twelfth IEEE International Conference on Distributed Com-

puting Systems. pages 614 621, 1992.

Norihiko Yoshida and Shuji arazaki. A cooperation and communication frame-
work for distributed problem solving. In of IEEE 2nd International

Conference On Tools For Artificial Intelligence, pages 530- 536. [EEE. 1990.

Norihiko Yoshida and Shuji Narazaki. A Distributed Processing System for the
Cooperation Model ‘Cellula’. Transactions of Information processing Society of

Japan, 32(7):906-913, 1991.

Kenji Yamasaki, Shuji Narazaki, and Kazuo shijima. Imprementation of
Cooperative Processing with Metalevel Computation. [IPSJ SIG Notes PRG,

95(82):145-152. August 1995. in Japanese.

Yasuhiko Yokote. Kernel structuring for object-oriented operating systems: The
aperotos approach. In Nishio and Yonezawa [. Y93]. pages 145 162. First JSSST

International Symposium.

Makoto Yokoo. An overview of distributed search. Cormputer Software. 12(1):33

42, 1995. in Japanese. Japan Society for Software Science and Techonology.

108 BIBLIOGRAPHY

[YSTHS7] Akinori Yonezawa. Etsuyva hibayama. Toshihiro Takada. and Yasuaki Honda.
Modelling and programming in an object-oriented concrrent language abel/1.

In Akinori Yonezawa and Mario Tokoro. editors, Qbject- Concurrent

55— 9. The MIT Press. 1987.

Programmaing. pages i

Index

A” search, 68 shared object management. 6 .

agent, 2
Traveling Salesman Probleu.
agent-meta-class, 75

utility of communication. 22
bounded rationality. 2

virtual shared memory, 4
class, 74

communication-strategy. 77

defagent, 81

Distributed Artificial Intelligence, 2
Distributed Hearsay-II. 1
Distributed Problem Solving, 3

Distributed Vehicle Monitoring Testbed, 10

ergodic process, 26

mstance, 74

metaclass, 74
MetaObject Protocol, 74

Multi-Agent System, 3

NK-model, 23

objects, 74

Pursuit Problem. 13

109

53

=

> 2R Y7 4 Joint Symposium on Parallel Processing 90 i L4 (VPR 2 425)])

o HACE., WiWGE |, Bk KL L2270t 208EI S #RLEEE 7 v Cellula™, 16§
HOLERF 2 Uik B 3L B&E T (K2 T 1)

Norihiko Yoshida. Shuji . arazaki, = A Cooperation and Communication Framework for
Distributed Problem Solving™. Proceedings of IEEE 2nd International Conference On

Tools For Artificial Intelligence(1% 2 45 11)])

T (FR3FETH)

RHE . BB U 72 D o P IORE R PR, IR Y 7 b T RER 803
R T Fr—2 oy b MasE I (4 4 4 10)))

Shuji Narazaki, . orihiko Yoshida. Hiroomi Yamamura. “Strategies for Selecting Com-
munication Structures in Cooperative Search™, International Symposiunm on Fifth Gen-
eration Computer Systems 1994 Workshop on Heterogencous Cooperative Knowledge-

Bases(‘F¥ 6 412 J1)

L REEHE L COBRRRIMIIC B AR OEE. AV T by TEYER MACCYY i [z

FI—Yxy b EHBAEIV] (CEETE1LN)

111

112

(8]

(2]

=1

INDEX

Shuji Narazaki. Norihiko Yoshida. Hiroomi Yamamura. “Strategies for Selecting Com-

munication Structures in Cooperative Search™, International Journal of ooperative Iu-

L=)= e S W o (S [R S < T AT TR - LB 5V 2 02 SV § LA U | IS =
57— 7 B J A DT AL A S U AR (IR 63 4123)

HHALEZ, ks Z, e AE5 b MALILE 7007 TR
WA F RN CPSY 89-19(Ik £ H)

WS . A, B MALEE 7L Cellula I & GFI. HAY 7 b 7 RE R
6 A% (CEROCH 10 A1)

Norihiko Yoshida, Shuji Narazaki, “A Cooperation Model Composed of ‘Process + Field’

Amalgams™, [IEFIEIOET L EICH] ISMT 20K =27 2 a v 7 (CPIKLH)

LS R B M5 — E AR o 720 o Sk & WS D R I SSTTL A 40 1)
(e 443 4))

COMP(4 4 45)

R MM | G — IR 0 220 O HEk L B8 CRRMIASTY R 1 SSLL Y
WAL PP S PRG(H 4 148 1)

CREE | FINRLE, C KBRDEGEIREE FICB U A0 MRE T — 2 = v b ol i, 11 A

V7 M 2 THFERE 10 AR (CFIR 5 6)

INDEX 113

1L

13.

14.

RS . HIHAZ. CHCHENE = — 2« v MIC X 2 RLIESII AL BT SCERB T R F e
[RDIE S 2D N AIRR] WAl YR 4 (P61 3)))

KRBT, WSS L RESRI . i MIRIC BT AT — 2 o o b Mo il A M T R

BAERZA S U SR G RS (T 6 9 1)

165 5 85 NRHK. X7 FT T 2o b &ML IS 7T 7T 20055 kil
R, 1995 FR FIEBOEE VRIS CFR TS)

LW B, AWHE . R, =X 7 LAOLEFR & o 72 10 WAL S S B | NH AL Ze) 7E
HE PRGIS-82(T 7 1 8 J)

114 INDEX

